M]Sip-Mini-Tutorial

Author: Luca Veltri
Date: 24/4/2005
Document version: 0.1

1. Preface

This document describes the structure and use of the MjSip library. Theintent is to provide a ssimple overview of the
MjSip stack helping the programmer on developing his’her own SIP-based applications.

In the rest of the document the reader is supposed to be familiar with networking basis and with the SIP signaling
protocol [1]. For more information on SIP you can visit the official IETF SIP Working Group pages [2] and/or other
resources on the various web sites dedicated on SIP [3] [XX].

MjSip isjust one of the severa publicly available SIP implementations, some of them are based on JAIN SIP API
specification [XX].

2. What MjSip is

MjSip isacompact and powerful SIP library for easily building SIP applications and services. It provides in the same
time the SIP APIs and SIP stack implementation bound together in MjSip packages.

SIP (Session Initiation Protocol) isthe IETF (Internet Engineering Task Force) signaling standard for managing
multimedia session initiation; it is currently defined in RFC 3261 [1].

SIP can be used to initiate voice, video and multimedia sessions, for both interactive applications (e.g. an | P phone call
or avideoconference) and not interactive ones (e.g. a Video Streaming), and it is the more promising candidate as call
setup signaling for the present day and future | P based telephony services. SIP has been also proposed for session
initiation related uses, such as for messaging, gaming, etc.

MjSip includes al classes and methods for creating SIP-based application. It implements the compl ete layered stack
architecture as defined in [1], and is fully compliant with the standard. Moreover it includes higher level interfaces for
Call Control.

Specific information on |ETF standardization process can be found on the official IETF SIP Working Group site [2].

MjSip isformed by several packages that include:

- dtandard SIP objects like SIP Messages, Transactions, Diaogs, etc.,

- various SIP extensions aready defined within the IETF,

- Cdl Control APIs,

- areference implementation of some SIP systems (both servers and UAS).

3. Some reasons to use M;Sip

There are several available implementations of SIP, in both Java and C++ programming languages; MjSip isjust

another one.

The main characteristics of MjSip are:

- itisJavabased, so it is cross-platform,

- itisnot just aAPI, but includes the complete SIP stack implementation,

- itisvery powerful and is compliant to the IETF RFC 3261 standard and extensions,

- itissimpleto use and very simple to extend (well, thisis what we think.. ;-)),

- itisvery light, and can be use at the sametime for both server and light terminal implementations,

- itimplements almost the same lower-level interface of JAIN SIP, so resulting almost familiar to programmers that
aready knows JAIN SIP,

- it addsto thislower-level interface new Call Control APIs very useful for quickly developing complete SIP-based
applications,

- it comes with both a stateless and a stateful SIP Server implementation, and avery simple UA.

There are also some feature are still not supported by MjSip, such as:
- TLStransports,
- Compact header field formats (currently they are only partially implemented).

4. MjSip license

MjSip isfreely available and can be freely use for research, testing, or non-profit purpose. MjSip is not free for
commercial use. If You are intended to ship some commercia products you have to buy alicense.

Although the MjSip development is full compliant with the SIP standard, some problems could be still encountered
when using with not SIP-compliant software, in case their compatibility with MjSip has still not been tested.

5. A cup of MjSip
[TODOQ]...

6. SIP entities

There are different types of SIP systems:

- Terminas: the end-systems that make and receive calls (e.g. soft-phone, ip hard-phones).

- Proxy servers: intermediary systems that act as both a server and a client for the purpose of making requests on
behalf of other clients.

- Redirect servers. serversthat generate 3xx responses to requests it receives, directing the client to contact an
aternate set of URIs

- Registrar servers. Servers that accept REGISTER requests and place the information they receive in those requests
into the location service for the domain they handle.

These system may be composed by one or more of the following SIP entities:

- User Agent Client (UAC): A user agent client isalogica entity that creates a new request, and then uses the client
transaction state machinery to send it. Therole of UAC lasts only for the duration of that transaction. In other
words, if apiece of software initiates arequest, it acts as a UAC for the duration of that transaction. If it receivesa
request later, it assumes the role of a user agent server for the processing of that transaction.

- User Agent Server (UAS): A user agent server isalogical entity that generates aresponseto a SIP request. The
response accepts, rejects, or redirects the request. This role lasts only for the duration of that transaction. In other
words, if apiece of software respondsto arequest, it acts asa UAS for the duration of that transaction. If it
generates arequest later, it assumes the role of a user agent client for the processing of that transaction.

- User Agent (UA): A logical entity that can act as both a user agent client and user agent server.

- Proxy Agent: Thelogical entity that implements the functionality proper of a Proxy server.

UAC and UAS may terminate Transactions, Dialogs and Calls (see later). Instead, a stateful Proxy terminates
Transactions.

The MjSip library currently comes with a simple and extensible stateless SIP server, that can act as Registrar, Redirect,
Outbound-Proxy, or a combination of them (e.g. Proxy+Registrar). The server implements a simple Location Service.

7. MjSip architecture

According to the SIP architecture defined in RFC 3261, the core MjSip is structured in three base layers: Transport,
Transaction, and Dialog. On top of these layers, MjSip provides aso Call Control and application level layers, with the
corresponding APIs.

Applications/Sessions

Call
Dialog — |

Transaction &
e

Transport

MjSip APIs

Figure 1 — MjSip layered architecture

7.1. Layered Architecture and APIs

The lowest layer is the Transport layer that provides the transport of SIP messages. The SipProvieder isthe MjSip
Object that provides the transport service to all upper layer. It is responsible to send and receive SIP messages through
different lower layer transport protocols, and to demultiplex incoming messages toward the appropriate upper layer
entity. Every SIP elements should use the SipProvider’s API if they want to access to the MjSip transport service.

The second layer is the Transaction layer. Transactions are a fundamental component of SIP. In SIP atransaction isa
request sent by aclient (atransaction client) to a transaction server along with all responses to that request sent from the
transaction server back to the client. The transaction layer handles upper-layer retransmissions, matching of responses
to requests, and timeouts. The Transaction layer sends and receives messages through the transport layer.

In SIP any task that a user agent client (UAC) accomplishes takes place using a series of transactions. User agents
normally should use the transaction layer, as do stateful proxies. Stateless proxies normally do not make use of the
transaction layer. As aready introduced, the transaction layer has a client component (referred to as a transaction client)
and a server component (referred to as a transaction server), each of which are represented by a finite state machine that
is constructed to process a particular request. There are defined two kind of transactions:

- two-way transactions, and

- three-way transactions (currently only the INVITE transaction has been defined, used to initiate a session).
Two-way transactions are implemented in MjSip by ClientTransaction and Server Transaction, while three-
way/INVITE transactions are implemented by I nviteClientTransaction and | nviteServer Transaction.

The third layer (above the transaction layer) is the Dialog that binds different transactions within the same “session”. A
diaog is a peer-to-peer SIP relationship between two user agents that persists for sometime. The dialog facilitates
sequencing of messages and proper routing of requests between the user agents. Asdefined in RFC 2631, the INVITE
method establishes a dialog (named invite dialog). An inviete dialog isimplemented in MjSip by the class I nviteDial og.
The combination of the To tag, Fromtag, and Call-ID completely defines adiaog. In the previous RFC 2543, the
diadlog was called “Call leg”. InviteDia og manages a so the CANCEL method.

The upper SIP-layer isthe Call Control layer that implements a complete SIP call. The Call Control layer is
implemented by the Call AP, that offers a simple-to-use interface to handle incoming and outcoming SIP cals. A Call
may consist of more than one dialogs.

Upon the these four layers there are the SIP sessions that bind two or more application entities (participants) on
different systems.

MjSip offers APIsfor accessto all previous SIP layers (from SipProvider to Call), and a reference implementation of
various application level systems. A developer can choose to utilize APIs at any level, depending on the developer’s
preference and on the system characteristics (perhaps on a transaction-by-transaction basis or direct on the transport
service offered by the SipProvider).
The MjSip APIsfor the four layers are implemented respectively by:

classCal | (and class Ext endedCal |)
- classlnviteD al og
- classesd i ent Transacti on, Server Transaction, | nvited i ent Transacti on, and

I nvi t eServer Transacti on
- classSi pProvi der

Moreover, MjSip provides several instruments to handle SIP messages, SDP syntax, and encoding. These methods are
included in:

- classesMessage, MessageFact ory

- classesHeader, Mul ti pl eHeader , Fr omHeader , ToHeader , Vi aHeader , and alot of others..

- classes Sessi onDescri ption, Ti ner, etc.

MjSipisintrinsicaly extensible, and new SIP header and/or new methods can be easily defined and integrated. MjSip
stack is formed by two main packages: sip and sipx. Thefirst package includes al SIP standard Headers and Methods,
and SIP standard layers (Transport, Transaction, Dialog), while the latter includes possible extensions and it is open for
new extensions such as new S|P headers, methods and functions.

In the following sections you can find a brief description of the MjSip main classes.

7.2. SipProvider

The SipProvider sends and receives SIP message. It simply receives SIP messages from an upper layer and sends them
to the next-hop SIP entity through the appropriate socket (TCP or UDP). Moreover, it receives SIP messages from the
network (through the UDP/TCP layers), and delivers (demultiplexes) them to the appropriate upper entity, that isa
Transaction, a Dialog, or an application entity.

When the SipProvider receives a new message from an upper entity, it decides which is the appropriate next-hop SIP
agent (addres/port) and transport portocol, and forwards the message to it. In case of SIP requests, the next-hop is
chosen depending on the fields To, Route, Contact, and locally configured outbound-proxy, while in case of SIP
response it is chosen by the Via sent-by field, received filed, and rport field.

When the SipProvider receives a new message from the lower layers, it chooses the appropriate upper entity based on
the matching of transaction-id, dialog-id, or message type with the list of the current registered SipProvider listeners
corresponding to the upper entities.

7.3. Transactions
The state machines of Non-INVITE Transactions, ,and INVITE Transactions are shown in Figure 2 and Figure 3

respectively.

new TransactionServer(type,listener)

A

N terminateTransaction()
. . Waiting >
new TransactionClient(req,listener)
REQUEST sent new TransactionServer(req,listener) REQUEST received
REQUEST sent
onCltStart(t,req) e w OnSrvRequest(t,req)
timeout E
o . timeout F ,_cancelTransaction() : terminateTransaction()
"~ terminateTransaction() Trying « Trying >
200-699 received -
1xx received
REQUEST sent 1xx sent
9 bnCltProvisionalResp(t,resp) Ixx sent
-) l onSrvProceeding(t)
timeout E A 4 nCltProvisionalResp(t,rasp) REQUEST received
. - - . terminateTransactiof()
< - - PrOCEEdmg 1xx received cancelTransaction() PrOCEEdlng »
lerminateTransaction() > <
timeout F
200-699 received -
200-699 sent 200-699 sent
oRgFailure or SuccessResp(t resp) REQUEST received v onSrvCompleted(t)
pnCltFpilure or SuccessResp(t,fesp) - 200-699 sent
) . _onSrvCompleted(t)
~ » Completed 487 sent Completed [«
>
terminateTransaction() onSrvCompleted(t) i terminateTransaction()
timeout K timeout J
vonCIICIearingTimeout(t) wonSrvClearingTimeout(t)
onCltTimeout(t) i onSrvTerminated(t)
Terminated |«

onCltTerminated(t) Terminated

»

Figure 2 — Non-Invite Transaction Client and Transaction Server.

new InviteTransactionClient(req,listener)

new InviteTransactionServert(listener)

Waiting
new InviteTransactionServer(req,listener) INVITE received
Y woninvSrvRequest(t,req)
< cancelTransaction() Trymg L2k sent
H [
terminateTransaction() |
100 sent 300-699 sent
INVITE received 'yonlnvSrvProceeding(t)
2xx_sent o
) ' Proceedin 1,
cancelTransaction(g terminaté Transaction()
300699 sent
300-699 sent >
INVITE received l ognvSrvFailureCompleted(t)
opinvSrvFailureCompleted(t) timeout H
487 sent " Completed _ : >
timeout G terminateTransaction()
T ACK received
300-69 sent oanSrvReceivedFaiIureAck(t)
) . terminateTransaction() | |
Confirmed >
timeout |
‘)nInvSerIearingTimeout(t)

Hop-by-hop
terminated

q

f IgvSrvSuccessTerminatg:d(

| oninvSrvEndTimeout(t)

_onlnvSrvTerminated(t)
l

Figure 3 — Invite Transaction Client and Transaction Server.

INVITE sent
INVITE sent
oninvCltTrying(t,req)
timeout A timeout B
 terminateTransaction() Trymg 2xx_received
300-699 received 1xx received
oninvCltProvisionalResp(t,resp)
bninvCltProvisionalResp(t,resp)
1xx received A
. 2xx received o
_ferminateTransaction() Proceeding v
ACK 300-699 received
Y sent ACK sent
§ oninvCltFailureResp(t,resp)
300-699 received
Completed
~ terminateTransaction()
timeout D
w OninvCItEndTimeout(t)
onlnvCltTerminated(t) Hop-by-hop < onlnvCltSuccessResp(t,re:
terminated |,
onlnvCltTimeout(t)
7.4. Dialogs

Currently only the InviteDia og has been defined (and implemented). The state machine of an InviteDiaog is depicted

in Figure 4.

invite(callee caller,contact,body)

t=new InviteTransagy
onDlgProvisionalResponse(d,code,reason,body, 1xx)

nClient(invite,this)

listen()

Lt

Inviting

onl:lt ProvisionalResp(Invite_t,1xx)

onCltSutcessResp(Invite_t,2xx)

onCltFailureResp(Invite_t,resp) or onCltTimeout(Invite_t)

new AckTransactionClient(ack,this)
addSipProviderListener()
onDlgSuccessResponse(d,code,reason,body,
onDlgCall(d)

onDlgAccepted(|

t.terminateTransaction()
onDIgAck(d,body,msg)

new Ack1ransactionclient(ack,this)

onDlgCall(d)

onReceivedMessage (ack)

new TransactionClient(bye,this)
removeSipProviderListener
onDIgByeing(d)

onCltSuccessResp (b_t,resp) or FailureR
or onCltTimeout(h_t)

onDlgClose(d,resp)
onDlgClose(d)

onDlgFailureResponse or onDIgRedirect(d,code,reason,resp) or onDIgTim'e

t.respondWith(20!
Byed

onDlgClose(d)

<

onDIgBye(d,msg)

3\\\
t=new InviteTran%ctionServer(this) Q@\ @s\
AT
AN
. NN
Waiting PN
W&
o‘\o,\\b Q>®~
onSrvRequest(t,req) N &
\&
addSipProviderLjistener() &
onDlglnvite(d,caller,Rgdy, msg
b
ring() or respond(1xx) Invited
accept(body) or respand(2xx
. .p() (x4 ¢() or respond(300-699)
t.terminateTransaction() emoveSipProviderListener()
t=new AckTransactionServer(2x; respondWith(resp)
U onDIgRefused(d)
Accepted Refused
essage(ack) onlnvSrvFaillireAck(t,ack)

0)

‘onDIgCIose(d)

onDlgClose(d)

Figure 4 - Invite Dialog.

7.5. Calls

[TO DOJ

8. MjSip layer’'s APIs

As described in the previous sections, MjSip implements a layered architecture. A developer can choose to use any
MjSip layer as he/she prefer. The classes that allow the interaction with the different layers are class Call,
InviteDialog, ClientTransaction, Server Transaction, InviteClientTransaction, InviteServer Transaction, and
SipProvider.

Class Call isthe upper API to the service offered by the SIP stack, and offer ainterface to the Call layer based on
service requests (methods) and service response/indications (callback functions).

Classes InviteDialog, ClientTransaction, Server Transaction, InviteTransactionClient, InviteT ransactionServer,
and SipProvider offer interfaces to the lower layers (InviteDialog, Transaction and SipProvider respectively).

The interfaces between adjacent layers are based on a Provider - Listener model. When a class wants to interact with
an underling layer, it has to extend the relative LayerListener class for that layer (i.e. the layer provider) and add itself
to thelist of possible listeners of the events generated by the lower layer/provider. The events are captured by the upper
class through specific listener methods inherited by the specific Listener class. Figure 5 showsthe APl model.

Listener. onEventX(parameters)
Listener. onEventY(parameters)
Listener. onEventZ(parameters)

Provider.addListener()
Provider specific methods

LowerLayerProvider

Figure 5 — SipDialog, Transaction, SipProvider APIS° model

A SipProviderListener implements only one method, that is the onRecelvedM essage(M essage msg) method.

A TransactionClient implements the following methods:

- onCltProvisional Response(TransactionClient transaction, Message resp), called when the TransactionClient is (or
goes) in "Proceeding" state and receives anew 1xx provisional response;

- onCltSuccessResponse(TransactionClient transaction, Message resp), called when the TransactionClient goesinto
the "Completed" state receiving a 2xx response;

- onCltFailureResponse(TransactionClient transaction, Message resp), called when the TransactionClient goes into
the "Completed" state receiving a 300-699 response;

- onCltTimeout(TransactionClient transaction), called when the TransactionClient goesinto the "Terminated" state,
caused by transaction timeout.

A TransactionServerListener implements the following methods:

- onSrvRequest(TransactionServer transaction, Message req), called when the TransactionServer goes into the
"Trying" state receiving a request;

- onlnvSrvFailureAck(InviteTransactionServer transaction, Message ack), called when an InviteT ransactionServer
goesinto the "Confirmed" state receining an ACK for NON-2xx response.

A InviteDialogListener implements the following methods:

- onDlglnvite(InviteDialog dialog, NameAddress caller, String body, Message msg), called when an incoming
INVITE isreceived;

- onDIgRelnvite(InviteDialog dialog, String body, Message msg), called when an incoming Re-INVITE is received;

- onDlgProvisiona Response(InviteDialog dialog, int code, String reason, String body, Message msg), called when a
Ixx response response is received for an INVITE transaction;

- onDlgSuccessResponse(InviteDialog dialog, int code, String reason, String body, Message msg), called when a 2xx
successfull final response is received for an INVITE transaction;

onDIgRedirectResponse(InviteDialog dialog, int code, String reason, MultipleHeader contacts, Message msg),
called when a 3xx redirection response is received for an INVITE transaction;

onDlIgFailureResponse(InviteDialog dia og, int code, String reason, Message msg), called when a 400-699 failure
response is received for an INVITE transaction;

onDIgTimeout(InviteDialog dialog), called when INVITE transaction expires;

onDIgRelnviteProvisional Response(lnviteDialog dialog, int code, String reason, String body, Message msg), called
when a 1xx response response is received for a Re-INVITE transaction;

public void onDIgRel nviteSuccessResponse(InviteDia og dialog, int code, String reason, String body, Message
msg), called when a 2xx successfull final response isreceived for a Re-INVITE transaction;
onDlIgRelnviteFailureResponse(InviteDialog dialog, int code, String reason, Message msg), called Wwhen a 400-
699 failure response is received for a Re-INVITE transaction;

onDIgRelnviteTimeout(InviteDialog dialog), called when a Re-INVITE transaction expires;
onDIgAck(InviteDialog dialog, String body, Message msg), called when an incoming ACK isreceived for an
INVITE transaction;

onDIgCall(InviteDialog diaog), called when the INVITE handshake is successful terminated;

onDlgCancel (InviteDialog dialog, Message msg), called when an incoming CANCEL is received for an INVITE
transaction;

onDIgBye(InviteDial og dialog, Message msg), called when an incoming BY E is received;
onDIgByeResponse(InviteDia og dialog, Message msg), called when afinal responseis received for a Bye request;
onDIgClose(InviteDia og dialog), called when the dialog is finally closed;

Finally, CallListener implements the following methods:

onCalllncoming(Call call, NameAddress caller, String sdp, Message invite), called when arriving anew INVITE
method (incoming call);

public void onCallModifying(Call call, String sdp, Message invite), called when arriving anew Re-INVITE
method (re-inviting/call modify);

onCallRinging(Call call, Message resp), called when arriving a 180 Ringing;

onCallAccepted(Call call, String sdp, Message resp), called when arriving a 2xx (call accepted);
onCallRefused(Call call, String reason, Message resp), called when arriving a4xx (cal failure);
onCallRedirection(Call call, String reason, Vector contact_list, Message resp), called when arriving a 3xx (call
redirection);

onCallConfirmed(Call call, String sdp, Message ack), called when arriving an ACK method (call confirmed);
onCallTimeout(Call call), called when the invite expires,

onCallRelnviteAccepted(Call call, String sdp, Message resp), called when arriving a 2xx (re-invite/modify
accepted);

onCallRelnviteRefused(Call call, String reason, Message resp), called when arriving a 4xx (re-invite/modify
failure);

onCallRelnviteTimeout(Call call), called when are-invite expires,

onCallCanceling(Call call, Message cancel), function called when arriving a CANCEL method (cancel request);
onCallClosing(Call call, Message bye), called when arriving aBY E method (close request);

onCallClosed(Call call, Message resp), called when arriving 2200 OK after aBY E request (call closed);

Methods call(), listen(), accept() can be used to initiate a outgoing or incoming calls, while method handgup() is used to
teardown the calls.

Please refer to the javadoc documentation for all APl details.

9. Messages, Headers, and other stuffs
[TO DO

10. SipStack configuration

Although objects of types SipProvider, Transactions, UAs, and Servers can be configured through their specific
constructors and ‘ set’ methods, they can be also easily configured by appropriate configuration files that are passed to
their constructors (actually a new Configure(file_name) object is used as constructor’ s parameter). Through a
configuration file you can also set al inner stack parameters such as timeouts, old RFC compliant behaviors, and log-
handling settings.

For this purpose you can use several separated configuration files (one for each object/layer) or you can put your
preferences al in onefile.

Hereafter you can find the description of all configuration parameters, listed into different sections of one configuration
file (it isup to you to split it into multiple files or not).

Note that thereis a class named SipStack that includes all static stack attributes, and that is configured only one time
for all SIP applicationsthat start from the same program (i.e. instantiated by the same main class). For this reason be
sure that the desired parameter are placed in the first configuration file you passes to you implementation.

On the other hand, @l other non-static parameters can be loaded individually for each object instantiation (one or mode
SipProviders, one or more Servers, etc.).

Here is the complete set of configuration parameters:

10.1. MjSip-1.4.1 Configuration

M Sip paraneters are organized into 5 sections:
Section 1: SipStack base configuration
Section Logs

Section Si pProvi der configuration
Section UA/ 3PCC configuration

Section Server configuration

HFHEEERN
o o0oo0ooo
aRwbE

Section 1: SipStack base configuration

Nornel 'y, you do not have to change the base configuration,
and you can go directly to Section 2.
SIP and transport |ayer configurations are handled in Section 3.

HoHHHHHH R

Default SIP port
Default value: default_port=5060
#def aul t _port=5060

Default supported transport protocols
Default val ue: default_transport_protocol s=udp,tcp
#def aul t _transport_protocol s=udp

Default max nunber of contenporary open transport connections
Default val ue: default_nmax_connecti ons=32
#def aul t _nmax_connecti ons=0

Whet her adding 'rport' paraneter by defaul t.
Default val ue: use_rport=yes
#use_r port=no

Default max-forwards val ue (RFC3261 recommends val ue 70)
Default value: max_forwards=70
#max_f or war ds=10

Starting retransm ssion timeout (mlliseconds); called Tl in RFC2361; they suggest T1=500ns
Default value: retransm ssion_tineout=500
#retransni ssi on_ti meout =2000

Maxi mum retransm ssion tineout (milliseconds); called T2 in RFC2361; they suggest T2=4sec
Default value: max_retransni ssion_timeout =4000
#max_retransm ssi on_ti meout =4000

Transaction timeout (mlliseconds); RFC2361 suggests 64*T1=32000ns
Default value: transaction_timeout=32000

#transacti on_ti meout =10000

Clearing tineout (mlliseconds); T4 in RFC2361; they suggest T4=5sec
Default value: clearing_tineout=5000

#cl earing_ti neout =5000

Whet her 1xx responses create an "early dialog" for nethods that create dialog

Default value: early_dial og=no
#ear |l y_di al og=yes

Default 'expires' value in seconds. RFC2361 gives as default val ue expires=3600

Default val ue: expires=3600
#expi r es=1800

Use 'NO-UA-INFO string or let

o

ua_i nf 0=NC UA- | NFO

UA info included in request nmessages (in the User-Agent header field)

it blank if the User-Agent header filed nust be added

Defaul t: ua_info=<the njsip rel ease>

Server info included in request nessages (in the Server header field)

Use 'NO- SERVER-INFO string or let it blank if the Server header filed nust be added
Default: server_info=<the njsip rel ease>

server _i nf o=NO SERVER- | NFO

#

#

Section 2: Logs

#

#

Change these paraneters in order to custom ze how log-files are handl ed.

By default log files are placed into the ./log folder, they are not rotated,
and the nmaxi numsize is 2M

#

Log level. Only logs with a level less or equal to this are witten

Default value: debug_|evel =3

#debug_I evel =0

Path for the log folder where log files are witten
By default, it is used the "./log" folder
Use ".", to store logs in the root folder

Default value: |og_path=./10g
#l og_pat h= .

#The size limt of the log file [kB]

Default value: max_| ogsi ze=2048

#max_| ogsi ze=4096

The nunber of rotations of log files. Use '0'" for NOrotation, '1' for rotating a single file

Default value: |og_rotations=0
#l og_rotati ons=4

The rotation period in MONTHs,

DAYs, HOURs, or M NUTEs

exanple: "log_rotation_tinme=3 MONTHS', that is equivalent to "log_rotati ons=90 DAYS"
Default value: log_rotation_tinme=2 MONTHS

#l og_rotation_time=7 DAYS

#

#

Section 3: SipProvider configuration

#

#

Change these paraneters in order to customize the SIP transport |ayer.
Usually you have to deal with sone of these configuration paraneters.
#

Vi a address/nane

Use ' AUTO- CONFI GURATI ON' for auto detection, or let it undefined

Default val ue: host_addr =AUTO- CONFI GURATI ON

#host _addr=192. 168. 0. 33

Local SIP port
Default val ue: host_port=5060
#host _port =5060

Network interface (IP address) used by SIP

Use 'all-interfaces' for binding SIP to all interfaces (or let it undefined)
Default val ue: host_ifaddr=ALL-| NTERFACES

#host _i f addr=192. 168. 0. 33

List of enabled transport protocols (the first protocol is used as default)
Default value: transport_protocol s=udp
#transport _protocol s=udp, tcp

Max nunber of contenporary open transport connections
Default val ue: nmax_connecti ons=32
#nmax_connect i ons=0

CQut bound proxy

Use ' NO- QUTBOUND' for not using an outbound proxy (or let it undefined)
Default val ue: outbound_addr=NO OQUTBOUND

#out bound_addr =pr oxy. wonder | and. net

Port nunmber of the outbound proxy
Default val ue: outbound_port=5060
#out bound_por t =5060

#

#

Section 4: UA/3PCC configuration

#

#

Change these paraneters in order to custom ze the UA profile
You need to edit this section only if you are using a M Sip UA or
you are managi ng 3PCC services

#

User's URL (From URL)

|f not defined (default), it equals the contact_url

#from url =si p: al i ce@wonder| and. net

Contact URL
If not defined (default), it is formed by sip:local _user @ost_address: host_port
#contact _url =sip:alice@92.168. 0. 55: 5070

Local user nane (used to build the contact url if not explitely defined)
Default value: |ocal _user=user
#contact _user=alice

Path for the "ua.jar' lib, used to retrive various UA nedia (gif, wav, etc.)
By default, it is used the "lib/ua.jar" folder
#ua_jar=./ua.jar

Path for the 'contacts.lst' file where save and |load the list of Visual UA contacts
By default, it is used the "contacts.|st" folder
#contacts_fil e=config/contacts. | st

Whet her using JMF for audio/video stream ng
Default value: use_jnf=no
#use_j nf =yes

Whet her using RAT (Robust Audio Tool) as audi o sender/receiver
Default value: use_rat=no
#use_r at =yes

RAT conmand-|ine executabl e
Default value: bin_rat=rat
#bi n_rat =c: \ programm \ nbone\ r at

Whether using VIC (Video Conferencing Tool) as video sender/receiver
Default val ue: use_vic=no
#use_vi c=yes

VI C command- | i ne execut abl e
Default value: bin_vic=vic
#bi n_vi c=c: \ progr amm \ mbone\ r at

Section 5: Server configuration

#

#

Change these paraneters in order to custom ze the Server behavi our

You need to edit this section only if you are using a M Sip Server

#

The donmin nanes that the server administers

1t lists the donmmin nanes for which the Location Service wnaintains user bindings
Use 'auto-configuration' for auto domanin name configuration (default)

domai n_nanmes=wonder| and. net bil oxi . exanpl e. com

Whet her consider any port as valid |local |ocal domain port
(regardl ess which sip port is used)

Default val ue: donmi n_port_any=no

#domai n_port _any=yes

The Locati onServi ce DB nane
Default value: |ocation_db=users.db
#l ocati on_db=confi g/ users. db

Whet her LocationService DB has to be cleaned at startup
Default value: l|ocation_db_cl ean=no
#l ocati on_db_cl ean=yes

Whet her the Server should act as Registrar (i.e. respond to REG STER requests)
Default value: is_registrar=yes
#i s_regi strar=no

Whet her the Registrar can register new users (i.e. REG STER requests from unregi stered users)
Default val ue: register_new users=yes
#regi st er _new_user s=no

Whet her the server should stay in the signaling path (uses Record-Route/ Route))
Default val ue: on_route=no
#on_r out e=yes

Whether refer to the RFC3261 Loose Route (or RFC2543 Strict Route) rule
Default val ue: |oose_route=yes
#l oose_r out e=no

11. Examples
[TO DO

12. References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, E. Schooler, “ SIP:
Session Initiation Protocol”, IETF RFC 3261, June 2002

[2] |IETF SIP WG, http:/iww.ietf.org/html.charters/sip-charter.html
[3] SIPPageat Columbia University, http://www.cs.columbia.edu/sip

[4] M. Handley, H. Schulzrinne, J. Rosenberg, “SIP: Session Initiation Protocol”, IETF RFC 2543, May 1999,
Obsolated by RFC 3261

[5] M. Handley, V. Jacobson, “SDP: Session Description Protocol”, IETF RFC 2327, April 1998

[6] J Rosenberg, H. Schulzrinne, “An Offer/Answer Model with the Session Description Protocol (SDP)”, IETF
RFC 3264, June 2002

