
Go To Statement Considered Harmful: A Retrospective

Go To Statement Considered Harmful:
A Retrospective

David R. Tribble
Revision 1.1, 2005-11-27

● Introduction
● Background
● Part I - Dijkstra's Letter, Annotated
● Part II - Structured Programming
● Part III - Is Goto Still Necessary?
● Conclusion - The Tao of Goto
● References

Introduction

This is a discussion and analysis of the letter sent to Communications of the Association for
Computing Machinery (CACM) in 1968 by Edsger W. Dijkstra, in which he calls for abolishing
the goto statement in programming languages.

The letter has become quite famous (or infamous, depending on your feelings about goto
statements) in the 40 years since it was first published, and is probably the most often cited
document about any topic of programming. It is also probably the least read document in all of
programming lore.

Most programmers have heard the adage "Never use goto statements", but few of today's
computer science students have the benefit of the historical context in which Dijkstra made his
declaration against them. Modern programming dogma has embraced the myth that the goto
statement is evil, but it is enlightening to read the original tract and realize that this dogmatic
belief entirely misses the point.

http://david.tribble.com/text/goto.html (1 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

This paper was written at a time when the accepted way of programming was to code iterative
loops, if-thens, and other control structures by hand using goto statements. Most
programming languages of the time did not support the basic control flow statements that we
take for granted today, or only provided very limited forms of them. Dijkstra did not mean that
all uses of goto were bad, but rather that superior control structures should exist that, when
used properly, would eliminate most of the uses of goto popular at the time. Dijkstra still
allowed for the use of goto for more complicated programming control structures.

Background

It cannot be overstated the importance of the work that Dijkstra and others (C. A. R. Hoare,
Niklaus Wirth, et al) provided in the early days to the fledgling discipline of computer
programming. Their contributions were extremely instrumental in establishing computer
science as a rigorous discipline in and of itself and algorithmic programming as an official
branch of mathematics and logic.

Dijkstra, like most of his colleages in the early formative days of serious computer science,
was an academic with heavy mathematical training. Not surprisingly, then, much of the early
work in computer science was undertaken with the goal of making computer programming a
rigorous engineering discipline with a solid foundation in mathematics and logic. The hope was
that programming languages could be developed that made it possible to prove the
correctness of programs. The theory, called formal verification, was that a small set of
programming constructs (if-then-else and looping statements, primitive data types, as so
forth) could be devised that would be sufficiently powerful to make it possible to define any
possible programming task, and which could be mathematically proven to be correct (i.e., have
no logic errors).

This movement, which began in the late 1950s, was similar in spirit to the earlier movement in
mathematics known as Hilbert's programme, expressed by David Hilbert, which was intended
to codify all of mathematics in a complete and all-inclusive set of laws derived from nothing
more than the building blocks of the natural numbers and the rules of simple logic and
arithmetic. Alas, Kurt Gödel's Incompleteness Theorem deflated that dream, proving that there
are mathematical truths (and untruths) that are outside the realm of logical provability.

Another parallel can be drawn between the formal verification movement and Newtonian
physics. In the early days following the acceptance of Newton's Laws of Motion, many aspired
to the belief that the physical universe was deterministic, and that all motion and activity could
eventually be calculated to arbitrary precision given enough knowledge beforehand of the
masses and momentums involved. Alas, the advent of quantum mechanics brought about by
the discoveries of Heisenberg, Bohr, and others put an end to that belief with the realization

http://david.tribble.com/text/goto.html (2 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

that deep down at the particle level all physical behavior is inherently probabilistic and random,
and therefore unpredictable.

In a similar vein, the goals of formal verification were eventually seen as unworkable. Dijkstra
later abandoned the search for program provability and turned instead to the study of
techniques for correct program derivation. Such techniques were designed to allow a
programmer to construct programs in a methodical fashion that guaranteed that they exhibited
correct behavior. This area of study shares much in common with the techniques of top-down
design and functional decomposition.

It should also be realized that much of the terminology of programming that is taken for
granted today had not yet been firmly established in 1968. There was much debate and
discussion at the time about what terms to use for programming concepts, and most of the
terms we use today took many years to be widely accepted.

Dijkstra was very much an academician, tending to use technically laden verbiage in his
writings. This may explain, to some degree, why his famous "Go To" letter has been read by so
few people. It is noteworthy to point out that he despised the term bug to denote a
programming mistake, preferring instead to use the term error. Today, of course, the two terms
are still both used in the context of programming, but whereas error means (as it always has) a
mistake produced by either a person or a machine, the term bug has come to mean something
more specific, applied only to the realm of man-made systems, particularly programmable
computers, to denote a specific failure in design or unexpected execution result. The term
debug has also sprung into existence to denote the specific activity of finding and removing
bugs from a system, a nice term that would not have been invented if we had been left with
only the word error.

Part I

Dijkstra's Letter, Annotated

What follows is Dijkstra's famous "Go To" letter to CACM in 1968, along with annotations that
discuss the details of the letter from a historical perspective.

http://david.tribble.com/text/goto.html (3 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Go To Statement Considered Harmful
Edsger W. Dijkstra

Reprinted from Communications of the ACM,
Vol. 11, No. 3, March 1968, pp. 147-148.
Copyright ©1968, Association for Computing Machinery, Inc.

Annotations by

David R. Tribble

Editor:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to statement
should be abolished from all "higher level" programming
languages (i.e. everything except, perhaps, plain machine code).
At that time I did not attach too much importance to this
discovery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

Dijkstra introduces the topic of his letter, which is that he has noticed that
goto statements are mostly detrimental to the programs in which they
appear. He posits that the more gotos a programmer uses, the worse a
programmer he is.

He proposes that goto statements should be abolished from all high-level
programming languages. He even hints that goto should be eliminated
from all programming languages, perhaps including machine code,
although one is left to wonder exactly how this could be accomplished.

http://david.tribble.com/text/goto.html (4 of 43)30.11.2008 •. 22:36:14

http://www.acm.org/classics/oct95/

Go To Statement Considered Harmful: A Retrospective

My first remark is that, although the programmer's activity ends
when he has constructed a correct program, the process taking
place under control of his program is the true subject matter of his
activity, for it is this process that has to accomplish the desired
effect; it is this process that in its dynamic behavior has to satisfy
the desired specifications. Yet, once the program has been made,
the "making" of the corresponding process is delegated to the
machine.

This paragraph of technically dense verbiage is fairly typical of Dijkstra's
academic writing style.

This just means that the actual activity performed by a programmer is not
simply writing programs, but controlling the action of the code as it is
executed on an actual machine. However, he states, once the programmer
has written a working program, the actual execution of the program is
entirely under the control of the machine itself.

Dijkstra uses the term correct to describe a program that has no errors, or
in current parlance, has no bugs. This terminology reflects the belief at the
time that code could be written which could be formally verified, i.e., that
such code could be subjected to a series of mathematical and logical
manipulations that would demonstrate that the code either contained
errors (logic errors, constraint errors, invariant errors, etc.) or that it did not
and thus was thus provably correct. As mentioned in the Background
section above, computer scientists (or at least programmers) do not think
about programming in such terms today.

My second remark is that our intellectual powers are rather geared
to master static relations and that our powers to visualize processes
evolving in time are relatively poorly developed. For that reason
we should do (as wise programmers aware of our limitations) our
utmost to shorten the conceptual gap between the static program
and the dynamic process, to make the correspondence between the
program (spread out in text space) and the process (spread out in
time) as trivial as possible.

http://david.tribble.com/text/goto.html (5 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Here Dijkstra observes that humans are better at visualizing static
relationships than dynamic relationships. Thus, he argues, we should
minimize the difference between the two when expressed as program
code, so that the dynamic (nonconstant) aspects of the program are
evident in the structure of the source code itself.

This is generally true in most current programming languages, the majority
of which operate in a linear, statement-by-statement fashion. However, to
some extent Dijkstra's principle has not been fully realized when we
observe the complexity that must be dealt with by real-world programming
tasks, such as multitasking, multithreading, interrupt handling, volatile
hardware registers, virtual memory paging, device latency, real-time event
handling, and so forth, just to name a few. Today's programming problems
are no longer sufficiently handled by simple one-line-at-a-time execution
programming models.

Let us now consider how we can characterize the progress of a
process. (You may think about this question in a very concrete
manner: suppose that a process, considered as a time succession of
actions, is stopped after an arbitrary action, what data do we have
to fix in order that we can redo the process until the very same
point?) If the program text is a pure concatenation of, say,
assignment statements (for the purpose of this discussion regarded
as the descriptions of single actions) it is sufficient to point in the
program text to a point between two successive action
descriptions.

Dijkstra begins to construct a formal definition of program execution, or
what he calls progress of a process. The discussion that follows is similar
to the definition of sequence points used in the formal definition of the
execution model employed by the C and C++ (and other) languages.

It must be remembered that many of the terms we take for granted today
were not firmly established place at the time, and there was no commonly
accepted language or pseudo-language in use for discusing algorithms
and programs. Today, of course, a writer would use a concrete language
such as C, Java, Pascal, LISP, or a pseudo-language bearing a strong
resemblance to one of these languages as a lingua franca for illustrating
programming concepts.

http://david.tribble.com/text/goto.html (6 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

(In the absence of go to statements I can permit myself the
syntactic ambiguity in the last three words of the previous
sentence: if we parse them as "successive (action descriptions)" we
mean successive in text space; if we parse as "(successive action)
descriptions" we mean successive in time.) Let us call such a
pointer to a suitable place in the text a "textual index."

In typical academic style, Dijkstra employs a bit of linguistic cleverness to
allow the ambiguous phrase successive action descriptions to take on two
different meanings. This reflects the dual nature of programming tasks that
he mentioned previously, these being related to the sequential nature of
executing one statement (or action) after another, i.e., allowing source
code for a program to be composed of a series of separate statements
(actions) to reflect the sequential nature in which the statements are to be
executed in time.

His term textual index is essentially a program counter. However, he is
attempting to go beyond simply tracking the location of the current
execution thread, to making an explicit connection between a statement in
the source code text and a program execution state. So perhaps a better
term would be statement pointer.

When we include conditional clauses (if B then A), alternative
clauses (if B then A1 else A2), choice clauses as introduced by

C. A. R. Hoare (case[i] of (A1, A2, ···, An)), or conditional

expressions as introduced by J. McCarthy (B1 → E1, B2 → E2, ···,

Bn → En), the fact remains that the progress of the process remains

characterized by a single textual index.

http://david.tribble.com/text/goto.html (7 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Dijkstra introduces more complex flow control statements such as if-then-
else conditional statements and case (a.k.a. select or switch) selection
statements, noting that these do not change the basic nature of his textual
index (or statement pointer).

This reflects the fact that, at the time, much effort was being made to
formulate the best minimal set of flow control structures for programming
languages and for programming theory in general. It is no accident that
most of the constructs resembled the control structures supported by
ALGOL, because many of the people who worked or influenced the design
of ALGOL were academics who wrote a great deal about programming.

A major goal of all of this effort was to create a nomeclature that could be
used not just for actual programming languages, but which also could be
used directly for mathematical formulations of programming algorithms.
As stated in the Background section above, this reflected a belief that
programs could be expressed in a form that would make it possible to
prove their correctness mathematically.

As soon as we include in our language procedures we must admit
that a single textual index is no longer sufficient. In the case that a
textual index points to the interior of a procedure body the
dynamic progress is only characterized when we also give to
which call of the procedure we refer. With the inclusion of
procedures we can characterize the progress of the process via a
sequence of textual indices, the length of this sequence being equal
to the dynamic depth of procedure calling.

This is an observation that a single statement pointer is not sufficient to
define the state of an executing program if the program employs
subroutines (variously known as procedures, functions, or methods).
To handle this additional complexity, Dijkstra defines a sequence of textual
indices.

This reflects what is known in modern parlance as a call stack, which is an
array of program counters (a.k.a. return addresses), each designating the
last statement from which a procedure call was made. Since he is
establishing an explicit relation between a textual index and the program
execution state, though, it would be more correct to think of the call stack
as an array of statement pointers. The number of statement pointers

http://david.tribble.com/text/goto.html (8 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

needed is simply the number of procedure calls that are currently active at
a given point in the execution, i.e., the depth of the call stack.

Let us now consider repetition clauses (like, while B repeat A or
repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don't wish to
exclude them: on the one hand, repetition clauses can be
implemented quite comfortably with present day finite equipment;
on the other hand, the reasoning pattern known as "induction"
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses.

Dijkstra adds repetition control flow statements to the mix. He states in
passing that such repetition statements are completely unnecessary
because they can be replaced with equivalent recursive calls.

This reflects the fact that, at that time, recursion was very much in vogue
and was considered by many, especially the more academically inclined,
to be a superior form of expressing programs and algorithms. The reason
for this popularity is that recursive definitions have a history of
mathematical rigor - specifically, recursive formulas and recurrence
relations, which deal with recursively defined sequences wherein each
element in the sequence is defined in simpler terms using previous
elements in the sequence. Two classic examples are the factorial function,
n! = n(n-1)!, and the Fibonacci sequence, Fi = Fi-2 + Fi-1.

This is a typically academic observation. It is true in theory that any
looping statement can be replaced with a recursive call, and certain
languages such as LISP do in fact support a recursive style of
programming (also called functional programming). However, for most
programming applications, and consequently what is actually supported by
most programming languages, recursion plays only a minor (but still very
useful) role.

Dijkstra mentions that iterative statements can be implemented on finite
equipment, which of course is what all actually existing machines are, no
matter how much virtual memory they possess. This is a subtle way of
admitting that some forms of recursion require potentially infinite resources
(i.e., an infinite call stack). Consider a typical embedded application having

http://david.tribble.com/text/goto.html (9 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

a main program loop that polls for an event, processes the event, then
waits for the next event, looping forever. Such an infinite loop could indeed
be written as a tail-recursive procedure call, but what would be the point?
More complicated forms, which are written recursively simply for the sake
of being recursive, would be impossible to program on most real systems.

Dijkstra seems to imply that iterative looping (inductive) statements are
intellectually harder to grasp than recursion, which is the kind of thing only
a mathematician would say.

iterate, v. - See iterate.

With the inclusion of the repetition clauses textual indices are no
longer sufficient to describe the dynamic progress of the process.
With each entry into a repetition clause, however, we can associate
a so-called "dynamic index," inexorably counting the ordinal
number of the corresponding current repetition. As repetition
clauses (just as procedure calls) may be applied nestedly, we find
that now the progress of the process can always be uniquely
characterized by a (mixed) sequence of textual and/or dynamic
indices.

With the addition of repetition control structures, we require a way of
specifying more than just the current statement - we also need to keep
track of which iteration of each loop is currently being executed. So just
like nested procedure calls, we must employ a loop iteration stack to track
these iteration counts, with one entry per (nested) loop, which Dijkstra
calls a dynamic index sequence.

So, putting it all together, we have a textual index sequence (call stack)
and a dynamic index sequence (loop iteration stack), which together
define the current state of an executing program.

(Nestedly?)

http://david.tribble.com/text/goto.html (10 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

The main point is that the values of these indices are outside the
programmer's control; they are generated (either by the write-up of
his program or by the dynamic evolution of the process) whether
he wishes or not. They provide independent coordinates in which
to describe the progress of the process.

Again, Dijkstra states the obvious, that once a program is written and
running, the programmer no longer has any control over the actual
execution. The execution is represented by the contents of the call stack
and loop iteration stack at any given point during the execution - what
Dijkstra calls the independent coordinates of the program execution, and
what we might simply call the state or execution history of the program.

Why do we need such independent coordinates? The reason is -
and this seems to be inherent to sequential processes - that we can
interpret the value of a variable only with respect to the progress
of the process. If we wish to count the number, n say, of people in
an initially empty room, we can achieve this by increasing n by
one whenever we see someone entering the room. In the in-
between moment that we have observed someone entering the
room but have not yet performed the subsequent increase of n, its
value equals the number of people in the room minus one.

Dijkstra observes that the value of a given variable in a program can only
be known if the history of the program's execution is known precisely up to
a given point in time. In other words, a program is expected to execute in a
deterministic fashion, and it should be possible to determine the value of
any variable at any point during the execution from the history of the
execution (or the history of the program states) up to that point.

Dijkstra introduces the concept of an in-between moment prior to the
completion of a program statement. This is similar to the notion of a
sequence point as specified in languages like C and C++, which defines
precisely when actions are to occur and in what order, and just as
importantly, what actions are left unspecified.

The execution of a program is well-defined only at specific sequence
points, which typically occur at the end of statements, prior to function
calls, and at specific points in the evaluation of subexpressions. Between

http://david.tribble.com/text/goto.html (11 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

any two sequence points, the state of the program is not well-defined,
which means that until the next sequence point is reached, the values of
the program variables are in an indeterminate (or in-between) state.

Dijkstra suggests a simple example of this: incrementing a counter, or a
statement such as n = n+1. When this statement is actually executed,
there is a point during which the previous value of n is read and 1 has
been added to it, but that new value has not yet been written back to the
variable n. This is the in-between state he refers to, or a state in the
execution between two sequence points, during which the variable n still
contains its old value instead of its new value.

The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find a meaningful set
of coordinates in which to describe the process progress. Usually,
people take into account as well the values of some well chosen
variables, but this is out of the question because it is relative to the
progress that the meaning of these values is to be understood!
With the go to statement one can, of course, still describe the
progress uniquely by a counter counting the number of actions
performed since program start (viz. a kind of normalized clock).
The difficulty is that such a coordinate, although unique, is utterly
unhelpful. In such a coordinate system it becomes an extremely
complicated affair to define all those points of progress where,
say, n equals the number of persons in the room minus one!

Here, finally, we get to the crux of Dijkstra's argument concerning the lowly
goto statement. Essentially, Dijkstra argues that the "unbridled use" of
goto statements in a program obscures the execution state and history of
the program, so that at any given moment the values of the call stack and
loop iteration stack are no longer sufficient to determine the value of the
program variables.

This obfuscation is a consequence of the fact that an unconstrained goto
statement can transfer control out of a loop before it is completed, and
likewise can transfer control into the middle of a loop that is already being
iterated. Both cases complicate the way in which the counters in the loop
iteration stack are modified.

Add to that the possibility of non-local gotos, which are transfers of control

http://david.tribble.com/text/goto.html (12 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

out of currently executing procedures back into previously called
procedures, which really disrupt the execution state by invalidating the
values of entire portions of the call stack.

Dijkstra states a specific example of transferring control out of a loop or
procedure during an in-between moment, which renders the execution
state indeterminate from that point on.

Another way to say this is that gotos can invalidate the program invariants
that are supposed to be guaranteed inviolate by the program structure.
The example invariant he uses here is that counter n always represents
the number of persons in a room. Allowing unstructured gotos to change
the course of execution could cause that invariant to become invalid (i.e.,
no longer invariant), thus making the value of n meaningless, or at least
make it extremely difficulty to determine its true value from the execution
history.

The go to statement as it stands is just too primitive; it is too much
an invitation to make a mess of one's program. One can regard and
appreciate the clauses considered as bridling its use. I do not claim
that the clauses mentioned are exhaustive in the sense that they
will satisfy all needs, but whatever clauses are suggested (e.g.
abortion clauses) they should satisfy the requirement that a
programmer independent coordinate system can be maintained to
describe the process in a helpful and manageable way.

What Dijkstra means by the goto statement as it stands is otherwise
known as an unstructured goto. That is, a goto statement with no
restrictions about how it may be used in an otherwise structured language.

Limiting the use of gotos to a few simple, well-structured controls such as
exiting early from loops, error handling (a.k.a. exceptions), and the like
brings the goto statement back into the realm of structured control flow
modification. But without rules that enforce these limitations, the goto
statement provided by a language cannot be said to be truly well-
structured.

Dijkstra admits that not all of the flow control structures provided by a
language will satisfy all programming needs. This implies that goto still has
its place for those fairly rare programming situations that require more
complicated flow control.

http://david.tribble.com/text/goto.html (13 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

 Dijkstra mentions abortion clauses, or what is now commonly known as
exception handlers, hinting that these kinds of things are really fancy gotos
underneath, but that they can be defined so that they behave well within
the confines of a structured language, i.e., that they will not corrupt the
execution state in haphazard ways.

The exception handling clauses of object-oriented languages like Ada, C+
+, Java, and others have for the most part adhered to this principle, so that
when an exception is thrown in these languages, the execution state
(which includes global and local variables, the procedure call stack, the
heap, etc.) is altered in clean and predictable ways.

More primitive languages such as FORTRAN, COBOL, C, Pascal, and the
like may provide some kinds of primitive exception handling mechanisms,
but their use does not guarantee that the execution state is cleanly
preserved or that allocated resources will be properly released.

It is hard to end this with a fair acknowledgment. Am I to judge by
whom my thinking has been influenced? It is fairly obvious that I
am not uninfluenced by Peter Landin and Christopher Strachey.
Finally I should like to record (as I remember it quite distinctly)
how Heinz Zemanek at the pre-ALGOL meeting in early 1959 in
Copenhagen quite explicitly expressed his doubts whether the
go to statement should be treated on equal syntactic footing with
the assignment statement. To a modest extent I blame myself for
not having then drawn the consequences of his remark.

Here Dijkstra acknowledges the influences that led him to his observation
about the dangers of goto. As noted in the Background section, many of
the people who influenced the design of the ALGOL language were also
involved in discussions about proper language design and correct program
control flow structures.

http://david.tribble.com/text/goto.html (14 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

The remark about the undesirability of the go to statement is far
from new. I remember having read the explicit recommendation to
restrict the use of the go to statement to alarm exits, but I have not
been able to trace it; presumably, it has been made by C. A. R.
Hoare. In [1, Sec. 3.2.1] Wirth and Hoare together make a remark
in the same direction in motivating the case construction:

"Like the conditional, it mirrors the dynamic structure
of a program more clearly than go to statements and
switches, and it eliminates the need for introducing a
large number of labels in the program."

Dijkstra states that goto statements may be deemed acceptable (only) for
alarm exits, which we would call fatal exceptions. For languages that lack
robust exception handling mechanisms, gotos may be the only practical
substitute.

Dijkstra mentions the design of the case (or select) control flow structure
as proposed by Hoare and Wirth. We take this control structure for granted
today, but at the time its merits were still being debated. Dijkstra reminds
us that it was originally proposed as a superior alternative to the clumsy
use of multiple ifs, gotos, and labels.

In [2] Guiseppe Jacopini seems to have proved the (logical)
superfluousness of the go to statement. The exercise to translate an
arbitrary flow diagram more or less mechanically into a jump-less
one, however, is not to be recommended. Then the resulting flow
diagram cannot be expected to be more transparent than the
original one.

http://david.tribble.com/text/goto.html (15 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Dijkstra mentions flow diagrams, which reflects the state of the art of
program design at the time. Since then, programming technology has
evolved through the stages of structured programming, top-down
programming, object-oriented programming, component programming,
aspect programming, and beyond. And yet, in spite of all of these
adavances in design, some of Dijkstra's main point about unstructured
program flow remains just as valid now as then.

It must be noted that Dijkstra's final comment on the subject seems to
imply that completely removing all of the gotos from one's own programs is
a bad idea. While he states that it has been proven that goto statements
are in fact redundant in any given program, Dijkstra nevertheless admits
that removing all of the gotos in a program will render its flow more difficult
to understand.

He is in fact arguing that some gotos in a program may be useful and may
actually make the program easier to understand. So it is safe to say that
Dijkstra considered goto statements to be harmful, but not lethal, and
certainly not useless.

References:

1. Wirth, Niklaus, and Hoare C. A. R.
A contribution to the development of ALGOL.
Comm. ACM 9 (June 1966), 413-432.

2. Böhm, Corrado, and Jacopini Guiseppe.
Flow diagrams, Turing machines and languages with only
two formation rules.
Comm. ACM 9 (May 1966), 366-371.

Edsger W. Dijkstra
Technological University
Eindhoven, The Netherlands

Part II

http://david.tribble.com/text/goto.html (16 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Structured Programming

Have programming languages evolved since Dijkstra's letter was published to the point that
goto is no longer needed?

Since the 1960s, several advances in programming theory have occurred. The discipline of
programming has progressed through several phases, with each new advance being touted as
the next "better" way of programming. A brief list of some of these advancements:

● structured programming
● functional decomposition
● top-down design and step-wise refinement
● bottom-up design
● iterative design
● third generation languages
● fourth generation languages
● fifth generation languages
● object-oriented programming
● components
● programming patterns
● aspect programming

Each approach caused a paradigm shift in programming theory, affecting the way
programmers wrote their programs on a day-to-day basis as well as changing the way
programming languages were designed and the features they provided. But all of these
advancements affected the structure of programs at levels above that of simple execution
statements, i.e., at levels involving procedures, data objects, program modules, etc. The
fundamental approach of programming at the lowest level, at the sequential statement level, is
still the same as it was back in the early days of the first programming languages such as
FORTRAN and COBOL.

The following sections describe the program flow constructs that are commonly available in
most of today's programming languages. These have remained pretty much the same since
their introduction at the advent of structured programming. (The constructs are shown in a
pseudo-language instead of any specific language.)

if-then-else

All structured programming languages provide some form of the if-then flow control construct:

http://david.tribble.com/text/goto.html (17 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

if conditional_expression then
 statement1

and the if-then-else construct:

if conditional_expression then
 statement1
else
 statement2

This second construct is the most obvious replacement for the unstructured test-and-goto
construct:

if conditional_expression then
 statement1
 goto endif1
else1:
 statement2
endif1:
 ...

The if-then statement can be implemented in machine code as something like the following:

if-then statement
 move expression, reg1
 jump not condition, label1
 statement1
label1:
 ...

And likewise for the if-then-else statement:

http://david.tribble.com/text/goto.html (18 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

if-then-else statement
 move expression, reg1
 jump not condition, label1
 statement1
 jump label2
label1:
 statement2
label2:
 ...

A common programming idiom is to write multiple if-then statements in a sequence:

if condition1 then

 statement1
else if condition2 then

 statement2
else if condition3 then

 statement3
else
 statement4

It is more difficult in some languages (especially some older languages) to write multiple if-
then sequences, so the construct ends up looking like the following code, which is functionally
equivalent but harder to read:

if condition1 then

 statement1
else
 if condition2 then

 statement2
 else
 if condition3 then

 statement3
 else
 statement4
 end
 end

http://david.tribble.com/text/goto.html (19 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

end

Some languages provide a separate keyword for the else-if combination (variously called
elseif, elsif, and elif), but the effect is the same. Some languages also provide a separate
keyword for the last else clause in a multiple if-then sequence (e.g., otherwise or default).

select

Most structured programming languages provide some kind of multiple selection control
construct (variously known as case, select, switch, examine, inspect, choose, when, etc.).
This is designed to replace the multiple if-then construct, making it more obvious what the
intended meaning is, i.e., selecting one of several choices for a given expression value:

select expression in
 case constant1:

 statement1

 case constant2:

 statement2

 case constant3:

 statement3

 default:
 statement4
end

This is equivalent to the sequence of multiple if-then statements shown above, with the
default selection acting the part of the last else clause. Some older languages do not provide
a default or otherwise clause.

The select statement can be implemented in machine code as something like the following:

http://david.tribble.com/text/goto.html (20 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

select statement
 move expression, reg1
 cmp reg1, constant1
 jump not equal, label1
 statement1
 jump label4
label1:
 cmp reg1, constant2
 jump not equal, label2
 statement2
 jump label4
label2:
 cmp reg1, constant3
 jump not equal, label3
 statement3
 jump label4
label3:
 statement4
label4:
 ...

More efficient implementations are possible, such as using an index into a jump table, or
rearranging the comparisons to emulate an unrolled binary search, etc. Some CPUs provide
special instructions for implementing select statements directly in machine code by utilizing a
small jump table.

Some languages (notably C, C++, Java, C#, and other languages derived from C) allow for
more complicated control flow by allowing each case statement to "fall through" to the next
case clause. Purists say this sullies an otherwise logically clean control construct, while
pragmatists say that it allows for more efficient code in many difficult programming situations.

do-while

This is the simplest form of iteration provided by most structured programming languages. Two
variants are generally provided, one with the conditional test before the loop body (providing at
least one iteration):

http://david.tribble.com/text/goto.html (21 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

do
 statements
while conditional_expression

The other form places the conditional test after the loop body (providing zero or more
iterations):

while conditional_expression do
 statements
end

These constructs are functionally equivalent to the following code that uses goto:

do-while
loop:
 statements
 if conditional_expression
 goto loop

And:

while-do
loop:
 if not conditional_expression
 goto endloop
 statements
 goto loop
endloop:
 ...

These constructs can be implemented in machine code as something like the following:

http://david.tribble.com/text/goto.html (22 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

do-while statement
label1:
 statements
 move expression, reg1
 jump condition, label1
 ...

while-do statement
label1:
 move expression, reg1
 jump not condition, label2
 statements
 jump label1
label2:
 ...

Some languages provide other variants of the do-while statement, e.g., do-until (which
reverses the sense of the conditional expression).

Some languages allow for more complicated flow control by providing clauses for terminating a
loop iteration early (a break statement) or skipping the rest of the loop body and forcing the
next loop iteration (a continue statement). These constructs allow for the loop-and-a-half
situations that sometimes arise (which is discussed further below).

Some languages allow breaking out of nested loops with a labeled break construct. (This is
discussed further in Example L-1 and Example N-1 below.)

for-loop

Most structured programming languages provide a more complex iteration construct that
allows a counter or array index to be incremented or decremented with each iteration. This
construct is functionally equivalent to a do-while loop, but provides a clearer intent of the
controlling entity (the counter or index) of the loop iterations:

http://david.tribble.com/text/goto.html (23 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

for i = low_value to high_value by increment do
 statements
end

This is equivalent to the following unstructured code that uses goto:

 i = low_value
loop:
 if i > high_value
 goto endloop
 statements
 i = i + increment
 goto loop
endloop:
 ...

This construct can be implemented in machine code as something like the following:

for-loop statement
 move low_value, reg1
label1:
 cmp reg1, high_value
 jump greater, label2
 statements
 add increment, reg1
 jump label1
label2:
 ...

To fully support the for-loop, a language should handle negative increment values as well.

The form of the for-loop shown above iterates the body of the loop zero or more times. Other
for-loop variants test the control variable (a.k.a. the loop index) after the loop body, which
makes the loop iterate at least once.

Other variants of the for-loop allow more than one loop counter (or loop index) to be specified.

A common programming problem is handling loop-and-a-half constructs, i.e., a loop that must

http://david.tribble.com/text/goto.html (24 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

be terminated upon some condition in the middle of its loop body, so that some portion of the
loop body is not executed during the last iteration. The following code uses a break statement
to do this:

for i = low_value to high_value by increment do
 statements1
 if condition
 break
 statements2
end

Some languages provide special syntax specifically for terminating a loop in the middle of its
body:

for i = low_value to high_value by increment do
 statements1
exit when condition
 statements2
end

Like the break statement, the exit when clause allows the loop to be terminated after the first
half of its body has been executed but before the rest of the body is executed. Both forms
replace the use of an explicit goto, as shown in the following code:

for i = low_value to high_value by increment do
 statements1
 if condition
 goto endloop
 statements2
end
endloop:
 ...

A related programming problem is coding a loop to execute a portion of its body and then skip
the rest if some condition occurs, forcing the next iteration of the loop. Some languages
provide a continue statement for this:

http://david.tribble.com/text/goto.html (25 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

for i = low_value to high_value by increment do
 statements1
 if condition
 continue
 statements2
end

This replaces the use of an explicit goto, as shown in the following code:

for i = low_value to high_value by increment do
 statements1
 if condition
 goto nextloop
 statements2
nextloop:
end

Other Approaches

Several structured programming languages do not provide goto statements at all, including
Modula-2, Modula-3, Oberon, Eiffel, and Java, on the assumption that the other flow control
mechanisms they do provide are sufficient for all programming tasks and thus goto statements
should never be needed. This is not always a good assumption to make when designing a
programming language. Language designers cannot anticipate all possible programming
scenarios, and providing an "escape mechanism" out of the normal control structures gives the
programmer the ability to program around the syntactic limitations imposed by the language
when the need arises. (Some examples of inadequate flow control constructs are discussed in
more detail below.)

It is also worth noting that there are programming languages that do not provide structured
flow control constructs at all. Many functional programming languages, such as LISP, Scheme,
and Prolog, do not provide traditional structured flow control constructs beyond if-then-else or
only provide very simple forms of them. Iteration in such languages is generally accomplished
using some form of recursion, and these languages are in fact tailored specifically for recursive
tasks and data structures. But what such languages lack in structured flow statements, they
generally make up for by providing powerful dynamic programming mechanisms and extremely

http://david.tribble.com/text/goto.html (26 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

flexible non-homogeneous data types.

Part III

Is Goto Still Necessary?

Good programming language design dictates that a language should provide a sufficiently
complete and powerful set of flow control constructs in order to make it relatively easy to write
efficient code for any programming task. A language should not be overly ambitious by
providing too many different ways to do the same thing, while at the same time it should not be
anemic by providing too few ways for programming ideas to be expressed. The set of flow
control statements and clauses provided should be powerful and flexible enough so that a
programmer can express his ideas clearly and succintly without having to resort to the use of
extraneous control variables or to rearrange his code unnaturally just to get around the
syntactical restrictions of the language.

The following sections discuss two major programming problems that traditionally have been
solved by using goto statements. These problems are presented in the light of current
programming techniques, with an eye to seeing if the programming languages currently
available are sufficiently advanced to handle them without using goto.

Loop Exits

Dijkstra's call for the complete elimination of goto statements is fine in theory, but would it work
in practice? The control flow statements described above are sufficient for most programming
logic, but there are programming situations that require more powerful constructs.

A common use for goto statements is to exit early from within loops, especially if the exit must
break out from within two or more levels of nested loops. C provides simple loop escape
mechanisms, i.e., the break and continue statements.

http://david.tribble.com/text/goto.html (27 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Example L-1 - Loop Exit Using Break

// Simple loop with an early exit

for (;;)
{
 int ch;

 ch = read();
 if (ch == EOF)
 break; // With a loop escape

 parse(ch);
}

In order to exit a loop early without using such mechanisms, a trade-off must be made in which
an additional flag (boolean) variable to signal completion of the loop is used. This incurs the
overhead of an extra variable and an extra test of that variable at the top of each loop.

Example L-2 - Loop Exit Without Using Break

// Simple loop with no loop escape mechanism

bool incomplete = true;

while (incomplete)
{
 int ch;

 ch = read();
 if (ch == EOF)
 incomplete = false; // Without a loop escape
 else
 parse(ch);
}

For more complicated exits from loops, namely breaking out of a loop iteration that is nested
within two or more levels of loops, more extensive support is required of the language. Some
languages, such as Java, provide the capability of breaking out of loops that are prefixed with

http://david.tribble.com/text/goto.html (28 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

label names.

Example N-1 - Exiting a Nested Loop

// [Java]
// Exiting a nested loop

readLoop:
 for (;;)
 {
 char[] line;

 line = readLine();
 if (line.length > 0)
 {
 for (int i = 0; i < line.length; i++)
 {
 int ch;

 ch = line[i];
 if (ch == '#')
 break readLoop; // Exit outer for-loop

 parse(ch);
 }
 }
 else
 return;
 }

Other languages, such as C and C++, do not provide a mechanism to exit more than one level
of loop nesting, so goto statements must be employed.

http://david.tribble.com/text/goto.html (29 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Example N-2 - Exiting a Nested Loop

// [C / C++]
// Exiting a nested loop without labeled loops

 for (;;)
 {
 char line[80];
 int len;

 len = readLine(line);
 if (len > 0)
 {
 for (int i = 0; i < len; i++)
 {
 int ch;

 ch = line[i];
 if (ch == '#')
 goto endReadLoop; // Exit outer for-loop

 parse(ch);
 }
 }
 else
 return;
 }
endReadLoop:;

This is about as clean as the Java code and just as efficient.

The alternative is to use an extra variable and extra if statements to avoid the use of gotos, as
in Example L-2.

http://david.tribble.com/text/goto.html (30 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Example N-3 - Exiting a Nested Loop Without Goto

// [C / C++]
// Exiting a nested loop without goto

 bool notDone = true;

 while (notDone)
 {
 char line[80];
 int len;

 len = readLine(line);
 if (len > 0)
 {
 for (int i = 0; notDone && i < len; i++)
 {
 int ch;

 ch = line[i];
 if (ch == '#')
 notDone = false; // Exit outer while-loop
 else
 parse(ch);
 }
 }
 else
 return;
 }

Exception Handling

Another common use for goto statements is in the handling of exceptions, or what Dijkstra
called abortion clauses. Some languages (notably the more recent object-oriented languages)
provide exception handling mechanisms for dealing with synchronous error conditions, while
older languages do not.

The code below is a C function that utilizes goto statements fairly effectively for error handling
and recovery. Since C does not not have any kind of exception handling mechanism, well-

http://david.tribble.com/text/goto.html (31 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

crafted goto statements provide a reasonable substitute.

Consider a procedure that performs four operations:

1. Allocate a control object.
2. Save a copy of a specified file name.
3. Open the named file.
4. Read a header block from the opened file.

The following example, written in C, does these operations:

Example E-1 - Error Handling Using Gotos

// open_control() -- [C]
// Open a file and assign it a control object.
// Returns the control object on success, or NULL on failure.

struct Control * open_control(const char *fname)
{
 struct Control * ctl = NULL;
 FILE * fp = NULL;

 // 1. Allocate a control object
 ctl = malloc(sizeof(struct Control));
 memset(ctl, 0, sizeof(struct Control));
 if (ctl == NULL) // E-1
 goto fail;

 // 2. Save the file name
 ctl->name = malloc(strlen(fname)+1);
 if (ctl->name == NULL) // E-2
 goto fail;
 strcpy(ctl->name, fname);

 // 3. Open the named file
 fp = fopen(fname, "rb");
 if (fp == NULL) // E-3
 goto fail;
 ctl->fp = fp;

 // 4. Read the file header block
 if (!read_header(ctl)) // E-4

http://david.tribble.com/text/goto.html (32 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

 goto fail;

 // Return success
 return ctl;

fail:
 // Failure occurred, clean up allocated resources
 if (ctl != NULL)
 {
 if (ctl->fp != NULL)
 fclose(ctl->fp); // H-3
 if (ctl->name != NULL)
 free(ctl->name); // H-2
 free(ctl); // H-1
 }

 // Return failure
 return NULL;
}

Any of the four operations can fail, which causes the whole function to fail. After each failure,
however, resources must be deallocated. Thus a failure at point E-1 requires corresponding
clean-up code at point H-1, and likewise for failures at E-2 and E-3. These clean-up operations
are performed in the reverse order in which their corresponding allocation operations are
performed.

This type of use of goto statements is generally accepted as a "correct" use of goto.
Specifically, using gotos for error handling is generally considered acceptable programming
style, at least for languages (like C) that do not provide exception handling control structures.

One must be careful, however, to make it obvious that the goto statements are for error
handling, e.g., by choosing an appropriately descriptive name for the goto label.

If we apply Dijkstra's maxim and remove all of the gotos, we get something like the following.

http://david.tribble.com/text/goto.html (33 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Example E-2 - Error Handling With Gotos Removed

// open_control() -- [C, version 2, without gotos]
// Open a file and assign it a control object.
// Returns the control object on success, or NULL on failure.

struct Control * open_control(const char *fname)
{
 struct Control * ctl = NULL;
 FILE * fp = NULL;

 // 1. Allocate a control object
 ctl = malloc(sizeof(struct Control));
 memset(ctl, 0, sizeof(struct Control));
 if (ctl == NULL) // E-1
 {
 // Failure, clean up
 return NULL;
 }

 // 2. Save the file name
 ctl->name = malloc(strlen(fname)+1);
 if (ctl->name == NULL) // E-2
 {
 // Failure, clean up
 free(ctl); // H-1
 return NULL;
 }
 strcpy(ctl->name, fname);

 // 3. Open the named file
 fp = fopen(fname, "rb");
 if (fp == NULL) // E-3
 {
 // Failure, clean up
 free(ctl->name); // H-2
 free(ctl); // H-1
 return NULL;
 }
 ctl->fp = fp;

 // 4. Read the file header block
 if (!read_header(ctl)) // E-4

http://david.tribble.com/text/goto.html (34 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

 {
 // Failure, clean up
 fclose(ctl->fp); // H-3
 free(ctl->name); // H-2
 free(ctl); // H-1
 return NULL;
 }

 // Success
 return ctl;
}

The problem with this style of error handling is that we end up with a lot of duplicated clean-up
code.

This suggests an alternate style which also does not use gotos but avoids code duplication.

Example E-3 - Error Handling With Gotos Removed

// open_control() -- [C, version 3, without gotos]
// Open a file and assign it a control object.
// Returns the control object on success, or NULL on failure.

struct Control * open_control(const char *fname)
{
 struct Control * ctl = NULL;
 FILE * fp = NULL;
 int err = 0;

 // 1. Allocate a control object
 ctl = malloc(sizeof(struct Control));
 memset(ctl, 0, sizeof(struct Control));
 if (ctl == NULL) // E-1
 err = 1;

 // 2. Save the file name
 if (err == 0)
 {
 ctl->name = malloc(strlen(fname)+1);
 if (ctl->name == NULL) // E-2
 err = 2;

http://david.tribble.com/text/goto.html (35 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

 else
 strcpy(ctl->name, fname);
 }

 // 3. Open the named file
 if (err == 0)
 {
 fp = fopen(fname, "rb");
 if (fp == NULL) // E-3
 err = 3;
 else
 ctl->fp = fp;
 }

 // 4. Read the file header block
 if (err == 0)
 {
 if (!read_header(ctl)) // E-4
 err = 4;
 }

 // Check for success
 if (err == 0)
 return ctl;

 // Failure, clean up
 if (err > 3)
 fclose(ctl->fp); // H-3
 if (err > 2)
 free(ctl->name); // H-2
 if (err > 1)
 free(ctl); // H-1

 return NULL;
}

Note that, as before, the clean-up operations are performed in the reverse order that their
corresponding allocation operations are performed.

This style of error handling comes close to being as clean and succint as the style used in
Example E-1. However, it requires an additional error indicator variable and extra conditional

http://david.tribble.com/text/goto.html (36 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

(if) statements.

If the function of Example E-1 is written in C++, it can take advantage of the fact that C++
supports an exception handling mechanism (i.e., try-catch statements), which makes the error
handling in the code more obvious:

Example T-1 - Error Handling Without Gotos

// openControl() -- [C++]
// Open a file and assign it a control object.
// Returns the control object on success, or NULL on failure.

Control * openControl(const char *fname)
{
 Control * ctl = NULL;
 FILE * fp = NULL;

 try
 {
 // 1. Allocate a control object
 ctl = new Control;
 if (ctl == NULL) // E-1
 throw 1;

 // 2. Save the file name
 ctl->name = new char[::strlen(fname)+1];
 if (ctl->name == NULL) // E-2
 throw 2;
 ::strcpy(ctl->name, fname);

 // 3. Open the named file
 fp = ::fopen(fname, "rb");
 if (fp == NULL) // E-3
 throw 3;
 ctl->fp = fp;

 // 4. Read the file header block
 if (not ctl->readHeader()) // E-4
 throw 4;

 // Return success
 return ctl;

http://david.tribble.com/text/goto.html (37 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

 }
 catch (int err)
 {
 // Failure occurred, clean up allocated resources
 if (ctl != NULL)
 {
 if (ctl->fp != NULL)
 ::fclose(ctl->fp); // H-3

 if (ctl->name != NULL)
 delete[] ctl->name; // H-2

 delete ctl; // H-1
 }

 // Return failure
 return NULL;
 }
}

Note that the amount of work required to clean up after a failure is exactly the same as in
Example E-1. Moreover, the explicit use of a try-catch statement makes it obvious that the
code is for error handling and recovery.

Since C++ is an object-oriented language, and thus allows the programmer to have more
explicit control over object allocation and deallocation, we can make the destructor function for
Control objects perform most of the clean-up operations. Moving the operations at H-2 and H-
3 into the destructor allows us to write a simpler catch clause to handle failures.

Example T-2 - Error Handling Without Gotos

// openControl() -- [C++, version 2]
// Open a file and assign it a control object.
// Returns the control object on success, or NULL on failure.

Control * openControl(const char *fname)
{
 Control * ctl = NULL;
 FILE * fp = NULL;

 try

http://david.tribble.com/text/goto.html (38 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

 {
 ... same as Example T-1 ...
 }
 catch (int err)
 {
 // Failure occurred, clean up
 delete ctl; // H-1, H-2, H-3

 // Return failure
 return NULL;
 }
}

// Control::~Control() -- destructor

Control::~Control()
{
 // Clean up allocated resources
 if (this->fp != NULL)
 ::fclose(this->fp); // H-3
 this->fp = NULL;

 if (this->name != NULL)
 delete[] this->name; // H-2
 this->name = NULL;
}

While the try-catch solution is cleaner than using gotos, it has the disadvantage of requiring
more overhead for managing the try and catch clauses, which can be fairly expensive.

Some languages, such as Java, provide a finally clause as part of the try-catch statement to
provide a way to specify actions that must be taken regardless of whether or not an exception
occurs.

http://david.tribble.com/text/goto.html (39 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Example T-3 - finally clause

// [Java]

void write3(Resource dest, Item[] data)
{
 try
 {
 dest.acquire();
 dest.write(data[0]);
 dest.write(data[1]);
 dest.write(data[2]);
 }
 catch (ResourceException ex)
 {
 // Failure occurred, clean up
 log.error(ex);
 dest.reset();
 }
 finally
 {
 // Always executed
 dest.release();
 }
}

Other languages, such as Eiffel, provide a retry statement as part of exception handling to
allow a procedure body to be executed again after an exception is caught, presumably after
some corrective actions are performed.

Conclusion

The Tao of Goto

It is obvious that loop escape and exception handler statements make for more readable and
more efficient code. Of course, such flow control mechanisms are actually just fancy gotos in
disguise, being implemented underneath using machine code jump instructions. However, they
do not corrupt or obfuscate the program execution state. So judging them by Dijkstra's

http://david.tribble.com/text/goto.html (40 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

principle of being able to track program execution deterministically, they are acceptable control
flow mechanisms for high-level languages.

Examples T-2 and N-1 demonstrate that Dijkstra's maxim can be achieved provided that the
programming language provides a reasonable set of control structures that can serve in place
of simple goto statements.

Examples E-1 and N-2 demonstrate the corollary to this, that if a programming language does
not provide reasonably powerful flow control structures, there are programming problems that
can be solved reasonably well only by resorting to the use of goto statements.

Some structured programming languages do not provide goto statements at all. Languages
such as Smalltalk, Eiffel, and Java provide control statements for early and nested loop exits
and exception handling, so goto is not really needed. Other languages such as Modula-2 and
Oberon also do not provide goto, but appear to lack enough flow control constructs to make it
convenient to write early loop exits and exception handling code; it would seem that such
languages were linguistic experiments that took Dijkstra's maxim too far and failed.

Dijkstra's belief that unstructured goto statements are detrimental to good programming is still
true. A properly designed language should provide flow control constructs that are powerful
enough to deal with almost any programming problem. By the same token, programmers who
must use languages that do not provide sufficiently flexible flow control statements should
exercise restraint when using unstructured alternatives. This is the Tao of goto: knowing when
to use it for good and when not to use it for evil.

In parting, I can't resist giving one last example of goto statements. I came across this code in
an LR parser library I used as part of a larger compiler project (circa 1988). It is a marvelous
little gem of programming succintness and simplicity.

http://david.tribble.com/text/goto.html (41 of 43)30.11.2008 •. 22:36:14

Go To Statement Considered Harmful: A Retrospective

Last Example - Nontrivial Gotos

int parse()
{
 Token tok;

reading:
 tok = gettoken();
 if (tok == END)
 return ACCEPT;
shifting:
 if (shift(tok))
 goto reading;
reducing:
 if (reduce(tok))
 goto shifting;
 return ERROR;
}

I leave it as an exercise for the reader to rewrite this without using goto statements.

References

A. Go To Considered Harmful
Edsger W. Dijkstra
Letter to Communications of the ACM (CACM)
vol. 11 no. 3, March 1968, pp. 147-148.
Online at: www.acm.org/classics/oct95

B. Biography of Edsger W. Dijkstra
born May 1930, died Aug 2002
Wikipedia: en.wikipedia.org/wiki/Dijkstra

C. Biography of C. A. R. (Tony) Hoare
Wikipedia: en.wikipedia.org/wiki/C._A._R._Hoare

D. Biography of Niklaus Wirth
Wikipedia: en.wikipedia.org/wiki/Wirth

http://david.tribble.com/text/goto.html (42 of 43)30.11.2008 •. 22:36:14

http://www.acm.org/classics/oct95/
http://en.wikipedia.org/wiki/Dijkstra
http://en.wikipedia.org/wiki/C._A._R._Hoare
http://en.wikipedia.org/wiki/Wirth

Go To Statement Considered Harmful: A Retrospective

Home page: www.cs.inf.ethz.ch/~wirth

E. Goto programming statement
Wikipedia: en.wikipedia.org/wiki/GOTO

F. Formal Verification
Wikipedia: en.wikipedia.org/wiki/Formal_verification

G. Program Derivation
Wikipedia: en.wikipedia.org/wiki/Program_derivation

H. Hoare Logic
Wikipedia: en.wikipedia.org/wiki/Hoare_logic

I. An Axiomatic Basis For Computer Programming
C. A. R. (Tony) Hoare
Communications of the ACM (CACM)
v.12 n.10, Oct 1969
portal.acm.org/citation.cfm?doid=363235.363259 (subscription required)

J. Programming Language Newsgroups
groups.google.com/groups/dir?q=comp.lang.*

The original letter by Dijkstra quoted in this document is Copyright ©1968 by the Association
for Computing Machinery (ACM). All other text in this document is Copyright ©2005 by David
R. Tribble.

This document is: http://david.tribble.com/text/goto.html.

http://david.tribble.com/text/goto.html (43 of 43)30.11.2008 •. 22:36:14

http://www.cs.inf.ethz.ch/~wirth
http://en.wikipedia.org/wiki/GOTO
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Program_derivation
http://en.wikipedia.org/wiki/Hoare_logic
http://portal.acm.org/citation.cfm?doid=363235.363259
http://groups-beta.google.com/groups/dir?q=comp.lang
http://www.acm.org/
http://www.acm.org/
mailto:david@tribble.com
mailto:david@tribble.com

