
Developer’s Guide

Inprise Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Borland ®

C++Builder ™ 5
for Windows 2000 / 98 / 95 / NT

Refer to the file DEPLOY.TXT located in the root directory of your C++Builder product for a complete list of files that
you can distribute in accordance with the C++Builder License Statement and Limited Warranty.

Inprise may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1983, 2000 Inprise Corporation. All rights reserved. All Inprise and Borland brands and product names
are trademarks or registered trademarks of Inprise Corporation. Other product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

CPE1350WW21001 3E2R0100
0001020304-9 8 7 6 5 4 3 2 1
PDF

i

Chapter 1
Introduction 1-1
What’s in this manual? 1-1
Manual conventions 1-2

Contacting developer support 1-3

Part I
Programming with C++Builder

Chapter 2
Programming with C++Builder 2-1
The integrated development environment . . . 2-1
Designing applications 2-2
Understanding the VCL. 2-2

Properties . 2-2
Methods . 2-2
Events . 2-3

User events 2-3
System events 2-3

Objects, components, and controls in
the VCL . 2-3

The TObject branch. 2-4
The TPersistent branch 2-5
The TComponent branch 2-5
The TControl branch 2-6
The TWinControl branch 2-7
Properties common to TControl 2-7

Action properties 2-8
Position, size, and alignment

properties 2-8
Display properties 2-8
Parent properties 2-9
A navigation property 2-9
Drag-and-drop properties 2-9
Drag-and-dock properties 2-9

Standard events common to TControl 2-10
Properties common to TWinControl 2-10

General information properties 2-11
Border style display properties 2-11
Navigation properties 2-11
Drag-and-dock properties 2-12

Events common to TWinControl 2-12
Creating the application user interface . . .2-12
Using components 2-13

VCL standard components 2-14
Text controls 2-15
Specialized input controls. 2-16
Buttons and similar controls 2-17
Button controls 2-17
Bitmap buttons 2-18
Speed buttons 2-18
Check boxes 2-18
Radio buttons 2-18
Toolbars 2-18
Cool bars 2-19
Handling lists 2-19
List boxes and check-list boxes 2-19
Combo boxes 2-20
Tree views. 2-20
List views 2-21
Date-time pickers and month

calendars 2-21
Grouping components 2-21
Group boxes and radio groups 2-21
Panels . 2-22
Scroll boxes 2-22
Tab controls. 2-22
Page controls 2-22
Header controls 2-22
Visual feedback 2-22
Labels and static-text components 2-23
Status bars 2-23
Progress bars 2-23
Help and hint properties 2-23
Grids . 2-24
Draw grids 2-24
String grids 2-24
Graphics display 2-24
Images. 2-25
Shapes. 2-25
Bevels . 2-25
Paint boxes 2-25
Animation control 2-25
Windows common dialog boxes 2-26
Using windows common dialog

boxes. 2-26
Using helper objects 2-26

Working with lists 2-27

Contents

ii

Working with string lists 2-27
Loading and saving string lists 2-27
Creating a new string list 2-28
Manipulating strings in a list 2-29
Associating objects with a string list . . . 2-31

Windows registry and INI files 2-31
Using TINIFile 2-32
Using TRegistry 2-33
Using TRegINIFile 2-33
Using TCanvas 2-34
Using TPrinter. 2-34

Using streams. 2-35
Developing applications 2-35

Editing code. 2-35
Debugging applications 2-35
Deploying applications 2-36

Chapter 3
Building applications, components,
and libraries 3-1

Creating applications 3-1
Windows applications 3-1

User interface models 3-2
Setting IDE, project, and compilation

options 3-2
Programming templates 3-3
Console applications 3-3

Using the VCL in console applications . . 3-3
Service applications 3-4

Service threads 3-6
Service name properties 3-8
Debugging services 3-8

Creating packages and DLLs 3-9
When to use packages and DLLs 3-9

Using DLLs in C++Builder 3-10
Creating DLLs in C++Builder 3-10
Creating DLLs containing VCL

components . 3-11
Linking DLLs. 3-14
Writing database applications 3-14
Building distributed applications 3-15

Distributing applications using TCP/IP . . . 3-15
Using sockets in applications 3-15
Creating Web server applications 3-16

Distributing applications using COM
and DCOM 3-16

COM and DCOM 3-16
MTS and COM+ 3-17

Distributing applications using CORBA. . . 3-17

Distributing database applications 3-17
Using data modules and remote data

modules . 3-17
Creating and editing data modules 3-18

Creating business rules in a data
module 3-18

Accessing a data module from a form . . . 3-19
Adding a remote data module to an

application server project 3-19
Using the Object Repository 3-19

Sharing items within a project 3-19
Adding items to the Object Repository . . . 3-20
Sharing objects in a team environment . . . 3-20
Using an Object Repository item in

a project . 3-20
Copying an item 3-20
Inheriting an item 3-21
Using an item. 3-21

Using project templates. 3-21
Modifying shared items 3-21
Specifying a default project, new form,

and main form 3-22

Chapter 4
Developing the application
user interface 4-1

Understanding TApplication, TScreen,
and TForm . 4-1

Using the main form 4-1
Adding additional forms 4-2

Linking forms 4-2
Hiding the main form. 4-2
Working at the application level 4-3
Handling the screen. 4-3
Managing layout 4-3

Working with messages 4-4
More details on forms 4-5

Controlling when forms reside in memory. . 4-5
Displaying an auto-created form. 4-5
Creating forms dynamically 4-5
Creating modeless forms such as

windows 4-6
Using a local variable to create a form

instance 4-7
Passing additional arguments to forms 4-7
Retrieving data from forms. 4-8

Retrieving data from modeless forms . . . 4-8
Retrieving data from modal forms. . . . 4-10

iii

Reusing components and groups of
components . 4-12

Creating and using component templates . . .4-12
Working with frames 4-13

Creating frames. 4-13
Adding frames to the Component

palette 4-14
Using and modifying frames 4-14
Sharing frames 4-15

Creating and managing menus. 4-15
Opening the Menu Designer 4-16
Building menus. 4-17

Naming menus 4-18
Naming the menu items 4-18
Adding, inserting, and deleting

menu items 4-19
Creating submenus 4-20
Adding images to menu items 4-22
Viewing the menu 4-22

Editing menu items in the Object
Inspector . 4-22

Using the Menu Designer context menu. . . 4-23
Commands on the context menu 4-23
Switching between menus at design

time . 4-24
Using menu templates 4-24
Saving a menu as a template 4-25

Naming conventions for template
menu items and event handlers 4-26

Manipulating menu items at runtime 4-27
Merging menus4-27

Specifying the active menu: Menu
property 4-27

Determining the order of merged
menu items: GroupIndex property . . . 4-27

Importing resource files 4-28
Designing toolbars and cool bars 4-28

Adding a toolbar using a panel
component. 4-29

Adding a speed button to a panel. 4-30
Assigning a speed button’s glyph. 4-30
Setting the initial condition of a

speed button 4-30
Creating a group of speed buttons 4-31
Allowing toggle buttons 4-31

Adding a toolbar using the toolbar
component. 4-31

Adding a tool button 4-32
Assigning images to tool buttons 4-32

Setting tool button appearance and
initial conditions 4-33

Creating groups of tool buttons 4-33
Allowing toggled tool buttons 4-33

Adding a cool bar component 4-34
Setting the appearance of the

cool bar 4-34
Responding to clicks 4-34

Assigning a menu to a tool button 4-35
Adding hidden toolbars 4-35
Hiding and showing toolbars 4-35

Using action lists 4-36
Action objects 4-36
Using Actions 4-37

Centralizing code 4-38
Linking properties 4-38
Executing actions 4-38
Updating actions. 4-40

Pre-defined action classes 4-41
Standard edit actions 4-41
Standard Window actions. 4-41
Standard Help actions. 4-42
DataSet actions 4-42

Writing action components. 4-43
How actions find their targets 4-43
Registering actions. 4-44
Writing action list editors 4-45

Chapter 5
Working with controls 5-1
Implementing drag-and-drop in controls 5-1

Starting a drag operation 5-1
Accepting dragged items 5-2
Dropping items 5-2
Ending a drag operation 5-3
Customizing drag and drop with a

drag object 5-3
Changing the drag mouse pointer. 5-4

Implementing drag-and-dock in controls 5-4
Making a windowed control a docking

site. . 5-4
Making a control a dockable child. 5-4
Controlling how child controls are

docked . 5-5
Controlling how child controls are

undocked . 5-6
Controlling how child controls respond

to drag-and-dock operations 5-6

iv

Working with text in controls. 5-6
Setting text alignment 5-6
Adding scroll bars at runtime. 5-7
Adding the Clipboard object 5-7
Selecting text 5-8
Selecting all text 5-8
Cutting, copying, and pasting text 5-8
Deleting selected text 5-9
Disabling menu items 5-9
Providing a pop-up menu5-10
Handling the OnPopup event. 5-10

Adding graphics to controls 5-11
Indicating that a control is owner-drawn . . 5-11
Adding graphical objects to a string list . . . 5-12

Adding images to an application 5-12
Adding images to a string list 5-12
Drawing owner-drawn items 5-13

Sizing owner-draw items 5-14
Drawing each owner-draw item 5-14

Chapter 6
Working with graphics and
multimedia 6-1

Overview of graphics programming. 6-1
Refreshing the screen 6-2
Types of graphic objects 6-2
Common properties and methods of

Canvas . 6-3
Using the properties of the Canvas

object . 6-4
Using pens. 6-5
Using brushes 6-7
Reading and setting pixels 6-9

Using Canvas methods to draw graphic
objects . 6-9

Drawing lines and polylines. 6-9
Drawing shapes 6-10

Handling multiple drawing objects in
your application 6-11

Keeping track of which drawing tool
to use . 6-12

Changing the tool with speed buttons . . 6-12
Using drawing tools 6-13

Drawing on a graphic 6-16
Making scrollable graphics 6-16
Adding an image control 6-16

Loading and saving graphics files 6-18
Loading a picture from a file 6-18

Saving a picture to a file. 6-19
Replacing the picture 6-19

Using the Clipboard with graphics 6-20
Copying graphics to the Clipboard . . . 6-21
Cutting graphics to the Clipboard 6-21
Pasting graphics from the Clipboard . . 6-21

Rubber banding example. 6-22
Responding to the mouse 6-22
Adding a field to a form object to

track mouse actions 6-25
Refining line drawing 6-26

Working with multimedia 6-28
Adding silent video clips to an

application 6-28
Example of adding silent video

clips . 6-29
Adding audio and/or video clips to

an application 6-30
Example of adding audio and/or

video clips 6-32

Chapter 7
Writing multi-threaded applications 7-1
Defining thread objects. 7-1

Initializing the thread 7-2
Assigning a default priority 7-2
Indicating when threads are freed 7-3

Writing the thread function 7-3
Using the main VCL thread. 7-4
Using thread-local variables 7-5
Checking for termination by other

threads 7-5
Writing clean-up code. 7-6

Coordinating threads 7-6
Avoiding simultaneous access 7-6

Locking objects. 7-6
Using critical sections 7-7
Using the multi-read exclusive-write

synchronizer 7-7
Other techniques for sharing memory. . . 7-8

Waiting for other threads 7-8
Waiting for a thread to finish

executing 7-8
Waiting for a task to be completed. 7-9

Executing thread objects 7-10
Overriding the default priority 7-10
Starting and stopping threads 7-11

Debugging multi-threaded applications 7-11

v

Chapter 8
Exception handling 8-1
C++ exception handling. 8-1

ANSI requirements for exception
handling . 8-1

Exception handling syntax 8-2
Exception declarations 8-2
Throwing an exception 8-3

Examples. 8-3
Handling an exception. 8-6
Exception specifications 8-9
Constructors and destructors in

exception handling 8-10
Unhandled exceptions 8-10
Setting exception handling options 8-11

Structured exceptions under Win32 8-11
Syntax of structured exceptions. 8-12
Handling structured exceptions 8-12
Exception filters 8-13
Mixing C++ with structured exceptions . . . 8-15

C-based exceptions in C++ program
example 8-16

Defining exceptions 8-17
Raising exceptions 8-17
Termination blocks 8-18

VCL exception handling 8-19
Differences between C++ and VCL

exception handling 8-20
Handling operating system exceptions . . .8-20
Handling VCL exceptions8-21
VCL exception classes 8-21
Portability considerations 8-22

Chapter 9
C++ language support for the VCL 9-1
C++ and Object Pascal object models 9-1

Object identity and instantiation 9-1
Distinguishing C++ and Object Pascal

references 9-2
Copying objects 9-2
Objects as function arguments 9-3

Object construction for C++Builder
VCL classes 9-4

C++ object construction 9-4
Object Pascal object construction 9-4
C++Builder object construction 9-4

Calling virtual methods in base class
constructors 9-6

Object Pascal model 9-6
C++ model 9-7
C++Builder model 9-7
Example: calling virtual methods 9-7
Constructor initialization of data

members for virtual functions 9-8
Object destruction 9-9

Exceptions thrown from constructors . . 9-10
Virtual methods called from

destructors 9-11
AfterConstruction and

BeforeDestruction 9-11
Class virtual functions 9-11

Support for Object Pascal data types and
language concepts. 9-11

Typedefs . 9-12
Classes that support the Object Pascal

language 9-12
C++ language counterparts to the

Object Pascal language 9-12
Var parameters 9-12
Untyped parameters. 9-13

Open arrays 9-13
Calculating the number of elements . . . 9-13
Temporaries 9-14
array of const 9-14
OPENARRAY macro 9-15
EXISTINGARRAY macro 9-15
C++ functions that take open array

arguments. 9-15
Types defined differently 9-15

Boolean data types. 9-16
Char data types 9-16

Resource strings 9-16
Default parameters 9-17
Runtime type information 9-18
Unmapped types 9-18

6-byte Real types 9-18
Arrays as return types of functions . . . 9-19

Keyword extensions. 9-19
__classid 9-19
__closure 9-19
__property 9-20
__published. 9-21

vi

The __declspec keyword extension. 9-21
__declspec(delphiclass) 9-21
__declspec(delphireturn). 9-22
__declspec(dynamic) 9-22
__declspec(hidesbase) 9-22
__declspec(package) 9-23
__declspec(pascalimplementation) 9-23

Chapter 10
Working with packages and
components 10-1

Why use packages? 10-2
Packages and standard DLLs 10-2

Runtime packages 10-2
Using packages in an application. 10-2
Dynamically loading packages 10-3
Deciding which runtime packages to use . . 10-3
Custom packages 10-4

Design-time packages 10-4
Installing component packages 10-5

Creating and editing packages 10-6
Creating a package 10-6
Editing an existing package 10-7
Package source files and project

option files. 10-7
Packaging components. 10-8

Understanding the structure of a
package .10-9

Naming packages 10-9
The Requires list 10-9
The Contains list 10-10

Compiling packages 10-10
Package-specific compiler

directives 10-10
Using the command-line compiler

and linker 10-12
Package files created by a successful

compilation 10-12
Deploying packages 10-13

Deploying applications that use
packages 10-13

Distributing packages to other
developers 10-13

Package collection files 10-13

Chapter 11
Creating international applications 11-1
Internationalization and localization 11-1

Internationalization 11-1
Localization 11-1

Internationalizing applications 11-2
Enabling application code 11-2

Character sets 11-2
OEM and ANSI character sets 11-2
Double byte character sets 11-2
Wide characters 11-3
Including bi-directional functionality

in applications 11-3
BiDiMode property 11-5
Locale-specific features 11-7

Designing the user interface 11-8
Text . 11-8
Graphic images 11-8
Formats and sort order 11-8
Keyboard mappings 11-9

Isolating resources. 11-9
Creating resource DLLs. 11-9
Using resource DLLs 11-10
Dynamic switching of resource DLLs11-11

Localizing applications11-12
Localizing resources. 11-12

Chapter 12
Deploying applications 12-1
Deploying general applications 12-1

Using installation programs 12-2
Identifying application files 12-2
Application files 12-2
Package files 12-3
ActiveX controls 12-3
Helper applications 12-3
DLL locations. 12-3

Deploying database applications 12-4
Providing the database engine. 12-4

Borland Database Engine 12-4
Third-party database engines 12-5
SQL Links. 12-5

vii

Multi-tiered Distributed Application
Services (MIDAS) 12-6

Deploying Web applications 12-6
Programming for varying host

environments 12-6
Screen resolutions and color depths 12-7

Considerations when not
dynamically resizing 12-7
Considerations when dynamically

resizing forms and controls 12-7
Accommodating varying color

depths 12-8
Fonts . .12-9
Windows versions 12-9

Software license requirements 12-10
DEPLOY.TXT 12-10
README.TXT 12-10
No-nonsense license agreement 12-10
Third-party product documentation 12-10

Part II
Developing database applications

Chapter 13
Designing database applications 13-1
Using databases 13-1

Types of databases 13-2
Local databases 13-2
Remote database servers 13-2

Database security. 13-3
Transactions 13-3
Data Dictionary. 13-4
Referential integrity, stored procedures,

and triggers 13-5
Database architecture 13-6

Planning for scalability 13-7
Single-tiered database applications 13-8
Two-tiered database applications. 13-9
Multi-tiered database applications 13-9

Designing the user interface 13-11
Displaying a single record. 13-11
Displaying multiple records. 13-12
Analyzing data 13-12
Selecting what data to show 13-13
Writing reports 13-15

Chapter 14
Building one- and two-tiered
applications 14-1

BDE-based applications 14-2
BDE-based architecture 14-2

Understanding databases and
datasets 14-3

Using sessions 14-3
Connecting to databases 14-4
Using transactions. 14-5

Explicitly controlling transactions 14-5
Using a database component for

transactions 14-6
Using the TransIsolation property 14-7
Using passthrough SQL. 14-8
Using local transactions 14-8

Caching updates. 14-9
Creating and restructuring database

tables . 14-10
ADO-based applications 14-10

ADO-based architecture 14-10
Understanding ADO databases

and datasets. 14-11
Connecting to ADO databases14-11
Retrieving data 14-12
Creating and restructuring ADO

database tables 14-12
Flat-file database applications 14-13

Creating the datasets 14-14
Creating a new dataset using

persistent fields. 14-14
Creating a dataset using field and

index definitions 14-14
Creating a dataset based on an

existing table 14-15
Loading and saving data 14-16
Using the briefcase model 14-16

Scaling up to a three-tiered application . . . 14-17

Chapter 15
Creating multi-tiered applications 15-1
Advantages of the multi-tiered database

model . 15-2
Understanding MIDAS technology 15-2

Overview of a MIDAS-based
multi-tiered application. 15-3

viii

The structure of the client application 15-4
The structure of the application server. . . . 15-4

Using transactional data modules 15-5
Pooling remote data modules15-7
Using the IAppServer interface 15-8

Choosing a connection protocol 15-9
Using DCOM connections 15-9
Using Socket connections 15-9
Using Web connections. 15-10

Building a multi-tiered application 15-11
Creating the application server. 15-11

Setting up the remote data module. 15-13
Configuring the remote data

module when it is not
transactional 15-13

Configuring a transactional remote
data module 15-14

Creating a data provider for the
application server. 15-15

Extending the application server’s
interface 15-15

Adding callbacks to the application
server’s interface 15-16

Extending a transactional application
server’s interface 15-16

Creating the client application 15-16
Connecting to the application server. . . . 15-17

Specifying a connection using
DCOM 15-18

Specifying a connection using
sockets 15-18

Specifying a connection using
HTTP 15-19

Brokering connections 15-19
Managing server connections 15-20

Connecting to the server 15-20
Dropping or changing a server

connection 15-20
Calling server interfaces 15-21

Managing transactions in multi-tiered
applications 15-21

Supporting master/detail relationships 15-22
Supporting state information in remote

data modules 15-23
Writing MIDAS Web applications 15-24

Distributing a client application as an
ActiveX control 15-26

Creating an Active Form for the
client application 15-26

Building Web applications using
InternetExpress 15-27

Building an InternetExpress
application 15-27

Using the javascript libraries 15-28
Granting permission to access and

launch the application server 15-29
Using an XML broker 15-30

Fetching XML data packets 15-30
Applying updates from XML

delta packets 15-31
Creating Web pages with a MIDAS

page producer 15-32
Using the Web page editor 15-32
Setting Web item properties 15-33
Customizing the MIDAS page

producer template 15-34

Chapter 16
Using provider components 16-1
Determining the source of data 16-1
Choosing how to apply updates 16-2
Controlling what information is included

in data packets. 16-2
Specifying what fields appear in data

packets . 16-2
Setting options that influence the data

packets . 16-3
Adding custom information to data

packets . 16-4
Responding to client data requests 16-5
Responding to client update requests 16-6

Editing delta packets before updating
the database 16-6

Influencing how updates are applied 16-7
Screening individual updates 16-9
Resolving update errors on the provider . . 16-9
Applying updates to datasets that do not

represent a single table 16-9
Responding to client-generated events 16-10
Handling server constraints 16-10

Chapter 17
Managing database sessions 17-1
Working with a session component. 17-1

Using the default session 17-2
Creating additional sessions 17-3
Naming a session 17-4
Activating a session 17-4

ix

Customizing session start-up 17-5
Specifying default database connection

behavior . 17-6
Creating, opening, and closing database

connections 17-6
Closing a single database connection. . . 17-7
Closing all database connections 17-7

Dropping temporary database
connections 17-7

Searching for a database connection 17-8
Retrieving information about a session . . .17-8
Working with BDE aliases17-9

Specifying alias visibility. 17-10
Making session aliases visible to

other sessions and applications 17-10
Determining known aliases, drivers,

and parameters 17-10
Creating, modifying, and deleting

aliases 17-10
Iterating through a session’s database

components 17-12
Specifying Paradox directory locations . . 17-12

Specifying the control file location . . . 17-13
Specifying a temporary files

location 17-13
Working with password-protected

Paradox and dBASE tables 17-13
Using the AddPassword method 17-13
Using the RemovePassword and

RemoveAllPasswords methods 17-14
Using the GetPassword method

and OnPassword event. 17-14
Managing multiple sessions 17-16
Using a session component in data

modules . 17-17

Chapter 18
Connecting to databases 18-1
Understanding persistent and

temporary database components. 18-1
Using temporary database components . . . 18-2
Creating database components at

design time 18-2
Creating database components at

runtime .18-3
Controlling connections 18-4

Associating a database component
with a session 18-4

Specifying a BDE alias 18-4

Setting BDE alias parameters 18-5
Controlling server login 18-6
Connecting to a database server 18-7
Special considerations when connecting

to a remote server 18-8
Working with network protocols. 18-8
Using ODBC 18-8

Disconnecting from a database server . . . 18-9
Closing datasets without disconnecting

from a server 18-9
Iterating through a database

component’s datasets 18-9
Understanding database and session

component interactions. 18-9
Using database components in data
modules . 18-10
Executing SQL statements from a

TDatabase component 18-10
Executing SQL statements from

TDatabase 18-10
Executing parameterized SQL

statements 18-11

Chapter 19
Understanding datasets 19-1
What is TDataSet?. 19-2
Types of datasets 19-2
Opening and closing datasets 19-3
Determining and setting dataset states 19-3

Inactivating a dataset 19-5
Browsing a dataset 19-6
Enabling dataset editing 19-7
Enabling insertion of new records 19-7
Enabling index-based searches and

ranges on tables 19-8
Calculating fields 19-8
Filtering records 19-9
Updating records 19-9

Navigating datasets. 19-9
Using the First and Last methods 19-10
Using the Next and Prior methods 19-10
Using the MoveBy method. 19-11
Using the Eof and Bof properties 19-11

Eof . .19-11
Bof . 19-12

Marking and returning to records 19-13
Searching datasets 19-15

Using Locate 19-15
Using Lookup 19-16

x

Displaying and editing a subset of data
using filters 19-17

Enabling and disabling filtering 19-17
Creating filters 19-17
Setting the Filter property 19-18
Writing an OnFilterRecord event

handler. 19-19
Switching filter event handlers

at runtime 19-19
Setting filter options 19-19
Navigating records in a filtered dataset . . 19-20

Modifying data. 19-21
Editing records 19-21
Adding new records 19-22

Inserting records 19-23
Appending records 19-23

Deleting records 19-23
Posting data to the database 19-23
Canceling changes 19-24
Modifying entire records 19-24

Using dataset events. 19-26
Aborting a method 19-26
Using OnCalcFields 19-26

Using BDE-enabled datasets 19-27
Overview of BDE-enablement 19-28
Handling database and session

connections 19-28
Using the DatabaseName and

SessionName properties 19-29
Working with BDE handle

properties 19-29
Using cached updates 19-29
Caching BLOBs 19-30

Chapter 20
Working with field components 20-1
Understanding field components 20-2

Dynamic field components 20-3
Persistent field components 20-4

Creating persistent fields 20-5
Arranging persistent fields 20-6
Defining new persistent fields 20-6

Defining a data field 20-7
Defining a calculated field. 20-8
Programming a calculated field 20-9
Defining a lookup field 20-9

Defining an aggregate field 20-11
Deleting persistent field components . . . 20-12

Setting persistent field properties
and events 20-12

Setting display and edit properties
at design time 20-12

Setting field component properties
at runtime 20-14

Creating attribute sets for field
components 20-14

Associating attribute sets with field
components 20-15

Removing attribute associations 20-15
Controlling and masking user input . . . 20-15
Using default formatting for numeric,

date, and time fields. 20-16
Handling events 20-17

Working with field component methods
at runtime 20-17

Displaying, converting, and accessing
field values. 20-18

Displaying field component values
in standard controls 20-18

Converting field values 20-19
Accessing field values with the

default dataset property 20-20
Accessing field values with a dataset’s

Fields property. 20-20
Accessing field values with a dataset’s

FieldByName method. 20-21
Checking a field’s current value. 20-21
Setting a default value for a field 20-21
Working with constraints 20-22

Creating a custom constraint. 20-22
Using server constraints 20-22

Using object fields 20-23
Displaying ADT and array fields 20-24
Working with ADT fields. 20-24

Accessing ADT field values. 20-24
Working with array fields 20-25

Accessing array field values 20-25
Working with dataset fields 20-26

Displaying dataset fields 20-26
Accessing data in a nested dataset . . . 20-26

Working with reference fields 20-27
Displaying reference fields 20-27
Accessing data in a reference field . . . 20-27

xi

Chapter 21
Working with tables 21-1
Using table components. 21-1
Setting up a table component. 21-2

Specifying a database location 21-2
Specifying a table name 21-3
Specifying the table type for local tables. . . 21-3
Opening and closing a table. 21-4

Controlling read/write access to a table. 21-4
Searching for records 21-5

Searching for records based on
indexed fields21-5

Executing a search with Goto
methods 21-6

Executing a search with Find
methods 21-7

Specifying the current record after
a successful search 21-7

Searching on partial keys 21-7
Searching on alternate indexes 21-8
Repeating or extending a search 21-8

Sorting records21-8
Retrieving a list of available indexes

with GetIndexNames 21-9
Specifying an index with IndexName 21-9

Specifying a dBASE index file 21-9
Specifying sort order for SQL tables 21-10

Specifying fields with
IndexFieldNames 21-11

Examining the field list for an index 21-11
Working with a subset of data 21-11

Understanding the differences
between ranges and filters. 21-11

Creating and applying a new range 21-12
Setting the beginning of a range 21-12
Setting the end of a range 21-13
Setting start- and end-range values . . . 21-14
Specifying a range based on partial

keys . 21-14
Including or excluding records

that match boundary values 21-15
Applying a range 21-15
Canceling a range 21-15

Modifying a range 21-15
Editing the start of a range. 21-16
Editing the end of a range 21-16

Deleting all records in a table 21-16
Deleting a table. 21-16
Renaming a table. 21-17

Creating a table 21-17
Importing data from another table 21-19
Using TBatchMove 21-19

Creating a batch move component 21-20
Specifying a batch move mode 21-21

Appending records 21-21
Updating records 21-21
Appending and updating records . . . 21-22
Copying datasets. 21-22
Deleting records 21-22

Mapping data types 21-22
Executing a batch move. 21-23
Handling batch move errors 21-23

Synchronizing tables linked to the
same database table 21-24

Creating master/detail forms 21-25
Building an example master/detail

form . 21-25
Working with nested tables 21-26

Setting up a nested table component . . . 21-26

Chapter 22
Working with queries 22-1
Using queries effectively 22-1

Queries for desktop developers 22-2
Queries for server developers 22-3

What databases can you access with
a query component? 22-4

Using a query component: an overview 22-4
Specifying the SQL statement to execute 22-5

Specifying the SQL property at
design time 22-6

Specifying an SQL statement at
runtime . 22-7

Setting the SQL property directly 22-7
Loading the SQL property from

a file . 22-8
Loading the SQL property from

string list object. 22-8
Setting parameters 22-8

Supplying parameters at design time 22-9
Supplying parameters at runtime 22-10
Using a data source to bind

parameters 22-10
Executing a query. 22-12

Executing a query at design time 22-12
Executing a query at runtime 22-12

Executing a query that returns a
result set. 22-13

xii

Executing a query without a
result set 22-13

Preparing a query 22-13
Unpreparing a query to release resources . . . 22-14
Creating heterogeneous queries 22-14
Improving query performance 22-15

Disabling bi-directional cursors. 22-15
Working with result sets 22-16

Enabling editing of a result set 22-16
Local SQL requirements for a live

result set 22-16
Restrictions on live queries 22-17

Remote server SQL requirements for
a live result set 22-17

Restrictions on updating a live result
set. . 22-17

Updating a read-only result set 22-17

Chapter 23
Working with stored procedures 23-1
When should you use stored procedures? . . .23-2
Using a stored procedure23-2

Creating a stored procedure component. . . 23-3
Creating a stored procedure. 23-4
Preparing and executing a stored

procedure 23-5
Using stored procedures that return

result sets 23-5
Retrieving a result set with a

TQuery 23-5
Retrieving a result set with a

TStoredProc 23-6
Using stored procedures that return

data using parameters 23-7
Retrieving individual values with

a TQuery 23-7
Retrieving individual values with a

TStoredProc 23-7
Using stored procedures that perform

actions on data 23-8
Executing an action stored procedure

with a TQuery 23-8
Executing an action stored procedure

with a TStoredProc 23-9
Understanding stored procedure

parameters 23-10
Using input parameters 23-10
Using output parameters 23-11
Using input/output parameters 23-11

Using the result parameter 23-12
Accessing parameters at design time . . . 23-12
Setting parameter information at

design time 23-13
Creating parameters at runtime 23-14
Binding parameters 23-15

Viewing parameter information at
design time. 23-15

Working with Oracle overloaded stored
procedures 23-16

Chapter 24
Working with ADO components 24-1
Overview of ADO components 24-1
Connecting to ADO data stores 24-2

Connecting to a data store using
TADOConnection 24-3

Using a TADOConnection versus
a dataset’s ConnectionString 24-3

Specifying the connection. 24-3
Accessing the connection object 24-4
Activating and deactivating the

connection 24-4
Determining what a connection

component is doing 24-5
Fine-tuning a connection 24-5

Specifying connection attributes 24-5
Controlling timeouts 24-7
Controlling the connection login 24-7

Listing tables and stored procedures 24-8
Accessing the connection’s

datasets 24-8
Accessing the connection’s

commands 24-8
Listing available tables 24-9
Listing available stored procedures . . 24-10

Working with (connection)
transactions. 24-10

Using transaction methods 24-10
Using transaction events 24-10

Using ADO datasets 24-11
Features common to all ADO dataset

components 24-11
Modifying data. 24-11
Navigating in a dataset 24-12
Using visual data-aware controls . . . 24-12
Connecting to a data store using

ADO dataset components 24-13
Working with record sets 24-13

xiii

Using batch updates 24-14
Loading data from and saving data

to files 24-16
Using parameters in commands 24-17

Using TADODataSet 24-18
Retrieving a dataset using a

command 24-18
Using TADOTable 24-19

Specifying the table to use 24-19
Using TADOQuery. 24-20

Specifying SQL statements 24-20
Executing SQL statements 24-21

Using TADOStoredProc 24-21
Specifying the stored procedure 24-22
Executing the stored procedure 24-23
Using parameters with stored

procedures 24-23
Executing commands 24-25

Specifying the command 24-26
Using the Execute method. 24-26
Canceling commands 24-27
Retrieving result sets with commands . . . 24-27
Handling command parameters 24-28

Chapter 25
Creating and using a client dataset 25-1
Working with data using a client dataset 25-2

Navigating data in client datasets 25-2
Limiting what records appear. 25-2
Representing master/detail

relationships. 25-3
Constraining data values 25-3
Making data read-only. 25-4
Editing data 25-4

Undoing changes 25-5
Saving changes 25-5

Sorting and indexing. 25-6
Adding a new index 25-6
Deleting and switching indexes25-7
Using indexes to group data. 25-7

Representing calculated values 25-8
Using internally calculated fields

in client datasets. 25-9
Using maintained aggregates 25-9

 Specifying aggregates 25-10
Aggregating over groups of records . . 25-11
Obtaining aggregate values 25-11

Adding application-specific
information to the data. 25-12

Copying data from another dataset 25-12
Assigning data directly 25-12
Cloning a client dataset cursor. 25-13

Using a client dataset with a data
provider . 25-14

Specifying a data provider 25-14
Getting parameters from the

application server 25-15
Passing parameters to the

application server 25-15
Sending query or stored procedure

parameters 25-16
Limiting records with parameters . . . 25-16

Overriding the dataset on the
application server 25-17

Requesting data from an application
server . 25-17

Handling constraints 25-18
Handling constraints from the

server 25-19
Adding custom constraints 25-19

Updating records 25-20
Applying updates 25-20
Reconciling update errors. 25-21

Refreshing records. 25-22
Communicating with providers

using custom events. 25-23
Using a client dataset with flat-file data . . . 25-24

Creating a new dataset 25-24
Loading data from a file or stream 25-24
Merging changes into data 25-25
Saving data to a file or stream 25-25

Chapter 26
Working with cached updates 26-1
Deciding when to use cached updates 26-1
Using cached updates 26-2

Enabling and disabling cached updates . . 26-3
Fetching records 26-4
Applying cached updates 26-4

Applying cached updates with a
database component method 26-5

Applying cached updates with
dataset component methods 26-6

Applying updates for
master/detail tables 26-6

Canceling pending cached updates 26-7
Canceling pending updates and

disabling further cached updates . . . 26-8

xiv

Canceling pending cached updates. . . . 26-8
Canceling updates to the current

record 26-8
Undeleting cached records 26-9
Specifying visible records in the

cache . 26-9
Checking update status 26-10

Using update objects to update a
dataset . 26-11

Specifying the UpdateObject
property for a dataset 26-12

Using a single update object 26-12
Using multiple update objects. 26-12

Creating SQL statements for update
components 26-13

Creating SQL statements at
design time 26-13

Understanding parameter
substitution in update SQL
statements 26-14

Composing update SQL
statements 26-15

Using an update component’s
Query property 26-16

Using the DeleteSQL, InsertSQL,
and ModifySQL properties 26-17

Executing update statements 26-18
Calling the Apply method 26-18
Calling the SetParams method 26-19
Calling the ExecSQL method 26-19

Using dataset components to update
a dataset 26-20

Updating a read-only result set 26-21
Controlling the update process. 26-21

Determining if you need to control
the updating process 26-22

Creating an OnUpdateRecord event
handler. 26-22

Handling cached update errors 26-23
Referencing the dataset to which to

apply updates 26-24
Indicating the type of update that

generated an error 26-24
Specifying the action to take 26-25
Working with error message text 26-26
Accessing a field’s OldValue,

NewValue, and CurValue
properties 26-26

Chapter 27
Using data controls 27-1
Using common data control features 27-1

Associating a data control with a
dataset . 27-2

Editing and updating data 27-3
Enabling editing in controls on

user entry 27-3
Editing data in a control. 27-3

Disabling and enabling data display 27-4
Refreshing data display. 27-5
Enabling mouse, keyboard, and timer

events . 27-5
Using data sources 27-5

Using TDataSource properties 27-6
Setting the DataSet property 27-6
Setting the Name property 27-6
Setting the Enabled property 27-7
Setting the AutoEdit property 27-7

Using TDataSource events 27-7
Using the OnDataChange event 27-7
Using the OnUpdateData event 27-7
Using the OnStateChange event 27-7

Controls that represent a single field 27-8
Displaying data as labels 27-8
Displaying and editing fields in an

edit box . 27-9
Displaying and editing text in a

memo control 27-9
Displaying and editing text in a

rich edit memo control 27-10
Displaying and editing graphics fields

in an image control 27-10
Displaying and editing data in list and

combo boxes 27-11
Displaying and editing data in a

list box. 27-11
Displaying and editing data in a

combo box 27-12
Displaying and editing data in lookup

list and combo boxes 27-12
Specifying a list based on a lookup

field 27-13
Specifying a list based on a

secondary data source 27-13
Setting lookup list and combo box

properties 27-14
Searching incrementally for list

item values 27-14

xv

Handling Boolean field values with
check boxes 27-14

Restricting field values with radio
controls 27-15

Viewing and editing data with TDBGrid . . . 27-16
Using a grid control in its default

state . 27-17
Creating a customized grid 27-17

Understanding persistent columns . . . 27-18
Determining the source of a

column property at runtime 27-19
Creating persistent columns 27-19
Deleting persistent columns 27-20
Arranging the order of persistent

columns 27-20
Defining a lookup list column. 27-20
Defining a pick list column 27-21
Putting a button in a column 27-21
Setting column properties at

design time 27-21
Restoring default values to a

column 27-22
Displaying ADT and array fields 27-23
Setting grid options 27-24
Editing in the grid 27-25
Rearranging column order at

design time 27-26
Rearranging column order at

runtime 27-26
Controlling grid drawing 27-26

Responding to user actions at runtime. . . 27-27
Creating a grid that contains other

data-aware controls 27-28
Navigating and manipulating records. 27-29

Choosing navigator buttons to display . . 27-30
Hiding and showing navigator

buttons at design time 27-30
Hiding and showing navigator

buttons at runtime 27-30
Displaying fly-over help. 27-31
Using a single navigator for multiple

datasets 27-31

Chapter 28
Using decision support
components 28-1

Overview . 28-1
About crosstabs 28-2

One-dimensional crosstabs 28-3

Multidimensional crosstabs 28-3
Guidelines for using decision support

components 28-3
Using datasets with decision support

components 28-5
Creating decision datasets with

TQuery or TTable 28-5
Creating decision datasets with

the Decision Query editor 28-6
Using the Decision Query editor 28-6

Decision query properties 28-7
Using decision cubes 28-7

Decision cube properties and events 28-7
Using the Decision Cube editor 28-8

Viewing and changing dimension
settings 28-8

Setting the maximum available
dimensions and summaries. 28-9

Viewing and changing design
options 28-9

Using decision sources 28-9
Properties and events 28-9

Using decision pivots. 28-10
Decision pivot properties. 28-10

Creating and using decision grids 28-11
Creating decision grids28-11
Using decision grids 28-11

Opening and closing decision
grid fields 28-12

Reorganizing rows and columns
in decision grids 28-12

Drilling down for detail in decision
grids 28-12

Limiting dimension selection in
decision grids. 28-12

Decision grid properties 28-12
Creating and using decision graphs 28-13

Creating decision graphs 28-14
Using decision graphs 28-14
The decision graph display. 28-15
Customizing decision graphs 28-16

Setting decision graph template
defaults 28-17

Customizing decision graph series . . 28-17
Decision support components at runtime . . 28-18

Decision pivots at runtime 28-19
Decision grids at runtime. 28-19
Decision graphs at runtime. 28-19

xvi

Decision support components and
memory control 28-20

Setting maximum dimensions,
summaries, and cells 28-20

Setting dimension state 28-20
Using paged dimensions 28-21

Part III
Writing distributed applications

Chapter 29
Writing CORBA applications 29-1
Overview of a CORBA application 29-1

Understanding stubs and skeletons 29-2
Using Smart Agents 29-3
Activating server applications 29-3
Binding interface calls dynamically 29-4

Writing CORBA servers 29-4
Defining object interfaces 29-5
Using the CORBA Server Wizard. 29-5
Generating stubs and skeletons from

an IDL file29-6
Using the CORBA Object

Implementation Wizard 29-6
Instantiating CORBA objects 29-7
Using the delegation model 29-8
Viewing and editing changes 29-9

Implementing CORBA Objects 29-9
Guarding against thread conflicts. . . . 29-11

Changing CORBA interfaces 29-12
Registering server interfaces 29-12

Writing CORBA clients 29-13
Using stubs 29-14
 Using the dynamic invocation

interface 29-15
Testing CORBA servers 29-16

Setting up the testing tool 29-17
Recording and running test scripts 29-17

Chapter 30
Creating Internet server
applications 30-1

Terminology and standards. 30-1
Parts of a Uniform Resource Locator. 30-2

URI vs. URL30-2
HTTP request header information 30-3

HTTP server activity. 30-3
Composing client requests 30-3

Serving client requests 30-4
Responding to client requests 30-4

Web server applications 30-5
Types of Web server applications 30-5

ISAPI and NSAPI 30-5
CGI stand-alone 30-5
Win-CGI stand-alone 30-5

Creating Web server applications 30-6
The Web module. 30-6
The Web Application object 30-7

The structure of a Web server application . . . 30-7
The Web dispatcher. 30-8

Adding actions to the dispatcher 30-9
Dispatching request messages 30-9

Action items 30-10
Determining when action items fire. . . . 30-10

The target URL 30-10
The request method type 30-10
Enabling and disabling action items. . .30-11
Choosing a default action item30-11

Responding to request messages
with action items 30-12

Sending the response 30-12
Using multiple action items 30-12

Accessing client request information 30-13
Properties that contain request header

information. 30-13
Properties that identify the target . . . 30-13
Properties that describe the Web

client 30-13
Properties that identify the

purpose of the request 30-14
Properties that describe the

expected response 30-14
Properties that describe the content . . 30-14

The content of HTTP request messages . . 30-15
Creating HTTP response messages 30-15

Filling in the response header 30-15
Indicating the response status 30-15
Indicating the need for client action . . 30-16
Describing the server application . . . 30-16
Describing the content 30-16

Setting the response content 30-16
Sending the response 30-17

Generating the content of response
messages . 30-17

Using page producer components. 30-18
HTML templates 30-18
Specifying the HTML template. 30-19

xvii

Converting HTML-transparent
tags . 30-19

Using page producers from an
action item 30-19

Chaining page producers together . . . 30-20
Using database information in responses . . . 30-21

Adding a session to the Web module . . . 30-22
Representing database information

in HTML. 30-22
Using dataset page producers 30-22
Using table producers 30-23
Specifying the table attributes 30-23
Specifying the row attributes 30-23
Specifying the columns. 30-24
Embedding tables in HTML

documents 30-24
Setting up a dataset table producer . . . 30-24
Setting up a query table producer . . . 30-24

Debugging server applications 30-25
Debugging ISAPI and NSAPI

applications 30-25
Debugging under Windows NT. 30-25
Debugging with a Microsoft IIS

server 30-25
Debugging under MTS 30-26
Debugging with a Windows 95

Personal Web Server 30-27
Debugging with Netscape Server

Version 2.0 30-28
Debugging CGI and Win-CGI

applications 30-29
Simulating the server. 30-29
Debugging as a DLL 30-29

Chapter 31
Working with sockets 31-1
Implementing services 31-1

Understanding service protocols31-2
Communicating with applications 31-2

Services and ports 31-2
Types of socket connections. 31-2

Client connections 31-3
Listening connections 31-3
Server connections 31-3

Describing sockets 31-3
Describing the host 31-4

Choosing between a host name
and an IP address31-4

Using ports 31-5

Using socket components 31-5
Using client sockets 31-5

Specifying the desired server 31-6
Forming the connection 31-6
Getting information about the

connection 31-6
Closing the connection 31-6

Using server sockets 31-6
Specifying the port. 31-7
Listening for client requests 31-7
Connecting to clients 31-7
Getting information about

connections 31-7
Closing server connections 31-8

Responding to socket events. 31-8
Error events 31-8
Client events 31-9
Server events. 31-9

Events when listening 31-9
Events with client connections 31-9

Reading and writing over socket
connections 31-10

Non-blocking connections 31-10
Reading and writing events 31-10

Blocking connections 31-11
Using threads with blocking

connections31-11
Using TWinSocketStream 31-12
Writing client threads 31-12
Writing server threads. 31-13

Part IV
Developing COM-based applications

Chapter 32
Overview of COM technologies 32-1

COM as a specification and
implementation 32-1

COM extensions 32-2
Parts of a COM application 32-2

COM interfaces 32-3
The fundamental COM interface,

IUnknown 32-4
COM interface pointers 32-4

COM servers 32-5
CoClasses and class factories 32-6
In-process, out-of-process, and

remote servers 32-6

xviii

The marshaling mechanism 32-8
Aggregation 32-8

COM clients 32-9
COM extensions 32-9

Automation servers 32-11
Active Server Pages 32-12
ActiveX controls 32-12
Active Documents 32-13
Transactional objects 32-13
Type libraries 32-14

The content of type libraries 32-14
Creating type libraries 32-15
When to use type libraries 32-15
Accessing type libraries 32-16
Benefits of using type libraries 32-16
Using type library tools 32-17

Implementing COM objects with
wizards . 32-17

Code generated by wizards 32-20

Chapter 33
Working with type libraries 33-1
Type Library editor 33-2

Parts of the Type Library editor. 33-2
Toolbar . 33-3
Object list pane 33-4
Status bar 33-5
Pages of type information 33-5

Type library elements 33-7
Interfaces. 33-8
Dispinterfaces 33-9
CoClasses 33-9
Type definitions 33-9
Modules 33-10

Using the Type Library editor. 33-10
Valid types 33-11
 Creating a new type library 33-12
Opening an existing type library 33-12
Adding an interface to the type

library 33-13
Modifying an interface using the

type library 33-13
Adding properties and methods

to an interface or dispinterface 33-14
 Adding a CoClass to the type

library 33-15
Adding an interface to a CoClass 33-15

Adding an enumeration to the
type library 33-15

Adding an alias to the type library . . 33-16
Adding a record or union to the

type library 33-16
Adding a module to the type

library 33-16
Saving and registering type library

information 33-17
Saving a type library 33-17
Refreshing the type library 33-18
Registering the type library. 33-18
Exporting an IDL file 33-18

Deploying type libraries 33-18

Chapter 34
Creating COM clients 34-1
Importing type library information 34-2

Using the Import Type Library dialog . . . 34-3
Using the Import ActiveX dialog 34-4
Code generated when you import

type library information 34-5
Controlling an imported object 34-6

Using component wrappers 34-6
ActiveX wrappers 34-7
Automation object wrappers 34-7

Using data-aware ActiveX controls 34-8
Example: Printing a document with

Microsoft Word 34-10
Step 1: Prepare C++Builder for

this example 34-10
Step 2: Import the Word

type library 34-10
Step 3: Use a VTable or dispatch

interface object to control
Microsoft Word. 34-11

Step 4: Clean up the example. 34-12
Writing client code based on type

library definitions 34-12
Connecting to a server 34-12
Controlling an Automation server

using a dual interface 34-13
Controlling an Automation server

using a dispatch interface 34-13
Handling events in an automation

controller 34-14
Creating Clients for servers that do not

have a type library 34-16

xix

Chapter 35
Creating simple COM servers 35-1
Overview of creating a COM object 35-1
Designing a COM object 35-2
Using the COM object wizard 35-2
Using the Automation object wizard 35-4

Choosing a threading model 35-5
Writing an object that supports

the free threading model 35-6
Writing an object that supports

the apartment threading model 35-7
Writing an object that supports

the neutral threading model 35-8
Specifying ATL options 35-8
Defining a COM object’s interface 35-9

Adding a property to the object’s
interface . 35-9

Adding a method to the object’s
interface 35-10

Exposing events to clients 35-10
Managing events in your

Automation object 35-11
Automation interfaces 35-11

Dual interfaces 35-12
Dispatch interfaces 35-13
Custom interfaces 35-14

Marshaling data 35-14
Automation compatible types 35-14
Type restrictions for automatic

marshaling 35-15
Custom marshaling 35-15

Registering a COM object 35-16
Registering an in-process server 35-16
Registering an out-of-process server 35-16

Testing and debugging the application 35-17

Chapter 36
Creating an Active Server Page 36-1
Creating an Active Server Object. 36-2

Using the ASP intrinsics 36-3
Application 36-3
Request. 36-4
Response 36-4
Session . 36-5
Server .36-6

Creating ASPs for in-process or
out-of-process servers 36-7

Registering an Active Server Object36-7
Registering an in-process server 36-7

Registering an out-of-process server 36-8
Testing and debugging the Active

Server Page application. 36-8

Chapter 37
Creating an ActiveX control 37-1
Overview of ActiveX control creation 37-2

Elements of an ActiveX control 37-2
VCL control. 37-3
ActiveX wrapper. 37-3
Type library. 37-3
Property page 37-3

Designing an ActiveX control 37-4
Generating an ActiveX control from a

VCL control 37-4
Generating an ActiveX control based

on a VCL form. 37-6
Licensing ActiveX controls. 37-7
Customizing the ActiveX control’s

interface . 37-8
Adding additional properties,

methods, and events 37-9
Adding properties and methods 37-9
Adding events 37-10

Enabling simple data binding with
the type library. 37-11

Creating a property page for an
ActiveX control 37-13

Creating a new property page 37-13
Adding controls to a property page 37-14
Associating property page controls

with ActiveX control properties 37-14
Updating the property page 37-14
Updating the object 37-15

Connecting a property page to
an ActiveX control 37-15

Registering an ActiveX control 37-15
Testing an ActiveX control 37-16
Deploying an ActiveX control on

the Web. 37-16
Setting options 37-17

Chapter 38
Creating MTS or COM+ objects 38-1
Understanding transactional objects 38-2

Requirements for a transactional
object . 38-2

Managing resources 38-3
Accessing the object context 38-3

xx

Just-in-time activation38-4
Resource pooling 38-5

Database resource dispensers38-5
Shared property manager 38-6
Releasing resources 38-9

Object pooling 38-9
MTS and COM+ transaction support 38-9

Transaction attributes 38-10
Setting the transaction attribute 38-11

Stateful and stateless objects 38-12
Influencing how transactions end 38-12
Initiating transactions 38-13

Setting up a transaction object on
the client side 38-13

Setting up a transaction object on
the server side 38-14

Transaction timeout 38-15
Role-based security 38-16
Overview of creating transactional

objects . 38-17
Using the Transactional Object wizard 38-17

Choosing a threading model for
a transactional object 38-18

Activities 38-19
Generating events under COM+ 38-20

Using the Event Object wizard 38-20
Firing events using a COM+

event object 38-21
Passing object references 38-22

Using the SafeRef method 38-22
Callbacks. 38-23

Debugging and testing transactional
objects . 38-23

Installing transactional objects 38-24
Administering transactional objects 38-25

Part V
Creating custom components

Chapter 39
Overview of component creation 39-1
Visual Component Library 39-1
Components and classes 39-2
How do you create components? 39-2

Modifying existing controls 39-3
Creating windowed controls 39-3
Creating graphic controls 39-4

Subclassing Windows controls. 39-4
Creating nonvisual components 39-4

What goes into a component? 39-5
Removing dependencies 39-5
Properties, methods, and events 39-5

Properties 39-6
Events . 39-6
Methods. 39-6

Graphics encapsulation. 39-7
Registration 39-7

Creating a new component 39-7
Using the Component wizard 39-8
Creating a component manually. 39-11

Creating a unit file39-11
Deriving the component 39-11
Declaring a new constructor 39-12
Registering the component 39-12

Testing uninstalled components. 39-14
Testing installed components 39-16
Installing a component on the

Component palette 39-16
Component file locations 39-17
Adding the component 39-17

Chapter 40
Object-oriented programming for
component writers 40-1

Defining new classes 40-1
Deriving new classes 40-2

To change class defaults to
avoid repetition 40-2

To add new capabilities to a class 40-2
Declaring a new component class 40-3

Ancestors, descendants, and class
hierarchies . 40-3

Controlling access. 40-4
Hiding implementation details 40-4
Defining the component writer’s

interface. 40-6
Defining the runtime interface 40-6
Defining the design-time interface 40-7

Dispatching methods 40-8
Regular methods 40-8
Virtual methods 40-9

Overriding methods 40-9
Abstract class members 40-10
Classes and pointers 40-10

xxi

Chapter 41
Creating properties 41-1
Why create properties? 41-1
Types of properties. 41-2
Publishing inherited properties 41-2
Defining properties 41-3

The property declaration 41-3
Internal data storage 41-4
Direct access. 41-4
Access methods. 41-5

The read method 41-6
The write method 41-6

Default property values 41-7
Specifying no default value 41-7

Creating array properties41-8
Storing and loading properties 41-9

Using the store-and-load mechanism . . . 41-10
Specifying default values 41-10
Determining what to store. 41-11
Initializing after loading 41-12
Storing and loading unpublished

properties 41-12
Creating methods to store and

load property values 41-12
Overriding the DefineProperties

method 41-13

Chapter 42
Creating events 42-1
What are events? 42-1

Events are closures 42-2
Events are properties. 42-2
Event types are closure types 42-3

Event handlers have a return
type of void 42-3

Event handlers are optional 42-3
Implementing the standard events. 42-4

Identifying standard events 42-4
Standard events for all controls 42-4
Standard events for standard

controls 42-5
Making events visible 42-5
Changing the standard event

handling . 42-5
Defining your own events 42-6

Triggering the event 42-6
Two kinds of events 42-6

Defining the handler type 42-7
Simple notifications 42-7
Event-specific handlers 42-7
Returning information from

the handler 42-7
Declaring the event 42-7

Event names start with “On” 42-8
Calling the event. 42-8

Chapter 43
Creating methods 43-1
Avoiding dependencies 43-1
Naming methods 43-2
Protecting methods 43-3

Methods that should be public. 43-3
Methods that should be protected. 43-3

Making methods virtual 43-3
Declaring methods 43-4

Chapter 44
Using graphics in components 44-1
Overview of graphics. 44-1
Using the canvas 44-2
Working with pictures 44-3

Using a picture, graphic, or canvas 44-3
Loading and storing graphics 44-4
Handling palettes 44-4

Specifying a palette for a control 44-5
Off-screen bitmaps 44-5

Creating and managing off-screen
bitmaps . 44-6

Copying bitmapped images 44-6
Responding to changes. 44-6

Chapter 45
Handling messages 45-1
Understanding the message-handling

system . 45-1
What’s in a Windows message? 45-2
Dispatching messages. 45-2

Tracing the flow of messages 45-3
Changing message handling. 45-3

Overriding the handler method 45-4
Using message parameters 45-4
Trapping messages 45-5

Creating new message handlers. 45-5
Defining your own messages 45-6

Declaring a message identifier 45-6

xxii

Declaring a message-structure
type . 45-6

Declaring a new message-handling
method. . 45-7

Chapter 46
Making components available
at design time 46-1

Registering components. 46-1
Declaring the Register function 46-2
Writing the Register function 46-2

Specifying the components 46-2
Specifying the palette page 46-3
Using the RegisterComponents

function 46-3
Adding palette bitmaps 46-4
Providing Help for your component. 46-5

Creating the Help file 46-5
Creating the entries 46-5
Making component help

context-sensitive 46-7
Adding component help files 46-7

Adding property editors 46-7
Deriving a property-editor class 46-8
Editing the property as text 46-9

Displaying the property value. 46-9
Setting the property value 46-9

Editing the property as a whole 46-9
Specifying editor attributes 46-10
Registering the property editor 46-11

Adding component editors 46-12
Adding items to the context menu 46-12

Specifying menu items 46-13
Implementing commands 46-13

Changing the double-click behavior 46-14
Adding clipboard formats 46-14
Registering the component editor 46-15

Property categories 46-15
Registering one property at a time 46-16
Registering multiple properties

at once . 46-16
Property category classes 46-17

Built-in property categories 46-17
Deriving new property categories . . . 46-18

Using the IsPropertyInCategory
function 46-18

Compiling components into packages. 46-19
Troubleshooting custom components 46-19

Chapter 47
Modifying an existing component 47-1
Creating and registering the component 47-1
Modifying the component class 47-2

Overriding the constructor 47-3
Specifying the new default property

value . 47-3

Chapter 48
Creating a graphic component 48-1
Creating and registering the component 48-1
Publishing inherited properties 48-2
Adding graphic capabilities 48-3

Determining what to draw 48-3
Declaring the property type 48-4
Declaring the property 48-4
Writing the implementation method . . 48-4

Overriding the constructor and
destructor. 48-5

Changing default property values 48-5
Publishing the pen and brush 48-6

Declaring the data members 48-6
Declaring the access properties. 48-6
Initializing owned classes. 48-7
Setting owned classes’ properties 48-8

Drawing the component image 48-9
Refining the shape drawing 48-10

Chapter 49
Customizing a grid 49-1
Creating and registering the component 49-1
Publishing inherited properties 49-3
Changing initial values. 49-3
Resizing the cells 49-4
Filling in the cells 49-5

Tracking the date 49-6
Storing the internal date 49-6
Accessing the day, month, and year . . . 49-7
Generating the day numbers 49-8
Selecting the current day 49-10

Navigating months and years49-11
Navigating days. 49-12

Moving the selection 49-12
Providing an OnChange event. 49-12
Excluding blank cells 49-13

xxiii

Chapter 50
Making a control data aware 50-1
Creating a data-browsing control 50-1

Creating and registering the
component. 50-2

Making the control read-only 50-3
Adding the ReadOnly property50-3
Allowing needed updates 50-4

Adding the data link 50-5
Declaring the data member 50-5
Declaring the access properties 50-5
An example of declaring access

properties 50-6
Initializing the data link 50-7

Responding to data changes 50-7
Creating a data-editing control 50-8

Changing the default value of
FReadOnly 50-9

Handling mouse-down and
key-down messages 50-9

Responding to mouse-down
messages 50-9

Responding to key-down
messages 50-10

Updating the field datalink class 50-11
Modifying the Change method 50-12
Updating the dataset 50-12

Chapter 51
Making a dialog box a component 51-1
Defining the component interface. 51-1
Creating and registering the component 51-2
Creating the component interface. 51-3

Including the form unit files 51-3
Adding interface properties 51-4
Adding the Execute method 51-5

Testing the component 51-6

Appendix A
ANSI implementation-specific
standards A-1

Index I-1

xxiv

1.1 Typefaces and symbols 1-2
2.1 Component palette pages 2-14
4.2 Menu Designer context menu

commands 4-23
4.3 Setting speed buttons’ appearance. 4-31
4.4 Setting tool buttons’ appearance4-33
4.5 Setting a cool button’s appearance. 4-34
5.1 Properties of selected text. 5-8
5.2 Fixed vs. variable owner-draw

styles . 5-12
6.1 Graphic object types 6-3
6.2 Common properties of the Canvas

object . 6-3
6.3 Common methods of the Canvas

object . 6-4
6.4 Mouse-event parameters 6-23
6.5 Multimedia device types and

their functions 6-31
7.1 Thread priorities 7-3
7.2 WaitFor return values 7-9
8.1 Exception handling compiler options . . . 8-11
8.2 Selected exception classes. 8-22
9.1 Object model comparison. 9-6
9.2 Equality comparison !A == !B of

BOOL variables 9-16
9.3 Examples of RTTI mappings from

Object Pascal to C++. 9-18
10.1 Design-time packages 10-4
10.2 Package-specific compiler directives . . 10-10
10.3 Package-specific command-line

linker switches 10-12
10.4 Compiled package files 10-12
11.1 VCL objects that support BiDi 11-3
11.2 Estimating string lengths 11-8
12.1 Application files 12-2
12.2 SQL database client software files 12-5
13.1 Data Dictionary interface 13-5
14.1 Possible values for the TransIsolation

property. 14-7
14.2 Transaction isolation levels 14-7
15.1 MIDAS components 15-3
15.2 Connection components 15-4
15.3 AppServer interface members 15-8
15.4 Javascript libraries 15-28
16.1 Provider options 16-3

16.2 UpdateStatus values 16-7
16.3 UpdateMode values 16-8
16.4 ProviderFlags values 16-8
17.1 Database-related informational

methods for session components 17-8
17.2 TSessionList properties and methods . 17-17
19.1 Values for the dataset State property . . . 19-3
19.2 Navigational methods of datasets 19-9
19.3 Navigational properties of datasets. . . 19-10
19.4 Comparison and logical operators

that can appear in a filter 19-18
19.5 FilterOptions values 19-20
19.6 Filtered dataset navigational

methods 19-20
19.7 Dataset methods for inserting,

updating, and deleting data 19-21
19.8 Methods that work with entire

records 19-24
19.9 Dataset events. 19-26
19.10 TDBDataSet database and session

properties and function 19-28
19.11 Properties, events, and methods

for cached updates 19-30
20.1 Field components 20-1
20.2 TFloatField properties that affect

data display 20-2
20.3 Special persistent field kinds 20-6
20.4 Field component properties 20-12
20.5 Field component formatting

routines 20-16
20.6 Field component events 20-17
20.7 Selected field component methods . . . 20-18
20.8 Field component conversion

functions 20-19
20.9 Special conversion results 20-19
20.10 Types of object field components. . . . 20-23
20.11 Common object field descendant

properties 20-23
21.1 Table types recognized by the BDE

based on file extension 21-3
21.2 TableType values 21-4
21.3 Index-based search methods 21-6
21.4 BatchMove import modes 21-19
21.5 Batch move modes 21-21
24.1 ADO components. 24-2

Tables

xxv

24.2 Parameter direction property. 24-23
25.1 Summary operators for maintained

aggregates 25-10
25.2 Client datasets properties and

method for handling data requests . . . 25-17
26.1 TUpdateRecordType values 26-9
26.2 Return values for UpdateStatus 26-10
26.3 UpdateKind values 26-24
26.4 UpdateAction values 26-25
27.1 Data controls27-2
27.2 Properties affecting editing in

data controls 27-4
27.3 Data-aware list box and combo

box controls. 27-11
27.4 TDBLookupListBox and

TDBLookupComboBox properties. . . . 27-14
27.5 Column properties. 27-22
27.6 Expanded TColumn Title properties . . 27-22
27.7 Properties that affect the way

ADT and array fields appear in
a TDBGrid 27-23

27.8 Expanded TDBGrid Options
properties 27-24

27.9 Grid control events 27-27
27.10 Selected database control grid

properties 27-28
27.11 TDBNavigator buttons 27-29
30.1 Web server application components. . . . 30-5
30.2 MethodType values 30-11
32.1 COM object requirements. 32-11

32.2 C++Builder wizards for
implementing COM, Automation,
and ActiveX objects. 32-18

33.1 Type library pages 33-5
35.1 Threading models for COM objects . . . 35-5
36.1 IApplicationObject interface

members 36-4
36.2 IRequest interface members 36-4
36.3 IResponse interface members 36-5
36.4 ISessionObject interface members 36-6
36.5 IServer interface members 36-6
38.1 IObjectContext methods for

transaction support 38-12
38.2 Threading models for transactional

objects 38-18
38.3 Call synchronization options 38-20
39.1 Component creation starting points . . . 39-3
40.1 Levels of visibility within an object 40-4
41.1 How properties appear in the Object

Inspector 41-2
44.1 Canvas capability summary 44-3
44.2 Image-copying methods 44-6
46.1 Predefined property-editor types 46-8
46.2 Methods for reading and writing

property values 46-9
46.3 Property-editor attribute flags. 46-10
46.4 Property categories 46-17
A.1 Options needed for ANSI compliance . . A-1
A.2 Identifying diagnostics in C++ A-3

xxvi

2.1 A simplified hierarchy diagram 2-3
2.3 A progress bar 2-23
3.1 A simple data module. 3-18
4.1 A frame with data-aware controls

and a data source component 4-15
4.2 Menu terminology. 4-16
4.3 MainMenu and PopupMenu

components 4-16
4.4 Menu Designer for a pop-up menu 4-17
4.5 Menu Designer for a main menu 4-17
4.6 Nested menu structures. 4-20
4.7 Select Menu dialog box 4-24
4.8 Sample Insert Template dialog box

for menus 4-25
4.9 Save Template dialog box for menus . . .4-26
4.10 Action list mechanism. 4-37
4.11 Execution cycle for an action 4-39
4.12 Action targets 4-43
6.1 Bitmap-dimension dialog box from the

BMPDlg unit 6-20
9.1 Order of VCL style object construction . . 9-5
11.1 TListBox set to bdLeftToRight 11-5
11.2 TListBox set to bdRightToLeft 11-5
11.3 TListBox set to bdRightToLeftNoAlign . . 11-6
11.4 TListBox set to

bdRightToLeftReadingOnly 11-6
13.1 User-interface to dataset connections

in all database applications 13-7
13.2 Single-tiered database application

architectures 13-8
13.3 Two-tiered database application

architectures 13-9
13.4 Multi-tiered database architectures . . . 13-10
14.1 Components in a BDE-based

application 14-2
15.1 Web-based multi-tiered database

application 15-25
19.1 C++Builder Dataset hierarchy 19-1
19.2 Relationship of Inactive and

Browse states19-5

19.3 Relationship of Browse to other
dataset states 19-6

19.4 Dataset component hierarchy 19-27
22.1 Sample master/detail query form

and data module at design time 22-11
27.1 TDBGrid control 27-16
27.2 TDBGrid control with ObjectView

set to false 27-23
27.3 TDBGrid control with Expanded

set to false 27-24
27.4 TDBGrid control with Expanded

set to true 27-24
27.5 TDBCtrlGrid at design time 27-28
27.6 Buttons on the TDBNavigator

control 27-29
28.1 Decision support components at

design time 28-2
28.2 One-dimensional crosstab 28-3
28.3 Three-dimensional crosstab 28-3
28.4 Decision graphs bound to different

decision sources. 28-15
29.1 The structure of a CORBA application . . 29-2
30.1 Parts of a Uniform Resource Locator . . . 30-2
30.2 Structure of a Server Application 30-8
32.1 A COM interface 32-3
32.2 Interface vtable 32-5
32.3 In-process server 32-7
32.4 Out-of-process and remote servers 32-7
32.5 COM-based technologies 32-10
32.6 Simple COM object interface 32-17
32.7 Automation object interface 32-18
32.8 ActiveX object interface 32-18
33.1 Type Library editor 33-3
33.2 Object list pane 33-4
35.1 Dual interface VTable 35-13
37.1 Mask Edit property page in design

mode . 37-14
39.1 Visual Component Library class

hierarchy. 39-2
39.2 Component wizard 39-9

Figures

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, writing custom components,
creating Internet Web server applications, and including support for
industry-standard specifications such as TCP/IP, OLE, and ActiveX. The Developer’s
Guide assumes you are familiar with using C++Builder and understand fundamental
C++Builder programming techniques. For an introduction to C++Builder
programming and the integrated development environment (IDE), see the Quick
Start and the online Help.

What’s in this manual?
This manual contains five parts, as follows:

• Part I, “Programming with C++Builder,” describes how to build general-purpose
C++Builder applications. This part provides details on programming techniques
you can use in any C++Builder application. For example, it describes how to use
common Visual Component Library (VCL) objects that make user interface
programming easy such as handling strings, manipulating text, implementing the
Windows common dialog, toolbars, and cool bars. It also includes chapters on
working with graphics, error and exception handling, using DLLs, OLE
automation, and writing international applications.

Generally, it rarely matters that C++Builder’s underlying VCL is written in Object
Pascal. However, there are a few instances where it affects your C++Builder
programs. A chapter on C++ language support and the VCL details such language
issues as how C++ class instantiation differs when using VCL classes and the C++
language extensions added to support the C++Builder
“component-property-event” model of programming.

The chapter on deployment details the tasks involved in deploying your
application to your application users. For example, it includes information on
effective compiler options, using InstallShield Express, licensing issues, and how

1-2 D e v e l o p e r ’ s G u i d e

M a n u a l c o n v e n t i o n s

to determine which packages, DLLs, and other libraries to use when building the
production-quality version of your application.

• Part II, “Developing database applications,” describes how to build database
applications using database tools and components. C++Builder lets you access
many types of databases. With the forms and reports you create, you can access
local databases such as Paradox and dBASE, network SQL server databases like
InterBase and Sybase, and any data source accessible through open database
connectivity (ODBC) or ActiveX Data Objects (ADO).

• Part III, “Writing distributed applications,” describes how to create Web server
applications as CGI applications or dynamic-link libraries (DLLs). C++Builder
provides Internet-specific components that make it easy to handle events
associated with a specific Uniform Resource Identifier (URI) and to
programmatically construct HTML documents.

This part also provides a chapter on the C++Builder socket components that let
you create applications that can communicate with other systems using TCP/IP
and related protocols. Sockets provide connections based on the TCP/IP protocol,
but are sufficiently general to work with related protocols such as Xerox Network
System (XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

• Part IV, “Developing COM-based applications,” describes how to build
applications that can interoperate with other COM-based API objects. C++Builder
supports COM applications that are based on the Active Template Library (ATL).
Wizards and a Type Library editor ease the development of COM servers, and an
importing tool lets you quickly create client applications. Support for COM clients
is available in all editions of C++Builder. To create COM servers, you need the
Professional or Enterprise edition.

• Part V, “Creating custom components,” describes how to design and implement
your own components, and how to make them available on the Component
palette of the IDE. A component can be almost any program element that you
want to manipulate at design time. Implementing custom components entails
deriving a new class from an existing class type in the VCL class library.

Manual conventions
This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Table 1.1 Typefaces and symbols

Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears on screen or in C++ code. It
also represents anything you must type.

[] Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent C++ reserved words or
compiler options.

I n t r o d u c t i o n 1-3

M a n u a l c o n v e n t i o n s

Contacting developer support

Inprise offers a variety of support options. These include free services on the Internet,
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of support,
ranging from support on installation of the Borland product to fee-based
consultant-level support and detailed assistance.

For more information about Inprise’s developer support services, please see our Web
site at http://www.borland.com/devsupport, call Borland Assist at (800) 523-7070,
or contact our Sales Department at (831) 431-1064. For customers outside of the
United States of America, see our web site at http://www.borland.com/bww/
intlcust.html.

When contacting support, be prepared to provide complete information about your
environment, the version of the product you are using, and a detailed description of
the problem.

For information about year 2000 issues and our products, see the following URL:
http://www.borland.com/about/y2000/.

Italics Italicized words in text represent C++ identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to
exit a menu.”

Table 1.1 Typefaces and symbols (continued)

Typeface or symbol Meaning

1-4 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g w i t h C + + B u i l d e r

P a r t

I
Part IProgramming with C++Builder

The chapters in “Programming with C++Builder” present concepts and skills
necessary for creating C++Builder applications using any edition of the product.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-1

C h a p t e r

2
Chapter2Programming with C++Builder

Borland C++Builder is an object-oriented, visual programming environment for
rapid development of 32-bit Windows applications. Using C++Builder, you can
create highly efficient Windows applications with a minimum of manual coding.

C++Builder provides a comprehensive class library called the Visual Component
Library (VCL) and a suite of Rapid Application Development (RAD) design tools,
including application and form templates, and programming wizards. C++Builder
supports truly object-oriented programming: the class library includes objects that
encapsulate the Windows API as well as other useful programming techniques.

This chapter briefly describes the C++Builder development environment, presents a
brief overview of the Visual Component Library, and touches on many of the
components in the VCL that are available to you. The rest of this manual provides
technical details on developing general-purpose, database, Internet and intranet
applications, and includes information on writing your own components, and
creating ActiveX and COM controls.

The integrated development environment
When you start C++Builder, you are immediately placed within the integrated
development environment, also called the IDE. This environment provides all the
tools you need to design, develop, test, debug, and deploy applications.

C++Builder’s development environment includes a visual form designer, Object
Inspector, Component palette, Project Manager, source code editor, debugger, and
installation tool. You can move freely from the visual representation of an object (in
the form designer), to the Object Inspector to edit the initial runtime state of the
object, to the source code editor to edit the execution logic of the object. Changing
code-related properties, such as the name of an event handler, in the Object Inspector
automatically changes the corresponding source code. In addition, changes to the
source code, such as renaming an event handler method in a form class declaration,
is immediately reflected in the Object Inspector.

2-2 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a p p l i c a t i o n s

Designing applications
C++Builder includes all the tools necessary to start designing applications:

• A blank window, known as a form, on which to design the UI for your application.

• An extensive class library with many reusable objects.

• An Object Inspector for examining and changing object traits.

• A Code editor that provides direct access to the underlying program logic.

• A Project Manager for managing the files that make up one or more projects.

• Many other tools such as an image editor on the toolbar and an integrated
debugger on menus to support application development in the IDE.

• Command-line tools including compilers, linkers, and other utilities.

You can use C++Builder to design any kind of 32-bit Windows application—from
general-purpose utilities to sophisticated data access programs or distributed
applications. C++Builder’s database tools and data-aware components let you quickly
develop powerful desktop database and client/server applications. Using C++Builder’s
data-aware controls, you can view live data while you design your application and
immediately see the results of database queries and changes to the application interface.

Chapter 3, “Building applications, components, and libraries” introduces
C++Builder’s support for different types of applications.

Understanding the VCL
The Visual Component Library (VCL) is based on the properties, methods, and
events (PME) model. The PME model defines the data members (properties), the
functions that operate on the data (methods), and a way to interact with users of the
class (events). The VCL is a hierarchy of objects, written in Object Pascal and tied to
the C++Builder IDE, that allows you to develop applications quickly. Using
C++Builder’s Component palette and Object Inspector, you can place VCL
components on forms and specify their properties without writing code.

Properties

Properties are characteristics of components. You can see and change properties at
design time and get immediate feedback as the components react in the IDE.
Well-designed properties make your components easier for others to use and easier
for you to maintain.

Methods

Methods are functions that are members of a class. Class methods can access all the
public, protected, and private properties and data members of the class and are
commonly referred to as member functions.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-3

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Events

Event driven programming (EDP) means just that—programming by responding to
events. In essence, event driven means that the program does not restrict what the
user can do next. For example, in a Windows program, the programmer has no way
of knowing the sequence of actions the user will perform next. They may pick a menu
item, click a button, or mark some text. So, EDP means that you write code to handle
whatever events occur that you’re interested in, rather than write code that always
executes in the same restricted order.

The kinds of events that can occur can be divided into two main categories:
• User events
• System events
Regardless of how the event was called, C++Builder looks to see if you have assigned
any code to handle that event. If you have, then that code is executed; otherwise,
nothing is done.

User events
User events are actions that are initiated by the user. Examples of user events are
OnClick (the user clicked the mouse), OnKeyPress (the user pressed a key on the
keyboard), and OnDblClick (the user double-clicked a mouse button). These events
are always tied to a user’s actions.

System events
System events are events that the operating system fires for you. For example, the
OnTimer event (the Timer component issues one of these events whenever a
predefined interval has elapsed), the OnCreate event (the component is being
created), the OnPaint event (a component or window needs to be redrawn), etc.
Usually, system events are not directly initiated by a user action.

Objects, components, and controls in the VCL
Figure 2.1 is a summary of the Visual Component Library that shows the five major
branches of the inheritance tree.
Figure 2.1 A simplified hierarchy diagram

2-4 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

The next few sections present a general description of the types of classes that each
branch contains. For a complete overview of the VCL object hierarchy, refer to the
VCL Object Hierarchy wall chart that is included with this product.

The TObject branch

All VCL objects descend from TObject, an abstract class whose methods define
fundamental behavior like construction, destruction, and message handling. Much of
the powerful capability of VCL objects are established by the methods that TObject
introduces. TObject encapsulates the fundamental behavior common to all objects in
the VCL, by introducing methods that provide:

• The ability to respond when objects are created or destroyed.

• Class type and instance information on an object, and runtime type information
(RTTI) about its published properties.

• Support for message-handling.

TObject is the immediate ancestor of many simple classes. Classes that are contained
within this branch have one common, important characteristic, they are transitory.
What this means, is that these classes do not have a method to save the state that they
are in prior to destruction, they are not persistent.

One of the main groups of classes in this branch is the Exception class. This class
provides a large set of built-in exception classes for automatically handling
divide-by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions.

Another type of group in the TObject branch are classes that are encapsulated data
structures, such as:

• TBits, a class that stores an “array” of Boolean values

• TList, a linked list class

• TStack, a class that maintains a last-in first-out array of pointers

• TQueue, a class that maintains a first-in first-out array of pointers

You can also find wrappers around external objects like TPrinter, which encapsulates
the Windows printer interface, and TRegistry, a low-level wrapper for the system
registry and functions that operate on the registry.

TStream is good example of another type of class in this branch. TStream is the base
class type for stream objects that can read from or write to various kinds of storage
media, such as disk files, dynamic memory, and so on.

So you can see, this branch includes many different types of classes that are very
useful to you as a developer.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-5

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

The TPersistent branch

Directly below TObject in the VCL hierarchy is TPersistent. TPersistent adds two very
important methods to all classes based on it—SaveToStream and LoadFromStream.
These methods supply persistence to objects.

For example, when the form designer needs to create a DFM file (a file used to store
information about the components on the form), it loops through its components
array and calls SaveToStream for all the components on the form. Each component
“knows” how to write its changed properties out to a stream (in this case, a text file).
Conversely, when the form designer needs to load the properties for components
from the DFM file, it loops through the components array and calls LoadFromStream
for each component. Thus, any class derived from TPersistent has the ability to save
its state information and restore it on demand.

The types of classes in this branch include:

• TGraphicsObject, an abstract base class for objects which encapsulate Windows
graphics objects: TBrush, TFont, and TPen.

• TGraphic, an abstract base class type for objects such as icons, bitmaps, and
metafiles that can store and display visual images: TBitmap, TIcon, and TMetaFile.

• TStrings, a base class for objects that represent a list of strings.

• TClipboard, a wrapper for the Windows clipboard, which contains text or graphics
that have been cut or copied from an application.

• TCollection, TOwnedCollection, and TCollectionItem, maintained indexed collections
of specially defined items.

The TComponent branch

TComponent is the common ancestor of all VCL components. Components are objects
that you can manipulate on forms at design time. Despite its name, the VCL consists
mostly of nonvisual objects.

VCL components are persistent objects that have the following capabilities:

• The ability to appear on the Component palette and be changed in the form
designer.

• The ability to own and manage other components.

• Enhanced streaming and filing capabilities.

• The ability to be converted into an ActiveX control or other COM object by
wizards on the ActiveX page of the New Objects dialog.

TComponent acts as the standard “bus” that all components plug into. There are
several methods in TComponent that dictate how components act during design time.
This is also where the Name and Owner properties are introduced. Every component
derived from TComponent has a Name and an Owner property. The owner is
responsible for deleting the component.

2-6 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Components that do not need a visual interface are derived directly from
TComponent.

The types of classes that can be found in this branch include:

• TMainMenu, a class that provides a menu bar and its accompanying drop-down
menus for a form.

• TTimer, a class that includes the Windows API timer functions.

• TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on, the
common windows dialog boxes.

• TActionList, a class that maintains a list of actions used with components and
controls, such as menu items and buttons.

• TScreen, a class that keeps track of what forms and data modules have been
instantiated by the application, the active form, and the active control within that
form, the size and resolution of the screen, and the cursors and fonts available for
the application to use.

The TControl branch

All controls are visual objects, meaning the user can see them and manipulate them
at runtime. All controls have properties, methods, and events in common that are
specific to the visual aspect of controls, such as the position of the control, the cursor
or hint associated with the control’s window, methods to paint or move the control,
and events to respond to mouse actions.

Whereas TComponent defines behavior for all components, TControl defines behavior
for all visual controls. This includes drawing routines, standard Windows events,
and containership.

One group of classes in this branch is called TGraphicControls. TGraphicControls are
controls that must draw themselves and can never receive focus. The types of
controls that can be found in this group include:

• TImage, a control that displays graphical images.

• TLabel, a control that displays text on a form.

• TBevel, a control that represents a beveled outline.

• TPaintBox, a control that provides a canvas that applications can use for drawing
or rendering an image.

Notice that these include the common paint routines (Paint, RePaint, Invalidate, etc.)
but C++Builder doesn’t have to allocate a window handle for them because they
never need to receive focus.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-7

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

The TWinControl branch

TWinControl is the base class for all windowed controls. The following are features of
windowed controls:

• Windowed controls are controls that can receive focus while the application is
running.

• Other controls may display data, but the user can use the keyboard to interact with
a control only if the control is a windowed control.

• Windowed controls can contain other controls.

• A control that contains other controls is a parent. Only a windowed control can be
a parent of one or more other child controls.

• Windowed controls have a window handle.

TWinControls are like TControls except they can receive focus. This means that there
are many more standard events that apply to them and that Windows must allocate a
window handle for them.

This branch includes both controls that are drawn automatically by Windows
(including TEdit, TListBox, TComboBox, TPageControl, and so on) and custom controls
that C++Builder must draw (including TDBNavigator, TMediaPlayer, TGauge, and so
on). However, you never have to worry about any of the implementation details of
how the controls render themselves or how they respond to events—C++Builder
completely encapsulates this behavior for you.

The following sections provide an overview of controls. Refer to Chapter 5,
“Working with controls” for more information on using controls.

Properties common to TControl

All visual controls (descendants of TControl) share certain properties including:

• Position, size, and alignment properties
• Display properties
• Parent properties
• A navigation property
• Drag-and-drop properties
• Drag-and-dock properties
• Action properties

While these properties are inherited from TControl, they are published—and hence
appear in the Object Inspector—only for components to which they are applicable.
For example, TImage does not publish the Color property, since its color is determined
by the graphic it displays.

2-8 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Action properties
Actions let you share common code for performing actions (for example, when a tool
bar button and menu item do the same thing), as well as providing a single, centralized
way to enable and disable actions depending on the state of your application.

• Action designates the action associated with the control.

• ActionLink contains the action link object associated with the control.

Position, size, and alignment properties
This set of properties defines the position and size of a control on the parent control:

• Height sets the vertical size.

• Width sets the horizontal size.

• Top positions the top edge.

• Left positions the left edge.

• AutoSize specifies whether the control sizes itself automatically to accommodate
its contents.

• Align determines how the control aligns within its container (parent control).

• Anchor specifies how the control is anchored to its parent.

This set of properties determine the height, width, and overall size of the control’s
client area:

• ClientHeight specifies the height of the control’s client area in pixels.

• CleintWidth specifies the width of the control’s client area in pixels.

These properties aren’t accessible in nonvisual components, but C++Builder does
keep track of where you place the component icons on your forms. Most of the time
you’ll set and alter these properties by manipulating the control’s image on the form
or using the Alignment palette. You can, however, alter them at runtime.

Display properties
The following properties govern the general appearance of a control:

• Color changes the background color of a control.

• Font changes the color, type family, style, or size of text.

• Cursor specifies the image used to represent the mouse pointer when it passes into
the region covered by the control.

• DesktopFont specifies whether the control uses the Windows icon font when
writing text.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-9

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Parent properties
To maintain a consistent appearance across your application, you can make any
control look like its container—called its parent—by setting the parent properties to
true.

• ParentColor determines where a control looks for its color information.

• ParentFont determines where a control looks for its font information.

• ParentShowHint determines where a control looks to find out if its Help Hint
should be shown.

A navigation property
The following property determines how users navigate among the controls in a form:

• Caption contains the text string that labels a component. To underline a character
in a string, include an ampersand (&) before the character. This type of character is
called an accelerator key. The user can then select the control or menu item by
pressing Alt while typing the underlined character.

Drag-and-drop properties
Two component properties affect drag-and-drop behavior:

• DragMode determines how dragging starts. By default, DragMode is dmManual,
and the application must call the BeginDrag method to start dragging. When
DragMode is dmAutomatic, dragging starts as soon as the mouse button goes down.

• DragCursor determines the shape of the mouse pointer when it is over a draggable
component.

Drag-and-dock properties
The following properties control drag-and-dock behavior:

• Floating indicates whether the control is floating.

• DragKind specifies whether the control is being dragged normally or for docking.

• DragMode determines how the control initiates drag-and-drop or drag-and-dock
operations.

• FloatingDockSiteClass specifies the class of the temporary control that hosts the
control when it is floating.

• DragCursor is the cursor that is shown while dragging.

• DockOrientation specifies how the control is docked relative to other controls
docked in the same parent.

• HostDockSite specifies the control in which the control is docked.

For more information, see “Implementing drag-and-dock in controls” on page 5-4.

2-10 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Standard events common to TControl

The VCL defines a set of standard events for its controls. The following events are
declared as part of the TControl class, and are therefore available for all classes
derived from TControl:

• OnClick occurs when the user clicks the control.

• OnContextPopup occurs when the user right-clicks the control or otherwise invokes
the popup menu (such as using the keyboard).

• OnCanResize occurs when an attempt is made to resize the control.

• OnResize occurs immediately after the control is resized.

• OnConstrainedResize occurs immediately after OnCanResize.

• OnStartDock occurs when the user begins to drag a control with a DragKind of
dkDock.

• OnEndDock occurs when the dragging of an object ends, either by docking the
object or by canceling the dragging.

• OnStartDrag occurs when the user begins to drag the control or an object it
contains by left-clicking on the control and holding the mouse button down.

• OnEndDrag occurs when the dragging of an object ends, either by dropping the
object or by canceling the dragging.

• OnDragDrop occurs when the user drops an object being dragged.

• OnMouseMove occurs when the user moves the mouse pointer while the mouse
pointer is over a control.

• OnDblClick occurs when the user double-clicks the primary mouse button when
the mouse pointer is over the control.

• OnDragOver occurs when the user drags an object over a control.

• OnMouseDown Occurs when the user presses a mouse button with the mouse
pointer over a control.

• OnMouseUpOccurs when the user releases a mouse button that was pressed with
the mouse pointer over a component.

Properties common to TWinControl

All windowed controls (descendants of TWinControl) share certain properties including:

• Information about the control
• Border style display properties
• Navigation properties
• Drag-and-dock properties

While these properties are inherited from TWinControl, they are published—and
hence appear in the Object Inspector—only for controls to which they are applicable.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-11

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

General information properties
The general information properties contain information about the appearance of the
TWinControl, client area size and origin, windows assigned information, and mouse
wheel information.

• ClientOrigin specifies the screen coordinates (in pixels) of the top left corner of a
control’s client area. The screen coordinates of a control that is descended from
TControl and not TWinControl are the screen coordinates of the control’s parent
added to its Left and Top properties.

• ClientRect returns a rectangle with its Top and Left properties set to zero, and its
Bottom and Right properties set to the control’s Height and Width, respectively.
ClientRect is equivalent to Rect(0, 0, ClientWidth, ClientHeight).

• Brush determines the color and pattern used for painting the background of the
control.

• Handle provides access to the window handle of the control.

• WindowHandle also provides access to a window handle for the control.

• HelpContext provides a context number for use in calling context-sensitive online
Help.

• Controls lists all children of the windowed control.

Border style display properties
The bevel properties control the appearance of the beveled lines, boxes, or frames on
the forms and windowed controls in your application.

• InnerBevel specifies whether the inner bevel has a raised, lowered, or flat look.

• BevelKind specifies the type of bevel if the control has beveled edges.

• BevelOuter specifies whether the outer bevel has a raised, lowered, or flat look.

• BevelWidth specifies the width, in pixels, of the inner and outer bevels.

• BorderWidth is used to get or set the width of the control’s border.

• BevelEdges is used to get or set which edges of the control are beveled.

Navigation properties
Two additional properties determine how users navigate among the controls in a form:

• TabOrder indicates the position of the control in its parent’s tab order, the order in
which controls receive focus when the user presses the Tab key. Initially, tab order
is the order in which the components are added to the form, but you can change
this by changing TabOrder. TabOrder is meaningful only if TabStop is true.

• TabStop determines whether the user can tab to a control. If TabStop is true, the
control is in the tab order.

2-12 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Drag-and-dock properties
The following properties manage drag-and-dock behavior:

• UseDockManager specifies whether the dock manager is used in drag-and-dock
operations.

• VisibleDockClientCount specifies the number of visible controls that are docked on
the windowed control.

• DockManager specifies the control’s dock manager interface.

• DockClients lists the controls that are docked to the windowed control.

• DockSite specifies whether the control can be the target of drag-and-dock operations.

For more information, see “Implementing drag-and-dock in controls” on page 5-4.

Events common to TWinControl

The following events exist for all controls derived from TWinControl (which also
includes all the controls that Windows defines). These events are in addition to those
that exist in all controls.

• OnEnter occurs when the control is about to receive focus.

• OnKeyDown occurs on the down stroke of a key press.

• OnKeyPress occurs when a user presses a single character key.

• OnKeyUp occurs when the user releases a key that has been pressed.

• OnExit occurs when the input focus shifts away from one control to another.

• OnDockDrop occurs when another control is docked to the control.

• OnDockOver occurs when another control is dragged over the control.

• OnGetSiteInfo returns the control’s docking information.

• OnMouseWheel occurs when the mouse wheel is rotated.

• OnMouseWheelDown occurs when the mouse wheel is rotated downward.

• OnMouseWheelUp occurs when the mouse wheel is rotated upward.

• OnUnDock occurs when the application tries to undock a control that is docked to
a windowed control.

Creating the application user interface

All visual design work in C++Builder takes place on forms. When you open C++Builder
or create a new project, a blank form is displayed on the screen. You can use it to start
building your application interface including windows, menus, and common dialogs.

You design the look and feel of the graphical user interface for an application by
placing and arranging visual components such as buttons and list boxes on the form.
C++Builder takes care of the underlying programming details. You can also place

P r o g r a m m i n g w i t h C + + B u i l d e r 2-13

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

invisible components on forms to capture information from databases, perform
calculations, and manage other interactions.

Chapter 4, “Developing the application user interface” provides details on using
forms such as creating modal forms dynamically, passing parameters to forms, and
retrieving data from forms.

Using components
Many visual components are provided in the development environment itself on the
Component palette. You select components from the Component palette and drop
them onto the form to design the application user interface. Once a visual component
is on the form, you can adjust its position, size, and other design-time properties.

C++Builder components are grouped functionally on the different pages of the
Component palette. For example, commonly used components such as those to
create menus, edit boxes, or buttons are located on the Standard page of the
Component palette. Handy controls such as a timer, paint box, media player, and
OLE container are on the System page.

At first glance, C++Builder’s components appear to be just like any other C++ class. But
there are differences between components in C++Builder and the standard C++ class
hierarchies that most C++ programmers work with. Some differences are described here:

• All C++Builder components descend from TComponent.
• Components are most often used as is and are changed through their properties,

rather than serving as “base classes” to be subclassed to add or change
functionality. When a component is inherited, it is usually to add specific code to
existing event handling member functions.

• VCL components can only be allocated on the heap, not on the stack (that is, they
must be created with the new operator).

• Properties of components intrinsically contain runtime type information.
• Components can be added to the Component palette in the C++Builder user

interface and manipulated on a form.

Components often achieve a better degree of encapsulation than is usually found in
standard C++ classes. For example, consider the use of a dialog containing a push
button. In a C++ Windows program, when a user clicks on the button, the system
generates a WM_LBUTTONDOWN message. The program must catch this message
(typically in a switch statement, a message map, or a response table) and dispatch it
to a routine that will execute in response to the message.

Most Windows messages are handled by C++Builder components. When you want
to respond to a Windows message, you only need to provide an event handler.

Chapter 9, “C++ language support for the VCL” provides details on extensions to the
C++ language that enable you to use the VCL.

2-14 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

VCL standard components

The Component palette contains a selection of components that handle a wide variety
of programming tasks. You can add, remove, and rearrange components on the palette,
and you can create component templates and frames that group several components.

The components on the palette are arranged in pages according to their purpose and
functionality. Which pages appear in the default configuration depends on the
version of C++Builder you are running. Table 2.1 lists typical default pages and the
types of components they contain.

The online Help provides information about the components on the default palette.
Some of the components on the ActiveX and Samples pages, however, are provided
as examples only and are not documented.

Table 2.1 Component palette pages

Page name Contents

Standard Standard Windows controls, menus

Additional Additional controls

Win32 Windows 9x/NT 4.0 common controls

System Components and controls for system-level access, including timers,
multimedia, and DDE

Data Access Nonvisual components for accessing database tables, queries, and reports

Data Controls Visual, data-aware controls

ADO Components that provide data access through the ADO framework

InterBase Components that provide direct access to InterBase

Midas Components used for creating multi-tiered database applications

Internet Express Components that are simultaneously a Web Server application and the client
of a multi-tiered database application

Internet Components for internet communication protocols and Web applications

FastNet NetMasters Internet controls

Decision Cube Controls that let you summarize information from databases and view it
from a variety of perspectives

QReport QuickReport components for creating embedded reports

Dialogs Windows common dialog boxes

Win 3.1 Old style Win 3.1 components

Samples Sample custom components

ActiveX Sample ActiveX controls

Servers Ole Servers for Microsoft Excel, Word, and so on

P r o g r a m m i n g w i t h C + + B u i l d e r 2-15

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Text controls
Many applications present text to the user or allow the user to enter text. The type of
control used for this purpose depends on the size and format of the information.

Properties common to all text controls
All of the text controls have these properties in common:

• Text determines the text that appears in the edit box or memo control.

• CharCase forces the case of the text being entered to lowercase or uppercase.

• ReadOnly specifies whether the user is allowed to change the text.

• MaxLength limits the number of characters in the control.

• PasswordChar hides the text by displaying a single character (usually an asterisk).

• HideSelection specifies whether selected text remains highlighted when the control
does not have focus.

Properties shared by memo and rich text controls
Memo and rich text controls, which handle multiple lines of text, have several
properties in common:

• Alignment specifies how text is aligned (left, right, or center) in the component.

• The Text property contains the text in the control. Your application can tell if the
text changes by checking the Modified property.

• Lines contains the text as a list of strings.

• OEMConvert determines whether the text is temporarily converted from ANSI to
OEM as it is entered. This is useful for validating file names.

• WordWrap determines whether the text will wrap at the right margin.

• WantReturns determines whether the user can insert hard returns in the text.

• WantTabs determines whether the user can insert tabs in the text.

• AutoSelect determines whether the text is automatically selected (highlighted)
when the control becomes active.

• SelText contains the currently selected (highlighted) part of the text.

• SelStart and SelLength indicate the position and length of the selected part of the text.

At runtime, you can select all the text in the memo with the SelectAll method.

Use this component: When you want users to do this:

Edit Edit a single line of text

Memo Edit multiple lines of text

MaskEdit Adhere to a particular format, such as a postal code or phone number

RichEdit Edit multiple lines of text using rich text format

2-16 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Rich text controls
The rich edit component is a memo control that supports rich text formatting,
printing, searching, and drag-and-drop of text. It allows you to specify font
properties, alignment, tabs, indentation, and numbering.

Specialized input controls
The following components provide additional ways of capturing input.

Scroll bars
The scroll bar component is a Windows scroll bar that you can use to scroll the
contents of a window, form, or other control. In the OnScroll event handler, you write
code that determines how the control behaves when the user moves the scroll bar.

The scroll bar component is not used very often, since many visual components
provide scroll bars of their own that don’t require additional coding. For example,
TForm has VertScrollBar and HorzScrollBar properties that automatically configure
scroll bars on the form. To create a scrollable region within a form, use TScrollBox.

Track bars
A track bar can set integer values on a continuous range. It is useful for adjusting
properties like color, volume and brightness. The user moves the slide indicator by
dragging it to a particular location or clicking within the bar.

• Use the Max and Min properties to set the upper and lower range of the track bar.

• Use SelEnd and SelStart to highlight a selection range. See Figure 2.2.

Figure 2.2 Three views of the track bar component

• The Orientation property determines whether the track bar is vertical or horizontal.

• By default, a track bar has one row of ticks along the bottom. Use the TickMarks
property to change their location. To control the intervals between ticks, use the
TickStyle property and SetTicks method.

• Position sets a default position for the track bar and tracks the position at runtime.

• By default, users can move one tick up or down by pressing the up and down
arrow keys. Set LineSize to change that increment.

• Set PageSize to determine the number of ticks moved when the user presses Page Up
and Page Down.

Use this component: When you want users to do this:

ScrollBar Select values on a continuous range

TrackBar Select values on a continuous range (more visually effective than a
scroll bar)

UpDown Select a value from a spinner attached to an edit component

HotKey Enter Ctrl/Shift/Alt keyboard sequences

P r o g r a m m i n g w i t h C + + B u i l d e r 2-17

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Up-down controls
An up-down control consists of a pair of arrow buttons that allow users to change an
integer value in fixed increments. The current value is given by the Position property;
the increment, which defaults to 1, is specified by the Increment property. Use the
Associate property to attach another component (such as an edit control) to the
up-down control.

Hot key controls
Use the hot key component to assign a keyboard shortcut that transfers focus to any
control. The HotKey property contains the current key combination and the Modifiers
property determines which keys are available for HotKey.

Splitter control
A splitter placed between aligned controls allows users to resize the controls. Used
with components like panels and group boxes, splitters let you divide a form into
several panes with multiple controls on each pane.

After placing a panel or other control on a form, add a splitter with the same
alignment as the control. The last control should be client-aligned, so that it fills up
the remaining space when the others are resized. For example, you can place a panel
at the left edge of a form, set its Alignment to alLeft, then place a splitter (also aligned
to alLeft) to the right of the panel, and finally place another panel (aligned to alLeft or
alClient) to the right of the splitter.

Set MinSize to specify a minimum size the splitter must leave when resizing its
neighboring control. Set Beveled to true to give the splitter’s edge a 3D look.

Buttons and similar controls
Aside from menus, buttons provide the most common way to invoke a command in
an application. C++Builder offers several button-like controls:

Button controls
Users click button controls to initiate actions. Double-clicking a button at design time
takes you to the button’s OnClick event handler in the Code editor.

• Set Cancel to true if you want the button to trigger its OnClick event when the user
presses Esc.

• Set Default to true if you want the Enter key to trigger the button’s OnClick event.

Use this component: To do this:

Button Present command choices on buttons with text

BitBtn Present command choices on buttons with text and glyphs

SpeedButton Create grouped toolbar buttons

CheckBox Present on/off options

RadioButton Present a set of mutually exclusive choices

ToolBar Arrange tool buttons and other controls in rows and automatically adjust
their sizes and positions

CoolBar Display a collection of windowed controls within movable, resizable
bands

2-18 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Bitmap buttons
A bitmap button (BitBtn) is a button control that presents a bitmap image on its face.

• To choose a bitmap for your button, set the Glyph property.

• Use Kind to automatically configure a button with a glyph and default behavior.

• By default, the glyph is to the left of any text. To move it, use the Layout property.

• The glyph and text are automatically centered in the button. To move their
position, use the Margin property. Margin determines the number of pixels
between the edge of the image and the edge of the button.

• By default, the image and the text are separated by 4 pixels. Use Spacing to increase
or decrease the distance.

• Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs
property to 3 to show a different bitmap for each state.

Speed buttons
Speed buttons, which usually have images on their faces, can function in groups.
They are commonly used with panels to create toolbars.

• To make speed buttons act as a group, give the GroupIndex property of all the
buttons the same nonzero value.

• By default, speed buttons appear in an up (unselected) state. To initially display a
speed button as selected, set the Down property to true.

• If AllowAllUp is true, all of the speed buttons in a group can be unselected. Set
AllowAllUp to false if you want a group of buttons to act like a radio group.

Check boxes
A check box is a toggle that presents the user with two, or sometimes three, choices.

• Set Checked to true to make the box appear checked by default.

• Set AllowGrayed to true to give the check box three possible states: checked,
unchecked, and grayed.

• The State property indicates whether the check box is checked (cbChecked),
unchecked (cbUnchecked), or grayed (cbGrayed).

Radio buttons
Radio buttons present a set of mutually exclusive choices. You can use individual
radio buttons or the radio group component, which arranges groups of radio buttons
automatically. See “Grouping components” on page 2-21 for more information.

Toolbars
Toolbars provide an easy way to arrange and manage visual controls. You can create
a toolbar out of a panel component and speed buttons, or you can use the ToolBar
component, then right-click and choose New Button to add buttons to the toolbar.
The ToolBar component has several advantages: buttons on a toolbar automatically

P r o g r a m m i n g w i t h C + + B u i l d e r 2-19

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

maintain uniform dimensions and spacing; other controls maintain their relative
position and height; controls can automatically wrap around to start a new row when
they do not fit horizontally; and the ToolBar offers display options like transparency,
pop-up borders, and spaces and dividers to group controls.

Cool bars
A cool bar contains child controls that can be moved and resized independently.
Each control resides on an individual band. The user positions the controls by
dragging the sizing grip to the left of each band.

The cool bar requires version 4.70 or later of COMCTL32.DLL (usually located in the
Windows\System or Windows\System32 directory) at both design time and
runtime.

• The Bands property holds a collection of TCoolBand objects. At design time, you
can add, remove, or modify bands with the Bands editor. To open the Bands
editor, select the Bands property in the Object Inspector, then double-click in the
Value column to the right, or click the ellipsis (...) button. You can also create
bands by adding new windowed controls from the palette.

• The FixedOrder property determines whether users can reorder the bands.

• The FixedSize property determines whether the bands maintain a uniform height.

Handling lists
Lists present the user with a collection of items to select from. Several components
display lists:

Use the nonvisual TStringList and TImageList components to manage sets of strings
and images. For more information about string lists, see “Working with string lists”
on page 2-27.

List boxes and check-list boxes
List boxes and check-list boxes display lists from which users can select items.

• Items uses a TStrings object to fill the control with values.

• ItemIndex indicates which item in the list is selected.

• MultiSelect specifies whether a user can select more than one item at a time.

Use this component: To display:

ListBox A list of text strings

CheckListBox A list with a check box in front of each item

ComboBox An edit box with a scrollable drop-down list

TreeView A hierarchical list

ListView A list of (draggable) items with optional icons, columns, and headings

DateTimePicker A list box for entering dates or times

MonthCalendar A calendar for selecting dates

2-20 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

• Sorted determines whether the list is arranged alphabetically.

• Columns specifies the number of columns in the list control.

• IntegralHeight specifies whether the list box shows only entries that fit completely
in the vertical space.

• ItemHeight specifies the height of each item in pixels. The Style property can cause
ItemHeight to be ignored.

• The Style property determines how a list control displays its items. By default,
items are displayed as strings. By changing the value of Style, you can create
owner-draw list boxes that display items graphically or in varying heights. For
information on owner-draw controls, see “Adding graphics to controls” on
page 5-11.

Combo boxes
A combo box combines an edit box with a scrollable list. When users enter data into
the control—by typing or selecting from the list—the value of the Text property
changes.

• Use the Style property to select the type of combo box you need.

• Use csDropdown if you want an edit box with a drop-down list. Use
csDropDownList to make the edit box read-only (forcing users to choose from the
list). Set the DropDownCount property to change the number of items displayed in
the list.

• Use csSimple to create a combo box with a fixed list that does not close. Be sure to
resize the combo box so that the list items are displayed.

• Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo boxes
that display items graphically or in varying heights. For information on
owner-draw controls, see “Adding graphics to controls” on page 5-11.

Tree views
A tree view displays items in an indented outline. The control provides buttons that
allow nodes to be expanded and collapsed. You can include icons with items’ text
labels and display different icons to indicate whether a node is expanded or
collapsed. You can also include graphics, such as check boxes, that reflect state
information about the items.

• Indent sets the number of pixels horizontally separating items from their parents.

• ShowButtons enables the display of ‘+’ and ‘–’ buttons to indicate whether an item
can be expanded.

• ShowLines enables display of connecting lines to show hierarchical relationships.

• ShowRoot determines whether lines connecting the top-level items are displayed.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-21

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

List views
List views display lists in various formats. Use the ViewStyle property to choose the
kind of list you want:

• vsIcon and vsSmallIcon display each item as an icon with a label. Users can drag
items within the list view window.

• vsList displays items as labeled icons that cannot be dragged.

• vsReport displays items on separate lines with information arranged in columns.
The leftmost column contains a small icon and label, and subsequent columns
contain subitems specified by the application. Use the ShowColumnHeaders
property to display headers for the columns.

Date-time pickers and month calendars
The DateTimePicker component displays a list box for entering dates or times, while
the MonthCalendar component presents a calendar for entering dates or ranges of
dates. To use these components, you must have version 4.70 or later of
COMCTL32.DLL (usually located in the Windows\System or Windows\System32
directory) at both design time and runtime.

Grouping components
A graphical interface is easier to use when related controls and information are
presented in groups. C++Builder provides several components for grouping
components:

Group boxes and radio groups
A group box is a standard Windows component that arranges related controls on a
form. The most commonly grouped controls are radio buttons. After placing a group
box on a form, select components from the Component palette and place them in the
group box. The Caption property contains text that labels the group box at runtime.

The radio group component simplifies the task of assembling radio buttons and
making them work together. To add radio buttons to a radio group, edit the Items
property in the Object Inspector; each string in Items makes a radio button appear in
the group box with the string as its caption. The value of the ItemIndex property
determines which radio button is currently selected. Display the radio buttons in a
single column or in multiple columns by setting the value of the Columns property.
To respace the buttons, resize the radio group component.

Use this component: When you want this:

GroupBox A standard group box with a title

RadioGroup A simple group of radio buttons

Panel A more visually flexible group of controls

ScrollBox A scrollable region containing controls

TabControl A set of mutually exclusive notebook-style tabs

PageControl A set of mutually exclusive notebook-style tabs with corresponding
pages, each of which may contain other controls

HeaderControl Resizable column headers

2-22 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Panels
The panel component provides a generic container for other controls. Panels can be
aligned with the form to maintain the same relative position when the form is
resized. The BorderWidth property determines the width, in pixels, of the border
around a panel.

Scroll boxes
Scroll boxes create scrolling areas within a form. Applications often need to display
more information than will fit in a particular area. Some controls—such as list boxes,
memos, and forms themselves—can automatically scroll their contents. Scroll boxes
give you the additional flexibility to define arbitrary scrolling subregions of a form.

Like panels and group boxes, scroll boxes contain other controls. But a scroll box is
normally invisible. If the controls in the scroll box cannot fit in its visible area, the
scroll box automatically displays scroll bars.

Tab controls
The tab control component looks like notebook dividers. You can create tabs by
editing the Tabs property in the Object Inspector; each string in Tabs represents a tab.
The tab control is a single panel with one set of components on it. To change the
appearance of the control when the tabs are clicked, you need to write an OnChange
event handler. To create a multipage dialog box, use a page control instead.

Page controls
The page control component is a page set suitable for multipage dialog boxes. To
create a new page in a page control, right-click the control and choose New Page.

Header controls
A header control is a is a set of column headers that the user can select or resize at
runtime. Edit the control’s Sections property to add or modify headers.

Visual feedback
There are many ways to provide users with information about the state of an
application. For example, some components—including TForm—have a Caption
property that can be set at runtime. You can also create dialog boxes to display
messages. In addition, the following components are especially useful for providing
visual feedback at runtime.

Use this component or
property: To do this:

Label and StaticText Display non-editable text
StatusBar Display a status region (usually at the bottom of a window)

ProgressBar Show the amount of work completed for a particular task

Hint and ShowHint Activate fly-by or “tool-tip” help
HelpContext and HelpFile Link context-sensitive online Help

P r o g r a m m i n g w i t h C + + B u i l d e r 2-23

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Labels and static-text components
Labels display text and are usually placed next to other controls. The standard label
component, TLabel, is a non-windowed control, so it cannot receive focus; when you
need a label with a window handle, use TStaticText instead. Label properties include
the following:

• Caption contains the text string for the label.

• FocusControl links the label to another control on the form. If Caption includes an
accelerator key, the control specified by FocusControl receives focus when the user
presses the accelerator key.

• ShowAccelChar determines whether the label can display an underlined accelerator
character. If ShowAccelChar is true, any character preceded by an ampersand (&)
appears underlined and enables an accelerator key.

• Transparent determines whether items under the label (such as graphics) are visible.

Status bars
Although you can use a panel to make a status bar, it is simpler to use the status-bar
component. By default, the status bar’s Align property is set to alBottom, which takes
care of both position and size.

You will usually divide a status bar into several text areas. To create text areas, edit
the Panels property in the Object Inspector, setting each panel’s Width, Alignment, and
Text properties from the Panels editor. The Text property contains the text displayed
in the panel.

Progress bars
When your application performs a time-consuming operation, you can use a
progress bar to show how much of the task is completed. A progress bar displays a
dotted line that grows from left to right.

Figure 2.3 A progress bar

The Position property tracks the length of the dotted line. Max and Min determine the
range of Position. To make the line grow, increment Position by calling the StepBy or
StepIt method. The Step property determines the increment used by StepIt.

Help and hint properties
Most visual controls can display context-sensitive Help as well as fly-by hints at
runtime. The HelpContext and HelpFile properties establish a Help context number
and Help file for the control.

The Hint property contains the text string that appears when the user moves the
mouse pointer over a control or menu item. To enable hints, set ShowHint to true;
setting ParentShowHint to true causes the control’s ShowHint property to have the
same value as its parent’s.

2-24 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Grids
Grids display information in rows and columns. If you’re writing a database
application, use the TDBGrid or TDBCtrlGrid component described in Chapter 27,
“Using data controls”. Otherwise, use a standard draw grid or string grid.

Draw grids
A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an
OnDrawCell event handler to fill in the cells of the grid.

• The CellRect method returns the screen coordinates of a specified cell, while the
MouseToCell method returns the column and row of the cell at specified screen
coordinates. The Selection property indicates the boundaries of the currently
selected cells.

• The TopRow property determines which row is currently at the top of the grid. The
LeftCol property determines the first visible column on the left. VisibleColCount and
VisibleRowCount are the number of columns and rows visible in the grid.

• You can change the width or height of a column or row with the ColWidths and
RowHeights properties. Set the width of the grid lines with the GridLineWidth
property. Add scroll bars to the grid with the ScrollBars property.

• You can choose to have fixed or non-scrolling columns and rows with the
FixedCols and FixedRows properties. Assign a color to the fixed columns and rows
with the FixedColor property.

• The Options, DefaultColWidth, and DefaultRowHeight properties also affect the
appearance and behavior of the grid.

String grids
The string grid component is a descendant of TDrawGrid that adds specialized
functionality to simplify the display of strings. The Cells property lists the strings for
each cell in the grid; the Objects property lists objects associated with each string. All
the strings and associated objects for a particular column or row can be accessed
through the Cols or Rows property.

Graphics display
The following components make it easy to incorporate graphics into an application.

Use this component: To display:

Image Graphics files

Shape Geometric shapes

Bevel 3D lines and frames

PaintBox Graphics drawn by your program at runtime

Animate AVI files

P r o g r a m m i n g w i t h C + + B u i l d e r 2-25

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s i n t h e V C L

Images
The image component displays a graphical image, like a bitmap, icon, or metafile.
The Picture property determines the graphic to be displayed. Use Center, AutoSize,
Stretch, and Transparent to set display options. For more information, see “Overview
of graphics programming” on page 6-1.

Shapes
The shape component displays a geometric shape. It is a nonwindowed control and
cannot receive user input. The Shape property determines which shape the control
assumes. To change the shape’s color or add a pattern, use the Brush property, which
holds a TBrush object. How the shape is painted depends on the Color and Style
properties of TBrush.

Bevels
The bevel component is a line that can appear raised or lowered. Some components,
such as TPanel, have built-in properties to create beveled borders. When such
properties are unavailable, use TBevel to create beveled outlines, boxes, or frames.

Paint boxes
The paint box allows your application to draw on a form. Write an OnPaint event
handler to render an image directly on the paint box’s Canvas. Drawing outside the
boundaries of the paint box is prevented. For more information, see “Overview of
graphics programming” on page 6-1.

Animation control
The animation component is a window that silently displays an Audio Video
Interleaved (AVI) clip. An AVI clip is a series of bitmap frames, like a movie.
Although AVI clips can have sound, animation controls work only with silent AVI
clips. The files you use must be either uncompressed AVI files or AVI clips
compressed using run-length encoding (RLE). These are some of the properties of an
animation component:

• ResHandle is the Windows handle for the module that contains the AVI clip as a
resource. Set ResHandle at runtime to the instance handle or module handle of the
module that includes the animation resource. After setting ResHandle, set the
ResID or ResName property to specify which resource in the indicated module is
the AVI clip that should be displayed by the animation control.

• Set AutoSize to true to have the animation control adjust its size to the size of the
frames in the AVI clip.

• StartFrame and StopFrame specify in which frames to start and stop the clip.

• Set CommonAVI to display one of the common Windows AVI clips provided in
Shell32.DLL.

2-26 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

• Specify when to start and interrupt the animation by setting the Active property to
true and false, respectively, and how many repetitions to play by setting the
Repetitions property.

• The Timers property lets you display the frames using a timer. This is useful for
synchronizing the animation sequence with other actions, such as playing a sound
track.

Windows common dialog boxes
The dialog box components on the Dialogs page of the Component palette make the
Windows “common” dialog boxes available to your applications. These dialog boxes
provide all Windows-based applications with a familiar, consistent interface that
enables the user to perform common file operations such as opening, saving, and
printing files.

Each dialog box opens when its Execute method is called. Execute returns a Boolean
value: if the user chooses OK to accept any changes made in the dialog box, Execute
returns true; if the user chooses Cancel to escape from the dialog box without making
or saving changes, Execute returns false.

Using windows common dialog boxes
One of the commonly used dialog box components is TOpenDialog. This component
is usually invoked by a New or Open menu item under the File option on the main
menu bar of a form.

The TOpenDialog component makes an Open dialog box available to your
application. The purpose of this dialog box is to let a user specify a file to open. You
use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user’s file is stored in the
TOpenDialog FileName property, which you can then process as you want.

The following code snippet can be placed in an Action and linked to the Action
property of a TMainMenu subitem or be placed in the subitem’s OnClick event:

if(OpenDialog1->Execute()){
filename = OpenDialog1->FileName;

};

This code will show the dialog box and if the user presses the OK button, it will copy
the name of the file into a previously declared AnsiString variable named filename.

Using helper objects
The VCL includes a variety of nonvisual objects that simplify common programming
tasks. This section describes a few Helper objects that make it easier to perform the
following tasks:

• Working with lists
• Working with string lists
• Changing the Windows registry and .INI files
• Using streams

P r o g r a m m i n g w i t h C + + B u i l d e r 2-27

U s i n g h e l p e r o b j e c t s

Working with lists

Several VCL objects provide functionality for creating and managing lists:

• TList maintains a list of pointers.

• TObjectList maintains a memory-managed list of instance objects.

• TComponentList maintains a memory-managed list of components (that is,
instances of classes descended from TComponent).

• TQueue maintains a first-in first-out list of pointers.

• TStack maintains a last-in first-out list of pointers.

• TObjectQueue maintains a first-in first-out list of objects.

• TObjectStack maintains a last-in first-out list of objects.

• TClassList maintains a list of class types.

• TCollection, TOwnedCollection, and TCollectionItem maintain indexed collections of
specially defined items.

• TStringList maintains a list of strings.

For more information about these objects, see the VCL Reference in the online Help.

Working with string lists

Applications often need to manage lists of character strings. Examples include items
in a combo box, lines in a memo, names of fonts, and names of rows and columns in a
string grid. The VCL provides a common interface to any list of strings through an
object called TStrings and its descendant TStringList. In addition to providing
functionality for maintaining string lists, these objects allow easy interoperability; for
example, you can edit the lines of a memo (which are an instance of TStrings) and
then use these lines as items in a combo box (also an instance of TStrings).

A string-list property appears in the Object Inspector with TStrings in the Value
column. Double-click TStrings to open the String List editor, where you can edit, add,
or delete lines.

You can also work with string-list objects at runtime to perform such tasks as

• Loading and saving string lists
• Creating a new string list
• Manipulating strings in a list
• Associating objects with a string list

Loading and saving string lists
String-list objects provide SaveToFile and LoadFromFile methods that let you store a
string list in a text file and load a text file into a string list. Each line in the text file
corresponds to a string in the list. Using these methods, you could, for example,
create a simple text editor by loading a file into a memo component, or save lists of
items for combo boxes.

2-28 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

The following example loads a copy of the WIN.INI file into a memo field and makes
a backup copy called WIN.BAK.

void __fastcall EditWinIni()
{

AnsiString FileName = "C:\WINDOWS\WIN.INI";// set the file name
Form1->Memo1->Lines->LoadFromFile(FileName); // load from file
Form1->Memo1->Lines->SaveToFile(ChangeFileExt(FileName, ".BAK")); // save to backup

}

Creating a new string list
A string list is typically part of a component. There are times, however, when it is
convenient to create independent string lists, for example to store strings for a lookup
table. The way you create and manage a string list depends on whether the list is
short-term (constructed, used, and destroyed in a single routine) or long-term
(available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists
If you use a string list only for the duration of a single routine, you can create it, use it,
and destroy it all in one place. This is the safest way to work with string lists. Because
the string-list object allocates memory for itself and its strings, you should use a
try...__finally block to ensure that the memory is freed even if an exception occurs.

1 Construct the string-list object.

2 In the try part of a try...__finally block, use the string list.

3 In the __finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list,
using it, and then destroying it.

void __fastcall TForm1::ButtonClick1(TObject *Sender)
{

TStringList *TempList = new TStringList; // declare the list
try{

//use the string list
}
__finally{

 delete TempList; // destroy the list object
}

Long-term string lists
If a string list must be available at any time while your application runs, construct the
list at start-up and destroy it before the application terminates.

1 In the unit file for your application’s main form, add a field of type TStrings to the
form’s declaration.

2 Write an event handler for the main form’s constructor, which executes before the
form appears. It should create a string list and assign it to the field you declared in
the first step.

3 Write an event handler that frees the string list for the form’s OnDestroy event.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-29

U s i n g h e l p e r o b j e c t s

This example uses a long-term string list to record the user’s mouse clicks on the
main form, then saves the list to a file before the application terminates.

//---
#include <vcl.h>
#pragma hdrstop

#include "Unit1.h"
//---
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---
__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{
 ClickList = new TStringList;
}
//---
void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)
{
 ClickList->SaveToFile(ChangeFileExt(Application->ExeName, ".LOG"));//Save the list
 delete ClickList;
}
//---
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 TVarRec v[] = {X,Y};
 ClickList->Add(Format("Click at (%d, %d)",v,ARRAYSIZE(v) - 1));//add a string to the list
}

Manipulating strings in a list
Operations commonly performed on string lists include:

• Counting the strings in a list
• Accessing a particular string
• Finding the position of a string in the list
• Iterating through strings in a list
• Adding a string to a list
• Moving a string within a list
• Deleting a string from a list
• Copying a complete string list

Counting the strings in a list
The read-only Count property returns the number of strings in the list. Since string
lists use zero-based indexes, Count is one more than the index of the last string.

Accessing a particular string
The Strings array property contains the strings in the list, referenced by a zero-based
index. Because Strings is the default property for string lists, you can omit the

2-30 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

Strings identifier when accessing the list; thus

StringList1->Strings[0] = “This is the first string.”;

is equivalent to

StringList1[0] = “This is the first string.”;

Finding the position of a string in the list
To locate a string in a string list, use the IndexOf method. IndexOf returns the index of
the first string in the list that matches the parameter passed to it, and returns –1 if the
parameter string is not found. IndexOf finds exact matches only; if you want to match
partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found
among the Items of a list box:

if (FileListBox1->Items->IndexOf("WIN.INI") > -1) ...

Iterating through strings in a list
To iterate through the strings in a list, use a for loop that runs from zero to Count – 1.

This example converts each string in a list box to uppercase characters.

void __fastcall TForm1::Button1Click(TObject *Sender)
{

for (int i = 0; i < ListBox1->Items->Count; i++)
ListBox1->Items->Strings[i] = UpperCase(ListBox1->Items->Strings[i]);

}

Adding a string to a list
To add a string to the end of a string list, call the Add method, passing the new string
as the parameter. To insert a string into the list, call the Insert method, passing two
parameters: the string and the index of the position where you want it placed. For
example, to make the string “Three” the third string in a list, you would use:

StringList1->Insert(2, "Three");

To append the strings from one list onto another, call AddStrings:

StringList1->AddStrings(StringList2); // append the strings from StringList2 to StringList1

Moving a string within a list
To move a string in a string list, call the Move method, passing two parameters: the
current index of the string and the index you want assigned to it. For example, to
move the third string in a list to the fifth position, you would use:

StringListObject->Move(2, 4);

Deleting a string from a list
To delete a string from a string list, call the list’s Delete method, passing the index of
the string you want to delete. If you don’t know the index of the string you want to
delete, use the IndexOf method to locate it. To delete all the strings in a string list, use
the Clear method.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-31

U s i n g h e l p e r o b j e c t s

This example uses IndexOf and Delete to find and delete a string:

int BIndex = ListBox1->Itesm->IndexOf("bureaucracy");
if (BIndex > -1)

ListBox1->Items->Delete(BIndex);

Copying a complete string list
You can use the Assign method to copy strings from a source list to a destination list,
overwriting the contents of the destination list. To append strings without
overwriting the destination list, use AddStrings. For example,

Memo1->Lines->Assign(ComboBox1->Item)s; //overwrites original strings

copies the lines from a combo box into a memo (overwriting the memo), while

Memo1->Lines->AddStrings(ComboBox1->Items);//appends strings to end

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one
string-list variable to another—

StringList1 = StringList2;

—the original string-list object will be lost, often with unpredictable results.

Associating objects with a string list
In addition to the strings stored in its Strings property, a string list can maintain
references to objects, which it stores in its Objects property. Like Strings, Objects is an
array with a zero-based index. The most common use for Objects is to associate
bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to
the list in a single step. IndexOfObject returns the index of the first string in the list
associated with a specified object. Methods like Delete, Clear, and Move operate on
both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property
at the same index. You cannot add an object without adding a corresponding string.

Windows registry and INI files
The Windows system registry is a hierarchical database where applications store
configuration information. The VCL class TRegistry supplies methods that read and
write to the registry.

Until Windows 95, most applications stored configuration information in initialization
files, usually named with the extension .INI. The VCL provides the following classes to
facilitate maintenance and migration of programs that use INI files:

• TRegistry to work with the registry.

• TIniFile or TMemIniFile to work with Windows 3.x style INI files.

2-32 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

• TRegistryIniFile when you want to work with both the registry and INI files.
TRegistryIniFile has properties and methods similar to those of TIniFile, but it reads
and writes to the system registry. By using a variable of type TCustomIniFile (the
common ancestor of TIniFile, TMemIniFile, and TRegistryIniFile), you can write
generic code that accesses either the registry or an INI file, depending on where it
is called.

Using TINIFile
The INI file format is still popular, many of the C++Builder configuration files (such
as the DSK Desktop settings file) are in this format. Because this file format was and
is prevalent, VCL provides a class to make reading and writing these files very easy.
When you instantiate the INIFile object, you pass as a parameter to the constructor
the name of the INI file. If the file does not exist, it is automatically created. You are
then free to read values using ReadString, ReadInteger, or ReadBool. Alternatively, if
you want to read an entire section of the INI file, you can use the ReadSection method.
Similarly, you can write values using WriteBool, WriteInteger, or WriteString.

Following is an example of reading configuration information from an INI file in a
form’s constructor and writing values in the OnClose event handler.

void __fastcall TForm1::TForm1(TObject *Sender)
{
 TIniFile *ini;
 ini = new TIniFile(
 ChangeFileExt(Application->ExeName, ".INI"));

 Top = ini->ReadInteger("Form", "Top", 100);
 Left = ini->ReadInteger("Form", "Left", 100);
 Caption = ini->ReadString("Form", "Caption",
 "Default Caption");
 ini->ReadBool("Form", "InitMax", false) ?
 WindowState = wsMaximized :
 WindowState = wsNormal;

 delete ini;
}

void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)
{
 TIniFile *ini;
 ini = new TIniFile(ChangeFileExt(Application->ExeName, ".INI"));

ini->WriteInteger("Form", "Top", Top);
 ini->WriteInteger("Form", "Left", Left);
 ini->WriteString ("Form", "Caption", Caption);
 ini->WriteBool ("Form", "InitMax",
 WindowState == wsMaximized);

 delete ini;
}

Each of the Read routines takes three parameters. The first parameter identifies the
section of the INI file. The second parameter identifies the value you want to read,
and the third is a default value in case the section or value doesn’t exist in the INI file.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-33

U s i n g h e l p e r o b j e c t s

Similarly, the Write routines will create the section and/or value if they do not exist.
The example code creates an INI file the first time it is run that looks like this:

[Form]
Top=185
Left=280
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the INI values are read in during
creation of the form and written back out in the OnClose event.

Using TRegistry
Most 32-bit applications store their information in the registry instead of INI files
because the registry is hierarchical, more robust, and doesn’t suffer from the size
limitations of INI files. The TRegistry object contains methods to open, close, save,
move, copy, and delete keys.

The following example retrieves a value from a registry entry:

#include <Registry.hpp>

AnsiString GetRegistryValue(AnsiString KeyName)
{
 AnsiString S;
 TRegistry *Registry = new TRegistry;
 try
 {
 Registry->RootKey = HKEY_LOCAL_MACHINE;
 // False because we do not want to create it if it doesn’t exist
 Registry->OpenKey(KeyName,false);
 S = Registry->ReadString("VALUE1");
 }
 __finally
 {
 delete Registry;
 }
 return S;
}

For more information, see the TRegistry topic in VCL help.

Using TRegINIFile
If you are accustomed to INI files and want to move your configuration information
to the registry instead, you can use the TRegINIFile class. TRegINIFile is designed to
make registry entries look like INI file entries. All the methods from TINIFile (read
and write) exist in TRegINIFile. When you construct a TRegINIFile object, the
parameter you pass (the filename for an INIFile object) becomes a key value under
the user key in the registry, and all sections and values branch from that root. In fact,
this object simplifies the registry interface considerably, so you may want to use it
instead of the TRegistry component even if you aren’t porting existing code.

For more information, see the TRegINIFile topic in VCL help.

2-34 D e v e l o p e r ’ s G u i d e

U s i n g h e l p e r o b j e c t s

Using TCanvas
The TCanvas encapsulates a Windows device context, which handles all drawing for both
forms, visual containers (such as panels) and the printer object (covered in the next
section). Using the canvas object, you no longer have to worry about allocating pens,
brushes, palettes, and so on—all the allocation and deallocation are handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes,
polygons, fonts, etc. onto any control that contains a canvas. For example, here is a
button event handler that draws a line from the upper left hand corner to the middle
of the form and outputs some raw text onto the form:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 Canvas->Pen->Color = clBlue;
 Canvas->MoveTo(10, 10);
 Canvas->LineTo(100, 100);
 Canvas->Brush->Color = clBtnFace;
 Canvas->Font->Name = "Arial";
 Canvas->TextOut(Canvas->PenPos.x, Canvas->PenPos.y,"This is the end of the line");
}

The TCanvas object also protects you against common Windows graphics errors, such
as restoring device contexts, pens, brushes, and so on to the value they had before the
drawing operation. The TCanvas is used everywhere in C++Builder that drawing is
required or possible, and makes graphics in Windows both fail-safe and easy.

See the online help under TCanvas for a complete listing of properties and methods.

Using TPrinter
The TPrinter object encapsulates details of Windows printers. To get a list of installed
and available printers, use the Printers property. The printer object uses a TCanvas
(which is identical to the form’s TCanvas) which means that anything that can be
drawn on a form can be printed as well. To print an image, call the BeginDoc method
followed by whatever canvas graphics you want to print (including text through the
TextOut method) and send the job to the printer by calling the EndDoc method.

This example uses a button and a memo on a form. When the user clicks the button,
the content of the memo is printed with a 200-pixel border around the page.

To run this example successfully, include <Printers.hpp> in your unit file.

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 TPrinter Prntr = Printer();
 TRect r = Rect(200,200,Prntr->PageWidth – 200,Prntr->PageHeight – 200);
 Prntr->BeginDoc();
 Prntr->Canvas->TextRect(r, 200, 200, Memo1->Lines->Text);
 Prntr->EndDoc();
}

For more information on the use of the TPrinter object, look in the on-line help under
TPrinter.

P r o g r a m m i n g w i t h C + + B u i l d e r 2-35

D e v e l o p i n g a p p l i c a t i o n s

Using streams

Use specialized stream objects to read or write to storage media. Each descendant of
TStream implements methods for accessing a particular medium, such as disk files,
dynamic memory, and so on. TStream descendants include TFileStream,
TStringStream, TMemoryStream, TBlobStream, and TWinSocketStream. In addition to
methods for reading and writing, these objects permit applications to seek to an
arbitrary position in the stream. Properties of TStream provide information about the
stream, such as size and current position.

Developing applications
As you visually design the user interface for your application, C++Builder generates
the underlying C++ code to support the application. As you select and modify the
properties of components and forms, the results of those changes appear
automatically in the source code, and vice versa. You can modify the source files
directly with any text editor, including the built-in Code editor. The changes you
make are immediately reflected in the visual environment as well.

Editing code

The C++Builder Code editor is a full-featured ASCII editor. If using the visual
programming environment, a form is automatically displayed as part of a new
project. The contents of the form, all its properties, and its components and their
properties can be viewed and edited as text in the Code editor by selecting the View
as Text option in the form designer’s context menu.

The C++Builder code generation and property streaming systems are completely
open to inspection. The source code for everything that is included in your final
EXE—all of the VCL objects, RTL sources, all of the C++Builder project files can be
viewed and edited in the Code editor.

Debugging applications

C++Builder provides an integrated debugger that helps you find and fix errors in
your applications. The integrated debugger lets you control program execution,
monitor variable values and items in data structures, and modify data values while
debugging. By viewing the values of variables, the functions on the call stack, and the
program output, you can check that the area of code you are examining is performing
as designed. The debugger is described in online Help.

You can also use exception handling to recognize, locate, and deal with errors. Refer
to Chapter 8, “Exception handling” for details on exception handling.

2-36 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g a p p l i c a t i o n s

Deploying applications

C++Builder includes add-on tools to help with application deployment. For example,
InstallShield Express helps you to create an installation package for your application
that includes all of the files needed for running a distributed application. Refer to
Chapter 12, “Deploying applications” for specific information on deployment.

TeamSource software is also available for tracking application updates.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-1

C h a p t e r

3
Chapter3Building applications, components,

and libraries
This chapter provides an overview of how to use C++Builder to create applications,
libraries, and components.

Creating applications
The main use of C++Builder is designing and building Windows applications. There
are three basic kinds of Windows application:

• Windows GUI applications
• Console applications
• Service applications

Windows applications

When you compile a project, an executable (.EXE) file is created. The executable
usually provides the basic functionality of your program, and simple programs often
consist of only an EXE. You can extend the application by calling DLLs, packages,
and other support files from the executable.

Windows offers two application UI models:

• Single document interface (SDI)
• Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE.

3-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

User interface models
Any form can be implemented as a multiple document interface (MDI) or single
document interface (SDI) form. In an MDI application, more than one document or
child window can be opened within a single parent window. This is common in
applications such as spreadsheets or word processors. An SDI application, in
contrast, normally contains a single document view. To make your form an SDI
application, set the FormStyle property of your Form object to fsNormal.

For more information on developing the UI for an application, see Chapter 4,
“Developing the application user interface.”

SDI Applications
To create a new SDI application,

1 Select File|New to bring up the New Items dialog.
2 Click on the Projects page and select SDI Application.
3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so
C++Builder assumes that all new applications are SDI applications.

MDI applications
To create a new MDI application,

1 Select File|New to bring up the New Items dialog.
2 Click on the Projects page and select MDI Application.
3 Click OK.

MDI applications require more planning and are somewhat more complex to design
than SDI applications. MDI applications spawn child windows that reside within the
client window; the main form contains child forms. Set the FormStyle property of the
TForm object to specify whether a form is a child (fsMDIForm) or main form
(fsMDIChild). It is a good idea to define a base class for your child forms and derive
each child form from this class, to avoid having to reset the child form’s properties.

Setting IDE, project, and compilation options
Use Project|Project Options to specify various options for your project. For more
information, see the online Help.

Setting default project options
To change the default options that apply to all future projects, set the options in the
Project Options dialog box and check the Default box at the bottom right of the
window. All new projects will now have the current options selected by default.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-3

C r e a t i n g a p p l i c a t i o n s

Programming templates

Programming templates are commonly used “skeleton” structures that you can add
to your source code and then fill in. For example, if you want to use a for loop in your
code, you could insert the following template:

for (; ;)
{

}

To insert a code template in the Code editor, press Ctrl-j and select the template you
want to use. You can also add your own templates to this collection. To add a
template:

1 Select Tools|Environment Options.

2 Click the Code Insight tab.

3 In the templates section click Add.

4 Choose a shortcut name and enter a brief description of the new template.

5 Add the template code to the Code text box.

6 Click OK.

Console applications

Console applications are 32-bit Windows programs that run without a graphical
interface, usually in a console window. These applications typically don’t require
much user input and perform a limited set of functions.

To create a new console application,

1 Choose File|New and select Console Wizard from the New Items dialog box.

2 In the Console Wizard dialog box, check the Console Application option, choose
the source type (C or C++) for the main module of the project, or specify a
pre-existing file that contains a main or winmain function, and click the OK
button.

The Console Wizard will then create a project file for this type of source file.

Using the VCL in console applications
When you create a new console application, the IDE does not create a new form.
Only the code editor is displayed. You can, however, use VCL objects in console
applications. To do this, you must indicate in the Console Wizard that you will be
using the VCL (check the Use VCL option). If you do not indicate in the wizard that
you want to use the VCL, you will not be able use any of the VCL classes in this
application later. Trying to do so will cause linker errors.

3-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

Service applications

Service applications take requests from client applications, process those requests,
and return information to the client applications. They typically run in the
background, without much user input. A web, FTP, or e-mail server is an example of
a service application.

To create an application that implements a Win32 service, Choose File|New, and
select Service Application from the New Items page. This adds a global variable
named Application to your project, which is of type TServiceApplication.

Once you have created a service application, you will see a window in the designer
that corresponds to a service (TService). Implement the service by setting its
properties and event handlers in the Object Inspector. You can add additional
services to your service application by choosing Service from the new items dialog.
Do not add services to an application that is not a service application. While a
TService object can be added, the application will not generate the requisite events or
make the appropriate Windows calls on behalf of the service.

Once your service application is built, you can install its services with the Service
Control Manager (SCM). Other applications can then launch your services by
sending requests to the SCM.

To install your application’s services, run it using the /INSTALL option. The
application installs its services and exits, giving a confirmation message if the
services are successfully installed. You can suppress the confirmation message by
running the service application using the /SILENT option.

To uninstall the services, run it from the command line using the /UNINTALL
option. (You can also use the /SILENT option to suppress the confirmation message
when uninstalling).

Example This service has a TServerSocket whose port is set to 80. This is the default port for
Web Browsers to make requests to Web Servers and for Web Servers to make
responses to Web Browsers. This particular example produces a text document in the
C:\Temp directory called WebLogxxx.log (where xxx is the ThreadID). There should
be only one Server listening on any given port, so if you have a web server, you
should make sure that it is not listening (the service is stopped).

To see the results: open up a web browser on the local machine and for the address,
type ‘localhost’ (with no quotes). The Browser will time out eventually, but you
should now have a file called weblogxxx.log in the C:\temp directory.

1 To create the example, choose File|New and select Service Application from the
New Items dialog. You will see a window appear named Service1. From the
Internet page of the component palette, add a ServerSocket component to the
service window (Service1).

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-5

C r e a t i n g a p p l i c a t i o n s

2 Next, add a private data member of type TMemoryStream to the TService1 class.
The header for your unit should now look like this:

//---
#ifndef Unit1H
#define Unit1H
//---
#include <SysUtils.hpp>
#include <Classes.hpp>
#include <SvcMgr.hpp>
#include <ScktComp.hpp>
//---
class TService1 : public TService
{
__published:// IDE-managed Components
 TServerSocket *ServerSocket1;
private:// User declarations
 TMemoryStream *Stream; // add this line here
public:// User declarations

__fastcall TService1(TComponent* Owner);
 PServiceController __fastcall GetServiceController(void);

friend void __stdcall ServiceController(unsigned CtrlCode);
};
//---
extern PACKAGE TService1 *Service1;
//---
#endif

3 Next, select ServerSocket1, the component you added in step 1. In the Object
Inspector, double click the OnClientRead event and add the following event handler:

void __fastcall TService1::ServerSocket1ClientRead(TObject *Sender,
 TCustomWinSocket *Socket)
{
 char *Buffer = NULL;
 int len = Socket->ReceiveLength();
 while (len > 0)
 {
 try
 {
 Buffer = (char *)malloc(len);
 Socket->ReceiveBuf((void *)Buffer, len);
 Stream->Write(Buffer, strlen(Buffer));
 }
 __finally
 {
 free(Buffer);
 }
 Stream->Seek(0, soFromBeginning);
 AnsiString LogFile = "C:\\Temp\\WebLog";
 LogFile = LogFile + IntToStr(ServiceThread->ThreadID) + ".log";
 Stream->SaveToFile(LogFile);
 }
}

3-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

4 Finally, select Service1 by clicking in the window’s client area (but not on the
ServiceSocket). In the Object Inspector, double click the OnExecute event and add
the following event handler:

void __fastcall TService1::Service1Execute(TService *Sender)
{
 Stream = new TMemoryStream();
 try
 {
 ServerSocket1->Port = 80; // WWW port
 ServerSocket1->Active = true;
 while (!Terminated)
 ServiceThread->ProcessRequests(false);
 ServerSocket1->Active = false;
 }
 __finally
 {
 delete Stream;
 }
 }

When writing your service application, you should be aware of:

• Service threads
• Service name properties
• Debugging services

Service threads
Each service has its own thread (TServiceThread), so if your service application
implements more than one service you must ensure that the implementation of your
services is thread-safe. TServiceThread is designed so that you can implement the
service in the TService OnExecute event handler. The service thread has its own
Execute method which contains a loop that calls the service’s OnStart and OnExecute
handlers before processing new requests.

Because service requests can take a long time to process and the service application
can receive simultaneous requests from more than one client, it is more efficient to
spawn a new thread (derived from TThread, not TServiceThread) for each request and
move the implementation of that service to the new thread’s Execute method. This
allows the service thread’s Execute loop to process new requests continually without
having to wait for the service’s OnExecute handler to finish. The following example
demonstrates.

Example This service beeps every 500 milliseconds from within the standard thread. It handles
pausing, continuing, and stopping of the thread when the service is told to pause,
continue, or stop.

1 Choose File|New and select Service Application from the New Items dialog. You
will see a window appear named Service1.

2 In you unit’s header file, declare a new descendant of TThread named
TSparkyThread. This is the thread that does the work for your service. The
declaration should appear as follows:

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-7

C r e a t i n g a p p l i c a t i o n s

class TSparkyThread : public TThread
{
private:
protected:
 void __fastcall Execute();
public:
 __fastcall TSparkyThread(bool CreateSuspended);
};

3 Next, in the .cpp file for your unit, create a global variable for a TSparkyThread
instance:

TSparkyThread *SparkyThread;

4 Add the following code to the .cpp file for the TSparkyThread constructor:

__fastcall TSparkyThread::TSparkyThread(bool CreateSuspended)
 : TThread(CreateSuspended)
{
}

5 Add the following code to the .cpp file for the TSparkyThread Execute method
(the thread function):

void __fastcall TSparkyThread::Execute()
{

while (!Terminated)
{

Beep();
Sleep(500);

}
}

6 Select the Service window (Service1), and double-click the OnStart event in the
Object Inspector. Add the following OnStart event handler:

void __fastcall TService1::Service1Start(TService *Sender, bool &Started)
{

SparkyThread = new TSparkyThread(false);
Started = true;

}

7 Double-click the OnContinue event in the Object Inspector. Add the following
OnContinue event handler:

void __fastcall TService1::Service1Continue(TService *Sender, bool &Continued)
{

SparkyThread->Resume();
Continued = true;

}

8 Double-click the OnPause event in the Object Inspector. Add the following
OnPause event handler:

void __fastcall TService1::Service1Pause(TService *Sender, bool &Paused)
{

SparkyThread->Suspend();
Paused = true;

}

3-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

9 Finally, double-click the OnStop event in the Object Inspector and add the
following OnStop event handler:

void __fastcall TService1::Service1Stop(TService *Sender, bool &Stopped)
{

SparkyThread->Terminate();
Stopped = true;

}

When developing server applications, choosing to spawn a new thread depends on
the nature of the service being provided, the anticipated number of connections, and
the expected number of processors on the computer running the service.

Service name properties
The VCL provides classes for creating service applications. These include TService
and TDependency. When using these classes, the various name properties can be
confusing. This section describes the differences.

Services have user names (called Service start names) that are associated with
passwords, display names for display in manager and editor windows, and actual
names (the name of the service). Dependencies can be services or they can be load
ordering groups. They also have names and display names. And because service
objects are derived from TComponent, they inherit the Name property. The following
sections summarize the name properties:

TDependency properties
The TDependency DisplayName is both a display name and the actual name of the
service. It is nearly always the same as the TDependency Name property.

TService name properties
The TService Name property is inherited from TComponent. It is the name of the
component, and is also the name of the service. For dependencies that are services,
this property is the same as the TDependency Name and DisplayName properties.

TService’s DisplayName is the name displayed in the Service Manager window. This
often differs from the actual service name (TService::Name,
TDependency::DisplayName, TDependency::Name). Note that the DisplayName for the
Dependency and the DisplayName for the Service usually differ.

Service start names are distinct from both the service display names and the actual
service names. A ServiceStartName is the user name input on the Start dialog selected
from the Service Control Manager.

Debugging services
Debugging service applications can be tricky, because it requires short time intervals:

1 First, launch the application in the debugger. Wait a few seconds until it has
finished loading.

2 Quickly start the service from the control panel or from the command line:

start MyServ

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-9

C r e a t i n g p a c k a g e s a n d D L L s

You must launch the service quickly (within 15-30 seconds of application startup)
because the application will terminate if no service is launched.

Another approach is to attach to the service application process when it is already
running. (That is, starting the service first, and then attaching to the debugger). To
attach to the service application process, choose Run|Attach To Process, and select
the service application in the resulting dialog.

In some cases, this second approach may fail, due to insufficient rights. If that
happens, you can use the Service Control Manager to enable your service to work
with the debugger:

1 First create a key called Image File Execution Options in the following registry
location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

2 Create a subkey with the same name as your service (for example, MYSERV.EXE).
To this subkey, add a value of type REG_SZ, named Debugger. Use the full path to
BCB.exe as the string value.

3 In the Services control panel applet, select your service, click Startup and check
Allow Service to Interact with Desktop.

Creating packages and DLLs
Dynamic link libraries (DLLs) are modules of compiled code that work in
conjunction with an executable to provide functionality to an application.

Packages are special DLLs used by C++Builder applications, the IDE, or both. There
are two kinds of packages: runtime packages and design-time packages. Runtime
packages provide functionality to a program while that program is running.
Design-time packages extend the functionality of the IDE.

For more information on packages, see Chapter 10, “Working with packages and
components.”

When to use packages and DLLs

For most applications written in C++Builder, packages provide greater flexibility and
are easier to create than DLLs. However, there are several situations where DLLs
would be better suited to your projects than packages:

• Your code module will be called from non-C++Builder applications.
• You are extending the functionality of a web server.
• You are creating a code module to be used by third-party developers.
• Your project is an OLE container.

3-10 D e v e l o p e r ’ s G u i d e

U s i n g D L L s i n C + + B u i l d e r

Using DLLs in C++Builder
A Windows DLL can be used in a C++Builder application just as it would be in any
C++ application.

To statically load a DLL when your C++Builder application is loaded, link the import
library file for that DLL into your C++Builder application at link time. To add an
import library to a C++Builder application, open the make file (.BPR) for the
application and add the import library name to the library file list assigned to the
ALLLIB variable. If necessary, add the path of the import library to the path(s) listed
for the -L option of LFLAGS (linker options) variable.

The exported functions of that DLL then become available for use by your
application. Prototype the DLL functions your application uses with the __declspec
(dllimport) modifier:

__declspec(dllimport) return_type imported_function_name(parameters);

To dynamically load a DLL during the run of a C++Builder application, include the
import library, just as you would for static loading, and set the delay load linker
option on the Project|Options|Linker tab. You can also use the Windows API
function LoadLibrary() to load the DLL, then use the API function GetProcAddress() to
obtain pointers to the individual functions you want to use.

Additional information on using DLLs can be found in the Microsoft® Win32 SDK
Reference.

Creating DLLs in C++Builder
Creating DLLs in C++Builder is the same as in standard C++:

1 Choose File|New to display the New Items dialog box.

2 Click on the DLL Wizard icon

3 Choose the Source type (C or C++) for the main module.

4 If you want the DLL entry point to be DLLMain, MSVC++ style, check the VC++
style option, otherwise, DLLEntryPoint is used for the entry point.

5 Click Use VCL to create a DLL containing VCL components, this option is only
available for C++ source modules.

See “Creating DLLs containing VCL components” on page 3-11.

6 If you want the DLL to be multi-threaded, check the Multi-Threaded option.

7 Click the OK button.

Exported functions in the code should be identified with the __declspec (dllexport)
modifier as they must be in Borland C++ or Microsoft Visual C++. For example, the
following code is legal in C++Builder and other Windows C++ compilers:

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-11

C r e a t i n g D L L s c o n t a i n i n g V C L c o m p o n e n t s

// MyDLL.cpp
double dblValue(double);
double halfValue(double);
extern "C" __declspec(dllexport) double changeValue(double, bool);

double dblValue(double value)
{

return value * value;
};

double halfValue(double value)
{

return value / 2.0;
}

double changeValue(double value, bool whichOp)
{

return whichOp ? dblValue(value) : halfValue(value);
}

In the code above, the function changeValue is exported, and therefore made available
to calling applications. The functions dblValue and halfValue are internal, and cannot
be called from outside of the DLL.

Additional information on creating DLLs can be found in the Microsoft® Win32 SDK
Reference.

Creating DLLs containing VCL components
One of the strengths of DLLs is that a DLL created with one development tool can
often be used by application written using a different development tool. When your
DLL contains VCL components (such as forms) that are to be utilized by the calling
application, you need to provide exported interface routines that use standard calling
conventions, avoid C++ name mangling, and do not require the calling application to
support the VCL library in order to work. To create VCL components that can be
exported, use runtime packages. For more information, see Chapter 10, “Working
with packages and components.”

For example, suppose you want to create a DLL to display the following simple
dialog box:

3-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g D L L s c o n t a i n i n g V C L c o m p o n e n t s

The code for the dialog box DLL is as follows:

// DLLMAIN.H
//---
#ifndef dllMainH
#define dllMainH
//---
#include <vcl\Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>
//---
class TYesNoDialog : public TForm
{
__published: // IDE-managed Components
 TLabel *LabelText;
 TButton *YesButton;
 TButton *NoButton;
 void __fastcall YesButtonClick(TObject *Sender);
 void __fastcall NoButtonClick(TObject *Sender);
private: // User declarations
 bool returnValue;
public: // User declarations
 virtual __fastcall TYesNoDialog(TComponent *Owner);
 bool __fastcall GetReturnValue();
};

// exported interface function
extern "C" __declspec(dllexport) bool InvokeYesNoDialog();

//---
 extern TYesNoDialog *YesNoDialog;
//---
#endif

// DLLMAIN.CPP
//---
#include <vcl\vcl.h>
#pragma hdrstop

#include "dllMain.h"
//---
#pragma resource "*.dfm"
TYesNoDialog *YesNoDialog;
//---
__fastcall TYesNoDialog::TYesNoDialog(TComponent *Owner)
 : TForm(Owner)
{
 returnValue = false;
}

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-13

C r e a t i n g D L L s c o n t a i n i n g V C L c o m p o n e n t s

//---
void __fastcall TYesNoDialog::YesButtonClick(TObject *Sender)
{
 returnValue = true;
 Close();
}
//---
void __fastcall TYesNoDialog::NoButtonClick(TObject *Sender)
{
 returnValue = false;
 Close();
}
//---
bool __fastcall TYesNoDialog::GetReturnValue()
{
 return returnValue;
}
//---
// exported standard C++ interface function that calls into VCL
bool InvokeYesNoDialog()
{
 bool returnValue;

TYesNoDialog *YesNoDialog = new TYesNoDialog(NULL);
 YesNoDialog->ShowModal();

returnValue = YesNoDialog->GetReturnValue();
delete YesNoDialog;

 return returnValue;
}

//---

The code in this example displays the dialog and stores the value true in the private
data member returnValue if the “Yes” button is pressed. Otherwise, returnValue is
false. The public GetReturnValue() function retrieves the current value of returnValue.

To invoke the dialog and determine which button was pressed, the calling
application calls the exported function InvokeYesNoDialog(). This function is declared
in DLLMAIN.H as an exported function using C linkage (to avoid C++ name
mangling) and the standard C calling convention. The function is defined in
DLLMAIN.CPP.

By using a standard C function as the interface into the DLL, any calling application,
whether or not it was created with C++Builder, can use the DLL. The VCL
functionality required to support the dialog is linked into the DLL itself, and the
calling application does not need to know anything about it.

Note that when creating a DLL that uses the VCL, the required VCL components are
linked into the DLL resulting in a certain amount of overhead. The impact of this
overhead on the overall size of the application can be minimized by combining
several components into one DLL which only needs one copy of the VCL support
components.

3-14 D e v e l o p e r ’ s G u i d e

L i n k i n g D L L s

Linking DLLs
You can set the linker options for your DLL on the Linker page of the Project Options
dialog. The default check box on this page also creates an import library for your
DLL. If compiling from the command line, invoke the linker, ILINK32.EXE, with the
-Tpd switch. For example,

ilink32 /c /aa /Tpd c0d32.obj mydll.obj, mydll.dll, mdll.map, import32.lib cw32mt.lib

If you need an import library, use the -Gi switch also, to generate an import library.

You can optionally create an import library with the command line utility
IMPLIB.EXE. For example,

implib mydll.lib mydll.dll

For more information about the different options for linking DLLs and using them
with other modules that are statically or dynamically linked to the runtime library,
see the online Help.

Writing database applications
One of C++Builder’s strengths is its support for creating advanced database
applications. C++Builder includes built-in tools that allow you to connect to Oracle,
Sybase, Informix, dBASE, Paradox, or other servers while providing transparent data
sharing between applications. The Borland Database Engine (BDE) supports scaling
from desktop to client/server applications.

Tools, such as the Database Explorer, simplify the task of writing database
applications. The Database Explorer is a hierarchical browser for inspecting and
modifying database server-specific schema objects including tables, fields, stored
procedure definitions, triggers, references, and index descriptions.

Through a persistent connection to a database, Database Explorer lets you

• Create and maintain database aliases

• View schema data in a database, such as tables, stored procedures, and triggers

• View table objects, such as fields and indexes

• Create, view, and modify data in tables

• Enter SQL statements to directly query any database

• Create and maintain data dictionaries to store attribute sets

See Part II, “Developing database applications” in this manual for details on how to
use C++Builder to create both database client applications and application servers.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-15

B u i l d i n g d i s t r i b u t e d a p p l i c a t i o n s

Building distributed applications
Distributed applications are applications that are deployed to various machines and
platforms and work together, typically over a network, to perform a set of related
functions. For instance, an application for purchasing items and tracking those
purchases for a nationwide company would require individual client applications for
all the outlets, a main server that would process the requests of those clients, and an
interface to a database that stores all the information regarding those transactions. By
building a distributed client application (for instance, a web-based application),
maintaining and updating the individual clients is vastly simplified.

C++Builder provides several options for the implementation model of distributed
applications:

• TCP/IP applications
• COM and DCOM applications
• CORBA applications
• Database applications

Distributing applications using TCP/IP

TCP/IP is a communication protocol that allows you to write applications that
communicate over networks. You can implement virtually any design in your
applications. TCP/IP provides a transport layer, but does not impose any particular
architecture for creating your distributed application.

The growth of the Internet has created an environment where most computers
already have some form of TCP/IP access, which simplifies distributing and setting
up the application.

Applications that use TCP/IP can be message-based distributed applications (such as
Web server applications that service HTTP request messages) or distributed object
applications (such as distributed database applications that communicate using
Windows sockets).

The most basic method of adding TCP/IP functionality to your applications is to use
client or server sockets. C++Builder also provides support for applications that
extend Web servers by creating CGI scripts or DLLs. In addition, C++Builder
provides support for TCP/IP-based database applications.

Using sockets in applications
Two VCL classes, TClientSocket and TServerSocket, allow you to create TCP/IP socket
connections to communicate with other remote applications. For more information
on sockets, see Chapter 31, “Working with sockets.”

3-16 D e v e l o p e r ’ s G u i d e

B u i l d i n g d i s t r i b u t e d a p p l i c a t i o n s

Creating Web server applications
To create a new Web server application, select File|New and select Web Server
Application in the New Items dialog box. Then select the Web server application type:

• ISAPI and NSAPI
• CGI stand-alone
• Win-CGI stand-alone

CGI and Win-CGI applications use more system resources on the server, so complex
applications are better created as ISAPI or NSAPI applications.

For more information on building Web server applications, see Chapter 30, “Creating
Internet server applications.”

ISAPI and NSAPI Web server applications
Selecting this type of application sets up your project as a DLL. ISAPI or NSAPI Web
server applications are DLLs loaded by the Web server. Information is passed to the
DLL, processed, and returned to the client by the Web server.

CGI stand-alone Web server applications
CGI Web server applications are console applications that receive requests from
clients on standard input, processes those requests, and sends back the results to the
server on standard output to be sent to the client.

Win-CGI stand-alone Web server applications
Win-CGI Web server applications are Windows applications that receive requests
from clients from an INI file written by the server and writes the results to a file that
the server sends to the client.

Distributing applications using COM and DCOM

COM is the Component Object Model, a Windows-based distributed object
architecture designed to provide object interoperability using predefined routines
called interfaces. COM applications use objects that are implemented by a different
process or, if you use DCOM, on a separate machine.

COM and DCOM
C++Builder has classes and wizards that make it easy to create the essential elements
of a COM, OLE, or ActiveX application. Using C++Builder to create COM-based
applications offers a wide range of possibilities, from improving software design by
using interfaces internally in an application, to creating objects that can interact with
other COM-based API objects on the system, such as the Win95 Shell extensions and
DirectX multimedia support.

For more information on COM and Active X controls, see Chapter 32, “Overview of
COM technologies,” Chapter 37, “Creating an ActiveX control,” and “Distributing a
client application as an ActiveX control” on page 15-26.

For more information on DCOM, see “Using DCOM connections” on page 15-9.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-17

U s i n g d a t a m o d u l e s a n d r e m o t e d a t a m o d u l e s

MTS and COM+
COM applications can be augmented with special services for managing objects in a
large distributed environment. These services include transaction services, security,
and resource management supplied by Microsoft Transaction Server (MTS) (for
versions of Windows prior to Windows 2000) or COM+ (for Windows 2000 and
later).

For more information on MTS and COM+, see Chapter 38, “Creating MTS or COM+
objects” and “Using transactional data modules” on page 15-5.

Distributing applications using CORBA

Common Object Request Broker Architecture (CORBA) is a method of using
distributed objects in applications. The CORBA standard is used on many platforms,
so writing CORBA applications allows you to make use of programs that are not
running on a Windows machine.

Like COM, CORBA is a distributed object architecture, meaning that client
applications can make use of objects that are implemented on a remote server.

For more information on CORBA, see Chapter 29, “Writing CORBA applications.”

Distributing database applications

C++Builder provides support for creating distributed database applications using
the MIDAS technology. This powerful technology includes a coordinated set of
components that allow you to build a wide variety of multi-tiered database
applications. Distributed database applications can be built on a variety of
communications protocols, including DCOM, TCP/IP, and OLEnterprise.

For more information about building distributed database applications, see
Chapter 15, “Creating multi-tiered applications.”

Distributing database applications often requires you to distribute the Borland
Database Engine (BDE) in addition to the application files. For information on
deploying the BDE, see “Deploying database applications” on page 12-4.

Using data modules and remote data modules
A data module is like a special form that contains nonvisual components. All the
components in a data module could be placed on ordinary forms alongside visual
controls. But if you plan on reusing groups of database and system objects, or if you
want to isolate the parts of your application that handle database connectivity and
business rules, then data modules provide a convenient organizational tool.

There are two types of data module: standard and remote. To create a single- or
two-tiered application, use a standard data module. If you have the Enterprise
edition of C++Builder and are creating a multi-tiered application, you can add a

3-18 D e v e l o p e r ’ s G u i d e

U s i n g d a t a m o d u l e s a n d r e m o t e d a t a m o d u l e s

remote data module to your application server; see “Adding a remote data module to
an application server project” on page 3-19.

Creating and editing data modules

To create a data module, choose File|New and double-click on Data Module.
C++Builder opens an empty data module in the Data Module Designer, displays the
unit file for the new module in the Code editor, and adds the module to the current
project. When you reopen an existing data module, C++Builder displays its
components in the Data Module Designer.

The Data Module Designer is divided into two panes. The left pane displays a
hierarchical tree view of the components in the module. The right pane has two tabs:
Components and Data Diagram. The Components page shows the components as
they would appear on a form. The Data Diagram page shows a graphical
representation of internal relationships among the components, such as master-detail
links and lookup fields.

Figure 3.1 A simple data module

You can add components to a data module by selecting them on the Component
palette and clicking in the Tree or Components view of the Data Module Designer.
When a component is selected in the Data Module Designer, you can edit its
properties in the Object Inspector just as you would if the component were on a form.
For more information about the Data Module Designer, see the online Help.

Creating business rules in a data module
In a data module’s unit file, you can write methods, including event handlers for the
components in the module, as well as global routines that encapsulate business rules.
For example, you might write a procedure to perform month-, quarter-, or year-end
bookkeeping; you could call such a procedure from an event handler for a
component in the module or from any unit that uses the module.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-19

U s i n g t h e O b j e c t R e p o s i t o r y

Accessing a data module from a form

To associate visual controls on a form with a data module, you must first add the
data module’s header file to the form’s cpp file. You can do this in several ways:

• In the Code editor, open the form’s unit file and include the data module’s header
file using the #include directive.

• Choose File|Include Unit Hdr, then enter the name of the module or pick it from
the list box in the Use Unit dialog.

• Double-click on a TTable or TQuery component in the data module to open the
Fields editor. From the Fields editor, drag any fields onto your form. C++Builder
prompts you to confirm that you want to add the module to the form, then creates
controls (such as edit boxes) for the fields.

Adding a remote data module to an application server project

Some versions of C++Builder allow you to add remote data modules to application
server projects. A remote data module has an interface that clients in a multi-tiered
application can access across networks. To add a remote data module to a project,
choose File|New, select the Multitier page in the New Items dialog box, and
double-click the desired type of module (Remote Data Module, MTS Data Module, or
CORBA Data Module) to open the Remote Data Module wizard. Once you add a
remote data module to a project, you use it just like a standard data module.

For more information about multi-tiered database applications, see Chapter 15,
“Creating multi-tiered applications.”

Using the Object Repository
The Object Repository (Tools|Repository) makes it easy share forms, dialog boxes,
frames, and data modules. It also provides templates for new projects and wizards
that guide the user through the creation of forms and projects. The repository is
maintained in BCB.DRO (by default in the BIN directory), a text file that contains
references to the items that appear in the Repository and New Items dialogs.

Sharing items within a project

You can share items within a project without adding them to the Object Repository.
When you open the New Items dialog box (File|New), you’ll see a page tab with the
name of the current project. This page lists all the forms, dialog boxes, and data
modules in the project. You can derive a new item from an existing item and
customize it as needed.

3-20 D e v e l o p e r ’ s G u i d e

U s i n g t h e O b j e c t R e p o s i t o r y

Adding items to the Object Repository

You can add your own projects, forms, frames, and data modules to those already
available in the Object Repository. To add an item to the Object Repository,

1 If the item is a project or is in a project, open the project.

2 For a project, choose Project|Add To Repository. For a form or data module,
right-click the item and choose Add To Repository.

3 Type a description, title, and author.

4 Decide which page you want the item to appear on in the New Items dialog box,
then type the name of the page or select it from the Page combo box. If you type
the name of a page that doesn’t exist, C++Builder creates a new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.

6 Choose OK.

Sharing objects in a team environment

You can share objects with your workgroup or development team by making a
repository available over a network. To use a shared repository, all team members
must select the same Shared Repository directory in the Environment Options dialog:

1 Choose Tools|Environment Options.

2 On the Preferences page, locate the Shared Repository panel. In the Directory edit
box, enter the directory where you want to locate the shared repository. Be sure to
specify a directory that’s accessible to all team members.

The first time an item is added to the repository, C++Builder creates a BCB.DRO file
in the Shared Repository directory if one doesn’t exist already.

Using an Object Repository item in a project

To access items in the Object Repository, choose File|New. The New Items dialog
appears, showing all the items available. Depending on the type of item you want to
use, you have up to three options for adding the item to your project:

• Copy
• Inherit
• Use

Copying an item
Choose Copy to make an exact copy of the selected item and add the copy to your
project. Future changes made to the item in the Object Repository will not be
reflected in your copy, and alterations made to your copy will not affect the original
Object Repository item.

Copy is the only option available for project templates.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 3-21

U s i n g t h e O b j e c t R e p o s i t o r y

Inheriting an item
Choose Inherit to derive a new class from the selected item in the Object Repository
and add the new class to your project. When you recompile your project, any changes
that have been made to the item in the Object Repository will be reflected in your
derived class, in addition to changes you make to the item in your project. Changes
made to your derived class do not affect the shared item in the Object Repository.

Inherit is available for forms, dialog boxes, and data modules, but not for project
templates. It is the only option available for reusing items within the same project.

Using an item
Choose Use when you want the selected item itself to become part of your project.
Changes made to the item in your project will appear in all other projects that have
added the item with the Inherit or Use option. Select this option with caution.

The Use option is available for forms, dialog boxes, and data modules.

Using project templates

Templates are predesigned projects that you can use as starting points for your own
work. To create a new project from a template,

1 Choose File|New to display the New Items dialog box.

2 Choose the Projects tab.

3 Select the project template you want and choose OK.

4 In the Select Directory dialog, specify a directory for the new project’s files.

C++Builder copies the template files to the specified directory, where you can modify
them. The original project template is unaffected by your changes.

Modifying shared items

If you modify an item in the Object Repository, your changes will affect all future
projects that use the item as well as existing projects that have added the item with
the Use or Inherit option. To avoid propagating changes to other projects, you have
several alternatives:

• Copy the item and modify it in your current project only.

• Copy the item to the current project, modify it, then add it to the Repository under
a different name.

• Create a component, DLL, component template, or frame from the item. If you
create a component or DLL, you can share it with other developers.

3-22 D e v e l o p e r ’ s G u i d e

U s i n g t h e O b j e c t R e p o s i t o r y

Specifying a default project, new form, and main form

By default, when you choose File|New Application or File|New Form, C++Builder
displays a blank form. You can change this behavior by reconfiguring the Repository:

1 Choose Tools|Repository

2 If you want to specify a default project, select the Projects page and choose an item
under Objects. Then select the New Project check box.

3 If you want to specify a default form, select a Repository page (such as Forms),
them choose a form under Objects. To specify the default new form (File|New
Form), select the New Form check box. To specify the default main form for new
projects, select the Main Form check box.

4 Click OK.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-1

C h a p t e r

4
Chapter4Developing the application

user interface
With C++Builder, you create a user interface (UI) by selecting components from the
Component palette and dropping them onto forms.

Understanding TApplication, TScreen, and TForm
TApplication, TScreen, and TForm are VCL classes that form the backbone of all
C++Builder applications by controlling the behavior of your project. The TApplication
class forms the foundation of a Windows application by providing properties and
methods that encapsulate the behavior of a standard Windows program. TScreen is
used at runtime to keep track of forms and data modules that have been loaded as
well as system specific information such as screen resolution and what fonts are
available for display. Instances of the TForm class are the building blocks of your
application’s user interface. The windows and dialog boxes of your application are
based on TForm.

Using the main form

TForm is the key class for creating Windows GUI applications.

The first form you create and save in a project becomes, by default, the project’s main
form, which is the first form created at runtime. As you add forms to your projects,
you might decide to designate a different form as your application’s main form. Also,
specifying a form as the main form is an easy way to test it at runtime, because unless
you change the form creation order, the main form is the first form displayed in the
running application.

4-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g T A p p l i c a t i o n , T S c r e e n , a n d T F o r m

To change the project main form,

1 Choose Project|Options and select the Forms page.

2 In the Main Form combo box, select the form you want as the project main form
and choose OK.

Now if you run the application, your new main form choice is displayed.

Adding additional forms

To add an additional form to your project, select File|New Form. You can see all
your project’s forms and their associated units listed in the Project Manager (View|
Project Manager).

Linking forms
Adding a form to a project adds a reference to it in the project file, but not to any
other units in the project. Before you can write code that references the new form,
you need to add a reference to it in the referencing forms’ unit files. This is called form
linking.

A common reason to link forms is to provide access to the components in that form.
For example, you’ll often use form linking to enable a form that contains data-aware
components to connect to the data-access components in a data module.

To link a form to another form,

1 Select the form that needs to refer to another.
2 Choose File|Include Unit Hdr.
3 Select the name of the form unit for the form to be referenced.
4 Choose OK.

Linking a form to another just means that one form unit contains the header for the
other’s form unit, meaning that the linked form and its components are now in scope
for the linking form.

Hiding the main form

You can prevent the main form from displaying when your application first starts up.
To do so, you must use the global Application variable (described in the next topic).

To hide the main form at startup,

1 Choose Project|View Source to display the main project file.

2 Add the following lines after the call to Application->CreateForm() and before the
call to Application->Run().

Application->ShowMainForm = false;
Form1->Visible = false; // the name of your main form may differ

Note You can set the form’s Visible property to false using the Object Inspector at design
time rather than setting it at runtime as shown above.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-3

U n d e r s t a n d i n g T A p p l i c a t i o n , T S c r e e n , a n d T F o r m

Working at the application level

The global variable Application, of type TApplication, is in every VCL-based Windows
application. Application encapsulates your application as well as providing many
functions that occur in the background of the program. For instance, Application
would handle how you would call a help file from the menu of your program.
Understanding how TApplication works is more important to a component writer
than to developers of stand-alone applications, but you should set the options that
Application handles in the Project|Options Application page when you create a
project.

In addition, Application receives many events that apply to the application as a whole.
For example, the OnActivate event lets you perform actions when the application first
starts up, the OnIdle event lets you perform background processes when the
application is not busy, the OnMessage event lets you intercept Windows messages,
and so on. Although you can’t use the IDE to examine the properties and events of
the global Application variable, another component, TApplicationEvents, intercepts the
events and lets you supply event-handlers using the IDE.

Handling the screen

An global variable of type TScreen called Screen is created when you create a project.
Screen encapsulates the state of the screen on which your application is running.
Common tasks performed by Screen include specifying the look of the cursor, the
size of the window in which your application is running, the list of fonts available to
the screen device, and multiple screen behavior. If your application runs on multiple
monitors, Screen maintains a list of monitors and their dimensions so that you can
effectively manage the layout of your user interface.

Managing layout

At its simplest, you control the layout of your user interface by how you place
controls in your forms. The placement choices you make are reflected in the control’s
Top, Left, Width, and Height properties. You can change these values at runtime to
change the position and size of the controls in your forms.

Controls have a number of other properties, however, that allow them to
automatically adjust to their contents or containers. This allows you to lay out your
forms so that the pieces fit together into a unified whole.

Two properties affect how a control is positioned and sized in relation to its parent.
The Align property lets you force a control to fit perfectly within its parent along a
specific edge or filling up the entire client area after any other controls have been
aligned. When the parent is resized, the controls aligned to it are automatically
resized and remain positioned so that they fit against a particular edge.

If you want to keep a control positioned relative to a particular edge of its parent, but
don’t want it to necessarily touch that edge or be resized so that it always runs along
the entire edge, you can use the Anchors property.

4-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m e s s a g e s

If you want to ensure that a control does not grow too big or too small, you can use
the Constraints property. Constraints lets you specify the control’s maximum height,
minimum height, maximum width, and minimum width. Set these to limit the size
(in pixels) of the control’s height and width. For example, by setting the MinWidth
and MinHeight of the constraints on a container object, you can ensure that child
objects are always visible.

The value of Constraints propagates through the parent/child hierarchy so that an
object’s size can be constrained because it contains aligned children that have size
constraints. Constraints can also prevent a control from being scaled in a particular
dimension when its ChangeScale method is called.

TControl introduces a protected event, OnConstrainedResize, of type
TConstrainedResizeEvent:

void __fastcall (__closure *TConstrainedResizeEvent)(System::TObject* Sender, int &MinWidth,
int &MinHeight, int &MaxWidth, int &MaxHeight);

This event allows you to override the size constraints when an attempt is made to
resize the control. The values of the constraints are passed as var parameters which
can be changed inside the event handler. OnConstrainedResize is published for
container objects (TForm, TScrollBox, TControlBar, and TPanel). In addition,
component writers can use or publish this event for any descendant of TControl.

Controls that have contents that can change in size have an AutoSize property that
causes the control to adjust its size to its font or contained objects.

Working with messages
A message is a notification that some event has occurred that is sent by Windows to
an application. The message itself is a record passed to a control by Windows. For
instance, when you click a mouse button on a dialog box, Windows sends a message
to the active control and the application containing that control reacts to this new
event. If the click occurs over a button, the OnClick event could be activated upon
receipt of the message. If the click occurs just in the form, the application can ignore
the message.

The record type passed to the application by Windows is called a TMsg. Windows
predefines a constant for each message, and these values are stored in the message
field of the TMsg record. Each of these constants begin with the letters wm.

The VCL automatically handles messages unless you override the message handling
system and create your own message handlers. For more information on messages
and message handling, see “Understanding the message-handling system” on
page 45-1, “Changing message handling” on page 45-3, and “Creating new message
handlers” on page 45-5.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-5

M o r e d e t a i l s o n f o r m s

More details on forms
When you create a form in C++Builder from the IDE, C++Builder automatically
creates the form in memory by including code in the WinMain() function. Usually,
this is the desired behavior and you don’t have to do anything to change it. That is,
the main window persists through the duration of your program, so you would
likely not change the default C++Builder behavior when creating the form for your
main window.

However, you may not want all your application’s forms in memory for the duration
of the program execution. That is, if you do not want all your application’s dialogs in
memory at once, you can create the dialogs dynamically when you want them to
appear.

Forms can be modal or modeless. Modal forms are forms with which the user must
interact before switching to another form (for example, a dialog box requiring user
input). Modeless forms, though, are windows that are displayed until they are either
obscured by another window or until they are closed or minimized by the user.

Controlling when forms reside in memory

By default, C++Builder automatically creates the application’s main form in memory
by including the following code in the application’s WinMain() function:

Application ->CreateForm(__classid(TForm1), &Form1);

This function creates a global variable with the same name as the form. So, every
form in an application has an associated global variable. This variable is a pointer to
an instance of the form’s class and is used to reference the form while the application
is running. Any source code (.cpp) file that includes the form’s header (.h) file can
access the form via this variable.

Because the form is added to the WinMain(), the form appears when the program is
invoked and it exists in memory for the duration of the application.

Displaying an auto-created form
If you choose to create a form at startup, and do not want it displayed until sometime
later during program execution, the form’s event handler uses the ShowModal
method to display the form that is already loaded in memory:

void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{

ResultsForm->ShowModal();
}

In this case, since the form is already in memory, there is no need to create another
instance or destroy that instance.

Creating forms dynamically
You may not always want all your application’s forms in memory at once. To reduce
the amount of memory required at load time, you may want to create some forms

4-6 D e v e l o p e r ’ s G u i d e

M o r e d e t a i l s o n f o r m s

only when you need to use them. For example, a dialog box needs to be in memory
only during the time a user interacts with it.

To create a form at a different stage during execution using the IDE, you:

1 Select the File|New Form from the Component bar to display the new form.

2 Remove the form from the Auto-create forms list of the Project Options|Forms
page.

This removes the form’s invocation in WinMain(). As an alternative, you can
manually remove the following line from WinMain():

Application->CreateForm(__classid(TResultsForm), &ResultsForm);

3 Invoke the form when desired by using the form’s Show method, if the form is
modeless, or ShowModal method, if the form is modal.

An event handler for the main form must create an instance of the result form and
destroy it. One way to invoke the result form is to use the global variable as follows.
Note that ResultsForm is a modal form so the handler uses the ShowModal method.

void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{

ResultsForm = new TResultsForm(this);
 ResultsForm->ShowModal();
 delete ResultsForm;
}

The event handler in the example deletes the form after it is closed, so the form
would need to be recreated using new if you needed to use ResultsForm elsewhere in
the application. If the form were displayed using Show you could not delete the form
within the event handler because Show returns while the form is still open.

Note If you create a form using the new operator, be sure to check that the form is not in
the Auto-create forms list on the Project Options|Forms page. Specifically, if you
create the new form without deleting the form of the same name from the list,
C++Builder creates the form at startup and this event-handler creates a new instance
of the form, overwriting the reference to the auto-created instance. The auto-created
instance still exists, but the application can no longer access it. After the
event-handler terminates, the global variable no longer points to a valid form. Any
attempt to dereference the global variable will likely crash the application.

Creating modeless forms such as windows
You must guarantee that reference variables for modeless forms exist for as long as
the form is in use. This means that these variables should have global scope. In most
cases, you use the global reference variable that was created when you made the
form (the variable name that matches the name property of the form). If your
application requires additional instances of the form, declare separate global
variables (of type pointer to the form class) for each instance.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-7

M o r e d e t a i l s o n f o r m s

Using a local variable to create a form instance
A safer way to create a unique instance of a modal form is to use a local variable in the
event handler as a reference to a new instance. If a local variable is used, it does not
matter whether ResultsForm is auto-created or not. The code in the event handler
makes no reference to the global form variable. For example:

void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{

TResultsForm *rf = new TResultsForm(this);// rf is local form instance
 rf->ShowModal();
 delete rf; // form safely destroyed
}

Notice how the global instance of the form is never used in this version of the event
handler.

Typically, applications use the global instances of forms. However, if you need a new
instance of a modal form, and you use that form in a limited, discrete section of the
application, such as a single function, a local instance is usually the safest and most
efficient way of working with the form.

Of course, you cannot use local variables in event handlers for modeless forms
because they must have global scope to ensure that the forms exist for as long as the
form is in use. Show returns as soon as the form opens, so if you used a local variable,
the local variable would go out of scope immediately.

Passing additional arguments to forms

Typically, you create forms for your application from within the IDE. When created
this way, the forms have a constructor that takes one argument, Owner, which is a
pointer to the owner of the form being created. (The owner is the calling application
object or form object.) Owner can be NULL.

To pass additional arguments to a form, create a separate constructor and instantiate
the form using the new operator. The example form class below shows an additional
constructor, with the extra argument whichButton. This new constructor is added to
the form class manually.

class TResultsForm : public TForm
{
__published: // IDE-managed Components
 TLabel *ResultsLabel;
 TButton *OKButton;
 void __fastcall OKButtonClick(TObject *Sender);
private: // User declarations
public: // User declarations
 virtual __fastcall TResultsForm(TComponent* Owner);
 virtual __fastcall TResultsForm(int whichButton, TComponent* Owner);

};

4-8 D e v e l o p e r ’ s G u i d e

M o r e d e t a i l s o n f o r m s

Here’s the manually coded constructor that passes the additional argument,
whichButton. This constructor uses the whichButton parameter to set the Caption
property of a Label control on the form.

void__fastcall TResultsForm::TResultsForm(int whichButton, TComponent* Owner)
 : TForm(Owner)
{

switch (whichButton) {
case 1:

ResultsLabel->Caption = "You picked the first button!";
break;

case 2:
ResultsLabel->Caption = "You picked the second button!";
break;

case 3:
ResultsLabel->Caption = "You picked the third button!";

}
}

When creating an instance of a form with multiple constructors, you can select the
constructor that best suits your purpose. For example, the following OnClick handler
for a button on a form calls creates an instance of TResultsForm that uses the extra
parameter:

void __fastcall TMainMForm::SecondButtonClick(TObject *Sender)
{

TResultsForm *rf = new TResultsForm(2, this);
rf->ShowModal();
delete rf;

}

Retrieving data from forms

Most real-world applications consist of several forms. Often, information needs to be
passed between these forms. Information can be passed to a form by means of
parameters to the receiving form’s constructor, or by assigning values to the form’s
properties. The way you get information from a form depends on whether the form is
modal or modeless.

Retrieving data from modeless forms
You can easily extract information from modeless forms by calling public member
functions of the form or by querying properties of the form. For example, assume an
application contains a modeless form called ColorForm that contains a listbox called
ColorListBox with a list of colors (“Red”, “Green”, “Blue”, and so on). The selected
color name string in ColorListBox is automatically stored in a property called

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-9

M o r e d e t a i l s o n f o r m s

CurrentColor each time a user selects a new color. The class declaration for the form is
as follows:

class TColorForm : public TForm
{

__published: // IDE-managed Components
TListBox *ColorListBox;
void __fastcall ColorListBoxClick(TObject *Sender);

private: // User declarations
String getColor();
void setColor(String);
String curColor;

public: // User declarations
virtual __fastcall TColorForm(TComponent* Owner);
__property String CurrentColor = {read=getColor, write=setColor};

};

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the
CurrentColor property each time a new item in the listbox is selected. The event
handler gets the string from the listbox containing the color name and assigns it to
CurrentColor. The CurrentColor property uses the setter function, setColor, to store the
actual value for the property in the private data member curColor:

void __fastcall TColorForm::ColorListBoxClick(TObject *Sender)
{

int index = ColorListBox->ItemIndex;
if (index >= 0) {// make sure a color is selected

CurrentColor = ColorListBox->Items->Strings[index];
}
else // no color selected

CurrentColor = "";
}
//---
void TColorForm::setColor(String s)
{

curColor = s;
}

Now suppose that another form within the application, called ResultsForm, needs to
find out which color is currently selected on ColorForm whenever a button (called
UpdateButton) on ResultsForm is clicked. The OnClick event handler for UpdateButton
might look like this:

void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)
{

if (ColorForm) {// verify ColorForm exists
String s = ColorForm->CurrentColor;
// do something with the color name string

}
}

4-10 D e v e l o p e r ’ s G u i d e

M o r e d e t a i l s o n f o r m s

The event handler first verifies that ColorForm exists by checking whether the point is
NULL. It then gets the value of ColorForm’s CurrentColor property. The query of
CurrentColor calls its getter function getColor which is shown here:

String TColorForm::getColor()
{

return curColor;
}

Alternatively, if ColorForm’s getColor function were public, another form could get the
current color without using the CurrentColor property (for example, String s =
ColorForm->getColor();). In fact, there’s nothing to prevent another form from getting
the ColorForm’s currently selected color by checking the listbox selection directly:

String s = ColorListBox->Items->Strings[ColorListBox->ItemIndex];

However, using a property makes the interface to ColorForm very straightforward
and simple. All a form needs to know about ColorForm is to check the value of
CurrentColor.

Retrieving data from modal forms
Just like modeless forms, modal forms often contain information needed by other
forms. The most common example is form A launches modal form B. When form B is
closed, form A needs to know what the user did with form B to decide how to
proceed with the processing of form A. If form B is still in memory, it can be queried
through properties or member functions just as in the modeless forms example
above. But how do you handle situations where form B is deleted from memory
upon closing? Since a form does not have an explicit return value, you must preserve
important information from the form before it is destroyed.

To illustrate, consider a modified version of the ColorForm form that is designed to be
a modal form. The class declaration is as follows:

class TColorForm : public TForm
{

__published: // IDE-managed Components
TListBox *ColorListBox;
TButton *SelectButton;
TButton *CancelButton;
void __fastcall CancelButtonClick(TObject *Sender);
void __fastcall SelectButtonClick(TObject *Sender);

private: // User declarations
String* curColor;

public: // User declarations
virtual __fastcall TColorForm(TComponent* Owner);
virtual __fastcall TColorForm(String* s, TComponent* Owner);

};

The form has a listbox called ColorListBox with a list of names of colors. When
pressed, the button called SelectButton makes note of the currently selected color
name in ColorListBox then closes the form. CancelButton is a button that simply closes
the form.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-11

M o r e d e t a i l s o n f o r m s

Note that a user-defined constructor was added to the class that takes a String*
argument. Presumably, this String* points to a string that the form launching
ColorForm knows about. The implementation of this constructor is as follows:

void__fastcall TColorForm::TColorForm(String* s, TComponent* Owner)
 : TForm(Owner)
{

curColor = s;
*curColor = "";

}

The constructor saves the pointer to a private data member curColor and initializes
the string to an empty string.

Note To use the above user-defined constructor, the form must be explicitly created. It
cannot be auto-created when the application is started. For details, see “Controlling
when forms reside in memory” on page 4-5.

In the application, the user selects a color from the listbox and presses SelectButton to
save the choice and close the form. The OnClick event handler for SelectButton might
look like this:

void __fastcall TColorForm::SelectButtonClick(TObject *Sender)
{

int index = ColorListBox->ItemIndex;
if (index >= 0)

*curColor = ColorListBox->Items->Strings[index];
Close();

}

Notice that the event handler stores the selected color name in the string address that
was passed to the constructor.

To use ColorForm effectively, the calling form must pass the constructor a pointer to
an existing string. For example, assume ColorForm was instantiated by a form called
ResultsForm in response to a button called UpdateButton on ResultsForm being clicked.
The event handler would look as follows:

void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)
{

String s;
GetColor(&s);
if (s != "") {

// do something with the color name string
}
else {

// do something else because no color was picked
}

}
//---
void TResultsForm::GetColor(String *s)
{

ColorForm = new TColorForm(s, this);
ColorForm->ShowModal();
delete ColorForm;
ColorForm = 0; // NULL the pointer

}

4-12 D e v e l o p e r ’ s G u i d e

R e u s i n g c o m p o n e n t s a n d g r o u p s o f c o m p o n e n t s

UpdateButtonClick creates a String called s. The address of s is passed to the GetColor
function which creates ColorForm, passing the pointer to s as an argument to the
constructor. As soon as ColorForm is closed it is deleted, but the color name that was
selected is still preserved in s, assuming that a color was selected. Otherwise, s
contains an empty string which is a clear indication that the user exited ColorForm
without selecting a color.

This example uses one string variable to hold information from the modal form. Of
course, more complex objects can be used depending on the need. Keep in mind that
you should always provide a way to let the calling form know if the modal form was
closed without making any changes or selections (such as having s default to an
empty string).

Reusing components and groups of components
C++Builder offers several ways to save and reuse work you’ve done with VCL
components:

• Component templates provide a simple, quick way of configuring and saving
groups of components. See “Creating and using component templates” on
page 4-12.

• You can save forms, data modules, and projects in the Repository. This gives you a
central database of reusable elements and lets you use form inheritance to
propagate changes.

• You can save frames on the Component palette or in the repository. Frames use
form inheritance and can be embedded into forms or other frames. See “Working
with frames” on page 4-13.

• Creating a custom component is the most complicated way of reusing code, but it
offers the greatest flexibility. See Chapter 39, “Overview of component creation.”

Creating and using component templates
You can create templates that are made up of one or more components. After
arranging components on a form, setting their properties, and writing code for them,
save them as a component template. Later, by selecting the template from the
Component palette, you can place the preconfigured components on a form in a
single step; all associated properties and event-handling code are added to your
project at the same time.

Once you place a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

To create a component template,

1 Place and arrange components on a form. In the Object Inspector, set their
properties and events as desired.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-13

W o r k i n g w i t h f r a m e s

2 Select the components. The easiest way to select several components is to drag the
mouse over all of them. Gray handles appear at the corners of each selected
component.

3 Choose Component|Create Component Template.

4 Specify a name for the component template in the Component Name edit box. The
default proposal is the component type of the first component selected in step 2
followed by the word “Template”. For example, if you select a label and then an
edit box, the proposed name will be “TLabelTemplate”. You can change this name,
but be careful not to duplicate existing component names.

5 In the Palette Page edit box, specify the Component palette page where you want
the template to reside. If you specify a page that does not exist, a new page is
created when you save the template.

6 Under Palette Icon, select a bitmap to represent the template on the palette. The
default proposal will be the bitmap used by the component type of the first
component selected in step 2. To browse for other bitmaps, click Change. The
bitmap you choose must be no larger than 24 pixels by 24 pixels.

7 Click OK.

To remove templates from the Component palette, choose Component|Configure
Palette.

Working with frames
A frame (TFrame), like a form, is a container for other components. It uses the same
ownership mechanism as forms for automatic instantiation and destruction of the
components on it, and the same parent-child relationships for synchronization of
component properties. In some ways, however, a frame is more like a customized
component than a form. Frames can be saved on the Component palette for easy
reuse, and they can be nested within forms, other frames, or other container objects.
After a frame is created and saved, it continues to function as a unit and to inherit
changes from the components (including other frames) it contains. When a frame is
embedded in another frame or form, it continues to inherit changes made to the
frame from which it derives.

Creating frames

To create an empty frame, choose File|New Frame, or choose File|New and
double-click on Frame. You can now drop components (including other frames) onto
your new frame.

It is usually best—though not necessary—to save frames as part of a project. If you
want to create a project that contains only frames and no forms, choose File|New
Application, close the new form and unit without saving them, then choose File|
New Frame and save the project.

4-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f r a m e s

Note When you save frames, avoid using the default names Unit1, Project1, and so forth,
since these are likely to cause conflicts when you try to use the frames later.

At design time, you can display any frame included in the current project by
choosing View|Forms and selecting a frame. As with forms and data modules, you
can toggle between the Form Designer and the frame’s .DFM file by right-clicking
and choosing View as Form or View as Text.

Adding frames to the Component palette
Frames are added to the Component palette as component templates. To add a frame
to the Component palette, open the frame in the Form Designer (you cannot use a
frame embedded in another component for this purpose), right-click on the frame,
and choose Add to Palette. When the Component Template Information dialog
opens, select a name, palette page, and icon for the new template.

Using and modifying frames

To use a frame in an application, you must place it, directly or indirectly, on a form.
You can add frames directly to forms, to other frames, or to other container objects
such as panels and scroll boxes.

The Form Designer provides two ways to add a frame to an application:

• Select a frame from the Component palette and drop it onto a form, another frame,
or another container object. If necessary, the Form Designer asks for permission to
include the frame’s unit file in your project.

• Select Frames from the Standard page of the Component palette and click on a
form or another frame. A dialog appears with a list of frames that are already
included in your project; select one and click OK.

When you drop a frame onto a form or other container, C++Builder declares a new
class that descends from the frame you selected. (Similarly, when you add a new
form to a project, C++Builder declares a new class that descends from TForm.) This
means that changes made later to the original (ancestor) frame propagate to the
embedded frame, but changes to the embedded frame do not propagate backward to
the ancestor.

Suppose, for example, that you wanted to assemble a group of data-access
components and data-aware controls for repeated use, perhaps in more than one
application. One way to accomplish this would be to collect the components into a
component template; but if you started to use the template and later changed your
mind about the arrangement of the controls, you would have to go back and
manually alter each project where the template was placed.

If, on the other hand, you put your database components into a frame, later changes
would need to be made in only one place; changes to an original frame automatically
propagate to its embedded descendants when your projects are recompiled. At the
same time, you are free to modify any embedded frame without affecting the original
frame or other embedded descendants of it. The only limitation on modifying
embedded frames is that you cannot add components to them.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-15

C r e a t i n g a n d m a n a g i n g m e n u s

Figure 4.1 A frame with data-aware controls and a data source component

In addition to simplifying maintenance, frames can help you to use resources more
efficiently. For example, to use a bitmap or other graphic in an application, you might
load the graphic into the Picture property of a TImage control. If, however, you use
the same graphic repeatedly in one application, each Image object you place on a
form will result in another copy of the graphic being added to the form’s resource
file. (This is true even if you set TImage::Picture once and save the Image control as a
component template.) A better solution is to drop the Image object onto a frame, load
your graphic into it, then use the frame where you want the graphic to appear. This
results in smaller form files and has the added advantage of letting you change the
graphic everywhere it occurs simply by modifying the Image on the original frame.

Sharing frames

You can share a frame with other developers in two ways:

• Add the frame to the Object Repository.
• Distribute the frame’s unit (.CPP and .h) and form (.DFM) files.

To add a frame to the Repository, open any project that includes the frame,
right-click in the Form Designer, and choose Add to Repository.

If you send a frame’s unit and form files to other developers, they can open them and
add them to the Component palette. If the frame has other frames embedded in it,
they will have to open it as part of a project.

Creating and managing menus
Menus provide an easy way for your users to execute logically grouped commands.
The Menu Designer enables you to easily add a menu—either predesigned or custom
tailored—to your form. You simply add a menu component to the form, open the
Menu Designer, and type menu items directly into the Menu Designer window. You
can add or delete menu items, or drag and drop them to rearrange them during
design time.

You don’t even need to run your program to see the results—your design is
immediately visible in the form, appearing just as it will during runtime. Your code
can also change menus at runtime, to provide more information or options to the
user.

4-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

This chapter explains how to use the Menu Designer to design menu bars and
pop-up (local) menus. It discusses the following ways to work with menus at design
time and runtime:

• Opening the Menu Designer
• Building menus
• Editing menu items in the Object Inspector
• Using the Menu Designer context menu
• Using menu templates
• Saving a menu as a template
• Adding images to menu items

Figure 4.2 Menu terminology

Opening the Menu Designer

To start using the Menu Designer, first add either a MainMenu or PopupMenu
component to your form. Both menu components are located on the Standard page of
the Component palette.

Figure 4.3 MainMenu and PopupMenu components

A MainMenu component creates a menu that’s attached to the form’s title bar. A
PopupMenu component creates a menu that appears when the user right-clicks in
the form. Pop-up menus do not have a menu bar.

To open the Menu Designer, select a menu component on the form, and then choose
from one of the following methods:

• Double-click the menu component.

• From the Properties page of the Object Inspector, select the Items property, and
then either double-click [Menu] in the Value column, or click the ellipsis (...)
button.

The Menu Designer appears, with the first (blank) menu item highlighted in the
Designer, and the Caption property selected in the Object Inspector.

Accelerator key

Separator bar

Menu items on the menu bar

Menu items in a menu list

Keyboard shortcut

MainMenu component

PopupMenu component

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-17

C r e a t i n g a n d m a n a g i n g m e n u s

Figure 4.4 Menu Designer for a pop-up menu

Figure 4.5 Menu Designer for a main menu

Building menus

You add a menu component to your form, or forms, for every menu you want to
include in your application. You can build each menu structure entirely from scratch,
or you can start from one of the predesigned menu templates.

Placeholder for first
menu item

Title bar (shows Name property
for Menu component)

Menu bar

Placeholder for
menu item

Menu Designer displays WYSIWYG
menu items as you build the menu.

A TMenuItem object is created and the
Name property set to the menu item
Caption you specify (minus any illegal
characters and plus a numeric suffix).

4-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

This section discusses the basics of creating a menu at design time. For more
information about menu templates, see “Using menu templates” on page 4-24.

Naming menus
As with all components, when you add a menu component to the form, C++Builder
gives it a default name; for example, MainMenu1. You can give the menu a more
meaningful name that follows Object Pascal naming conventions.

C++Builder adds the menu name to the form’s type declaration, and the menu name
then appears in the Component list.

Naming the menu items
In contrast to the menu component itself, you need to explicitly name menu items as
you add them to the form. You can do this in one of two ways:

• Directly type in the value for the Name property.

• Type in the value for the Caption property first, and let C++Builder derive the
Name property from the caption.

For example, if you give a menu item a Caption property value of File, C++Builder
assigns the menu item a Name property of File1. If you fill in the Name property
before filling in the Caption property, C++Builder leaves the Caption property
blank until you type in a value.

Note If you enter characters in the Caption property that are not valid for C++
identifiers, C++Builder modifies the Name property accordingly. For example, if
you want the caption to start with a number, C++Builder precedes the number
with a character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items
shown appear in the same menu bar.

As with the menu component, C++Builder adds any menu item names to the form’s
type declaration, and those names then appear in the Component list.

Table 4.1 Sample captions and their derived names

Component caption Derived name Explanation

&File File1 Removes ampersand

&File (2nd occurrence) File2 Numerically orders duplicate items

1234 N12341 Adds a preceding letter and numerical order

1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived name

$@@@# N1 Removes all non-standard characters, adding
preceding letter and numerical order

– (hyphen) N2 Numerical ordering of second occurrence of
caption with no standard characters

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-19

C r e a t i n g a n d m a n a g i n g m e n u s

Adding, inserting, and deleting menu items
The following procedures describe how to perform the basic tasks involved in
building your menu structure. Each procedure assumes you have the Menu Designer
window open.

To add menu items at design time,

1 Select the position where you want to create the menu item.

If you’ve just opened the Menu Designer, the first position on the menu bar is
already selected.

2 Begin typing to enter the caption. Or enter the Name property first by specifically
placing your cursor in the Object Inspector and entering a value. In this case, you
then need to reselect the Caption property and enter a value.

3 Press Enter.

The next placeholder for a menu item is selected.

If you entered the Caption property first, use the arrow keys to return to the menu
item you just entered. You’ll see that C++Builder has filled in the Name property
based on the value you entered for the caption. (See “Naming the menu items” on
page 4-18.)

4 Continue entering values for the Name and Caption properties for each new item
you want to create, or press Esc to return to the menu bar.

Use the arrow keys to move from the menu bar into the menu, and to then move
between items in the list; press Enter to complete an action. To return to the menu
bar, press Esc.

To insert a new, blank menu item,

1 Place the cursor on a menu item.

2 Press Ins.

Menu items are inserted to the left of the selected item on the menu bar, and above
the selected item in the menu list.

To delete a menu item or command,

1 Place the cursor on the menu item you want to delete.
2 Press Del.

Note You cannot delete the default placeholder that appears below the item last entered in
a menu list, or next to the last item on the menu bar. This placeholder does not
appear in your menu at runtime.

Adding separator bars
Separator bars insert a line between menu items. You can use separator bars to
indicate groupings within the menu list, or simply to provide a visual break in a list.

To make the menu item a separator bar, type a hyphen (–) for the caption.

4-20 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Specifying accelerator keys and keyboard shortcuts
Accelerator keys enable the user to access a menu command from the keyboard by
pressing Alt+ the appropriate letter, indicated in your code by the preceding
ampersand. The letter after the ampersand appears underlined in the menu.

C++Builder automatically checks for duplicate accelerators and adjusts them at
runtime. This ensures that menus built dynamically at runtime contain no duplicate
accelerators and that all menu items have an accelerator. You can turn off this
automatic checking by setting the AutoHotkeys property of a menu item to maManual.

To specify an accelerator,

• Add an ampersand in front of the appropriate letter.

For example, to add a Save menu command with the S as an accelerator key, type
&Save.

Keyboard shortcuts enable the user to perform the action without the menu directly,
by typing in the shortcut key combination.

To specify a keyboard shortcut,

• Use the Object Inspector to enter a value for the ShortCut property, or select a key
combination from the drop-down list.

This list is only a subset of the valid combinations you can type in.

When you add a shortcut, it appears next to the menu item caption.

Caution Keyboard shortcuts, unlike accelerator keys, are not checked automatically for
duplicates. You must ensure uniqueness yourself.

Creating submenus
Many application menus contain drop-down lists that appear next to a menu item to
provide additional, related commands. Such lists are indicated by an arrow to the
right of the menu item. C++Builder supports as many levels of such submenus as
you want to build into your menu.

Organizing your menu structure this way can save vertical screen space. However,
for optimal design purposes you probably want to use no more than two or three
menu levels in your interface design. (For pop-up menus, you might want to use only
one submenu, if any.)

Figure 4.6 Nested menu structures

Menu item on
the menu bar

Menu item in
a menu list

Nested
menu item

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-21

C r e a t i n g a n d m a n a g i n g m e n u s

To create a submenu,

1 Select the menu item under which you want to create a submenu.

2 Press Ctrl→ to create the first placeholder, or right-click and choose Create
Submenu.

3 Type a name for the submenu item, or drag an existing menu item into this
placeholder.

4 Press Enter, or ↓, to create the next placeholder.

5 Repeat steps 3 and 4 for each item you want to create in the submenu.

6 Press Esc to return to the previous menu level.

Creating submenus by demoting existing menus
You can create a submenu by inserting a menu item from the menu bar (or a menu
template) between menu items in a list. When you move a menu into an existing
menu structure, all its associated items move with it, creating a fully intact submenu.
This pertains to submenus as well—moving a menu item into an existing submenu
just creates one more level of nesting.

Moving menu items
During design time, you can move menu items simply by dragging and dropping.
You can move menu items along the menu bar, or to a different place in the menu
list, or into a different menu entirely.

The only exception to this is hierarchical: you cannot demote a menu item from the
menu bar into its own menu; nor can you move a menu item into its own submenu.
However, you can move any item into a different menu, no matter what its original
position is.

While you are dragging, the cursor changes shape to indicate whether you can
release the menu item at the new location. When you move a menu item, any items
beneath it move as well.

To move a menu item along the menu bar,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new location.

2 Release the mouse button to drop the menu item at the new location.

To move a menu item into a menu list,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.

2 Drag the menu item into the list, releasing the mouse button to drop the menu
item at the new location.

4-22 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Adding images to menu items
Images can help users navigate in menus by matching glyphs and images to menu
item action, similar to toolbar images. To add an image to a menu item:

1 Drop a TMainMenu or TPopupMenu object on a form.

2 Drop a TImageList object on the form.

3 Open the ImageList editor by double clicking on the TImageList object.

4 Click Add to select the bitmap or bitmap group you want to use in the menu. Click
OK.

5 Set the TMainMenu or TPopupMenu object’s Images property to the ImageList you
just created.

6 Create your menu items and submenu items as described above.

7 Select the menu item you want to have an image in the Object Inspector and set the
ImageIndex property to the corresponding number of the image in the ImageList
(the default value for ImageIndex is -1, which doesn’t display an image).

Note Use images that are 16 by 16 pixels for proper display in the menu. Although you can
use other sizes for the menu images, alignment and consistency problems may result
when using images greater than or smaller than 16 by 16 pixels.

Viewing the menu
You can view your menu in the form at design time without first running your
program code. (Pop-up menu components are visible in the form at design time, but
the pop-up menus themselves are not. Use the Menu Designer to view a pop-up
menu at design time.)

To view the menu,

1 If the form is visible, click the form, or from the View menu, choose the form
whose menu you want to view.

2 If the form has more than one menu, select the menu you want to view from the
form’s Menu property drop-down list.

The menu appears in the form exactly as it will when you run the program.

Editing menu items in the Object Inspector

This section has discussed how to set several properties for menu items—for
example, the Name and Caption properties—by using the Menu Designer.

The section has also described how to set menu item properties, such as the ShortCut
property, directly in the Object Inspector, just as you would for any component
selected in the form.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-23

C r e a t i n g a n d m a n a g i n g m e n u s

When you edit a menu item by using the Menu Designer, its properties are still
displayed in the Object Inspector. You can switch focus to the Object Inspector and
continue editing the menu item properties there. Or you can select the menu item
from the Component list in the Object Inspector and edit its properties without ever
opening the Menu Designer.

To close the Menu Designer window and continue editing menu items,

1 Switch focus from the Menu Designer window to the Object Inspector by clicking
the properties page of the Object Inspector.

2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing
properties for the selected menu item. To edit another menu item, select it from the
Component list.

Using the Menu Designer context menu

The Menu Designer context menu provides quick access to the most common Menu
Designer commands, and to the menu template options. (For more information about
menu templates, refer to “Using menu templates” on page 4-24.)

To display the context menu, right-click the Menu Designer window, or press Alt+F10
when the cursor is in the Menu Designer window.

Commands on the context menu
The following table summarizes the commands on the Menu Designer context menu.

Table 4.2 Menu Designer context menu commands

Menu command Action

Insert Inserts a placeholder above or to the left of the cursor.

Delete Deletes the selected menu item (and all its sub-items, if any).

Create Submenu Creates a placeholder at a nested level and adds an arrow to the right of
the selected menu item.

Select Menu Opens a list of menus in the current form. Double-clicking a menu name
opens the designer window for the menu.

Save As Template Opens the Save Template dialog box, where you can save a menu for
future reuse.

Insert From
Template

Opens the Insert Template dialog box, where you can select a template to
reuse.

Delete Templates Opens the Delete Templates dialog box, where you can choose to delete
any existing templates.

Insert From
Resource

Opens the Insert Menu from Resource file dialog box, where you can
choose an .MNU file to open in the current form.

4-24 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Switching between menus at design time
If you’re designing several menus for your form, you can use the Menu Designer
context menu or the Object Inspector to easily select and move among them.

To use the context menu to switch between menus in a form,

1 Right-click in the Menu Designer and choose Select Menu.

The Select Menu dialog box appears.

This dialog box lists all the menus associated with the form whose menu is
currently open in the Menu Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or
edit.

To use the Object Inspector to switch between menus in a form,

1 Give focus to the form whose menus you want to choose from.

2 From the Component list, select the menu you want to edit.

3 On the Properties page of the Object Inspector, select the Items property for this
menu, and then either click the ellipsis button, or double-click [Menu].

Using menu templates

C++Builder provides several predesigned menus, or menu templates, that contain
frequently used commands. You can use these menus in your applications without
modifying them (except to write code), or you can use them as a starting point,
customizing them as you would a menu you originally designed yourself. Menu
templates do not contain any event handler code.

The menu templates shipped with C++Builder are stored in the BIN subdirectory in a
default installation. These files have a .DMT (C++Builder menu template) extension.

You can also save as a template any menu that you design using the Menu Designer.
After saving a menu as a template, you can use it as you would any predesigned
menu. If you decide you no longer want a particular menu template, you can delete it
from the list.

Figure 4.7 Select Menu dialog box

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-25

C r e a t i n g a n d m a n a g i n g m e n u s

To add a menu template to your application,

1 Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the
context menu.)

The Insert Template dialog box opens, displaying a list of available menu templates.

2 Select the menu template you want to insert, then press Enter or choose OK.

This inserts the menu into your form at the cursor’s location. For example, if your
cursor is on a menu item in a list, the menu template is inserted above the selected
item. If your cursor is on the menu bar, the menu template is inserted to the left of
the cursor.

To delete a menu template,

1 Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the
context menu.)

The Delete Templates dialog box opens, displaying a list of available templates.

2 Select the menu template you want to delete, and press Del.

C++Builder deletes the template from the templates list and from your hard disk.

Saving a menu as a template
Any menu you design can be saved as a template so you can use it again. You can use
menu templates to provide a consistent look to your applications, or use them as a
starting point which you then further customize.

The menu templates you save are stored in your BIN subdirectory as .DMT files.

To save a menu as a template,

1 Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like;
everything in the active Menu Designer window will be saved as one reusable menu.

Figure 4.8 Sample Insert Template dialog box for menus

4-26 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

2 Right-click in the Menu Designer and choose Save As Template.

The Save Template dialog box appears.

3 In the Template Description edit box, type a brief description for this menu, and
then choose OK.

The Save Template dialog box closes, saving your menu design and returning you
to the Menu Designer window.

Note The description you enter is displayed only in the Save Template, Insert Template,
and Delete Templates dialog boxes. It is not related to the Name or Caption property
for the menu.

Naming conventions for template menu items and event handlers
When you save a menu as a template, C++Builder does not save its Name property,
since every menu must have a unique name within the scope of its owner (the form).
However, when you insert the menu as a template into a new form by using the
Menu Designer, C++Builder then generates new names for it and all of its items.

For example, suppose you save a File menu as a template. In the original menu, you
name it MyFile. If you insert it as a template into a new menu, C++Builder names it
File1. If you insert it into a menu with an existing menu item named File1,
C++Builder names it File2.

C++Builder also does not save any OnClick event handlers associated with a menu
saved as a template, since there is no way to test whether the code would be
applicable in the new form. When you generate a new event handler for the menu
template item, C++Builder still generates the event handler name.

You can easily associate items in the menu template with existing OnClick event
handlers in the form.

Figure 4.9 Save Template dialog box for menus

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-27

C r e a t i n g a n d m a n a g i n g m e n u s

Manipulating menu items at runtime

Sometimes you want to add menu items to an existing menu structure while the
application is running, to provide more information or options to the user. You can
insert a menu item by using the menu item’s Add or Insert method, or you can
alternately hide and show the items in a menu by changing their Visible property.
The Visible property determines whether the menu item is displayed in the menu. To
dim a menu item without hiding it, use the Enabled property.

For examples that use the menu item’s Visible and Enabled properties, see “Disabling
menu items” on page 5-9.

In multiple document interface (MDI) and Object Linking and Embedding (OLE)
applications, you can also merge menu items into an existing menu bar. The
following section discusses this in more detail.

Merging menus

For MDI applications, such as the text editor sample application, and for OLE client
applications, your application’s main menu needs to be able to receive menu items
either from another form or from the OLE server object. This is often called merging
menus.

You prepare menus for merging by specifying values for two properties:

• Menu, a property of the form
• GroupIndex, a property of menu items in the menu

Specifying the active menu: Menu property
The Menu property specifies the active menu for the form. Menu-merging operations
apply only to the active menu. If the form contains more than one menu component,
you can change the active menu at runtime by setting the Menu property in code. For
example,

Form1->Menu = SecondMenu;

Determining the order of merged menu items: GroupIndex property
The GroupIndex property determines the order in which the merging menu items
appear in the shared menu bar. Merging menu items can replace those on the main
menu bar, or can be inserted.

The default value for GroupIndex is 0. Several rules apply when specifying a value for
GroupIndex:

• Lower numbers appear first (farther left) in the menu.

For instance, set the GroupIndex property to 0 (zero) for a menu that you always
want to appear leftmost, such as a File menu. Similarly, specify a high number (it
needn’t be in sequence) for a menu that you always want to appear rightmost,
such as a Help menu.

4-28 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

• To replace items in the main menu, give items on the child menu the same
GroupIndex value.

This can apply to groupings or to single items. For example, if your main form has
an Edit menu item with a GroupIndex value of 1, you can replace it with one or
more items from the child form’s menu by giving them a GroupIndex value of 1 as
well.

Giving multiple items in the child menu the same GroupIndex value keeps their
order intact when they merge into the main menu.

• To insert items without replacing items in the main menu, leave room in the
numeric range of the main menu’s items and “plug in” numbers from the child
form.

For example, number the items in the main menu 0 and 5, and insert items from
the child menu by numbering them 1, 2, 3, and 4.

Importing resource files

C++Builder supports menus built with other applications, so long as they are in the
standard Windows resource (.RC) file format. You can import such menus directly
into your C++Builder project, saving you the time and effort of rebuilding menus
that you created elsewhere.

To load existing .RC menu files,

1 In the Menu Designer, place your cursor where you want the menu to appear.

The imported menu can be part of a menu you are designing, or an entire menu in
itself.

2 Right-click and choose Insert From Resource.

The Insert Menu From Resource dialog box appears.

3 In the dialog box, select the resource file you want to load, and choose OK.

The menu appears in the Menu Designer window.

Note If your resource file contains more than one menu, you first need to save each menu
as a separate resource file before importing it.

Designing toolbars and cool bars
A toolbar is a panel, usually across the top of a form (under the menu bar), that holds
buttons and other controls. A cool bar (also called a rebar) is a kind of toolbar that
displays controls on movable, resizable bands. If you have multiple panels aligned to
the top of the form, they stack vertically in the order added.

You can put controls of any sort on a toolbar. In addition to buttons, you may want to
put use color grids, scroll bars, labels, and so on.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-29

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

There are several ways to add a toolbar to a form:

• Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.

• Use a toolbar component (TToolBar) instead of TPanel, and add controls to it.
TToolBar manages buttons and other controls, arranging them in rows and
automatically adjusting their sizes and positions. If you use tool button
(TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons
functionally and provides other display options.

• Use a cool bar (TCoolBar) component and add controls to it. The cool bar displays
controls on independently movable and resizable bands.

How you implement your toolbar depends on your application. The advantage of
using the Panel component is that you have total control over the look and feel of the
toolbar.

By using the toolbar and cool bar components, you are ensuring that your
application has the look and feel of a Windows application because you are using the
native Windows controls. If these operating system controls change in the future,
your application could change as well. Also, since the toolbar and cool bar rely on
common components in Windows, your application requires the COMCTL32.DLL.
Toolbars and cool bars are not supported in WinNT 3.51 applications.

The following sections describe how to

• Add a toolbar and corresponding speed button controls using the panel
component

• Add a toolbar and corresponding tool button controls using the Toolbar
component

• Add a cool bar using the cool bar component

• Respond to clicks

• Add hidden toolbars and cool bars

• Hide and show toolbars and cool bars

Adding a toolbar using a panel component

To add a toolbar to a form using the panel component,

1 Add a panel component to the form (from the Standard page of the Component
palette).

2 Set the panel’s Align property to alTop. When aligned to the top of the form, the
panel maintains its height, but matches its width to the full width of the form’s
client area, even if the window changes size.

3 Add speed buttons or other controls to the panel.

Speed buttons are designed to work on toolbar panels. A speed button usually has no
caption, only a small graphic (called a glyph), which represents the button’s function.

4-30 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Speed buttons have three possible modes of operation. They can

• Act like regular pushbuttons
• Toggle on and off when clicked
• Act like a set of radio buttons

To implement speed buttons on toolbars, do the following:

• Add a speed button to a toolbar panel
• Assign a speed button’s glyph
• Set the initial condition of a speed button
• Create a group of speed buttons
• Allow toggle buttons

Adding a speed button to a panel
To add a speed button to a toolbar panel, place the speed button component (from the
Additional page of the Component palette) on the panel.

The panel, rather than the form, “owns” the speed button, so moving or hiding the
panel also moves or hides the speed button.

The default height of the panel is 41, and the default height of speed buttons is 25. If
you set the Top property of each button to 8, they’ll be vertically centered. The default
grid setting snaps the speed button to that vertical position for you.

Assigning a speed button’s glyph
Each speed button needs a graphic image called a glyph to indicate to the user what
the button does. If you supply the speed button only one image, the button
manipulates that image to indicate whether the button is pressed, unpressed,
selected, or disabled. You can also supply separate, specific images for each state if
you prefer.

You normally assign glyphs to speed buttons at design time, although you can assign
different glyphs at runtime.

To assign a glyph to a speed button at design time,

1 Select the speed button.

2 In the Object Inspector, select the Glyph property.

3 Double-click the Value column beside Glyph to open the Picture Editor and select
the desired bitmap.

Setting the initial condition of a speed button
Speed buttons use their appearance to give the user clues as to their state and
purpose. Because they have no caption, it’s important that you use the right visual
cues to assist users.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-31

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Table 4.3 lists some actions you can set to change a speed button’s appearance:

If your application has a default drawing tool, ensure that its button on the toolbar is
pressed when the application starts. To do so, set its GroupIndex property to a value
other than zero and its Down property to true.

Creating a group of speed buttons
A series of speed buttons often represents a set of mutually exclusive choices. In that
case, you need to associate the buttons into a group, so that clicking any button in the
group causes the others in the group to pop up.

To associate any number of speed buttons into a group, assign the same number to
each speed button’s GroupIndex property.

The easiest way to do this is to select all the buttons you want in the group, and, with
the whole group selected, set GroupIndex to a unique value.

Allowing toggle buttons
Sometimes you want to be able to click a button in a group that’s already pressed and
have it pop up, leaving no button in the group pressed. Such a button is called a
toggle. Use AllowAllUp to create a grouped button that acts as a toggle: click it once,
it’s down; click it again, it pops up.

To make a grouped speed button a toggle, set its AllowAllUp property to true.

Setting AllowAllUp to true for any speed button in a group automatically sets the
same property value for all buttons in the group. This enables the group to act as a
normal group, with only one button pressed at a time, but also allows every button to
be up at the same time.

Adding a toolbar using the toolbar component

The toolbar component (TToolBar) offers button management and display features
that panel components do not. To add a toolbar to a form using the toolbar
component,

1 Add a toolbar component to the form (from the Win32 page of the Component
palette). The toolbar automatically aligns to the top of the form.

2 Add tool buttons or other controls to the bar.

Table 4.3 Setting speed buttons’ appearance

To make a speed button: Set the toolbar’s:

Appear pressed GroupIndex property to a value other than zero and its Down
property to true.

Appear disabled Enabled property to false.

Have a left margin Indent property to a value greater than 0.

4-32 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Tool buttons are designed to work on toolbar components. Like speed buttons, tool
buttons can

• Act like regular pushbuttons
• Toggle on and off when clicked
• Act like a set of radio buttons

To implement tool buttons on a toolbar, do the following:

• Add a tool button
• Assign images to tool buttons
• Set the tool buttons’ appearance
• Create a group of tool buttons
• Allow toggled tool buttons

Adding a tool button
To add a tool button to a toolbar, right-click on the toolbar and choose New Button.

The toolbar “owns” the tool button, so moving or hiding the toolbar also moves or
hides the button. In addition, all tool buttons on the toolbar automatically maintain
the same height and width. You can drop other controls from the Component palette
onto the toolbar, and they will automatically maintain a uniform height. Controls
will also wrap around and start a new row when they do not fit horizontally on the
toolbar.

Assigning images to tool buttons
Each tool button has an ImageIndex property that determines what image appears on
it at runtime. If you supply the tool button only one image, the button manipulates
that image to indicate whether the button is disabled. To assign images to tool
buttons at design time,

1 Select the toolbar on which the buttons appear.

2 In the Object Inspector, assign a TImageList object to the toolbar’s Images property.
An image list is a collection of same-sized icons or bitmaps.

3 Select a tool button.

4 In the Object Inspector, assign an integer to the tool button’s ImageIndex property
that corresponds to the image in the image list that you want to assign to the
button.

You can also specify separate images to appear on the tool buttons when they are
disabled and when they are under the mouse pointer. To do so, assign separate
image lists to the toolbar’s DisabledImages and HotImages properties.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-33

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Setting tool button appearance and initial conditions
Table 4.4 lists some actions you can set to change a tool button’s appearance:

Note Using the Flat property of TToolBar requires version 4.70 or later of COMCTL32.DLL.

To force a new row of controls after a specific tool button, Select the tool button that
you want to appear last in the row and set its Wrap property to true.

To turn off the auto-wrap feature of the toolbar, set the toolbar’s Wrapable property to
false.

Creating groups of tool buttons
To create a group of tool buttons, select the buttons you want to associate and set
their Style property to tbsCheck; then set their Grouped property to true. Selecting a
grouped tool button causes other buttons in the group to pop up, which is helpful to
represent a set of mutually exclusive choices.

Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and
Grouped set to true forms a single group. To break up a group of tool buttons,
separate the buttons with any of the following:

• A tool button whose Grouped property is false.

• A tool button whose Style property is not set to tbsCheck. To create spaces or
dividers on the toolbar, add a tool button whose Style is tbsSeparator or tbsDivider.

• Another control besides a tool button.

Allowing toggled tool buttons
Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is
down; click it again, it pops up. To make a grouped tool button a toggle, set its
AllowAllUp property to true.

As with speed buttons, setting AllowAllUp to true for any tool button in a group
automatically sets the same property value for all buttons in the group.

Table 4.4 Setting tool buttons’ appearance

To make a tool button: Set the toolbar’s:

Appear pressed GroupIndex property to a nonzero value and its Down
property to true.

Appear disabled Enabled property to false.

Have a left margin Indent property to a value greater than 0.

Appear to have “pop-up” borders,
thus making the toolbar appear
transparent

Flat property to true.

4-34 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Adding a cool bar component

The cool bar component—also called a rebar—displays windowed controls on
independently movable, resizable bands. The user can position the bands by
dragging the resizing grips on the left side of each band.

To add a cool bar to a form,

1 Add a cool bar component to the form (from the Win32 page of the Component
palette). The cool bar automatically aligns to the top of the form.

2 Add windowed controls from the Component palette to the bar.

Only components that descend from TWinControl are windowed controls. You can
add graphic controls—such as labels or speed buttons—to the cool bar, but they will
not appear on separate bands.

Note The cool bar component requires version 4.70 or later of COMCTL.DLL.

Setting the appearance of the cool bar
The cool bar component offers several useful configuration options. Table 4.5 lists
some actions you can set to change a tool button’s appearance:

To assign images to individual bands, select the cool bar and double-click on the
Bands property in the Object Inspector. Then select a band and assign a value to its
ImageIndex property.

Responding to clicks

When the user clicks a control, such as a button on a toolbar, the application
generates an OnClick event which you can respond to with an event handler. Since
OnClick is the default event for buttons, you can generate a skeleton handler for the
event by double-clicking the button at design time.

Table 4.5 Setting a cool button’s appearance

To make the cool bar: Set the toolbar’s:

Resize automatically to accommodate the bands it
contains

AutoSize property to true.

Bands maintain a uniform height FixedSize property to true.

Reorient to vertical rather than horizontal Vertical property to true. This changes
the effect of the FixedSize property.

Prevent the Text properties of the bands from
displaying at runtime

ShowText property to false. Each band
in a cool bar has its own Text property.

Remove the border around the bar BandBorderStyle to bsNone.

Keep users from changing the bands’ order at runtime.
(The user can still move and resize the bands.)

FixedOrder to true.

Create a background image for the cool bar Bitmap property to TBitmap object.

Choose a list of images to appear on the left of any band Images property to TImageList object.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-35

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Assigning a menu to a tool button
If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can
associate menu with a specific button:

1 Select the tool button.

2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button’s
DropDownMenu property.

If the menu’s AutoPopup property is set to true, it will appear automatically when the
button is pressed.

Adding hidden toolbars

Toolbars do not have to be visible all the time. In fact, it is often convenient to have a
number of toolbars available, but show them only when the user wants to use them.
Often you create a form that has several toolbars, but hide some or all of them.

To create a hidden toolbar,

1 Add a toolbar, cool bar, or panel component to the form.
2 Set the component’s Visible property to false.

Although the toolbar remains visible at design time so you can modify it, it remains
hidden at runtime until the application specifically makes it visible.

Hiding and showing toolbars

Often, you want an application to have multiple toolbars, but you do not want to
clutter the form with them all at once. Or you may want to let users decide whether
to display toolbars. As with all components, toolbars can be shown or hidden at
runtime as needed.

To hide or show a toolbar at runtime, set its Visible property to false or true,
respectively. Usually you do this in response to particular user events or changes in
the operating mode of the application. To do this, you typically have a close button
on each toolbar. When the user clicks that button, the application hides the
corresponding toolbar.

You can also provide a means of toggling the toolbar. In the following example, a
toolbar of pens is toggled from a button on the main toolbar. Since each click presses
or releases the button, an OnClick event handler can show or hide the Pen toolbar
depending on whether the button is up or down.

void __fastcall TForm1::PenButtonClick(TObject *Sender)
{

PenBar->Visible = PenButton->Down;
}

4-36 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

Using action lists
Action lists let you centralize the response to user commands (actions) for objects
such as menus and buttons that respond to those commands. This section is an
overview of actions and action lists, describing how to use them and how they
interact with their clients and targets.

Action objects

Actions are user commands that operate on target objects. They represent your
application’s response to user input. Typically, an action corresponds to one or more
elements of the user interface, such as menu commands or tool bar buttons. By
centralizing actions using action objects, you can abstract the functions performed by
your application from the user interface. This lets you share common code for
performing actions (for example, when a tool bar button and menu item do the same
thing), as well as providing a single, centralized way to enable and disable actions
depending on the state of your application.

You create actions in the action list editor. These actions are later connected to client
controls via their action links. Following are descriptions of each type of component
in the action/action list mechanism:

• An action list (TActionList) maintains a list of actions (TAction). Action lists
provide the design-time user interface for working with actions.

• An action (TAction) is the implementation of an action, such as copying
highlighted text, on a target, such as an edit control. Typically the target is the
control that has focus. A client control triggers its corresponding action in
response to a user command (such as a mouse click). The StdActns unit contains
classes derived from TAction that implement the basic Edit and Window menu
commands (actions) found in most Windows applications.

• A client of an action is typically a menu item or a button (TToolButton,
TSpeedButton, TMenuItem, TButton, TCheckBox, TRadioButton, and so on). When the
client receives a user command (such as a mouse click), it initiates its associated
action. Typically a client’s Click event is associated with its action’s Execute event.

• An action link (TActionLink) maintains the connection between actions and clients.
Action links determine which action, if any, is currently applicable for a given
client.

• An action target is usually a control, such as a rich edit, a memo, or a data control.
The DBActns unit, for example, contains classes that implement actions specific to
data set controls. Component writers can create their own actions specific to the
needs of the controls they design and use, and then package those units to create
more modular applications. Not all actions have a target. For example, the
standard help actions ignore the target and simply launch the help system.

The following figure shows the relationship of these objects. In this diagram,
ActionList1 is the action list, Cut1 is the action it contains, SpeedButton1 is the client of
Cut1, and Memo1 is the target.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-37

U s i n g a c t i o n l i s t s

Figure 4.10 Action list mechanism

Unlike actions, action lists, action clients, and action targets, action links are not
components. Client controls include an internal action link (available through the
protected ActionLink property) that represents the connection you establish when
you set the client’s Action property to an action. Because the action link is not a
component that you can place on a form, it is indicated by a white rectangle in the
diagram. The action link associates the SpeedButton1 client to the Cut1 action
contained in ActionList1.

The VCL includes TAction, TActionList, and TActionLink type classes for working
with Action lists. By unit, these are

• ActnList: TAction, TActionLink, TActionList, TContainedAction, TCustomAction, and
TCustomActionList

• Classes: TBasicAction and TBasicActionLink

• Controls: TControlActionLink and TWinControlActionLink

• ComCtrls: TToolButtonActionLink

• Menus.: TMenuActionLink

• StdCtrls: TButtonActionLink

There are also two units, StdActns and DBActns, that contain auxiliary classes that
implement specific, commonly used standard Windows and data set actions. These
are described in “Pre-defined action classes” on page 4-41. Many of the VCL controls
include properties (such as Action) and methods (such as ExecuteAction) that enable
them to be used as action clients and targets.

Using Actions

You can add an action list to your forms or data modules from the standard page of
the Component Palette. Double-click the action list to display the Action List editor,
where you can add, delete, and rearrange actions.

The properties of each action (other than the Name property) represent values that are
applied to the properties of its client controls. In the Object Inspector, set the

ActionList1 contains:
Cut1

Action Linked to
Cut1

4-38 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

properties for each action. The Name property identifies the action, and the other
properties and events (Caption, Checked, Enabled, HelpContext, Hint, ImageIndex,
ShortCut, Visible, and Execute) correspond to the properties and events of its client
controls. The client’s corresponding properties are typically, but not necessarily, the
same name as the corresponding client property. For example, an action’s Checked
property corresponds to a TToolButton’s Down property.

Centralizing code
All controls include a public property called Action, which allows them to act as the
client of an action object. Controls that typically act as the client of an action, such as
TToolButton, TSpeedButton, TMenuItem, and TButton, publish this property so that
you can set up the client/action relationship at design time.

When you set the Action property to one of the actions in an action list, the values of
the corresponding properties in the action are copied to those of the control. All
properties and events in common with the action object (except Name and Tag) are
dynamically linked to the control. Thus, for example, instead of duplicating the code
that disables buttons and menu items, you can centralize this code in an action object,
and when the action is disabled, all corresponding buttons and menu items are
disabled.

Note If you are using a tool button or a menu item, you must manually set the Images
property of the corresponding toolbar or menu component to the Images property of
the action list. This is true even though the ImageIndex property is dynamically linked
to the client.

Linking properties
When you set the client’s Action property, you establish the link between the client
control and an action. This link is managed by the client’s action link, which
associates specific properties of the control with the corresponding properties of the
action. When the action changes, the action link updates the client’s properties.

You can selectively override the link between a specific property on the client and the
corresponding property of the associated action. When you change the client
control’s property at design time, you effectively sever the link for that property only.
The client property is changed, but the corresponding property on the action and any
other clients associated with that action remains unaffected.

Applications that use actions do not need to work with the action link explicitly. It
automatically handles the dynamic link between the client’s properties and those of
the action. Individual client control classes use different classes of action link, each of
which represents a set of properties that can be linked to the action.

Note You can determine what properties of a client control are linked to its action by
checking the VCL reference for the action link class.

Executing actions
When a client component or control is clicked, the OnExecute event occurs for it’s
associated action. For example, the following code illustrates the OnExecute event

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-39

U s i n g a c t i o n l i s t s

handler for an action that toggles the visibility of a toolbar when the action is
executed:

void __fastcall TForm1::Action1Execute(TObject *Sender)
{

// Toggle Toolbar1’s visibility
ToolBar1->Visible = !ToolBar1->Visible;

}

 When the user clicks on the client control, the client generates an OnExecute event on
the associated action. If you assign an event handler to the action, the response to the
user click is straightforward. Unless you are sharing the event handler with other
actions or writing custom, reusable actions, this is all you need to do: Add an action
to the action list, set its properties, write an OnExecute event handler, and link it to all
relevant components by setting their Action property.

If you want to write a single event handler that includes the response for multiple
actions, however, you can write an event handler that responds at the action list or
even the application level. There is a dispatching sequence C++Builder follows when
trying to find a way to respond to the user action.

Consider, for example, the components illustrated in Figure 4.11. The Speedbutton1
client is linked to the Cut1 action. (Speedbutton1’s Action property is Cut1). Figure 4.11
illustrates the dispatching sequence that is followed when the user clicks
Speedbutton1 with the mouse.
Figure 4.11 Execution cycle for an action

Clicking on Speedbutton1 initiates the following execution cycle:
1 Because Speedbutton1’s Action property is set to Cut1, Cut1 receives an OnExecute

event. If Cut1 has an OnExecute event handler, processing stops there.
If Cut1 has no OnExecute event handler, processing continues:

SpeedButton1 Cut1 ActionList1

Application

ActionList1.OnExecute

Application.OnActionExecute

Cut1.Execute

ActionList1.ExecuteAction

Application.ExecuteAction

Cut1.OnExecute

CM_ACTIONEXECUTE

Application

LEGEND

Events

Objects

Calls

Returns

4-40 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

2 Because Cut1 does not have an OnExecute event handler, it defers to its action list
(ActionList1) for processing the event. ActionList1 receives an OnExecute event.
(The action list’s OnExecute event occurs when any of its contained actions do not
handle an event in their OnExecute event handler.) The action list’s event handler
has a parameter Handled, that returns false by default. If the handler is assigned
and handles the event, it returns true, and the processing sequence ends here. For
example:

void __fastcall TForm1::ActionList1ExecuteAction(TBasicAction *Action, bool &Handled)
{

// Prevent execution of actions contained by ActionList1
 Handled = true;
}

If execution is not handled, at this point, in the action list event handler, then
processing continues:

3 The global Application object receives an OnActionExecute event. (This event occurs
when any action list in the application fails to handle an event.) Like the action
list’s OnExecute event handler, the OnActionExecute handler has a parameter
Handled that returns false by default. If the handler is assigned and handles the
event, it returns true, and the processing sequence ends here. For example:

void __fastcall TForm1::ApplicationExecuteAction(TBasicAction *Action, bool &Handled)
{

// Prevent execution of all actions in Application
 Handled = true;
}

4 This ends the sequence by which you can respond to action’s using event
handlers. However, pre-defined action classes, such as Cut1, do not stop here. You
can use built-in actions or create your own action classes that know how to operate
on specific target classes (such as edit controls). When no event handler is found at
any level, the application next tries to find a target on which to execute the action.
When the application locates a target that the action knows how to address, it
invokes the action. See “How actions find their targets” on page 4-43 for details on
how the application locates a target that can respond to a pre-defined action class.

Updating actions
When the application is idle, the OnUpdate event occurs for every action that is linked
to a control or menu item that is showing. This provides an opportunity for
applications to execute centralized code for enabling and disabling, checking and
unchecking, and so on. For example, the following code illustrates the OnUpdate
event handler for an action that is “checked” when the toolbar is visible:

void __fastcall TForm1::Action1Update(TObject *Sender)
{

// Indicate whether ToolBar1 is currently visible
((TAction *)Sender)->Checked = ToolBar1->Visible;

}

See also the RichEdit demo.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-41

U s i n g a c t i o n l i s t s

The dispatching cycle for updating actions follows the same sequence as the
execution cycle in “Executing actions” on page 4-38.

Warning Do not add time-intensive code to the OnUpdate event handler. This executes
whenever the application is idle. If the event handler takes too much time, it will
adversely affect performance of the entire application.

Pre-defined action classes

The Action List editor lets you use pre-defined action classes that automatically
perform certain common actions.

In addition, component writers can use the classes in the StdActns and DBActns units
as examples for deriving their own action classes to implement behaviors specific to
certain controls or components. The base classes for these specialized actions
(TEditAction, TWindowAction) generally override HandlesTarget, UpdateTarget, and
other methods to limit the target for the action to a specific class of objects. The
descendant classes typically override ExecuteTarget to perform a specialized task.

Standard edit actions
The standard edit actions are designed to be used with an edit control target.
TEditAction is the base class for descendants that each override the ExecuteTarget
method to implement copy, cut, and paste tasks by using the Windows Clipboard.

• TEditAction ensures that the target control is a TCustomEdit class (or descendant).

• TEditCopy copies highlighted text to the Clipboard.

• TEditCut cuts highlighted text from the target to the Clipboard.

• TEditPaste pastes text from the Clipboard to the target and ensures that the
Clipboard is enabled for the text format.

• TEditDelete deletes the highlighted text.

• TEditSelectAll selects all the text in the target edit control.

• TEditUndo undoes the last edit made to the target edit control.

Standard Window actions
The standard Window actions are designed to be used with forms as targets in an
MDI application. TWindowAction is the base class for descendants that each override
the ExecuteTarget method to implement arranging, cascading, closing, tiling, and
minimizing MDI child forms.

• TWindowAction ensures that the target control is a TForm class and checks whether
the form has MDI child forms.

• TWindowArrange arranges the icons of minimized MDI child forms.

• TWindowCascade cascades the MDI child forms.

• TWindowClose closes the active MDI child form.

4-42 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

• TWindowMinimizeAll minimizes all of the MDI child forms.

• TWindowTileHorizontal arranges MDI child forms so that they are all the same size,
tiled horizontally.

• TWindowTileVertical arranges MDI child forms so that they are all the same size,
tiled vertically.

Standard Help actions
The standard Help actions are designed to be used with any target. THelpAction is the
base class for descendants that each override the ExecuteTarget method to pass the
command on to WinHelp.

• THelpAction ensures that the global Application variable is available, so that
commands can be handled using its HelpCommand method.

• THelpContents brings up the Help Topics dialog on the tab (Contents, Index or
Find) that was last used.

• THelpTopicSearch brings up the Help Topics dialog on the Index tab.

• THelpOnHelp brings up the Microsoft help file on how to use Help. Note that this
file is an HTML help file on recent versions of Windows, and does not describe the
WinHelp system.

DataSet actions
The standard dataset actions are designed to be used with a dataset component
target. TDataSetAction is the base class for descendants that each override the
ExecuteTarget and UpdateTarget methods to implement navigation and editing of the
target.

The TDataSetAction introduces a DataSource property which ensures actions are
performed on that dataset. If DataSource is NULL, the currently focused data-aware
control is used. For details, refer to Figure 4.12, “Action targets,” on page 4-43.

• TDataSetAction ensures that the target is a TDataSource class and has an associated
data set.

• TDataSetCancel cancels the edits to the current record, restores the record display
to its condition prior to editing, and turns off Insert and Edit states if they are
active.

• TDataSetDelete deletes the current record and makes the next record the current
record.

• TDataSetEdit puts the dataset into Edit state so that the current record can be
modified.

• TDataSetFirst sets the current record to the first record in the dataset.

• TDataSetInsert inserts a new record before the current record, and sets the dataset
into Insert and Edit states.

• TDataSetLast sets the current record to the last record in the dataset.

• TDataSetNext sets the current record to the next record.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-43

U s i n g a c t i o n l i s t s

• TDataSetPost writes changes in the current record to the dataset.

• TDataSetPrior sets the current record to the previous record.

• TDataSetRefresh refreshes the buffered data in the associated dataset.

Writing action components

You can always use actions that you create for a specific application by setting its
properties in the object inspector. For such actions to do anything, you must write an
event handler to respond at some point in the dispatching sequence described in
“Executing actions” on page 4-38.

When you use the pre-defined actions that ship with C++Builder, you do not need to
write any event handlers, because the target components know how to respond to
the action.

It is also possible to create your own pre-defined action classes. When you write your
own action classes, you can build in the ability to execute on certain target classes of
object. Then, you can use your custom actions in the same way you use pre-defined
action classes. That is, when the action can recognize and apply itself to a target class,
you can simply assign the action to a client control, and it acts on the target with no
need to write an event handler.

How actions find their targets
“Executing actions” on page 4-38 describes the execution cycle that occurs when a
user invokes an action. If there is no event handler assigned to respond to the action,
either at the action, action list, or application level, then the application tries to
identify a target object to which the action can apply itself. Figure 4.12 illustrates the
process by which the application searches for a target object. The pre-defined action
classes described previously as well as any action class that you create, follow this
path of execution:

Figure 4.12 Action targets

CM_ACTIONEXECUTE
Application Form1

Memo1.ExecuteAction(Cut1)Memo1

Cut1

Cut1.HandlesTarget(Memo1)yes

Cut1.ExecuteTarget(Memo1):

LEGEND

Events

Objects

Calls

Returns

Form1.CM_ACTIONEXECUTE

4-44 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

1 The application receives a CM_ACTIONEXECUTE message, which indicates that
an action was not handled by any event handler. The application dispatches it to
the Screen’s ActiveForm. If there is no active form, the application sends the
message to it’s MainForm.

2 Form1 (in this example, the active form) first looks for the active control (Memo1) as
a potential target. The active control (Memo1) calls the action’s HandlesTarget
method, to determine whether it is an appropriate target for the action. If Memo1 is
not an appropriate target, HandlesTarget returns false and the active control
informs the application that it is not a valid target.

3 In this case, Memo1 is an appropriate target for Cut1, so HandlesTarget returns true.
Memo1 then calls Cut1::ExecuteTarget passing itself as a parameter.

4 Since Cut1 is an instance of a TEditCut action, the action calls Memo1’s
CutToClipboard method:

void __fastcall TEditCut::ExecuteTarget(TObject *Target)
{

((TCustomEdit *)Target)->CutToClipboard();
}

If the active control were not an appropriate target, processing would continue as
follows:

• Form1 checks whether it is an appropriate target itself. If Form1 is an appropriate
target (for example, a form can be a target for the TWindowCascade action) then it
calls Cut1’s ExecuteTarget method, passing itself as a parameter.

• If Form1 is not an appropriate target, the application iterates through every visible
control on Form1 until a target is found.

Note If the action involved is a descendant of TCustomAction, then it is automatically
disabled for you when it can’t be handled and its DisableIfNoHandler property is true.

Registering actions
When you write your own actions, you can register and unregister them with the IDE
by using the global routines in the ActnList unit:

extern PACKAGE void __fastcall RegisterActions(const AnsiString CategoryName, TMetaClass*
const * AClasses, const int AClasses_Size, TMetaClass* Resource);

extern PACKAGE void __fastcall UnRegisterActions(TMetaClass* const * AClasses, const int
AClasses_Size);

When you call RegisterActions, the actions you register appear in the Action List
editor for use by your applications. You can supply a category name to organize your
actions, as well as a Resource parameter that lets you supply default property values.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 4-45

U s i n g a c t i o n l i s t s

For example, the following code registers actions with the IDE in the MyAction unit:

namespace MyAction
{

void __fastcall PACKAGE Register()
{

// code goes here to register any components and editors
 TMetaClass classes[2] = {__classid(TMyAction1), __classid(TMyAction2)};
 RegisterActions("MySpecialActions", classes, 1, NULL);
 }
}

When you call UnRegisterActions, the actions no longer appear in the Action List
editor.

Writing action list editors
You can write your own component editor for action lists. If you do, assign your own
procedures to the four global procedure variables in the ActnList unit:

extern PACKAGE Classes::TBasicAction* __fastcall (*CreateActionProc)(Classes::TComponent*
AOwner, TMetaClass* ActionClass);

extern PACKAGE void __fastcall (*EnumRegisteredActionsProc)(TEnumActionProc Proc, void *
Info);

extern PACKAGE void __fastcall (*RegisterActionsProc)(const AnsiString CategoryName,
TMetaClass* const * AClasses, const int AClasses_Size, TMetaClass* Resource);

extern PACKAGE void __fastcall (*UnRegisterActionsProc)(TMetaClass* const * AClasses, const
int AClasses_Size);

You only need to reassign these if you want to manage the registration,
unregistration, creation, and enumeration procedures of actions differently from the
default behavior. If you do, write your own handlers and assign them to these
variables within the initialization section of your design-time unit.

4-46 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h c o n t r o l s 5-1

C h a p t e r

5
Chapter5Working with controls

Controls are visual components that the user can interact with at runtime. This
chapter describes a variety of features common to many controls.

Implementing drag-and-drop in controls
Drag-and-drop is often a convenient way for users to manipulate objects. You can let
users drag an entire control, or let them drag items from one control—such as a list
box or tree view—into another.

• Starting a drag operation
• Accepting dragged items
• Dropping items
• Ending a drag operation
• Customizing drag and drop with a drag object
• Changing the drag mouse pointer

Starting a drag operation

Every control has a property called DragMode that determines how drag operations
are initiated. If DragMode is dmAutomatic, dragging begins automatically when the
user presses a mouse button with the cursor on the control. Because dmAutomatic can
interfere with normal mouse activity, you may want to set DragMode to dmManual
(the default) and start the dragging by handling mouse-down events.

To start dragging a control manually, call the control’s BeginDrag method. BeginDrag
takes a Boolean parameter called Immediate. If you pass true, dragging begins
immediately. If you pass false, dragging does not begin until the user moves the
mouse a short distance. Calling BeginDrag(false) allows the control to accept mouse
clicks without beginning a drag operation.

5-2 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g d r a g - a n d - d r o p i n c o n t r o l s

You can place other conditions on whether to begin dragging, such as checking
which mouse button the user pressed, by testing the parameters of the mouse-down
event before calling BeginDrag. The following code, for example, handles a mouse-
down event in a file list box by initiating a drag operation only if the left mouse
button was pressed.

void __fastcall TFMForm::FileListBox1MouseDown(TObject *Sender,
TMouseButton Button, TShiftState Shift, int X, int Y)

{
if (Button == mbLeft)// drag only if left button pressed
{

TFileListBox *pLB = (TFileListBox *)Sender; // cast to TFileListBox
if (pLB->ItemAtPos(Point(X,Y), true) >= 0) // is there an item here?
pLB->BeginDrag(false); // if so, drag it

}
}

Accepting dragged items

When the user drags something over a control, that control receives an OnDragOver
event, at which time it must indicate whether it can accept the item if the user drops it
there. The drag cursor changes to indicate whether the control can accept the
dragged item. To accept items dragged over a control, attach an event handler to the
control’s OnDragOver event.

The drag-over event has a parameter called Accept that the event handler can set to
true if it will accept the item. If Accept is true, the application sends a drag-drop event
to the control.

The drag-over event has other parameters, including the source of the dragging and
the current location of the mouse cursor, that the event handler can use to determine
whether to accept the drop. In the following example, a directory tree view accepts
dragged items only if they come from a file list box.

void __fastcall TForm1::TreeView1DragOver(TObject *Sender, TObject *Source,
int X, int Y, TDragState State, bool &Accept)

{
if (Source->InheritsFrom(__classid(TFileListBox)))

Accept = true;
}

Dropping items

If a control indicates that it can accept a dragged item, it needs to handle the item
should it be dropped. To handle dropped items, attach an event handler to the
OnDragDrop event of the control accepting the drop. Like the drag-over event, the
drag-drop event indicates the source of the dragged item and the coordinates of the
mouse cursor over the accepting control. The latter parameter allows you to monitor
the path an item takes while being dragged; you might, for example, want to use this
information to change the color of components as they are passed over.

W o r k i n g w i t h c o n t r o l s 5-3

I m p l e m e n t i n g d r a g - a n d - d r o p i n c o n t r o l s

In the following example, a directory tree view, accepting items dragged from a file
list box, responds by moving files to the directory on which they are dropped.

void __fastcall TForm1::TreeView1DragDrop(TObject *Sender, TObject *Source,
int X, int Y){

if (Source->InheritsFrom(__classid(TFileListBox)))
{

TTreeNode *pNode = TreeView1->GetNodeAt(X,Y); // pNode is drop target
AnsiString NewFile = pNode->Text + AnsiString("/") +
ExtractFileName(FileList->FileName); // build file name for drop target

MoveFileEx(FileList->FileName.c_str(), NewFile.c_str(),
MOVEFILE_REPLACE_EXISTING | MOVEFILE_COPY_ALLOWED); // move the file

}
}

Ending a drag operation

A drag operation ends when the item is either successfully dropped or released over
a control that cannot accept it. At this point an end-drag event is sent to the control
from which the item was dragged. To enable a control to respond when items have
been dragged from it, attach an event handler to the control’s OnEndDrag event.

The most important parameter in an OnEndDrag event is called Target, which
indicates which control, if any, accepts the drop. If Target is null, it means no control
accepts the dragged item. The OnEndDrag event also includes the coordinates on the
receiving control.

In this example, a file list box handles an end-drag event by refreshing its file list.

void __fastcall TFMForm::FileList1EndDrag(TObject *Sender, TObject *Target, int X, int Y)
if (Target)

FileList1->Update();
};

Customizing drag and drop with a drag object

You can use a TDragObject descendant to customize an object’s drag-and-drop
behavior. The standard drag-over and drag-drop events indicate the source of the
dragged item and the coordinates of the mouse cursor over the accepting control. To
get additional state information, derive a custom drag object from TDragObject and
override its virtual methods. Create the custom drag object in the OnStartDrag event.

Normally, the source parameter of the drag-over and drag-drop events is the control
that starts the drag operation. If different kinds of control can start an operation
involving the same kind of data, the source needs to support each kind of control.
When you use a descendant of TDragObject, however, the source is the drag object
itself; if each control creates the same kind of drag object in its OnStartDrag event, the
target needs to handle only one kind of object. The drag-over and drag-drop events
can tell if the source is a drag object, as opposed to the control, by calling the
IsDragObject function.

5-4 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g d r a g - a n d - d o c k i n c o n t r o l s

Drag objects let you drag items between a form implemented in the application’s
main EXE file and a form implemented in a DLL, or between forms that are
implemented in different DLLs.

Changing the drag mouse pointer

You can customize the appearance of the mouse pointer during drag operations by
setting the source component’s DragCursor property.

Implementing drag-and-dock in controls
Descendants of TWinControl can act as docking sites and descendants of TControl can
act as child windows that are docked into docking sites. For example, to provide a
docking site at the left edge of a form window, align a panel to the left edge of the
form and make the panel a docking site. When dockable controls are dragged to the
panel and released, they become child controls of the panel.

• Making a windowed control a docking site
• Making a control a dockable child
• Controlling how child controls are docked
• Controlling how child controls are undocked
• Controlling how child controls respond to drag-and-dock operations

Making a windowed control a docking site

To make a windowed control a docking site,

1 Set the DockSite property to true.

2 If the dock site object should not appear except when it contains a docked client,
set its AutoSize property to true. When AutoSize is true, the dock site is sized to 0
until it accepts a child control for docking. Then it resizes to fit around the child
control.

Making a control a dockable child

To make a control a dockable child,

1 Set its DragKind property to dkDock. When DragKind is dkDock, dragging the
control moves the control to a new docking site or undocks the control so that it
becomes a floating window. When DragKind is dkDrag (the default), dragging the
control starts a drag-and-drop operation which must be implemented using the
OnDragOver, OnEndDrag, and OnDragDrop events.

2 Set its DragMode to dmAutomatic. When DragMode is dmAutomatic, dragging (for
drag-and-drop or docking, depending on DragKind) is initiated automatically
when the user starts dragging the control with the mouse. When DragMode is

W o r k i n g w i t h c o n t r o l s 5-5

I m p l e m e n t i n g d r a g - a n d - d o c k i n c o n t r o l s

dmManual, you can still begin a drag-and-dock (or drag-and-drop) operation by
calling the BeginDrag method.

3 Set its FloatingDockSiteClass property to indicate the TWinControl descendant that
should host the control when it is undocked and left as a floating window. When
the control is released and not over a docking site, a windowed control of this class
is created dynamically, and becomes the parent of the dockable child. If the
dockable child control is a descendant of TWinControl, it is not necessary to create
a separate floating dock site to host the control, although you may want to specify
a form in order to get a border and title bar. To omit a dynamic container window,
set FloatingDockSiteClass to the same class as the control, and it will become a
floating window with no parent.

Controlling how child controls are docked

A docking site automatically accepts child controls when they are released over the
docking site. For most controls, the first child is docked to fill the client area, the
second splits that into separate regions, and so on. Page controls dock children into
new tab sheets (or merge in the tab sheets if the child is another page control).

Three events allow docking sites to further constrain how child controls are docked:

__property TGetSiteInfoEvent OnGetSiteInfo = {read=FOnGetSiteInfo, write=FOnGetSiteInfo};
typedef void __fastcall (__closure *TGetSiteInfoEvent)(System::TObject* Sender, TControl*
DockClient, Windows::TRect &InfluenceRect, const Windows::TPoint &MousePos, bool &CanDock);

OnGetSiteInfo occurs on the docking site when the user drags a dockable child over
the control. It allows the site to indicate whether it will accept the control specified by
the DockClient parameter as a child, and if so, where the child must be to be
considered for docking. When OnGetSiteInfo occurs, InfluenceRect is initialized to the
screen coordinates of the docking site, and CanDock is initialized to true. A more
limited docking region can be created by changing InfluenceRect and the child can be
rejected by setting CanDock to false.

__property TDockOverEvent OnDockOver = {read=FOnDockOver, write=FOnDockOver};
typedef void __fastcall (__closure *TDockOverEvent)(System::TObject* Sender,
TDragDockObject* Source, int X, int Y, TDragState State, bool &Accept);

OnDockOver occurs on the docking site when the user drags a dockable child over the
control. It is analogous to the OnDragOver event in a drag-and-drop operation. Use it
to signal that the child can be released for docking, by setting the Accept parameter. If
the dockable control is rejected by the OnGetSiteInfo event handler (perhaps because
it is the wrong type of control), OnDockOver does not occur.

__property TDockDropEvent OnDockDrop = {read=FOnDockDrop, write=FOnDockDrop};
typedef void __fastcall (__closure *TDockDropEvent)(System::TObject* Sender,
TDragDockObject* Source, int X, int Y);

OnDockDrop occurs on the docking site when the user releases the dockable child
over the control. It is analogous to the OnDragDrop event in a normal drag-and-drop
operation. Use this event to perform any necessary accommodations to accepting the
control as a child control. Access to the child control can be obtained using the
Control property of the TDockObject specified by the Source parameter.

5-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

Controlling how child controls are undocked

A docking site automatically allows child controls to be undocked when they are
dragged and have a DragMode property of dmAutomatic. Docking sites can respond
when child controls are dragged off, and even prevent the undocking, in an
OnUnDock event handler:

__property TUnDockEvent OnUnDock = {read=FOnUnDock, write=FOnUnDock};
typedef void __fastcall (__closure *TUnDockEvent)(System::TObject* Sender, TControl* Client,
TWinControl* NewTarget, bool &Allow);

The Client parameter indicates the child control that is trying to undock, and the
Allow parameter lets the docking site (Sender) reject the undocking. When
implementing an OnUnDock event handler, it can be useful to know what other
children (if any) are currently docked. This information is available in the read-only
DockClients property, which is an indexed array of TControl. The number of dock
clients is given by the read-only DockClientCount property.

Controlling how child controls respond to drag-and-dock operations

Dockable child controls have two events that occur during drag-and-dock
operations: OnStartDock, analogous to the OnStartDrag event of a drag-and-drop
operation, allows the dockable child control to create a custom drag object.
OnEndDock, like OnEndDrag, occurs when the dragging terminates.

Working with text in controls
The following sections explain how to use various features of rich edit and memo
controls. Some of these features work with edit controls as well.

• Setting text alignment
• Adding scrollbars at runtime
• Adding the Clipboard object
• Selecting text
• Selecting all text
• Cutting, copying, and pasting text
• Deleting selected text
• Disabling menu items
• Providing a pop-up menu
• Handling the OnPopup event

Setting text alignment

In a rich edit or memo component, text can be left- or right-aligned or centered. To
change text alignment, set the edit component’s Alignment property. Alignment takes
effect only if the WordWrap property is true; if word wrapping is turned off, there is
no margin to align to.

W o r k i n g w i t h c o n t r o l s 5-7

W o r k i n g w i t h t e x t i n c o n t r o l s

For example, the following code from the RichEdit example sets the alignment
depending on which button was chosen:

switch((int)RichEdit1->Paragraph->Alignment)
{ case 0: LeftAlign->Down = true; break;

 case 1: RightAlign->Down = true; break;
 case 2: CenterAlign->Down = true; break;

Adding scroll bars at runtime
Rich edit and memo components can contain horizontal or vertical scroll bars, or
both, as needed. When word-wrapping is enabled, the component needs only a
vertical scroll bar. If the user turns off word-wrapping, the component might also
need a horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime,

1 Determine whether the text might exceed the right margin. In most cases, this
means checking whether word wrapping is enabled. You might also check
whether any text lines actually exceed the width of the control.

2 Set the rich edit or memo component’s ScrollBars property to include or exclude
scroll bars.

The following example attaches an OnClick event handler to a Character|WordWrap
menu item.

void __fastcall TEditForm::WordWrap1Click(TObject *Sender)
{

Editor->WordWrap = !(Editor->WordWrap); // toggle wordwrapping
if (Editor->WordWrap)

Editor->ScrollBars = ssVertical; // wrapped requires only vertical
else

Editor->ScrollBars = ssBoth; // unwrapped can need both
WordWrap1->Checked = Editor->WordWrap; // check menu item to match property

}

The rich edit and memo components handle their scroll bars in a slightly different
way. The rich edit component can hide its scroll bars if the text fits inside the bounds
of the component. The memo always shows scroll bars if they are enabled.

Adding the Clipboard object
Most text-handling applications provide users with a way to move selected text
between documents, including documents in different applications. The Clipboard
object in C++Builder encapsulates the Windows Clipboard and includes methods for
cutting, copying, and pasting text (and other formats, including graphics). The
Clipboard object is declared in the Clipbrd unit.

To add the Clipboard object to an application,

1 Select the unit that will use the Clipboard.

2 In the form’s .H file, add

#include <vcl\Clipbrd.hpp>

5-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

Selecting text

Before you can send any text to the Clipboard, that text must be selected.
Highlighting of selected text is built into the edit components. When the user selects
text, it appears highlighted.

Table 5.1 lists properties commonly used to handle selected text.

Selecting all text

The SelectAll method selects the entire contents of the rich edit or memo component.
This is especially useful when the component’s contents exceed the visible area of the
component. In most other cases, users select text with either keystrokes or mouse
dragging.

To select the entire contents of a rich edit or memo control, call the RichEdit1 control’s
SelectAll method.

For example,

void __fastcall TMainForm::SelectAll(TObject *Sender)
{

RichEdit1->SelectAll(); // select all text in RichEdit
}

Cutting, copying, and pasting text

Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and
objects through the Windows Clipboard. The edit components that encapsulate the
standard Windows text-handling controls all have methods built into them for
interacting with the Clipboard. (See “Using the Clipboard with graphics” on
page 6-20 for information on using the Clipboard with graphics.)

To cut, copy, or paste text with the Clipboard, call the edit component’s
CutToClipboard, CopyToClipboard, and PasteFromClipboard methods, respectively.

Table 5.1 Properties of selected text

Property Description

SelText Contains a string representing the selected text in the component.

SelLength Contains the length of a selected string.

SelStart Contains the starting position of a string.

W o r k i n g w i t h c o n t r o l s 5-9

W o r k i n g w i t h t e x t i n c o n t r o l s

For example, the following code attaches event handlers to the OnClick events of the
Edit|Cut, Edit|Copy, and Edit|Paste commands, respectively:

void __fastcall TMainForm::EditCutClick(TObject* /*Sender*/)
{ RichEdit1->CutToClipboard();
}
void __fastcall TMainForm::EditCopyClick(TObject* /*Sender*/)
{ RichEdit1->CopyToClipboard();
}
void __fastcall TMainForm::EditPasteClick(TObject* /*Sender*/)
{ RichEdit1->PasteFromClipboard();
}

Deleting selected text
You can delete the selected text in an edit component without cutting it to the
Clipboard. To do so, call the ClearSelection method. For example, if you have a Delete
item on the Edit menu, your code could look like this:

void __fastcall TMainForm::EditDeleteClick(TObject *Sender)
{

RichEdit1->ClearSelection();
}

Disabling menu items
It is often useful to disable menu commands without removing them from the menu.
For example, in a text editor, if there is no text currently selected, the Cut, Copy, and
Delete commands are inapplicable. An appropriate time to enable or disable menu
items is when the user selects the menu. To disable a menu item, set its Enabled
property to false.

In the following example, an event handler is attached to the OnClick event for the
Edit item on a child form’s menu bar. It sets Enabled for the Cut, Copy, and Delete
menu items on the Edit menu based on whether RichEdit1 has selected text. The Paste
command is enabled or disabled based on whether any text exists on the Clipboard.

void __fastcall TMainForm::EditEditClick(TObject *Sender)
{

// enable or disable the Paste menu item
Paste1->Enabled = Clipboard()->HasFormat(CF_TEXT);
bool HasSelection = (RichEdit1->SelLength > 0); // true if text is selected
Cut1->Enabled = HasSelection; // enable menu items if HasSelection is true
Copy1->Enabled = HasSelection;
Delete1->Enabled = HasSelection;

}

The HasFormat method of the Clipboard returns a Boolean value based on whether
the Clipboard contains objects, text, or images of a particular format. By calling
HasFormat with the parameter CF_TEXT, you can determine whether the Clipboard
contains any text, and enable or disable the Paste item as appropriate.

Chapter 6, “Working with graphics and multimedia” provides more information
about using the Clipboard with graphics.

5-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

Providing a pop-up menu

Pop-up, or local, menus are a common ease-of-use feature for any application. They
enable users to minimize mouse movement by clicking the right mouse button in the
application workspace to access a list of frequently used commands.

In a text editor application, for example, you can add a pop-up menu that repeats the
Cut, Copy, and Paste editing commands. These pop-up menu items can use the same
event handlers as the corresponding items on the Edit menu. You don’t need to
create accelerator or shortcut keys for pop-up menus because the corresponding
regular menu items generally already have shortcuts.

A form’s PopupMenu property specifies what pop-up menu to display when a user
right-clicks any item on the form. Individual controls also have PopupMenu
properties that can override the form’s property, allowing customized menus for
particular controls.

To add a pop-up menu to a form,

1 Place a pop-up menu component on the form.

2 Use the Menu Designer to define the items for the pop-up menu.

3 Set the PopupMenu property of the form or control that displays the menu to the
name of the pop-up menu component.

4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup event

You may want to adjust pop-up menu items before displaying the menu, just as you
may want to enable or disable items on a regular menu. With a regular menu, you
can handle the OnClick event for the item at the top of the menu, as described in
“Disabling menu items” on page 5-9.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-
up menu commands, you handle the event in the menu component itself. The pop-up
menu component provides an event just for this purpose, called OnPopup.

To adjust menu items on a pop-up menu before displaying them,

1 Select the pop-up menu component.

2 Attach an event handler to its OnPopup event.

3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the EditEditClick event handler described previously in
“Disabling menu items” on page 5-9 is attached to the pop-up menu component’s
OnPopup event. A line of code is added to EditEditClick for each item in the pop-up
menu.

W o r k i n g w i t h c o n t r o l s 5-11

A d d i n g g r a p h i c s t o c o n t r o l s

void __fastcall TMainForm::EditEditClick(TObject *Sender)
{

// enable or disable the Paste menu item
Paste1->Enabled = Clipboard()->HasFormat(CF_TEXT);
Paste2->Enabled = Paste1->Enabled; // add this line
bool HasSelection = (RichEdit1->SelLength > 0); // true if text is selected
Cut1->Enabled = HasSelection; // enable menu items if HasSelection is true
Cut2->Enabled = HasSelection; // add this line
Copy1->Enabled = HasSelection;
Copy2->Enabled = HasSelection; // add this line
Delete1->Enabled = HasSelection;

}

Adding graphics to controls
Several Windows controls let you customize the way the control is rendered. These
include list boxes, combo boxes, menus, headers, tab controls, list views, status bars,
tree views, and tool bars. Instead of using Windows’ standard method of drawing
the control or its items, the control’s owner (generally, the form) draws them at
runtime. The most common use for owner-draw controls is to provide graphics
instead of, or in addition to, text for items. For information on using owner-draw to
add images to menus, see “Adding images to menu items” on page 4-22.

All owner-draw controls contain lists of items. Usually, those lists are lists of strings
that Windows displays as text, or lists of objects that contain strings that Windows
displays as text. You can associate an object with each item in a list to make it easy to
use that object when drawing items.

In general, creating an owner-draw control in C++Builder involves these steps:

1 Indicating that a control is owner-drawn
2 Adding graphical objects to a string list
3 Drawing owner-drawn items

Indicating that a control is owner-drawn

To customize the drawing of a control, you must supply event handlers that render
the control’s image when it needs to be painted. Some controls receive these events
automatically. For example, list views, tree views, and tool bars all receive events at
various stages in the drawing process without your having to set any properties.
These events have names such as “OnCustomDraw” or
“OnAdvancedCustomDraw”.

Other controls, however, require you to set a property before they receive owner-
draw events. List boxes, combo boxes, header controls, and status bars have a
property called Style. Style determines whether the control uses the default drawing
(called the “standard” style) or owner drawing. Grids use a property called
DefaultDrawing to enable or disable the default drawing. List views and tab controls
have a property called OwnerDraw that enables or disabled the default drawing.

5-12 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c s t o c o n t r o l s

List boxes and combo boxes have additional owner-draw styles, called fixed and
variable, as Table 5.2 describes. Other controls are always fixed, although the size of
the item that contains the text may vary, the size of each item is determined before
drawing the control.

Adding graphical objects to a string list

Every string list has the ability to hold a list of objects in addition to its list of strings.

For example, in a file manager application, you may want to add bitmaps indicating
the type of drive along with the letter of the drive. To do that, you need to add the
bitmap images to the application, then copy those images into the proper places in
the string list as described in the following sections.

Adding images to an application
An image control is a nonvisual control that contains a graphical image, such as a
bitmap. You use image controls to display graphical images on a form. You can also
use them to hold hidden images that you’ll use in your application. For example, you
can store bitmaps for owner-draw controls in hidden image controls, like this:

1 Add image controls to the main form.

2 Set their Name properties.

3 Set the Visible property for each image control to false.

4 Set the Picture property of each image to the desired bitmap using the Picture
editor from the Object Inspector.

The image controls are invisible when you run the application.

Adding images to a string list
Once you have graphical images in an application, you can associate them with the
strings in a string list. You can either add the objects at the same time as the strings,
or associate objects with existing strings. The preferred method is to add objects and
strings at the same time, if all the needed data is available.

The following example shows how you might want to add images to a string list.
This is part of a file manager application where, along with a letter for each valid

Table 5.2 Fixed vs. variable owner-draw styles

Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height
determined by the ItemHeight property.

lbOwnerDrawFixed,
csOwnerDrawFixed

Variable Each item might have a different height,
determined by the data at runtime.

lbOwnerDrawVariable,
csOwnerDrawVariable

W o r k i n g w i t h c o n t r o l s 5-13

A d d i n g g r a p h i c s t o c o n t r o l s

drive, it adds a bitmap indicating each drive’s type. The OnCreate event handler looks
like this:

void __fastcall TFMForm::FormCreate(TObject *Sender)
{

int AddedIndex;
char DriveName[4] = "A:\";
for (char Drive = 'A'; Drive <= 'Z'; Drive++) // try all possible drives
{

DriveName[0] = Drive;
switch (GetDriveType(DriveName))
{
case DRIVE_REMOVABLE:// add a list item

DriveName[1] = '\0'; // temporarily make drive letter into string
AddedIndex = DriveList->Items->AddObject(DriveName,

Floppy->Picture->Graphic);
DriveName[1] = ':' // replace the colon
break;

case DRIVE_FIXED:// add a list item
DriveName[1] = '\0'; // temporarily make drive letter into string
AddedIndex = DriveList->Items->AddObject(DriveName,

Fixed->Picture->Graphic);
DriveName[1] = ':' // replace the colon
break;

case DRIVE_REMOTE:// add a list item
DriveName[1] = '\0'; // temporarily make drive letter into string
AddedIndex = DriveList->Items->AddObject(DriveName,

Network->Picture->Graphic);
DriveName[1] = ':' // replace the colon
break;

}
if ((int)(Drive - 'A') == getdisk()) // current drive?
DriveList->ItemIndex = AddedIndex; // then make that the current list item

}
}

Drawing owner-drawn items
When you indicate that a control is owner-drawn, either by setting a property or
supplying a custom draw event handler, Windows no longer draws the control on
the screen. Instead, it generates events for each visible item in the control. Your
application handles the events to draw the items.

To draw the items in an owner-draw control, do the following for each visible item in
the control. Use a single event handler for all items.

1 Size the item, if needed.

Items of the same size (for example, with a list box style of lsOwnerDrawFixed), do not
require sizing.

2 Draw the item.

5-14 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c s t o c o n t r o l s

Sizing owner-draw items

Before giving your application the chance to draw each item in a variable owner-
draw control, Windows generates a measure-item event. The measure-item event
tells the application where the item appears on the control.

Windows determines the size the item (generally, it is just large enough to display
the item’s text in the current font). Your application can handle the event and change
the rectangle Windows chose. For example, if you plan to substitute a bitmap for the
item’s text, change the rectangle to be the size of the bitmap. If you want a bitmap and
text, adjust the rectangle to be big enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-
item event in the owner-draw control. Depending on the control, the name of the
event can vary. List boxes and combo boxes use OnMeasureItem. Grids have no
measure-item event.

The sizing event has two important parameters: the index number of the item and the
size of that item. The size is variable: the application can make it either smaller or
larger. The positions of subsequent items depend on the size of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of
the first item to five pixels, the second item starts at the sixth pixel down from the
top, and so on. In list boxes and combo boxes, the only aspect of the item the
application can alter is the height of the item. The width of the item is always the
width of the control.

Owner-draw grids cannot change the sizes of their cells as they draw. The size of
each row and column is set before drawing by the ColWidths and RowHeights
properties.

The following code, attached to the OnMeasureItem event of an owner-draw list box,
increases the height of each list item to accommodate its associated bitmap.

void __fastcall TForm1::ListBox1MeasureItem(TWinControl *Control, int Index,
int &Height) // note that Height is passed by reference

{
int BitmapHeight = ((TBitmap *)ListBox1->Items->Objects[Index])->Height + 2;
// make sure list item has enough room for bitmap (plus 2)
if (BitmapHeight > Height)

Height = BitmapHeight;
}

Note You must typecast the items from the Objects property in the string list. Objects is a
property of type TObject so that it can hold any kind of object. When you retrieve
objects from the array, you need to typecast them back to the actual type of the items.

Drawing each owner-draw item

When an application needs to draw or redraw an owner-draw control, Windows
generates draw-item events for each visible item in the control. Depending on the
control, the item may also receive draw events for the item as a whole or subitems.

W o r k i n g w i t h c o n t r o l s 5-15

A d d i n g g r a p h i c s t o c o n t r o l s

To draw each item in an owner-draw control, attach an event handler to the draw-
item event for that control.

The names of events for owner drawing typically start with one of the following:

• OnDraw, such as OnDrawItem or OnDrawCell

• OnCustomDraw, such as OnCustomDrawItem

• OnAdvancedCustomDraw, such as OnAdvancedCustomDrawItem

The draw-item event contains parameters identifying the item to draw, the rectangle
in which to draw, and usually some information about the state of the item (such as
whether the item has focus). The application handles each event by rendering the
appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has
bitmaps associated with each string. It attaches this handler to the OnDrawItem event
for the list box:

void __fastcall TForm1::ListBox1DrawItem(TWinControl *Control, int Index,
TRect &Rect, TOwnerDrawState State)

TBitmap *Bitmap = (TBitmap *)ListBox1->Items->Objects[Index];
ListBox1->Canvas->Draw(R.Left, R.Top + 2, Bitmap); // draw the bitmap
ListBox1->Canvas->TextOut(R.Left + Bitmap->Width + 2, R.Top + 2,

ListBox1->Items->Strings[Index]); // and write the text to its right
}

5-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-1

C h a p t e r

6
Chapter6Working with graphics and

multimedia
Graphics and multimedia elements can add polish to your applications. C++Builder
offers a variety of ways to introduce these features into your application. To add
graphical elements, you can insert pre-drawn pictures at design time, create them
using graphical controls at design time, or draw them dynamically at runtime. To
add multimedia capabilities, C++Builder includes special components that can play
audio and video clips.

Overview of graphics programming
The VCL graphics components encapsulate the Windows Graphics Device Interface
(GDI), making it very easy to add graphics to your Windows programming.

To draw graphics in a C++Builder application, you draw on an object’s canvas, rather
than directly on the object. The canvas is a property of the object, and is itself an
object. A main advantage of the canvas object is that it handles resources effectively
and it takes care of device context, so your programs can use the same methods
regardless of whether you are drawing on the screen, to a printer, or on bitmaps or
metafiles. Canvases are available only at runtime, so you do all your work with
canvases by writing code.

Note Since TCanvas is a wrapper resource manager around the Windows device context,
you can also use all Windows GDI functions on the canvas. The Handle property of
the canvas is the device context Handle.

How graphic images appear in your application depends on the type of object whose
canvas you draw on. If you are drawing directly onto the canvas of a control, the
picture is displayed immediately. However, if you draw on an offscreen image such
as a TBitmap canvas, the image is not displayed until a control copies from the bitmap
onto the control’s canvas. That is, when drawing bitmaps and assigning them to an

6-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

image control, the image appears only when the control has an opportunity to
process its OnPaint message.

When working with graphics, you often encounter the terms drawing and painting:

• Drawing is the creation of a single, specific graphic element, such as a line or a
shape, with code. In your code, you tell an object to draw a specific graphic in a
specific place on its canvas by calling a drawing method of the canvas.

• Painting is the creation of the entire appearance of an object. Painting usually
involves drawing. That is, in response to OnPaint events, an object generally
draws some graphics. An edit box, for example, paints itself by drawing a
rectangle and then drawing some text inside. A shape control, on the other hand,
paints itself by drawing a single graphic.

The examples in the beginning of this chapter demonstrate how to draw various
graphics, but they do so in response to OnPaint events. Later sections show how to do
the same kind of drawing in response to other events.

Refreshing the screen

At certain times, Windows determines that objects onscreen need to refresh their
appearance, so it generates WM_PAINT messages, which the VCL routes to OnPaint
events. The VCL calls any OnPaint event handler that you have written for that object
when you use the Refresh method. The default name generated for the OnPaint event
handler in a form is FormPaint. You may want to use the Refresh method at times to
refresh a component or form. For example, you might call Refresh in the form’s
OnResize event handler to redisplay any graphics or if you want to paint a
background on a form.

While some operating systems automatically handle the redrawing of the client area
of a window that has been invalidated, Windows does not. In the Windows
operating system anything drawn on the screen is permanent. When a form or
control is temporarily obscured, for example during window dragging, the form or
control must repaint the obscured area when it is re-exposed. For more information
about the WM_PAINT message, see the Windows online Help.

If you use the TImage control, the painting and refreshing of the graphic contained in
the TImage is handled automatically by the VCL. Drawing on a TImage creates a
persistent image. Consequently, you do not need to do anything to redraw the
contained image. In contrast, TPaintBox’s canvas maps directly onto the screen
device, so that anything drawn to the PaintBox’s canvas is transitory. This is true of
nearly all controls, including the form itself. Therefore, if you draw or paint on a
TPaintBox in its constructor, you will need to add that code to your OnPaint event
handler in order for image to be repainted each time the client area is invalidated.

Types of graphic objects

The VCL provides the graphic objects shown in Table 6.1. These objects have
methods to draw on the canvas, which are described in “Using Canvas methods to

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-3

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

draw graphic objects” on page 6-9 and to load and save to graphics files, as described
in “Loading and saving graphics files” on page 6-18.

Common properties and methods of Canvas

Table 6.2 lists the commonly used properties of the Canvas object. For a complete list
of properties and methods, see the TCanvas component in online Help.

These properties are described in more detail in “Using the properties of the Canvas
object” on page 6-4.

Table 6.1 Graphic object types

Object Description

Picture Used to hold any graphic image. To add additional graphic file formats, use the
Picture Register method. Use this to handle arbitrary files such as displaying
images in an image control.

Bitmap A powerful graphics object used to create, manipulate (scale, scroll, rotate, and
paint), and store images as files on a disk. Creating copies of a bitmap is fast
since the handle is copied, not the image.

Clipboard Represents the container for any text or graphics that are cut, copied, or pasted
from or to an application. With the clipboard, you can get and retrieve data
according to the appropriate format; handle reference counting, and opening
and closing the Clipboard; manage and manipulate formats for objects in the
Clipboard.

Icon Represents the value loaded from a Windows icon file (::ICO file).

Metafile Contains a metafile, which records the operations required to construct an
image, rather than contain the actual bitmap pixels of the image. Metafiles are
extremely scalable without the loss of image detail and often require much less
memory than bitmaps, particularly for high-resolution devices, such as printers.
However, metafiles do not draw as fast as bitmaps. Use a metafile when
versatility or precision is more important than performance.

Table 6.2 Common properties of the Canvas object

Properties Descriptions

Font Specifies the font to use when writing text on the image. Set the properties of
the TFont object to specify the font face, color, size, and style of the font.

Brush Determines the color and pattern the canvas uses for filling graphical shapes
and backgrounds. Set the properties of the TBrush object to specify the color
and pattern or bitmap to use when filling in spaces on the canvas.

Pen Specifies the kind of pen the canvas uses for drawing lines and outlining
shapes. Set the properties of the TPen object to specify the color, style, width,
and mode of the pen.

PenPos Specifies the current drawing position of the pen.

Pixels Specifies the color of the area of pixels within the current ClipRect.

6-4 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Table 6.3 is a list of several methods you can use:

These methods are described in more detail in “Using Canvas methods to draw
graphic objects” on page 6-9.

Using the properties of the Canvas object

With the Canvas object, you can set the properties of a pen for drawing lines, a brush
for filling shapes, a font for writing text, and an array of pixels to represent the image.

Table 6.3 Common methods of the Canvas object

Method Descriptions

Arc Draws an arc on the image along the perimeter of the ellipse bounded by the
specified rectangle.

Chord Draws a closed figure represented by the intersection of a line and an ellipse.

CopyRect Copies part of an image from another canvas into the canvas.

Draw Renders the graphic object specified by the Graphic parameter on the canvas
at the location given by the coordinates (X, Y).

Ellipse Draws the ellipse defined by a bounding rectangle on the canvas.

FillRect Fills the specified rectangle on the canvas using the current brush.

FloodFill Fills an area of the canvas using the current brush.

FrameRect Draws a rectangle using the Brush of the canvas to draw the border.

LineTo Draws a line on the canvas from PenPos to the point specified by X and Y,
and sets the pen position to (X, Y).

MoveTo Changes the current drawing position to the point (X,Y).

Pie Draws a pie-shaped the section of the ellipse bounded by the rectangle (X1,
Y1) and (X2, Y2) on the canvas.

Polygon Draws a series of lines on the canvas connecting the points passed in and
closing the shape by drawing a line from the last point to the first point.

PolyLine Draws a series of lines on the canvas with the current pen, connecting each of
the points passed to it in Points.

Rectangle Draws a rectangle on the canvas with its upper left corner at the point (X1,
Y1) and its lower right corner at the point (X2, Y2). Use Rectangle to draw a
box using Pen and fill it using Brush.

RoundRect Draws a rectangle with rounded corners on the canvas.

StretchDraw Draws a graphic on the canvas so that the image fits in the specified
rectangle. The graphic image may need to change its magnitude or aspect
ratio to fit.

TextHeight,
TextWidth

Returns the height and width, respectively, of a string in the current font.
Height includes leading between lines.

TextOut Writes a string on the canvas, starting at the point (X,Y), and then updates
the PenPos to the end of the string.

TextRect Writes a string inside a region; any portions of the string that fall outside the
region do not appear.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-5

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

This section describes

• Using pens
• Using brushes
• Reading and setting pixels

Using pens
The Pen property of a canvas controls the way lines appear, including lines drawn as
the outlines of shapes. Drawing a straight line is really just changing a group of pixels
that lie between two points.

The pen itself has four properties you can change: Color, Width, Style, and Mode.

• Color property: Changes the pen color

• Width property: Changes the pen width

• Style property: Changes the pen style

• Mode property: Changes the pen mode

The values of these properties determine how the pen changes the pixels in the line.
By default, every pen starts out black, with a width of 1 pixel, a solid style, and a
mode called copy that overwrites anything already on the canvas.

Changing the pen color
You can set the color of a pen as you would any other Color property at runtime. A
pen’s color determines the color of the lines the pen draws, including lines drawn as
the boundaries of shapes, as well as other lines and polylines. To change the pen
color, assign a value to the Color property of the pen.

To let the user choose a new color for the pen, put a color grid on the pen’s toolbar. A
color grid can set both foreground and background colors. For a non-grid pen style,
you must consider the background color, which is drawn in the gaps between line
segments. Background color comes from the Brush color property.

Since the user chooses a new color by clicking the grid, this code changes the pen’s
color in response to the OnClick event:

void __fastcall TForm1::PenColorClick(TObject *Sender)
{

Canvas->Pen->Color = PenColor->ForegroundColor;
}

Changing the pen width
A pen’s width determines the thickness, in pixels, of the lines it draws.

Note When the thickness is greater than 1, Windows 95 always draw solid lines, no matter
what the value of the pen’s Style property.

To change the pen width, assign a numeric value to the pen’s Width property.

6-6 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Suppose you have a scroll bar on the pen’s toolbar to set width values for the pen.
And suppose you want to update the label next to the scroll bar to provide feedback
to the user. Using the scroll bar’s position to determine the pen width, you update the
pen width every time the position changes.

This is how to handle the scroll bar’s OnChange event:

void __fastcall TForm1::PenWidthChange(TObject *Sender)
{

Canvas->Pen->Width = PenWidth->Position; // set the pen width directly
PenSize->Caption = IntToStr(PenWidth->Position); // convert to string

}

Changing the pen style
A pen’s Style property allows you to set solid lines, dashed lines, dotted lines, and so
on.

Note Windows 95 does not support dashed or dotted line styles for pens wider than one
pixel and makes all larger pens solid, no matter what style you specify.

The task of setting the properties of pen is an ideal case for having different controls
share same event handler to handle events. To determine which control actually got
the event, you check the Sender parameter.

To create one click-event handler for six pen-style buttons on a pen’s toolbar, do the
following:

1 Select all six pen-style buttons and select the Object Inspector|Events|OnClick
event and in the Handler column, type SetPenStyle.

C++Builder generates an empty click-event handler called SetPenStyle and
attaches it to the OnClick events of all six buttons.

2 Fill in the click-event handler by setting the pen’s style depending on the value of
Sender, which is the control that sent the click event:

void __fastcall TForm1::SetPenStyle(TObject *Sender)
{

if (Sender == SolidPen)
Canvas->Pen->Style = psSolid;

else if (Sender == DashPen)
Canvas->Pen->Style = psDash;

else if (Sender == DotPen)
Canvas->Pen->Style = psDot;

else if (Sender == DashDotPen)
Canvas->Pen->Style = psDashDot;

else if (Sender == DashDotDotPen)
Canvas->Pen->Style = psDashDotDot;

else if (Sender == ClearPen)
Canvas->Pen->Style = psClear;

}

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-7

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The above event handler code could be further reduced by putting the pen style
constants into the Tag properties of the pen style buttons. Then this event code
would be something like:

void __fastcall TForm1::SetPenStyle(TObject *Sender)
{

if (Sender->InheritsFrom (__classid(TSpeedButton))
Canvas->Pen->Style = (TPenStyle) ((TSpeedButton *)Sender)->Tag;

}

Changing the pen mode
A pen’s Mode property lets you specify various ways to combine the pen’s color with
the color on the canvas. For example, the pen could always be black, be an inverse of
the canvas background color, inverse of the pen color, and so on. See TPen in online
Help for details.

Getting the pen position
The current drawing position—the position from which the pen begins drawing its
next line—is called the pen position. The canvas stores its pen position in its PenPos
property. Pen position affects the drawing of lines only; for shapes and text, you
specify all the coordinates you need.

To set the pen position, call the MoveTo method of the canvas. For example, the
following code moves the pen position to the upper left corner of the canvas:

Canvas->MoveTo(0, 0);

Note Drawing a line with the LineTo method also moves the current position to the
endpoint of the line.

Using brushes
The Brush property of a canvas controls the way you fill areas, including the interior
of shapes. Filling an area with a brush is a way of changing a large number of
adjacent pixels in a specified way.

The brush has three properties you can manipulate:

• Color property: Changes the fill color

• Style property: Changes the brush style

• Bitmap property: Uses a bitmap as a brush pattern

The values of these properties determine the way the canvas fills shapes or other
areas. By default, every brush starts out white, with a solid style and no pattern
bitmap.

Changing the brush color
A brush’s color determines what color the canvas uses to fill shapes. To change the
fill color, assign a value to the brush’s Color property. Brush is used for background
color in text and line drawing so you typically set the background color property.

6-8 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

You can set the brush color just as you do the pen color, in response to a click on a
color grid on the brush’s toolbar (see “Changing the pen color” on page 6-5):

void __fastcall TForm1::BrushColorClick(TObject *Sender)
{

Canvas->Brush->Color = BrushColor->BackgroundColor;
}

Changing the brush style
A brush style determines what pattern the canvas uses to fill shapes. It lets you
specify various ways to combine the brush’s color with any colors already on the
canvas. The predefined styles include solid color, no color, and various line and
hatch patterns.

To change the style of a brush, set its Style property to one of the predefined values:
bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal, bsCross, or
bsDiagCross.

This example sets brush styles by sharing a click-event handler for a set of eight
brush-style buttons. All eight buttons are selected, the Object Inspector|Events|
OnClick is set, and the OnClick handler is named SetBrushStyle. Here is the handler
code:

void __fastcall TForm1::SetBrushStyle(TObject *Sender)
{

if (Sender == SolidBrush)
Canvas->Brush->Style = bsSolid;

else if (Sender == ClearBrush)
Canvas->Brush->Style = bsClear;

else if (Sender == HorizontalBrush)
Canvas->Brush->Style = bsHorizontal;

else if (Sender == VerticalBrush)
Canvas->Brush->Style = bsVertical;

else if (Sender == FDiagonalBrush)
Canvas->Brush->Style = bsFDiagonal;

else if (Sender == BDiagonalBrush)
Canvas->Brush->Style = bsBDiagonal;

else if (Sender == CrossBrush)
Canvas->Brush->Style = bsCross;

else if (Sender == DiagCrossBrush)
Canvas->Brush->Style = bsDiagCross;

}

The above event handler code could be further reduced by putting the brush style
constants into the Tag properties of the brush style buttons. Then this event code
would be something like:

void __fastcall TForm1::SetBrushStyle(TObject *Sender)
{

if (Sender->InheritsFrom (__classid(TSpeedButton))
Canvas->Brush>Style = (TBrushStyle) ((TSpeedButton *)Sender)->Tag;

}

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-9

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Setting the Brush Bitmap property
A brush’s Bitmap property lets you specify a bitmap image for the brush to use as a
pattern for filling shapes and other areas.

The following example loads a bitmap from a file and assigns it to the Brush of the
Canvas of Form1:

BrushBmp->LoadFromFile("MyBitmap.bmp");
 Form1->Canvas->Brush->Bitmap = BrushBmp;
 Form1->Canvas->FillRect(Rect(0,0,100,100));

Note The brush does not assume ownership of a bitmap object assigned to its Bitmap
property. You must ensure that the Bitmap object remain valid for the lifetime of the
Brush, and you must free the Bitmap object yourself afterwards.

Reading and setting pixels
You will notice that every canvas has an indexed Pixels property that represents the
individual colored points that make up the image on the canvas. You rarely need to
access Pixels directly, it is available only for convenience to perform small actions
such as finding or setting a pixel’s color.

Note Setting and getting individual pixels is thousands of times slower than performing
graphics operations on regions. Do not use the Pixel array property to access the
image pixels of a general array. For high-performance access to image pixels, see the
TBitmap::ScanLine property.

Using Canvas methods to draw graphic objects

This section shows how to use some common methods to draw graphic objects. It
covers:

• Drawing lines and polylines
• Drawing shapes
• Drawing rounded rectangles
• Drawing polygons

Drawing lines and polylines
A canvas can draw straight lines and polylines. A straight line is just a line of pixels
connecting two points. A polyline is a series of straight lines, connected end-to-end.
The canvas draws all lines using its pen.

Drawing lines
To draw a straight line on a canvas, use the LineTo method of the canvas.

LineTo draws a line from the current pen position to the point you specify and makes
the endpoint of the line the current position. The canvas draws the line using its pen.

6-10 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

For example, the following method draws crossed diagonal lines across a form
whenever the form is painted:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

Canvas->MoveTo(0,0);
Canvas->LineTo(ClientWidth, ClientHeight);
Canvas->MoveTo(0, ClientHeight);
Canvas->LineTo(ClientWidth, 0);

}

Drawing polylines
In addition to individual lines, the canvas can also draw polylines, which are groups
of any number of connected line segments.

To draw a polyline on a canvas, call the Polyline method of the canvas.

The parameter passed to the PolyLine method is an array of points. You can think of a
polyline as performing a MoveTo on the first point and LineTo on each successive
point. For drawing multiple lines, Polyline is faster than using the MoveTo method
and the LineTo method because it eliminates a lot of call overhead.

The following method, for example, draws a rhombus in a form:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

POINT vertices[5];
vertices[0] = Point(0, 0);
vertices[1] = Point(50, 0);
vertices[2] = Point(75, 50);
vertices[3] = Point(25, 50);
vertices[4] = Point(0, 0);
Canvas->Polyline(vertices, 4);

}

Note that the last parameter to Polyline is the index of the last point, not the number
of points.

Drawing shapes
Canvases have methods for drawing different kinds of shapes. The canvas draws the
outline of a shape with its pen, then fills the interior with its brush. The line that
forms the border for the shape is controlled by the current Pen object.

This section covers:

• Drawing rectangles and ellipses
• Drawing rounded rectangles
• Drawing polygons

Drawing rectangles and ellipses
To draw a rectangle or ellipse on a canvas, call the canvas’s Rectangle method or
Ellipse method, passing the coordinates of a bounding rectangle.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-11

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The Rectangle method draws the bounding rectangle; Ellipse draws an ellipse that
touches all sides of the rectangle.

The following method draws a rectangle filling a form’s upper left quadrant, then
draws an ellipse in the same area:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

Canvas->Rectangle(0, 0, ClientWidth/2, ClientHeight/2);
Canvas->Ellipse(0, 0, ClientWidth/2, ClientHeight/2);

}

Drawing rounded rectangles
To draw a rounded rectangle on a canvas, call the canvas’s RoundRect method.

The first four parameters passed to RoundRect are a bounding rectangle, just as for
the Rectangle method or the Ellipse method. RoundRect takes two more parameters
that indicate how to draw the rounded corners.

The following method, for example, draws a rounded rectangle in a form’s upper left
quadrant, rounding the corners as sections of a circle with a diameter of 10 pixels:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

Canvas->RoundRect(0, 0, ClientWidth/2, ClientHeight/2, 10, 10);
}

Drawing polygons
To draw a polygon with any number of sides on a canvas, call the Polygon method of
the canvas.

Polygon takes an array of points as its only parameter and connects the points with
the pen, then connects the last point to the first to close the polygon. After drawing
the lines, Polygon uses the brush to fill the area inside the polygon.

For example, the following code draws a right triangle in the lower left half of a form:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

POINT vertices[3];
vertices[0] = Point(0, 0);
vertices[1] = Point(0, ClientHeight);
vertices[2] = Point(ClientWidth,ClientHeight);
Canvas->Polygon(vertices,2);

}

Handling multiple drawing objects in your application
Various drawing methods (rectangle, shape, line, and so on) are typically available
on the toolbar and button panel. Applications can respond to clicks on speed buttons
to set the desired drawing objects. This section describes how to:

• Keep track of which drawing tool to use
• Changing the tool with speed buttons
• Using drawing tools

6-12 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Keeping track of which drawing tool to use
A graphics program needs to keep track of what kind of drawing tool (such as a line,
rectangle, ellipse, or rounded rectangle) a user might want to use at any given time.
Typically, you would use the C++ enumerated type to list the available tools. Since
an enumerated type is also a type declaration, you can use C++’s type-checking to
ensure that you assign only those specific values.
For example, the following code declares an enumerated type for each drawing tool
available in a graphics application:

enum TDrawingTool {dtLine, dtRectangle, dtEllipse, dtRoundRect};

A variable of type TDrawingTool can be assigned only one of the constants dtLine,
dtRectangle, dtEllipse, or dtRoundRect.
By convention, type identifiers begin with the letter T, and groups of similar
constants (such as those making up an enumerated type) begin with a 2-letter prefix
(such as dt for “drawing tool”).
In the following code, a field added to a form keeps track of the form’s drawing tool:

enum TDrawingTool {dtLine, dtRectangle, dtEllipse, dtRoundRect};

class TForm1 : public TForm
{
__published: // IDE-managed Components

void __fastcall FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);
void __fastcall FormMouseMove(TObject *Sender, TShiftState Shift, int X,
int Y);
void __fastcall FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);

private:// User declarations
public:// User declarations

__fastcall TForm1(TComponent* Owner);
bool Drawing; //field to track whether button was pressed
POINT Origin, MovePt; // fields to store points
TDrawingTool DrawingTool; // field to hold current tool

};

Changing the tool with speed buttons
Each drawing tool needs an associated OnClick event handler. Suppose your
application had a toolbar button for each of four drawing tools: line, rectangle,
ellipse, and rounded rectangle. You would attach the following event handlers to the
OnClick events of the four drawing-tool buttons, setting DrawingTool to the
appropriate value for each:

void __fastcall TForm1::LineButtonClick(TObject *Sender) // LineButton
{

DrawingTool = dtLine;
}

void __fastcall TForm1::RectangleButtonClick(TObject *Sender) // RectangleButton
{

DrawingTool = dtRectangle;
}

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-13

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

void __fastcall TForm1::EllipseButtonClick(TObject *Sender) // EllipseButton
{

DrawingTool = dtEllipse;
}

void __fastcall TForm1::RoundedRectButtonClick(TObject *Sender) // RoundRectBtn
{

DrawingTool = dtRoundRect;
}

Using drawing tools
Now that you can tell what tool to use, you must indicate how to draw the different
shapes. The only methods that perform any drawing are the mouse-move and
mouse-up handlers, and the only drawing code draws lines, no matter what tool is
selected.

To use different drawing tools, your code needs to specify how to draw, based on the
selected tool. You add this instruction to each tool’s event handler.

This section describes

• Drawing shapes
• Sharing code among event handlers

Drawing shapes
Drawing shapes is just as easy as drawing lines: Each one takes a single statement;
you just need the coordinates.

Here’s a rewrite of the OnMouseUp event handler that draws shapes for all four tools:

void __fastcall TForm1::FormMouseUp(TObject *Sender)
{

switch (DrawingTool)
{

case dtLine:
Canvas->MoveTo(Origin.x, Origin.y);
Canvas->LineTo(X, Y);
break;

case dtRectangle:
Canvas->Rectangle(Origin.x, Origin.y, X, Y);
break;

case dtEllipse:
Canvas->Ellipse(Origin.x, Origin.y, X, Y);
break;

case dtRoundRect:
Canvas->Rectangle(Origin.x, Origin.y, X, Y, (Origin.x - X)/2,

(Origin.y - Y)/2);
break;

}
Drawing = false;

}

6-14 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Of course, you also need to update the OnMouseMove handler to draw shapes:

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (Drawing)
{

Canvas->Pen->Mode = pmNotXor; // use XOR mode to draw/erase
switch (DrawingTool)
{

case dtLine:
Canvas->MoveTo(Origin.x, Origin.y);
Canvas->LineTo(MovePt.x, MovePt.y);
Canvas->MoveTo(Origin.x, Origin.y);
Canvas->LineTo(X, Y);
break;

case dtRectangle:
Canvas->Rectangle(Origin.x, Origin.y, MovePt.x, MovePt.y);
Canvas->Rectangle(Origin.x, Origin.y, X, Y);
break;

case dtEllipse:
Canvas->Ellipse(Origin.x, Origin.y, MovePt.x, MovePt.y);
Canvas->Ellipse(Origin.x, Origin.y, X, Y);
break;

case dtRoundRect:
Canvas->Rectangle(Origin.x, Origin.y, MovePt.x, MovePt.y,

 (Origin.x - MovePt.x)/2,(Origin.y - MovePt.y)/2);
Canvas->Rectangle(Origin.x, Origin.y, X, Y,

(Origin.x - X)/2, (Origin.y - Y)/2);
break;

}
MovePt = Point(X, Y);
Canvas->Pen->Mode = pmCopy;

}

Typically, all the repetitious code that is in the above example would be in a separate
routine. The next section shows all the shape-drawing code in a single routine that all
mouse-event handlers can call.

Sharing code among event handlers
Any time you find that many your event handlers use the same code, you can make
your application more efficient by moving the repeated code into a routine that all
event handlers can share.

To add a method to a form,

1 Add the method declaration to the form object.

You can add the declaration in either the public or private parts at the end of the
form object’s declaration. If the code is just sharing the details of handling some
events, it’s probably safest to make the shared method private.

2 Write the method implementation in the .cpp file for the form’s unit.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-15

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The header for the method implementation must match the declaration exactly, with
the same parameters in the same order.

The following code adds a method to the form called DrawShape and calls it from
each of the handlers. First, the declaration of DrawShape is added to the form object’s
declaration:

enum TDrawingTool {dtLine, dtRectangle, dtEllipse, dtRoundRect};

class TForm1 : public TForm
{
__published: // IDE-managed Components

void __fastcall FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);
void __fastcall FormMouseMove(TObject *Sender, TShiftState Shift, int X,
int Y);
void __fastcall FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);

private:// User declarations
void __fastcall DrawShape(POINT TopLeft, POINT BottomRight, TPenMode AMode);

public:// User declarations
__fastcall TForm1(TComponent* Owner);
bool Drawing; //field to track whether button was pressed
POINT Origin, MovePt; // fields to store points
TDrawingTool DrawingTool; // field to hold current tool

};

Then, the implementation of DrawShape is written in the .cpp file for the unit:

void __fastcall TForm1::DrawShape(POINT TopLeft, POINT BottomRight,
TPenMode AMode)

{
Canvas->Pen->Mode = AMode;
switch (DrawingTool)
{

case dtLine:
Canvas->MoveTo(TopLeft.x, TopLeft.y);
Canvas->LineTo(BottomRight.x, BottomRight.y);
break;

case dtRectangle:
Canvas->Rectangle(TopLeft.x, TopLeft.y, BottomRight.x, BottomRight.y);
break;

case dtEllipse:
Canvas->Ellipse(TopLeft.x, TopLeft.y, BottomRight.x, BottomRight.y);
break;

case dtRoundRect:
Canvas->Rectangle(TopLeft.x, TopLeft.y, BottomRight.x, BottomRight.y,

 (TopLeft.x - BottomRight.x)/2,(TopLeft.y - BottomRight.y)/2);
break;

}
}

6-16 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The other event handlers are modified to call DrawShape.

void __fastcall TForm1::FormMouseUp(TObject *Sender)
{

DrawShape(Origin, Point(X,Y), pmCopy); // draw the final shape
Drawing = false;

}

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (Drawing)
{

DrawShape(Origin, MovePt, pmNotXor); // erase previous shape
MovePt = Point(X, Y);
DrawShape(Origin, MovePt, pmNotXor); // draw current shape

}
}

Drawing on a graphic
You don’t need any components to manipulate your application’s graphic objects.
You can construct, draw on, save, and destroy graphic objects without ever drawing
anything on screen. In fact, your applications rarely draw directly on a form. More
often, an application operates on graphics and then uses a VCL image control
component to display the graphic on a form.

Once you move the application’s drawing to the graphic in the image control, it is
easy to add printing, Clipboard, and loading and saving operations for any graphic
objects. graphic objects can be bitmap files, metafiles, icons or whatever other
graphics classes that have been installed such as JPEG graphics.

Note Because you are drawing on an offscreen image such as a TBitmap canvas, the image
is not displayed until a control copies from a bitmap onto the control’s canvas. That
is, when drawing bitmaps and assigning them to an image control, the image
appears only when the control has an opportunity to process its paint message. But if
you are drawing directly onto the canvas property of a control, the picture object is
displayed immediately.

Making scrollable graphics
The graphic need not be the same size as the form: it can be either smaller or larger.
By adding a scroll box control to the form and placing the graphic image inside it,
you can display graphics that are much larger than the form or even larger than the
screen. To add a scrollable graphic first you add a TScrollBox component and then
you add the image control.

Adding an image control
An image control is a container component that allows you to display your bitmap
objects. You use an image control to hold a bitmap that is not necessarily displayed
all the time, or which an application needs to use to generate other pictures.

Note “Adding graphics to controls” on page 5-11 shows how to use graphics in controls.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-17

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Placing the control
You can place an image control anywhere on a form. If you take advantage of the
image control’s ability to size itself to its picture, you need to set the top left corner
only. If the image control is a nonvisible holder for a bitmap, you can place it
anywhere, just as you would a nonvisual component.

If you drop the image control on a scroll box already aligned to the form’s client area,
this assures that the scroll box adds any scroll bars necessary to access offscreen
portions of the image’s picture. Then set the image control’s properties.

Setting the initial bitmap size
When you place an image control, it is simply a container. However, you can set the
image control’s Picture property at design time to contain a static graphic. The control
can also load its picture from a file at runtime, as described in “Loading and saving
graphics files” on page 6-18.

To create a blank bitmap when the application starts,

1 Attach a handler to the OnCreate event for the form that contains the image.

2 Create a bitmap object, and assign it to the image control’s Picture->Graphic
property.

In this example, the image is in the application’s main form, Form1, so the code
attaches a handler to Form1’s OnCreate event:

void __fastcall TForm1::FormCreate(TObject *Sender)
{

TBitmap *Bitmap = new TBitmap(); // create the bitmap object
Bitmap->Width = 200; // assign the initial width...
Bitmap->Height = 200; // ...and the initial height
Image->Picture->Graphic = Bitmap; // assign the bitmap to the image control

}

Assigning the bitmap to the picture’s Graphic property gives ownership of the bitmap
to the picture object. The picture object destroys the bitmap when it finishes with it,
so you should not destroy the bitmap object. You can assign a different bitmap to the
picture (see “Replacing the picture” on page 6-19), at which point the picture
disposes of the old bitmap and assumes ownership of the new one.

If you run the application now, you see that client area of the form has a white region,
representing the bitmap. If you size the window so that the client area cannot display
the entire image, you’ll see that the scroll box automatically shows scroll bars to
allow display of the rest of the image. But if you try to draw on the image, you don’t
get any graphics, because the application is still drawing on the form, which is now
behind the image and the scroll box.

Drawing on the bitmap
To draw on a bitmap, use the image control’s canvas and attach the mouse-event
handlers to the appropriate events in the image control. Typically you would use
region operations (fills, rectangles, polylines, and so on). These are fast and efficient
methods of drawing.

6-18 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

An efficient way to draw images when you need to access individual pixels is to use
the bitmap ScanLine property. For general-purpose usage, you can set up the bitmap
pixel format to 24 bits and then treat the pointer returned from ScanLine as an array
of RGB. Otherwise, you will need to know the native format of the ScanLine property.
This example shows how to use ScanLine to get pixels one line at a time.

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 Graphics::TBitmap *pBitmap = new Graphics::TBitmap();
// This example shows drawing directly to the Bitmap
 Byte *ptr;
 try
 {
 pBitmap->LoadFromFile("C:\Program Files\Borland\CBuilder\Images\Splash\256color\factory.bmp ");
 for (int y = 0; y < pBitmap->Height; y++)
 {
 ptr = pBitmap->ScanLine[y];
 for (int x = 0; x < pBitmap->Width; x++)
 ptr[x] = (Byte)y;
 }
 Canvas->Draw(0,0,pBitmap);
 }
 catch (...)
 {
 ShowMessage("Could not load or alter bitmap");
 }
 delete pBitmap;
}

Loading and saving graphics files

Graphic images that exist only for the duration of one running of an application are
of very limited value. Often, you either want to use the same picture every time, or
you want to save a created picture for later use. The VCL’s image control makes it
easy to load pictures from a file and save them again.

The VCL components you use to load, save, and replace graphic images support
many graphic formats including bitmap files, metafiles, glyphs, and so on. They also
support installable graphic classes.

The way to load and save graphics files is the similar to any other files and is
described in the following sections:

• Loading a picture from a file
• Saving a picture to a file
• Replacing the picture

Loading a picture from a file
Your application should provide the ability to load a picture from a file if your
application needs to modify the picture or if you want to store the picture outside the
application so a person or another application can modify the picture.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-19

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

To load a graphics file into an image control, call the LoadFromFile method of the
image control’s Picture object.

The following code gets a file name from an open-file dialog box, and then loads that
file into an image control named Image:

void __fastcall TForm1::Open1Click(TObject *Sender)
{

if (OpenDialog1->Execute())
{

CurrentFile = OpenDialog1->FileName;
Image->Picture->LoadFromFile(CurrentFile);

}
}

Saving a picture to a file
The VCL picture object can load and save graphics in several formats, and you can
create and register your own graphic-file formats so that picture objects can load and
store them as well.

To save the contents of an image control in a file, call the SaveToFile method of the
image control’s Picture object.

The SaveToFile method requires the name of a file in which to save. If the picture is
newly created, it might not have a file name, or a user might want to save an existing
picture in a different file. In either case, the application needs to get a file name from
the user before saving, as shown in the next section.

The following pair of event handlers, attached to the File|Save and File|Save As
menu items, respectively, handle the resaving of named files, saving of unnamed
files, and saving existing files under new names.

void __fastcall TForm1::Save1Click(TObject *Sender)
{

if (!CurrentFile.IsEmpty())
Image->Picture->SaveToFile(CurrentFile); // save if already named

else SaveAs1Click(Sender); // otherwise get a name
}

void __fastcall TForm1::Saveas1Click(TObject *Sender)
{

if (SaveDialog1->Execute()) // get a file name
{

CurrentFile = SaveDialog1->FileName; // save user-specified name
Save1Click(Sender); // then save normally

}
}

Replacing the picture
You can replace the picture in an image control at any time. If you assign a new graphic
to a picture that already has a graphic, the new graphic replaces the existing one.

To replace the picture in an image control, assign a new graphic to the image
control’s Picture object.

6-20 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Creating the new graphic is the same process you used to create the initial graphic
(see “Setting the initial bitmap size” on page 6-17), but you should also provide a
way for the user to choose a size other than the default size used for the initial
graphic. An easy way to provide that option is to present a dialog box, such as the
one in Figure 6.1.

Figure 6.1 Bitmap-dimension dialog box from the BMPDlg unit

This particular dialog box is created in the BMPDlg unit included with the GraphEx
project (in the EXAMPLES\DOC\GRAPHEX directory).

With such a dialog box in your project, add an include statement for BMPDlg.hpp in
the .cpp file for your main form. You can then attach an event handler to the File|
New menu item’s OnClick event. Here’s an example:

void __fastcall TForm1::New1Click(TObject *Sender)
{
 Graphics::TBitmap *Bitmap;

// make sure focus is on width field
 NewBMPForm->ActiveControl = NewBMPForm->WidthEdit;

// initialize to current dimensions as default ...
NewBMPForm->WidthEdit->Text = IntToStr(Image->Picture->Graphic->Width);

 NewBMPForm->HeightEdit->Text = IntToStr(Image->Picture->Graphic->Height);
 if (NewBMPForm->ShowModal() != IDCANCEL){ // if user does not cancel dialog...

 Bitmap = new Graphics::TBitmap(); // create a new bitmap object
 // use specified dimensions

Bitmap->Width = StrToInt(NewBMPForm->WidthEdit->Text);
 Bitmap->Height = StrToInt(NewBMPForm->HeightEdit->Text);
 Image->Picture->Graphic = Bitmap; // replace graphic with new bitmap
 CurrentFile = EmptyStr; //indicate unnamed file
 }
}

Note Assigning a new bitmap to the picture object’s Graphic property causes the picture
object to destroy the existing bitmap and take ownership of the new one. The VCL
handles the details of freeing the resources associated with the previous bitmap
automatically.

Using the Clipboard with graphics

You can use the Windows Clipboard to copy and paste graphics within your
applications or to exchange graphics with other applications. The VCL’s Clipboard
object makes it easy to handle different kinds of information, including graphics.

Before you can use the Clipboard object in your application, you must add an include
statement for Clipbrd.hpp to any .cpp file that needs to access Clipboard data.

WidthEdit

HeightEdit

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-21

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Copying graphics to the Clipboard
You can copy any picture, including the contents of image controls, to the Clipboard.
Once on the Clipboard, the picture is available to all Windows applications.

To copy a picture to the Clipboard, assign the picture to the Clipboard object using
the Assign method.

This code shows how to copy the picture from an image control named Image to the
Clipboard in response to a click on an Edit|Copy menu item:

void __fastcall TForm1::Copy1Click(TObject *Sender)
{

Clipboard()->Assign(Image->Picture);
}

Cutting graphics to the Clipboard
Cutting a graphic to the Clipboard is exactly like copying it, but you also erase the
graphic from the source.

To cut a graphic from a picture to the Clipboard, first copy it to the Clipboard, then
erase the original.

In most cases, the only issue with cutting is how to show that the original image is
erased. Setting the area to white is a common solution, as shown in the following
code that attaches an event handler to the OnClick event of the Edit|Cut menu item:

void __fastcall TForm1::Cut1Click(TObject *Sender)
{

TRect ARect;
Copy1Click(Sender); // copy picture to Clipboard
Image->Canvas->CopyMode = cmWhiteness; // copy everything as white
ARect = Rect(0, 0, Image->Width, Image->Height); // get dimensions of image
Image->Canvas->CopyRect(ARect, Image->Canvas, ARect); // copy bitmap over self
Image->Canvas->CopyMode = cmSrcCopy; // restore default mode

}

Pasting graphics from the Clipboard
If the Windows Clipboard contains a bitmapped graphic, you can paste it into any
image object, including image controls and the surface of a form.

To paste a graphic from the Clipboard,

1 Call the Clipboard’s HasFormat method to see whether the Clipboard contains a
graphic.

HasFormat is a Boolean function. It returns true if the Clipboard contains an item of
the type specified in the parameter. To test for graphics, you pass CF_BITMAP.

2 Assign the Clipboard to the destination.

6-22 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

This code shows how to paste a picture from the Clipboard into an image control in
response to a click on an Edit|Paste menu item:

void __fastcall TForm1::Paste1Click(TObject *Sender)
{
 Graphics::TBitmap *Bitmap;
 if (Clipboard()->HasFormat(CF_BITMAP)){

Image->Picture->Bitmap->ASsign(Clipboard);Canvas->Draw(0, 0, Bitmap);
}

}

The graphic on the Clipboard could come from this application, or it could have been
copied from another application, such as Windows Paintbrush. You do not need to
check the clipboard format in this case because the paste menu should be disabled
when the clipboard does not contain a supported format.

Rubber banding example

This section walks you through the details of implementing the “rubber banding”
effect in an graphics application that tracks mouse movements as the user draws a
graphic at runtime. The example code in this section is taken from a sample
application located in the EXAMPLES\DOC\GRAPHEX directory. The application
draws lines and shapes on a window’s canvas in response to clicks and drags:
pressing a mouse button starts drawing, and releasing the button ends the drawing.

To start with, the example code shows how to draw on the surface of the main form.
Later examples demonstrate drawing on a bitmap.

This section covers:

• Responding to the mouse
• Adding a field to a form object to track mouse actions
• Refining line drawing

Responding to the mouse
Your application can respond to the mouse actions: mouse-button down, mouse
moved, and mouse-button up. It can also respond to a click (a complete press-and-
release, all in one place) that can be generated by some kinds of keystrokes (such as
pressing Enter in a modal dialog box).

This section covers:

• What’s in a mouse event
• Responding to a mouse-down action
• Responding to a mouse-up action
• Responding to a mouse move

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-23

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

What’s in a mouse event?
The VCL has three mouse events: OnMouseDown event, OnMouseMove event, and
OnMouseUp event.

When a VCL application detects a mouse action, it calls whatever event handler you’ve
defined for the corresponding event, passing five parameters. Use the information in
those parameters to customize your responses to the events. The five parameters are as
follows:

Most of the time, you need the coordinates returned in a mouse-event handler, but
sometimes you also need to check Button to determine which mouse button caused
the event.

Note C++Builder uses the same criteria as Microsoft Windows in determining which
mouse button has been pressed. Thus, if you have switched the default “primary”
and “secondary” mouse buttons (so that the right mouse button is now the primary
button), clicking the primary (right) button will record mbLeft as the value of the
Button parameter.

Responding to a mouse-down action
Whenever the user presses a button on the mouse, an OnMouseDown event goes to
the object the pointer is over. The object can then respond to the event.

To respond to a mouse-down action, attach an event handler to the OnMouseDown
event.

The VCL generates an empty handler for a mouse-down event on the form:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{

}

Here’s code that displays some text at the point where the mouse button is pressed. It
uses the X and Y parameters sent to the method, and calls the TextOut method of the
canvas to display text there.

Table 6.4 Mouse-event parameters

Parameter Meaning

Sender The object that detected the mouse action

Button Indicates which mouse button was involved: mbLeft, mbMiddle, or mbRight
Shift Indicates the state of the Alt, Ctrl, and Shift keys at the time of the mouse action
X, Y The coordinates where the event occurred

6-24 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

The following code displays the string ‘Here!’ at the location on a form clicked with
the mouse:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->TextOut(X, Y, "Here!");// write text at (X, Y)

}

When the application runs, you can press the mouse button down with the mouse
cursor on the form and have the string, “Here!” appear at the point clicked. This code
sets the current drawing position to the coordinates where the user presses the
button:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->MoveTo(X, Y);// set pen position

}

Pressing the mouse button now sets the pen position, setting the line’s starting point.
To draw a line to the point where the user releases the button, you need to respond to
a mouse-up event.

Responding to a mouse-up action
An OnMouseUp event occurs whenever the user releases a mouse button. The event
usually goes to the object the mouse cursor is over when the user presses the button,
which is not necessarily the same object the cursor is over when the button is
released. This enables you, for example, to draw a line as if it extended beyond the
border of the form.

To respond to mouse-up actions, define a handler for the OnMouseUp event.

Here’s a simple OnMouseUp event handler that draws a line to the point of the
mouse-button release:

void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->LineTo(X, Y);// draw line from PenPos to (X, Y)

}

This code lets a user draw lines by clicking, dragging, and releasing. In this case, the
user cannot see the line until the mouse button is released.

Responding to a mouse move
An OnMouseMove event occurs periodically when the user moves the mouse. The
event goes to the object that was under the mouse pointer when the user pressed the
button. This allows you to give the user some intermediate feedback by drawing
temporary lines while the mouse moves.

To respond to mouse movements, define an event handler for the OnMouseMove
event. This example uses mouse-move events to draw intermediate shapes on a form
while the user holds down the mouse button, thus providing some feedback to the

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-25

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

user. The OnMouseMove event handler draws a line on a form to the location of the
OnMouseMove event:

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->LineTo(X, Y);// draw line to current position

}

With this code, moving the mouse over the form causes drawing to follow the mouse,
even before the mouse button is pressed.

Mouse-move events occur even when you haven’t pressed the mouse button.

If you want to track whether there is a mouse button pressed, you need to add an
object field to the form object.

Adding a field to a form object to track mouse actions
To track whether a mouse button was pressed, you must add an object field to the
form object. When you add a component to a form, C++Builder adds a field that
represents that component to the form object, so that you can refer to the component
by the name of its field. You can also add your own fields to forms by editing the
type declaration in the form unit’s header file.

In the following example, the form needs to track whether the user has pressed a
mouse button. To do that, it adds a Boolean field and sets its value when the user
presses the mouse button.

To add a field to an object, edit the object’s type definition, specifying the field
identifier and type after the public directive at the bottom of the declaration.

C++Builder “owns” any declarations before the public directive: that’s where it puts
the fields that represent controls and the methods that respond to events.

The following code gives a form a field called Drawing of type bool, in the form
object’s declaration. It also adds two fields to store points Origin and MovePt of type
POINT.

class TForm1 : public TForm
{
__published: // IDE-managed Components

void __fastcall FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);
void __fastcall FormMouseMove(TObject *Sender, TShiftState Shift, int X,
int Y);
void __fastcall FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);

private:// User declarations
public:// User declarations

__fastcall TForm1(TComponent* Owner);
bool Drawing; //field to track whether button was pressed
POINT Origin, MovePt; // fields to store points

};

6-26 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

When you have a Drawing field to track whether to draw, set it to true when the user
presses the mouse button, and false when the user releases it:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Drawing = true; // set the Drawing flag
Canvas->MoveTo(X, Y); // set pen position

}

void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->LineTo(X, Y); // draw line from PenPos to (X, Y)
Drawing = false; // clear the Drawing flag

}

Then you can modify the OnMouseMove event handler to draw only when Drawing is
true:

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (Drawing)

Canvas->LineTo(X, Y);// only draw if mouse is down
}

This results in drawing only between the mouse-down and mouse-up events, but
you still get a scribbled line that tracks the mouse movements instead of a straight
line.

The problem is that each time you move the mouse, the mouse-move event handler
calls LineTo, which moves the pen position, so by the time you release the button,
you’ve lost the point where the straight line was supposed to start.

Refining line drawing
With fields in place to track various points, you can refine an application’s line
drawing.

Tracking the origin point
When drawing lines, track the point where the line starts with the Origin field.

Origin must be set to the point where the mouse-down event occurs, so the mouse-up
event handler can use Origin to place the beginning of the line, as in this code:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Drawing = true; // set the Drawing flag
Canvas->MoveTo(X, Y); // set pen position
Origin = Point(X, Y); // record where the line starts

}

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-27

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point
Canvas->LineTo(X, Y); // draw line from PenPos to (X, Y)
Drawing = false; // clear the Drawing flag

}

Those changes get the application to draw the final line again, but they do not draw
any intermediate actions--the application does not yet support “rubber banding.”

Tracking movement
The problem with this example as the OnMouseMove event handler is currently
written is that it draws the line to the current mouse position from the last mouse
position, not from the original position. You can correct this by moving the drawing
position to the origin point, then drawing to the current point:

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (Drawing)
{

Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point
Canvas->LineTo(X, Y);

}
}

The above tracks the current mouse position, but the intermediate lines do not go
away, so you can hardly see the final line. The example needs to erase each line
before drawing the next one, by keeping track of where the previous one was. The
MovePt field allows you to do this.

MovePt must be set to the endpoint of each intermediate line, so you can use MovePt
and Origin to erase that line the next time a line is drawn:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Drawing = true; // set the Drawing flag
Canvas->MoveTo(X, Y); // set pen position
Origin = Point(X, Y); // record where the line starts
MovePt = Point(X, Y); // record last endpoint

}

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (Drawing)
{

Canvas->Pen->Mode = pmNotXor; // use XOR mode to draw/erase
Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point
Canvas->LineTo(MovePt.x, MovePt.y); // erase old line

6-28 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point again
Canvas->LineTo(X, Y); // draw new line

}
MovePt = Point(X, Y); // record new endpoint
Canvas->Pen->Mode = pmCopy;

}

Now you get a “rubber band” effect when you draw the line. By changing the pen’s
mode to pmNotXor, you have it combine your line with the background pixels. When
you go to erase the line, you’re actually setting the pixels back to the way they were.
By changing the pen mode back to pmCopy (its default value) after drawing the lines,
you ensure that the pen is ready to do its final drawing when you release the mouse
button.

Working with multimedia
C++Builder allows you to add multimedia components to your applications. To do
this, you can use either the TAnimate component on the Win32 page or the
TMediaPlayer component on the System page of the Component palette. Use the
animate component when you want to add silent video clips to your application. Use
the media player component when you want to add audio and/or video clips to an
application.

For more information on the TAnimate and TMediaPlayer components, see the VCL
on-line help.

The following topics are discussed in this section:

• Adding silent video clips to an application
• Adding audio and/or video clips to an application

Adding silent video clips to an application

The animation control in C++ Builder allows you to add silent video clips to your
application.

To add a silent video clip to an application:

1 Double-click the animate icon on the Win32 page of the Component palette. This
automatically puts an animation control on the form window in which you want
to display the video clip.

2 Using the Object Inspector, select the Name property and enter a new name for
your animation control. You will use this name when you call the animation
control. (Follow the standard rules for naming C++ identifiers).

Always work directly with the Object Inspector when setting design time
properties and creating event handlers.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-29

W o r k i n g w i t h m u l t i m e d i a

3 Do one of the following:

• Select the Common AVI property and choose one of the AVIs available from the
drop down list; or

• Select the FileName property and click the ellipsis (…) button, choose an AVI file
from any available local or network directories and click Open in the Open AVI
dialog; or

• Select the resource of an AVI using the ResName or ResID properties. Use
ResHandle to indicate the module that contains the resource identified by
ResName or ResID.

This loads the AVI file into memory. If you want to display the first frame of the
AVI clip on-screen until it is played using the Active property or the Play method,
then set the Open property to true.

4 Set the Repetitions property to the number of times you want to the AVI clip to
play. If this value is 0, then the sequence is repeated until the Stop method is called.

5 Make any other changes to the animation control settings. For example, if you
want to change the first frame displayed when animation control opens, then set
the StartFrame property to the desired frame value.

6 Set the Active property to true using the drop down list or write an event handler
to run the AVI clip when a specific event takes place at runtime. For example, to
activate the AVI clip when a button object is clicked, write the button’s OnClick
event specifying that. You may also call the Play method to specify when to play
the AVI.

Note If you make any changes to the form or any of the components on the form after
setting Active to true, the Active property becomes false and you have to reset it to
true. Do this either just before runtime or at runtime.

Example of adding silent video clips
Suppose you want to display an animated logo as the first screen that appears when
your application starts. After the logo finishes playing the screen disappears.

To run this example, create a new project and save the Unit1.cpp file as Frmlogo.cpp
and save the Project1.bpr file as Logo.bpr. Then:

1 Double-click the animate icon from the Win32 page of the Component palette.

2 Using the Object Inspector, set its Name property to Logo1.

3 Select its FileName property, click the ellipsis (…) button, choose the cool.avi file
from your ..\Examples\Coolstuf directory. Then click Open in the Open AVI
dialog.

This loads the cool.avi file into memory.

4 Position the animation control box on the form by clicking and dragging it to the
top right hand side of the form.

5 Set its Repetitions property to 5.

6-30 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

6 Click the form to bring focus to it and set its Name property to LogoForm1 and its
Caption property to Logo Window. Now decrease the height of the form to right-
center the animation control on it.

7 Double-click the form’s OnActivate event and write the following code to run the
AVI clip when the form is in focus at runtime:

Logo1->Active = true;

8 Double-click the Label icon on the Standard page of the Component palette. Select
its Caption property and enter Welcome to Cool Images 4.0. Now select its Font
property, click the ellipsis (…) button and choose Font Style: Bold, Size: 18, Color:
Navy from the Font dialog and click OK. Click and drag the label control to center
it on the form.

9 Click the animation control to bring focus back to it. Double-click its OnStop event
and write the following code to close the form when the AVI file stops:

LogoForm1->Close();

10 Select Run|Run to execute the animated logo window.

Adding audio and/or video clips to an application

The media player component in C++ Builder allows you to add audio and/or video
clips to your application. It opens a media device and plays, stops, pauses, records,
etc., the audio and/or video clips used by the media device. The media device may
be hardware or software.

 To add an audio and/or video clip to an application:

1 Double-click the media player icon on the System page of the Component palette.
This automatically put a media player control on the form window in which you
want the media feature.

2 Using the Object Inspector, select the Name property and enter a new name for your
media player control. You will use this when you call the media player control.
(Follow the standard rules for naming C++ identifiers.)

Always work directly with the Object Inspector when setting design time
properties and creating event handlers.

3 Select the DeviceType property and choose the appropriate device type to open
using the AutoOpen property or the Open method. (If DeviceType is dtAutoSelect
the device type is selected based on the file extension of the media file specified by
the FileName property.) For more information on device types and their functions,
see Table 6.5 on page 6-31.

4 If the device stores its media in a file, specify the name of the media file using the
FileName property. Select the FileName property, click the ellipsis (…) button, and
choose a media file from any available local or network directories and click Open
in the Open dialog. Otherwise, insert the hardware the media is stored in (disk,
cassette, and so on) for the selected media device, at runtime.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 6-31

W o r k i n g w i t h m u l t i m e d i a

5 Set the AutoOpen property to true. This way the media player automatically opens
the specified device when the form containing the media player control is created
at runtime. If AutoOpen is false, the device must be opened with a call to the Open
method.

6 Set the AutoEnable property to true to automatically enable or disable the media
player buttons as required at runtime; or, double-click the EnabledButtons property
to set each button to true or false depending on which ones you want to enable or
disable.

The multimedia device is played, paused, stopped, and so on when the user clicks
the corresponding button on the media player component. The device can also be
controlled by the methods that correspond to the buttons (Play, Pause, Stop, Next,
Previous, and so on).

7 Position the media player control bar on the form by either clicking and dragging
it to the appropriate place on the form or by selecting the Align property and
choosing the appropriate align position from the drop down list.

If you want the media player to be invisible at runtime, set the Visible property to
false and control the device by calling the appropriate methods (Play, Pause, Stop,
Next, Previous, Step, Back, Start Recording, Eject).

8 Make any other changes to the media player control settings. For example, if the
media requires a display window, set the Display property to the control that
displays the media. If the device uses multiple tracks, set the Tracks property to the
desired track.

Table 6.5 Multimedia device types and their functions

Device Type Software/Hardware used Plays
Uses
Tracks

Uses a
Display
Window

dtAVIVideo AVI Video Player for
Windows

 AVI Video files No Yes

dtCDAudio CD Audio Player for
Windows or a CD Audio
Player

CD Audio Disks Yes No

dtDAT Digital Audio Tape Player Digital Audio Tapes Yes No

dtDigitalVideo Digital Video Player for
Windows

AVI, MPG, MOV files No Yes

dtMMMovie MM Movie Player MM film No Yes

dtOverlay Overlay device Analog Video No Yes

dtScanner Image Scanner N/A for Play (scans
images on Record)

No No

dtSequencer MIDI Sequencer for
Windows

MIDI files Yes No

dtVCR Video Cassette Recorder Video Cassettes No Yes

dtWaveAudio Wave Audio Player for
Windows

WAV files No No

6-32 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

Example of adding audio and/or video clips
This example runs an AVI video clip of a multimedia advertisement for C++Builder.
To run this example, create a new project and save the Unit1.cpp file to FrmAd.cpp
and save the Project1.bpr file to MmediaAd.bpr. Then:

1 Double-click the media player icon on the System page of the Component palette.

2 Using the Object Inspector, set the Name property of the media player to
VideoPlayer1.

3 Select its DeviceType property and choose dtAVIVideo from the drop down list.

4 Select its FileName property, click the ellipsis (…) button, choose the file from
your ..\Examples\Coolstuf directory. Click Open in the Open dialog.

5 Set its AutoOpen property to true and its Visible property to false.

6 Double-click the Animate icon from the Win32 page of the Component palette. Set
its AutoSize property to false, its Height property to 175 and Width property to
200. Click and drag the animation control to the top left corner of the form.

7 Click the media player to bring back focus to it. Select its Display property and
choose Animate1 from the drop down list.

8 Click the form to bring focus to it and select its Name property and enter C++_Ad.
Now resize the form to the size of the animation control.

9 Double-click the form’s OnActivate event and write the following code to run the
AVI video when the form is in focus:

Videoplayer1->Play();

10 Choose Run|Run to execute the AVI video.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 7-1

C h a p t e r

7
Chapter7Writing multi-threaded applications

The VCL provides several objects that make writing multi-threaded applications
easier. Multi-threaded applications are applications that include several
simultaneous paths of execution. While using multiple threads requires careful
thought, it can enhance your programs by

• Avoiding bottlenecks. With only one thread, a program must stop all execution
when waiting for slow processes such as accessing files on disk, communicating
with other machines, or displaying multimedia content. The CPU sits idle until the
process completes. With multiple threads, your application can continue execution
in separate threads while one thread waits for the results of a slow process.

• Organizing program behavior. Often, a program’s behavior can be organized into
several parallel processes that function independently. Use threads to launch a
single section of code simultaneously for each of these parallel cases. Use threads
to assign priorities to various program tasks so that you can give more CPU time
to more critical tasks.

• Multiprocessing. If the system running your program has multiple processors,
you can improve performance by dividing the work into several threads and
letting them run simultaneously on separate processors.

Note Not all operating systems implement true multi-processing, even when it is
supported by the underlying hardware. For example Windows 95 only simulates
multiprocessing, even if the underlying hardware supports it.

Defining thread objects
For most applications, you can use a thread object to represent an execution thread in
your application. Thread objects simplify writing multi-threaded applications by
encapsulating the most commonly needed uses of threads.

Note Thread objects do not allow you to control the security attributes or stack size of your
threads. If you need to control these, you must use the Windows API CreateThread or

7-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

the BeginThread function. Even when using Windows Thread API calls or
BeginThread, you can still benefit from some of the thread synchronization objects and
methods described in “Coordinating threads” on page 7-6. For more information on
using CreateThread or BeginThread, see the Windows online help.

To use a thread object in your application, you must create a new descendant of
TThread. To create a descendant of TThread, choose File|New from the main menu. In
the new objects dialog box, select Thread Object. You are prompted to provide a class
name for your new thread object. After you provide the name, C++Builder creates a
new .CPP and header file to implement the thread.

Note Unlike most dialog boxes in the IDE that require a class name, the New Thread
Object dialog does not automatically prepend a ‘T’ to the front of the class name you
provide.

The automatically generated .CPP file contains the skeleton code for your new thread
object. If you named your thread TMyThread, it would look like the following:

//---
#include <vcl\vcl.h>
#pragma hdrstop
#include "Unit2.h"
//---
__fastcall TMyThread::TMyThread(bool CreateSuspended): TThread(CreateSuspended)
{
}
//---
void __fastcall TMyThread::Execute()
{
 // ---- Place thread code here ----
}
//---

You must fill in the code forthe constructor and the Execute method. These steps are
described in the following sections.

Initializing the thread

Use the constructor to initialize your new thread class. This is where you can assign a
default priority for your thread and indicate whether it should be freed automatically
when it finishes executing.

Assigning a default priority
Priority indicates how much preference the thread gets when the operating system
schedules CPU time among all the threads in your application. Use a high priority
thread to handle time critical tasks, and a low priority thread to perform other tasks.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 7-3

D e f i n i n g t h r e a d o b j e c t s

To indicate the priority of your thread object, set the Priority property. Priority values
fall along a seven point scale, as described in Table 7.1:

Warning Boosting the thread priority of a CPU intensive operation may “starve” other threads
in the application. Only apply priority boosts to threads that spend most of their time
waiting for external events.

The following code shows the constructor of a low-priority thread that performs
background tasks which should not interfere with the rest of the application’s
performance:

//---
__fastcall TMyThread::TMyThread(bool CreateSuspended): TThread(CreateSuspended)
{
 Priority = tpIdle;
}

//---

Indicating when threads are freed
Usually, when threads finish their operation, they can simply be freed. In this case, it
is easiest to let the thread object free itself. To do this, set the FreeOnTerminate
property to true.

There are times, however, when the termination of a thread must be coordinated
with other threads. For example, you may be waiting for one thread to return a value
before performing an action in another thread. To do this, you do not want to free the
first thread until the second has received the return value. You can handle this
situation by setting FreeOnTerminate to false and then explicitly freeing the first
thread from the second.

Writing the thread function

The Execute method is your thread function. You can think of it as a program that is
launched by your application, except that it shares the same process space. Writing
the thread function is a little trickier than writing a separate program because you
must make sure that you don’t overwrite memory that is used by other threads in
your application. On the other hand, because the thread shares the same process

Table 7.1 Thread priorities

Value Priority

tpIdle The thread executes only when the system is idle. Windows won’t interrupt
other threads to execute a thread with tpIdle priority.

tpLowest The thread’s priority is two points below normal.

tpLower The thread’s priority is one point below normal.

tpNormal The thread has normal priority.

tpHigher The thread’s priority is one point above normal.

tpHighest The thread’s priority is two points above normal.

tpTimeCritical The thread gets highest priority.

7-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

space with other threads, you can use the shared memory to communicate between
threads.

Using the main VCL thread
When you use objects from the VCL object hierarchy, their properties and methods
are not guaranteed to be thread-safe. That is, accessing properties or executing
methods may perform some actions that use memory which is not protected from the
actions of other threads. Because of this, a main VCL thread is set aside for access of
VCL objects. This is the thread that handles all Windows messages received by
components in your application.

If all objects access their properties and execute their methods within this single
thread, you need not worry about your objects interfering with each other. To use the
main VCL thread, create a separate routine that performs the required actions. Call
this separate routine from within your thread’s Synchronize method. For example:

void __fastcall TMyThread::PushTheButton(void)
{
 Button1->Click();
}
ƒ
void __fastcall TMyThread::Execute()
{
 ƒ
 Synchronize((TThreadMethod)PushTheButton);
 ƒ
}

Synchronize waits for the main VCL thread to enter the message loop and then
executes the passed method.

Note Because Synchronize uses the message loop, it does not work in console applications.
You must use other mechanisms, such as critical sections, to protect access to VCL
objects in console applications.

You do not always need to use the main VCL thread. Some objects are thread-aware.
Omitting the use of the Synchronize method when you know an object’s methods are
thread-safe will improve performance because you don’t need to wait for the VCL
thread to enter its message loop. You do not need to use the Synchronize method in
the following situations:

• Data access components are thread-safe as follows: For BDE-enabled datasets,
each thread must have its own database session component. The one exception to
this is when you are using Access drivers, which are built using a Microsoft library
that is not thread-safe. ADO and InterbaseExpress components are thread-safe.

When using data access components, you must still wrap all calls that involve
data-aware controls in the Synchronize method. Thus, for example, you need to
synchronize calls that link a data control to a dataset by setting the DataSet
property of the data source object, but you don’t need to synchronize to access the
data in a field of the dataset.

For more information about using database sessions with threads in BDE-enabled
applications, see “Managing multiple sessions” on page 17-16.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 7-5

D e f i n i n g t h r e a d o b j e c t s

• Graphics objects are thread-safe. You do not need to use the main VCL thread to
access TFont, TPen, TBrush, TBitmap, TMetafile, or TIcon. Canvas objects can be
used outside the Synchronize method by locking them (see “Locking objects” on
page 7-6).

• While list objects are not thread-safe, you can use a thread-safe version,
TThreadList, instead of TList.

Using thread-local variables
Your Execute method and any of the routines it calls have their own local variables,
just like any other C++ routines. These routines also can access any global variables.
In fact, global variables provide a powerful mechanism for communicating between
threads.

Sometimes, however, you may want to use variables that are global to all the routines
running in your thread, but not shared with other instances of the same thread class.
You can do this by declaring thread-local variables. Make a variable thread-local by
adding the __thread modifier to the variable declaration. For example,

int __thread x;

declares an integer type variable that is private to each thread in the application, but
global within each thread.

The __thread modifier can only be used for global (file-scope) and static variables.
Pointer and Function variables can’t be thread variables. Types that use copy-on-
write semantics, such as AnsiStrings don’t work as thread variables either. A
program element that requires runtime initialization or runtime finalization cannot
be declared to be a __thread type.

The following declarations require runtime initialization and are therefore illegal.

int f();
int __thread x = f(); // illegal

Instantiation of a class with a user-defined constructor or destructor requires runtime
initialization and is therefore illegal:

class X {
 X();
 ~X();
};
X __thread myclass; // illegal

Checking for termination by other threads
Your thread begins running when the Execute method is called (see “Executing
thread objects” on page 7-10) and continues until Execute finishes. This reflects the
model that the thread performs a specific task, and then stops when it is finished.
Sometimes, however, an application needs a thread to execute until some external
criterion is satisfied.

You can allow other threads to signal that it is time for your thread to finish
executing by checking the Terminated property. When another thread tries to
terminate your thread, it calls the Terminate method. Terminate sets your thread’s

7-6 D e v e l o p e r ’ s G u i d e

C o o r d i n a t i n g t h r e a d s

Terminated property to true. It is up to your Execute method to implement the
Terminate method by checking and responding to the Terminated property. The
following example shows one way to do this:

void __fastcall TMyThread::Execute()
{
 while (!Terminated)
 PerformSomeTask();
}

Writing clean-up code

You can centralize the code that cleans up when your thread finishes executing. Just
before a thread shuts down, an OnTerminate event occurs. Put any clean-up code in
the OnTerminate event handler to ensure that it is always executed, no matter what
execution path the Execute method follows.

The OnTerminate event handler is not run as part of your thread. Instead, it is run in
the context of the main VCL thread of your application. This has two implications:

• You can’t use any thread-local variables in an OnTerminate event handler (unless
you want the main VCL thread values).

• You can safely access any components and VCL objects from the OnTerminate
event handler without worrying about clashing with other threads.

For more information about the main VCL thread, see “Using the main VCL thread”
on page 7-4.

Coordinating threads
When writing the code that runs when your thread is executed, you must consider
the behavior of other threads that may be executing simultaneously. In particular,
care must be taken to avoid two threads trying to use the same global object or
variable at the same time. In addition, the code in one thread can depend on the
results of tasks performed by other threads.

Avoiding simultaneous access

To avoid clashing with other threads when accessing global objects or variables, you
may need to block the execution of other threads until your thread code has finished
an operation. Be careful not to block other execution threads unnecessarily. Doing so
can cause performance to degrade seriously and negate most of the advantages of
using multiple threads.

Locking objects
Some objects have built-in locking that prevents the execution of other threads from
using that object instance.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 7-7

C o o r d i n a t i n g t h r e a d s

For example, canvas objects (TCanvas and descendants) have a Lock method that
prevents other threads from accessing the canvas until the Unlock method is called.

The VCL also includes a thread-safe list object, TThreadList. Calling
TThreadList::LockList returns the list object while also blocking other execution
threads from using the list until the UnlockList method is called. Calls to
TCanvas::Lock or TThreadList::LockList can be safely nested. The lock is not released
until the last locking call is matched with a corresponding unlock call in the same
thread.

Using critical sections
If objects do not provide built-in locking, you can use a critical section. Critical
sections work like gates that allow only a single thread to enter at a time. To use a
critical section, create a global instance of TCriticalSection. TCriticalSection has two
methods, Acquire (which blocks other threads from executing the section) and Release
(which removes the block).

Each critical section is associated with the global memory you want to protect. Every
thread that accesses that global memory should first use the Acquire method to
ensure that no other thread is using it. When finished, threads call the Release method
so that other threads can access the global memory by calling Acquire.

Warning Critical sections only work if every thread uses them to access the associated global
memory. Threads that ignore the critical section and access the global memory
without calling Acquire can introduce problems of simultaneous access.

For example, consider an application that has a global critical section variable,
pLockXY, that blocks access to global variables X and Y. Any thread that uses X or Y
must surround that use with calls to the critical section such as the following:

pLockXY->Acquire(); // lock out other threads
try
{
 Y = sin(X);
}
__finally
{
 pLockXY->Release();
}

Using the multi-read exclusive-write synchronizer
When you use critical sections to protect global memory, only one thread can use the
memory at a time. This can be more protection than you need, especially if you have
an object or variable that must be read often but to which you very seldom write.
There is no danger in multiple threads reading the same memory simultaneously, as
long as no thread is writing to it.

When you have some global memory that is read often, but to which threads
occasionally write, you can protect it using TMultiReadExclusiveWriteSynchronizer. This
object acts like a critical section, but one which allows multiple threads to read the
memory it protects as long as no thread is writing to it. Threads must have exclusive
access to write to memory protected by TMultiReadExclusiveWriteSynchronizer.

7-8 D e v e l o p e r ’ s G u i d e

C o o r d i n a t i n g t h r e a d s

To use a multi-read exclusive-write synchronizer, create a global instance of
TMultiReadExclusiveWriteSynchronizer that is associated with the global memory you
want to protect. Every thread that reads from this memory must first call the
BeginRead method. BeginRead ensures that no other thread is currently writing to the
memory. When a thread finishes reading the protected memory, it calls the EndRead
method. Any thread that writes to the protected memory must call BeginWrite first.
BeginWrite ensures that no other thread is currently reading or writing to the
memory. When a thread finishes writing to the protected memory, it calls the
EndWrite method, so that threads waiting to read the memory can begin.

Warning Like critical sections, the multi-read exclusive-write synchronizer only works if every
thread uses it to access the associated global memory. Threads that ignore the
synchronizer and access the global memory without calling BeginRead or BeginWrite
introduce problems of simultaneous access.

Other techniques for sharing memory
When using objects in the VCL, use the main VCL thread to execute your code. Using
the main VCL thread ensures that the object does not indirectly access any memory
that is also used by VCL objects in other threads. See “Using the main VCL thread”
on page 7-4 for more information on the main VCL thread.

If the global memory does not need to be shared by multiple threads, consider using
thread-local variables instead of global variables. By using thread-local variables,
your thread does not need to wait for or lock out any other threads. See “Using
thread-local variables” on page 7-5 for more information about thread-local
variables.

Waiting for other threads

If your thread must wait for another thread to finish some task, you can tell your
thread to temporarily suspend execution. You can either wait for another thread to
completely finish executing, or you can wait for another thread to signal that it has
completed a task.

Waiting for a thread to finish executing
To wait for another thread to finish executing, use the WaitFor method of that other
thread. WaitFor doesn’t return until the other thread terminates, either by finishing
its own Execute method or by terminating due to an exception. For example, the
following code waits until another thread fills a thread list object before accessing the
objects in the list:

if (pListFillingThread->WaitFor())
{
 for (TList *pList = ThreadList1->LockList(), int i = 0; i < pList->Count; i++)
 ProcessItem(pList->Items[i]);
 ThreadList1->UnlockList();
}

In the previous example, the list items were only accessed when the WaitFor method
indicated that the list was successfully filled. This return value must be assigned by

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 7-9

C o o r d i n a t i n g t h r e a d s

the Execute method of the thread that was waited for. However, because threads that
call WaitFor want to know the result of thread execution, not code that calls Execute,
the Execute method does not return any value. Instead, the Execute method sets the
ReturnValue property. ReturnValue is then returned by the WaitFor method when it is
called by other threads. Return values are integers. Your application determines their
meaning.

Waiting for a task to be completed
Sometimes, you need to wait for a thread to finish some operation rather than
waiting for a particular thread to complete execution. To do this, use an event object.
Event objects (TEvent) should be created with global scope so that they can act like
signals that are visible to all threads.

When a thread completes an operation that other threads depend on, it calls
TEvent::SetEvent. SetEvent turns on the signal, so any other thread that checks will
know that the operation has completed. To turn off the signal, use the ResetEvent
method.

For example, consider a situation where you must wait for several threads to
complete their execution rather than a single thread. Because you don’t know which
thread will finish last, you can’t simply use the WaitFor method of one of the threads.
Instead, you can have each thread increment a counter when it is finished, and have
the last thread signal that they are all done by setting an event.

The following code shows the end of the OnTerminate event handler for all of the
threads that must complete. CounterGuard is a global critical section object that
prevents multiple threads from using the counter at the same time. Counter is a global
variable that counts the number of threads that have completed.

void __fastcall TDataModule::TaskThreadTerminate(TObject *Sender)
{
 ƒ CounterGuard->Acquire(); // lock the counter
 if (--Counter == 0) // decrement the global counter
 Event1->SetEvent(); // signal if this is the last thread
 CounterGuard->Release(); // release the lock on the counter
}

The main thread initializes the Counter variable, launches the task threads, and waits
for the signal that they are all done by calling the WaitFor method. WaitFor waits for a
specified time period for the signal to be set, and returns one of the values from Table
7.2.

Table 7.2 WaitFor return values

Value Meaning

wrSignaled The signal of the event was set.

wrTimeout The specified time elapsed without the signal being set.

wrAbandoned The event object was destroyed before the timeout period elapsed.

wrError An error occurred while waiting.

7-10 D e v e l o p e r ’ s G u i d e

E x e c u t i n g t h r e a d o b j e c t s

The following shows how the main thread launches the task threads and then
resumes when they have all completed:

Event1->ResetEvent(); // clear the event before launching the threads
for (i = 0; i < Counter; i++)
 new TaskThread(false); // create and launch task threads
if (Event1->WaitFor(20000) != wrSignaled)
 throw Exception;
// now continue with the main thread, All task threads have finished

Note If you do not want to stop waiting for an event after a specified time period, pass the
WaitFor method a parameter value of INFINITE. Be careful when using INFINITE,
because your thread will hang if the anticipated signal is never received.

Executing thread objects
Once you have implemented a thread class by giving it an Execute method, you can
use it in your application to launch the code in the Execute method. To use a thread,
first create an instance of the thread class. You can create a thread instance that starts
running immediately, or you can create your thread in a suspended state so that it
only begins when you call the Resume method. To create a thread so that it starts up
immediately, set the constructor’s CreateSuspended parameter to false. For example,
the following line creates a thread and starts its execution:

TMyThread *SecondProcess = new TMyThread(false); // create and run the thread

Warning Do not create too many threads in your application. The overhead in managing
multiple threads can impact performance. The recommended limit is 16 threads per
process on single processor systems. This limit assumes that most of those threads
are waiting for external events. If all threads are active, you will want to use fewer.

You can create multiple instances of the same thread type to execute parallel code.
For example, you can launch a new instance of a thread in response to some user
action, allowing each thread to perform the expected response.

Overriding the default priority

When the amount of CPU time the thread should receive is implicit in the thread’s
task, its priority is set in the constructor. This is described in “Initializing the thread”
on page 7-2. However, if the thread priority varies depending on when the thread is
executed, create the thread in a suspended state, set the priority, and then start the
thread running:

TMyThread *SecondProcess = new TMyThread(true); // create but don’t run
SecondProcess->Priority = tpLower; // set the priority lower than normal
SecondProcess->Resume(); // now run the thread

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 7-11

D e b u g g i n g m u l t i - t h r e a d e d a p p l i c a t i o n s

Starting and stopping threads

A thread can be started and stopped any number of times before it finishes executing.
To stop a thread temporarily, call its Suspend method. When it is safe for the thread to
resume, call its Resume method. Suspend increases an internal counter, so you can nest
calls to Suspend and Resume. The thread does not resume execution until all
suspensions have been matched by a call to Resume.

You can request that a thread end execution prematurely by calling the Terminate
method. Terminate sets the thread’s Terminated property to true. If you have
implemented the Execute method properly, it checks the Terminated property
periodically, and stops execution when Terminated is true.

Debugging multi-threaded applications
When debugging multi-threaded applications, it can be confusing trying to keep
track of the status of all the threads that are executing simultaneously, or even to
determine which thread is executing when you stop at a breakpoint. You can use the
Thread Status box to help you keep track of and manipulate all the threads in your
application. To display the Thread status box, choose View|Threads from the main
menu.

When a debug event occurs (breakpoint, exception, paused), the thread status view
indicates the status of each thread. Right-click the Thread Status box to access
commands that locate the corresponding source location or make a different thread
current. When a thread is marked as current, the next step or run operation is relative
to that thread.

The Thread Status box lists all your application’s execution threads by their thread
ID. If you are using thread objects, the thread ID is the value of the ThreadID
property. If you are not using thread objects, the thread ID for each thread is returned
by the call to CreateThread or BeginThread.

For additional details on the Thread Status box, see online Help.

7-12 D e v e l o p e r ’ s G u i d e

E x c e p t i o n h a n d l i n g 8-1

C h a p t e r

8
Chapter8Exception handling

C++Builder supports C++ exception handling, C-based structured exception
handling, and VCL exception handling.

Note that the examples provided in this chapter for C++ exception handling and
structured exception handling can be compiled and run successfully from the
command line using bcc32.exe rather than from the IDE. You would use C++
exception handling if your application calls standard C++ routines and objects.

VCL exception handling can occur from within the IDE. In fact, although C++Builder
supports using C++ and C-based structured exception handling, C++Builder and the
VCL make it possible for you to develop applications that include built-in exception
handling routines that throw exceptions automatically when something goes wrong.

C++ exception handling
Exceptions are exceptional conditions that require special handling and can include
errors that occur at runtime, such as divide by zero, and the exhaustion of free store.
Exception handling provides a standard way of dealing with errors, discovering both
anticipated and unanticipated problems, and enables developers to recognize, track
down, and fix bugs.

ANSI requirements for exception handling

C++Builder exception handling is consistent with the proposed ANSI/ISO C++
working paper specification. Throwing an exception allows you to gather
information at the throw point that could be useful for diagnosing its cause.

You can use an exception handler to specify actions to take before terminating the
program. Only synchronous exceptions (where the cause of failure is generated from
within the program) are handled. An event (generated from outside the program)
such as pressing Ctrl+C is not considered to be an exception.

8-2 D e v e l o p e r ’ s G u i d e

C + + e x c e p t i o n h a n d l i n g

The C++ language specifies that all exceptions should be thrown within a try-block.
This block is followed by one or more catch blocks that identify and handle the errors
generated in the try-block.

Exception handling syntax

Exception handling requires the use of three keywords: try, catch, and throw.
Programs prepare to catch exceptions by trying statements that might generate a
special condition. When a C++ program throws an exception, you can transfer or
throw control to another part of the program called the exception handler that
handles that type of exception. The handler is said to catch the exception.

A program throws an exception by executing a throw statement. The throw
statement generally occurs within a function:

throw “overflow”;

As in the example, the statement throws an object that describes the type of
exception, in this case, an arithmetic overflow. Another part of the program can catch
the thrown exception object and handle it accordingly.

To use exception handling, surround the code with a try/catch construct. The syntax
for a try/catch construct is as follows:

try-block:
try compound-statement handler-list

handler-list:
handler handler-listopt

handler:
catch (exception-declaration) compound-statement

exception declaration:
type-specifier-list declarator
type-specifier-list abstract-declarator
type-specifier-list
…

throw-expression:
throw assignment-expressionopt

Note The try, catch, and throw keywords are not allowed in C programs.

A try-block specified by try must be followed immediately by the handler specified by
catch. The try-block is a statement that specifies the flow of control as the program
executes. If an exception is thrown in the try-block, program control is transferred to
the appropriate exception handler.

The handler is a block of code designed to handle the exception. The C++ language
requires at least one handler immediately after a try-block. The program should
include a handler for each exception that the program can generate.

Exception declarations

Although C++ allows an exception to be of any type, it is useful to make exceptions
objects. An exception object is treated like any other object. The exception carries

E x c e p t i o n h a n d l i n g 8-3

C + + e x c e p t i o n h a n d l i n g

information from the point where the exception is thrown to the point where the
exception is caught. This is information that the application user will want to know
when the program encounters an anomaly at runtime.

Predefined exceptions, specified by the C++ language, are documented in the Library
Reference in online Help.

Throwing an exception

A block of code in which an exception can occur must be prefixed by the keyword try
and enclosed by braces. This indicates that the program is prepared to test for exceptions.
If an exception occurs, the program flow is interrupted and the following occur:

• The program searches for a matching handler

• If a handler is found, the stack is unwound to that point

• Program control is transferred to the handler

• If no handler is found, you can call set_terminate() to provide a termination
handler; otherwise, the program calls the terminate function

If no exceptions are thrown, the program executes normally.

When an exception occurs, the throw expression initializes a temporary object of type
T (to match the type of argument arg) used in throw(T arg). Other copies can be
generated as required by the compiler. Consequently, it can be useful to define a
copy constructor for the exception object when you have a class that contains
subobjects. (You would not need to define the copy constructor for a bitwise copy.)

Examples
You can see various ways to throw exceptions by reviewing the following examples.

Note The examples provided can be compiled and run successfully from the command
line using bcc32.exe rather than from the IDE.

Example 1
The following example passes an Out object to a handler.

/* Program results:
duck
*/
#include <stdio.h>
bool pass;
class Out{};
void festival(bool firsttime){ if(firsttime) throw Out(); }

int main()
{
 try { pass = true; festival(true); }
 catch(Out& e){ pass = false; }
 return pass ? (puts("luck"),0) : (puts("duck"),1);
}

8-4 D e v e l o p e r ’ s G u i d e

C + + e x c e p t i o n h a n d l i n g

Example 2
The following example simply throws the last exception again. An exception must
currently exist.

/* Program results:
got out of test
*/
#include <stdio.h>
bool pass;
class Out{};
void festival(bool firsttime){ if(firsttime) throw Out(); }
void test()
{
 try { festival(true); }
 catch(Out& e){ pass = false; throw; }
}

int main()
{
 try { test(); }
 catch(Out& e){ pass = true; }
 return pass ? (puts("got out of test"),0) : (puts("still have test"),1);
}

The following example calls the terminate function if no exception exists:

/* Program results:
*** Nobody threw an exception ***
*/
#include <except.h>
#include <process.h>
#include <stdio.h>
bool pass;
class Out{};
void my_terminate(){ puts("*** Nobody threw an exception ***"); exit(1); }
void festival(bool firsttime){ if(firsttime) throw Out(); }
void test()
{
 try { festival(false); }
 catch(Out& e){ pass = false; }
 throw; // can't rethrow an exception that never happened!
}
int main()
{
 set_terminate(my_terminate);
 try { test(); }
 catch(Out& e){ pass = true; }
 return pass ? (puts("got out of test"),0) : (puts("still have test"),1);
}

E x c e p t i o n h a n d l i n g 8-5

C + + e x c e p t i o n h a n d l i n g

Example 3
The following example specifies a list of exceptions that festival and test can throw. No
other exceptions can propagate from festival.

/* Program results:
test handled the exception
*/
#include <stdio.h>
bool pass;
class Out{};
void festival(bool firsttime) throw(Out) // festival only throws Out exceptions.
{
 if(firsttime) throw Out();
}
void test() throw() // test throws no exceptions
{
 try { festival(true); }
 catch(Out& e){ pass = true; }
}
int main()
{
 pass = false;
 test();
 return pass ? (puts("test handled the exception"),0) :
 (puts("no exception happened") ,1);
}

If festival generates an exception other than Out, it is considered an unexpected
exception and program control is transferred to the unexpected function as shown in
example 4.

Example 4
The following example shows that test should not throw any exceptions. If any
function (for example, operator new) in the body of test throws an exception, the
exception should be caught and handled within the body of test. Otherwise, the
exception is a violation of the exception specification for test. You can call
set_unexpected() to set a different handler; otherwise, the unexpected function is called.

/* Program results:
*** test failed ***
*/
#include <except.h>
#include <process.h>
#include <stdio.h>
bool pass;
class Out{};
void my_unexpected(){ puts("*** test failed ***"); exit(1); }
void festival(bool firsttime) throw(Out) // festival only throws Out exceptions.
{
 if(firsttime) throw Out();
}
void test() throw() // test throws no exceptions

8-6 D e v e l o p e r ’ s G u i d e

C + + e x c e p t i o n h a n d l i n g

{
 try { festival(true); }
 catch(Out& e){ pass = true; throw; } // rethrow Out exception - error
}
int main()
{
 set_unexpected(my_unexpected);
 pass = false;
 test();
 return pass ? (puts("test handled the exception"),0) :
 (puts("no exception happened") ,1);
}

When an exception occurs, the throw expression initializes a temporary object of type
T (to match the type of argument arg) used in throw(T arg). Other copies can be
generated by the compiler. Consequently, it can be useful to define a copy
constructor for the exception object as shown in the following example:

/* Program results:
throwing a festival
made a festival
copied a festival
destructed a festival
caught a festival
destructed a festival
*/
#include <stdio.h>
class festival
{
 public:
 festival() { puts("made a festival"); }
 festival(const festival&){ puts("copied a festival"); }
 ~festival() { puts("destructed a festival"); }
};

int main()
{
 try { puts("throwing a festival"); throw(festival()); }
 catch(festival&){ puts("caught a festival"); }
 return 0;
}

Handling an exception

The exception handler is specified by the catch keyword which is placed immediately
after the try-block. The keyword catch can also occur immediately after another catch
block.

Every exception thrown by a program must be caught and processed by the
exception handler. The handler catches an exception when its type matches (or can be
converted to) the type in the catch statement. Once a type match is made, program
control is transferred to the handler and the stack is unwound. The handler specifies
what actions to take to deal with the program anomaly.

E x c e p t i o n h a n d l i n g 8-7

C + + e x c e p t i o n h a n d l i n g

After the handler is executed, the program continues at the point after the last
handler for the current try-block. No other handlers are evaluated for the current
exception. A goto statement can be used to transfer program control out of a handler.

If the program fails to provide an exception handler for a thrown exception, the
program terminates.

Note The examples provided can be compiled and run successfully from the command
line using bcc32.exe rather than from the IDE.

Example 1

/* Program results:
threw a Spring Festival
threw a Harvest Festival
*/
#include <stdio.h>
class festival{};
class Harvest : public festival{};
class Spring: public festival{};

void ToHaveFun(int i)
{
 if(i==1) throw(Harvest());
 else throw(Spring());
}

int main()
{
 try { ToHaveFun(0); }
 catch(const Harvest&) { puts("threw a Harvest Festival"); }
 catch(const Spring&){ puts("threw a Spring Festival"); }

 try { ToHaveFun(1); }
 catch(const Harvest&) { puts("threw a Harvest Festival"); }
 catch(const Spring&){ puts("threw a Spring Festival"); }
 return 0;
}

Example 2
The following example shows that when you catch an exception and that exception is
part of a class hierarchy, you need to start with the most derived class.

/* Program results:
threw a festival
threw a harvest festival
threw a spring festival
threw a festival (what kind??!!)
threw a festival (what kind?!!!) */
#include <stdio.h>
class festival{};
class harvest : public festival{};
class spring: public festival{};

8-8 D e v e l o p e r ’ s G u i d e

C + + e x c e p t i o n h a n d l i n g

void ToHaveFun(int i)
{
 if (i==1) throw(harvest());
 else if(i==2) throw(spring());
 else throw(festival());
}
int main()
{
 /* These catch statements are in a sensible order:*/
 try { ToHaveFun(0); }
 catch(const harvest&){ puts("threw a harvest festival"); }
 catch(const spring&){ puts("threw a spring festival"); }
 catch(const festival&){ puts("threw a festival"); }

 try { ToHaveFun(1); }
 catch(const harvest&){ puts("threw a harvest festival"); }
 catch(const spring&){ puts("threw a spring festival"); }
 catch(const festival&){ puts("threw a festival"); }

 try { ToHaveFun(2); }
 catch(const harvest&){ puts("threw a harvest festival"); }
 catch(const spring&){ puts("threw a spring festival"); }
 catch(const festival&){ puts("threw a festival"); }

 /* But, if you catch the base class Object *first*, you don't get
 a chance to see what type actually got thrown:
 */
 try { ToHaveFun(1); }
 catch(const festival&){ puts("threw a festival (what kind??!!)"); }
 catch(const harvest&){ puts("threw a harvest festival"); }
 catch(const spring&){ puts("threw a spring festival"); }

 try { ToHaveFun(2); }
 catch(const festival&){ puts("threw a festival (what kind?!!!)"); }
 catch(const harvest&){ puts("threw a harvest festival"); }
 catch(const spring&){ puts("threw a spring festival"); }

 return 0;
}

Example 3
In the following example, the catch (...) statement handles any exception, regardless
of type. This statement is the only handler in the try-block.

/* Program results:
test handled the exception
*/
#include <stdio.h>
bool pass;
class Out{};
void festival(bool firsttime) throw(Out) // festival only throws Out exceptions.
{
 if(firsttime) throw Out();
}

E x c e p t i o n h a n d l i n g 8-9

C + + e x c e p t i o n h a n d l i n g

void test() throw() // test throws no exceptions
{
 try { festival(true); }
 catch(...){ pass = true; }
}
int main()
{
 pass = false;
 test();
 return pass ? (puts("test handled the exception"),0) :
 (puts("no exception happened") ,1);
}

Exception specifications

C++ provides a feature called exception specification that lets you list within a
declaration what exceptions a function might throw. This exception specification is
used as a suffix of the function declaration and has the following syntax:

exception-specification:
throw (type-id-listopt)
type-id-list:

type-id
type-id-list, type-id

The function suffix is not part of the function’s type. Consequently, a pointer to a
function is not affected by the function’s exception specification. Such a pointer
checks only the function’s return and argument types. Therefore, the following is
legal:

void f2(void) throw(); // Should not throw exceptions
void f3(void) throw (BETA); // Should only throw BETA objects
void (* fptr)(); // Pointer to a function returning void
fptr = f2;
fptr = f3;

Be careful when overriding virtual functions. Because the exception specification is
not considered part of the function type, you can violate the program design.

Example 1
In the following example, the derived class BETA::vfunc is defined so that it does not
throw any exceptions—a departure from the original function declaration.

class ALPHA {
public:
 struct ALPHA_ERR {};
 virtual void vfunc(void) throw (ALPHA_ERR) {} // Exception specification
};

class BETA : public ALPHA {
 void vfunc(void) throw() {} // Exception specification is changed
};

8-10 D e v e l o p e r ’ s G u i d e

C + + e x c e p t i o n h a n d l i n g

The following examples are functions with exception specifications.

void f1(); // The function can throw any exception

void f2() throw(); // Should not throw any exceptions

void f3() throw(A, B*); // Can throw exceptions publicly derived from A,
 // or a pointer to publicly derived B

The definition and all declarations of such a function must have an exception
specification containing the same set of type-ids. If a function throws an exception not
listed in its specification, the program will call unexpected.

Constructors and destructors in exception handling

Class constructors can throw exceptions if they cannot successfully construct an
object. When you throw objects by value and an exception is thrown, the copy
constructor is called for the exception. The copy constructor initializes a temporary
object at the throw point. The program may also generate other copies.

If a constructor throws an exception, that object’s destructor is not necessarily called.
Destructors are called only for the base classes and for those objects that were fully
constructed inside the classes since entering the try-block.

The process of calling destructors for objects constructed on the path from a try-block
to a throw expression is called stack unwinding. If a destructor causes an exception to
be raised during stack unwinding and does not handle it, terminate is called.

Destructors are called by default, but you can switch off the default by using the -xd-
compiler option.

Unhandled exceptions

If an exception is thrown and no event handler is found, the program calls the
terminate function. This example shows what can happen when the program
encounters an unhandled exception.

/* Program results:
*** Nobody caught the exception ***
*/
#include <except.h>
#include <process.h>
#include <stdio.h>
bool pass;
class Out{};
void my_terminate(){ puts("*** Nobody caught the exception ***"); abort(); }
void festival(bool firsttime){ if(firsttime) throw Out(); }
void test()
{
 festival(true);
}

E x c e p t i o n h a n d l i n g 8-11

S t r u c t u r e d e x c e p t i o n s u n d e r W i n 3 2

int main()
{
 set_terminate(my_terminate);
 test(); // test throws exception, but no handler.
 return pass ? (puts("got out of test"),0) : (puts("still in test"),1);
}

Setting exception handling options

Following are the exception handling options in the C++Builder compiler.

Structured exceptions under Win32
Win32 supports C-based structured exception handling that is similar to C++
exceptions. There are some key differences, however, that require careful use when
they are mixed with C++ code that is exception aware.

Keep the following in mind when using structured exception handling in
C++Builder applications:

• C-structured exceptions can be used in C++ programs.

• C++ exceptions cannot be used in a C program because C++ exceptions require
that their handler be specified by the catch keyword, and catch is not allowed in a
C program.

• An exception generated by a call to the RaiseException function is handled by a
try/__except (C++) or __try/__except (C) block. (You can also use try/__finally or
__try/__finally blocks. See “Syntax of structured exceptions” on page 8-12.) All
handlers of try/catch blocks are ignored when RaiseException is called.

• Exceptions that are not handled by the application don’t result in a call to
terminate(), but are instead passed to the operating system (in general, the end
result is termination of the process).

• Exception handlers do not receive a copy of the exception object, unless they
request it.

Table 8.1 Exception handling compiler options

Command-line
switch Description

-x Enable C++ exception handling (On by default)
-xd Enable destructor cleanup. Calls destructors for all automatically declared

objects between the scope of the catch and throw statements when an
exception is thrown. (Advanced option–on by default)

-xp Enable exception location information. Makes available runtime identification
of exceptions by providing line numbers in the source code at the exception
location. This lets the program query the file and line number where a C++
exception occurred. (Advanced option)

8-12 D e v e l o p e r ’ s G u i d e

S t r u c t u r e d e x c e p t i o n s u n d e r W i n 3 2

You can use the following C exception helper functions in C or C++ programs:

• GetExceptionCode
• GetExceptionInformation
• SetUnhandledExceptionFilter
• UnhandledExceptionFilter

C++Builder does not restrict the use of UnhandledExceptionFilter function to the
except filter of __try/__except or try/__except blocks. However, program behavior is
undefined when this function is called outside of a __try/__except or try/__except
block.

Syntax of structured exceptions

In a C program, the ANSI-compatible keywords used to implement structured
exceptions are __except, __finally, and __try.

Note The __try keyword can only appear in C programs. If you want to write portable
code, do not use structured exception handling in your C++ programs.

try-except exception handling syntax
For try-except exception handling, the syntax is as follows:

try-block:
 __try compound-statement (in a C module)
 try compound-statement (in a C++ module)

handler:
 __except (expression) compound-statement

try-finally termination syntax
For try-finally termination, the syntax is as follows:

try-block:
 __try compound-statement (in a C module)
 try compound-statement (in a C++ module)

termination:
 __finally compound-statement

Handling structured exceptions

Structured exceptions can be handled using an extension of C++ exception handling:

try {
 foo();
 }
 __except(__expr__) {
 // handler here
 }

E x c e p t i o n h a n d l i n g 8-13

S t r u c t u r e d e x c e p t i o n s u n d e r W i n 3 2

__expr__ is an expression that evaluates to one of three values:

Win32 provides two functions that can be used to query information about the active
exception: GetExceptionCode() and GetExceptionInformation(). If you want to call a
function as part of the “filter” expression above, these functions must be called from
within the context of the __except() directly:

#include <Windows.h>
#include <excpt.h>

int filter_func(EXCEPTION_POINTERS *);
...
EXCEPTION_POINTERS *xp = 0;
 try {
 foo();
 }
 __except(filter_func(xp = GetExceptionInformation())) {
 //...
 }

Or, if you prefer using the comma operator to assignments nested in function calls,
see the following example:

__except((xp = GetExceptionInformation()), filter_func(xp))

Exception filters
A filter expression can invoke a filter function but the filter function cannot call
GetExceptionInformation. You can pass the return value of GetExceptionInformation as a
parameter to a filter function.
To pass the EXCEPTION_POINTERS information to an exception handler, the filter
expression or filter function must copy the pointer or data from
GetExceptionInformation to a location where the handler can later access it.
In the case of nested try-except statements, each statement’s filter expression is
evaluated until it locates EXCEPTION_EXECUTE_HANDLER or
EXCEPTION_CONTINUE_EXECUTION. A filter expression can invoke
GetExceptionInformation to get exception information.

As long as GetExceptionInformation or GetExceptionCode is called directly in the
expression provided to __except, you can use a function to determine what to do

Value Description

EXCEPTION_CONTINUE_SEARCH (0) The handler is not entered, and the OS
continues searching for an exception handler.

EXCEPTION_CONTINUE_EXECUTION (-1) Continue execution at the point of the
exception.

EXCEPTION_EXECUTE_HANDLER (1) Enter the exception handler. If the code was
compiled with destructor cleanup enabled (-xd,
on by default), all destructors for local objects
created between the point of the exception and
the exception handler are called when the stack
is unwound. Stack unwinding is completed
before entering the handler.

8-14 D e v e l o p e r ’ s G u i d e

S t r u c t u r e d e x c e p t i o n s u n d e r W i n 3 2

with an exception rather than trying to create a complex C++ expression. Almost all
of the information needed to handle an exception can be extracted from the result of
GetExceptionInformation(). GetExceptionInformation() returns a pointer to an
EXCEPTION_POINTERS structure:

struct EXCEPTION_POINTERS {
 EXCEPTION_RECORD *ExceptionRecord;
 CONTEXT *Context;
 };

EXCEPTION_RECORD contains the machine-independent state:

struct EXCEPTION_RECORD {
 DWORD ExceptionCode;
 DWORD ExceptionFlags;
 struct EXCEPTION_RECORD *ExceptionRecord;
 void *ExceptionAddress;
 DWORD NumberParameters;
 DWORD ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];
 };

Typically, the filter function looks at the information in the ExceptionRecord to
decide how to respond. Sometimes more specific information is needed (especially if
the action to take is EXCEPTION_CONTINUE_EXECUTION: if nothing is done, the
code that caused the exception would be executed again). For this situation, the other
field of the EXCEPTION_POINTERS structure provides the processor state at the
time of the exception. If this structure is modified and the filter returns
EXCEPTION_CONTINUE_EXCEPTION, it is used to set the state of the thread
before continuing with execution. For example:

static int xfilter(EXCEPTION_POINTERS *xp)
 {
 int rc;

 EXCEPTION_RECORD *xr = xp->ExceptionRecord;
 CONTEXT *xc = xp->Context;

 switch (xr->ExceptionCode) {
 case EXCEPTION_BREAKPOINT:
 // whoops, someone left an embedded breakpoint.
 // just step over it (1 byte on x86)
 ++xc->Eip;
 rc = EXCEPTION_CONTINUE_EXECUTION;
 break;

 case EXCEPTION_ACCESS_VIOLATION:
 rc = EXCEPTION_EXECUTE_HANDLER;
 break;

 default:
 // give up
 rc = EXCEPTION_CONTINUE_SEARCH;
 break;
 };

E x c e p t i o n h a n d l i n g 8-15

S t r u c t u r e d e x c e p t i o n s u n d e r W i n 3 2

 return rc;
 }
 ...

 EXCEPTION_POINTERS *xp;

 try {
 func();
 }
 __except(xfilter(xp = GetExceptionInformation())) {

abort();
 }

Mixing C++ with structured exceptions

You need to be aware of a few issues when using structured exceptions in C++
programs. First, although C++Builder implements C++ exceptions with Win32
structured exceptions, C++ exceptions are transparent to an __except block.

A try block can be followed by either exactly one except block or at least one catch
block. Attempting to mix the two causes a compiler error. Code that needs to handle
both types of exceptions should simply be nested inside two try blocks:

try {
 EXCEPTION_POINTERS *xp;

 try {
 func();
 }
 __except(xfilter(xp = GetExceptionInformation())) {
 //...
 }
 }
 catch (...) {
 //...
 }

A function’s throw() specification does not affect the behavior of a program with
regard to a Win32 exception. Also, an unhandled exception is eventually handled by
the operating system (if a debugger doesn’t handle it first), unlike a C++ program
that calls terminate().

Any module compiled with the -xd compiler option (on by default) will invoke
destructors for all objects with auto storage. Stack unwinding occurs from the point
where the exception is thrown to the point where the exception is caught.

8-16 D e v e l o p e r ’ s G u i d e

S t r u c t u r e d e x c e p t i o n s u n d e r W i n 3 2

C-based exceptions in C++ program example
/* Program results:
Another exception:
Caught a C-based exception.
Caught C++ exception[Hardware error: Divide by 0]
C++ allows __finally too!
*/
#include <stdio.h>
#include <string.h>
#include <windows.h>

class Exception
{
 public:
 Exception(char* s = "Unknown"){ what = strdup(s); }
 Exception(const Exception& e){ what = strdup(e.what); }
 ~Exception() { delete[] what; }
 char* msg() const { return what; }
private:
 char* what;
};
int main()
{
 float e, f, g;

try
 {
 try
 {
 f = 1.0;
 g = 0.0;
 try
 {
 puts("Another exception:");
 e = f / g;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 puts("Caught a C-based exception.");
 throw(Exception("Hardware error: Divide by 0"));
 }
 }
 catch(const Exception& e)
 {
 printf("Caught C++ Exception: %s :\n", e.msg());
 }
 }
 __finally
 {
 puts("C++ allows __finally too!");
 }
return e;
}

E x c e p t i o n h a n d l i n g 8-17

S t r u c t u r e d e x c e p t i o n s u n d e r W i n 3 2

Defining exceptions

Raising a Win32 exception that is handled within the same program does not
generally make much sense: C++ exceptions can do the job better, remain
significantly more portable, and use a simpler syntax. Win32 exceptions do have the
advantage, however, that they can be handled by components that may not have
been compiled with the same C++ compiler.

The first step is to define the exception. An exception is a 32-bit integer with the
following format (starting at bit 0):

In addition to defining the exception code, you need to decide whether or not to
include additional information with the exception (accessible to the filter/handler
from the exception record). There is no conventional method for encoding additional
parameters in the exception code. Refer to Win32 documentation (available in
C++Builder online Help) for more information.

Raising exceptions

A Win32 exception is raised with a call to RaiseException(), which is declared as
follows

void RaiseException(DWORD ec, DWORD ef, DWORD na, const DWORD *a);

where:

Bit Meaning

31-30 11 = error (normal)
00 = success,
01 = informational
10 = warning

29 1 = user-defined

28 Reserved

27-0 User-defined

ec Exception code

ef Exception flags, either 0 or EXCEPTION_NONCONTINUABLE
(If the exception is marked as not continuable and a filter tries to continue it,
EXCEPTION_NONCONTINUABLE_EXCEPTION is raised.)

na Number of elements in the arguments array

a Pointer to first element in the argument array–the meaning of these arguments depends on
the particular exception

8-18 D e v e l o p e r ’ s G u i d e

S t r u c t u r e d e x c e p t i o n s u n d e r W i n 3 2

Termination blocks

The structured exception handling model supports a “termination block” which is
executed whether a guarded block is exited normally or via an exception. The
C++Builder compiler supports this in C with the following syntax:

__try {
 func();
 }
 __finally {
 // this happens whether func() raises an exception or not
 }

Termination blocks are supported by a C++ extension where you can handle cleanup
in the __finally block:

try {
 func();
 }
 __finally {
 // this happens whether func() raises an exception or not
 }

The following example illustrates termination blocks:

/* Program results:
An exception:
Caught an exception.
The __finally is executed too!
No exception:
No exception happened, but __finally still executes!
*/
#include <stdio.h>
#include <windows.h>

int main()
{
 float e, f, g;

try
 {
 f = 1.0;
 g = 0.0;

try
 {
 puts("An exception:");
 e = f / g;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 puts("Caught an exception.");
 }
 }

E x c e p t i o n h a n d l i n g 8-19

V C L e x c e p t i o n h a n d l i n g

 __finally
 {
 puts("The __finally is executed too!");
 }

try
 {
 f = 1.0;
 g = 2.0;

try
 {
 puts("No exception:");
 e = f / g;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 puts("Caught an exception.");
 }
 }
 __finally
 {
 puts("No exception happened, but __finally still executes!");
 }
return e;
}

C++ code can also handle a “termination block” by creating local objects with
destructors that are called when the scope is exited. Since C++Builder structured
exceptions support destructor cleanup, this will work regardless of the type of
exception raised.

Note One special case concerns what happens when an exception is raised and never
handled by the program. For a C++ exception, the C++Builder compiler calls
destructors for local objects (not required by the language definition), whereas with
an unhandled Win32 exception, destructor cleanup does not happen.

VCL exception handling
When using VCL components in your applications, you need to understand the VCL
exception handling mechanism. That is because exceptions are built into many
classes and they are thrown automatically when something unexpected occurs. If
you do not handle the exception, the VCL will handle it in a default manner.
Typically, a message displays describing the type of error that occurred.

When you are programming and you encounter an exception that displays a message
indicating the type of exception that was thrown, you can look up the exception class
in the VCL Reference. The information provided will often help you to determine
where the error occurred and its cause.

In addition, Chapter 9, “C++ language support for the VCL” describes subtle
language differences that can cause exceptions. The section “Exceptions thrown from
constructors” on page 9-10 provides an example to show what happens if an
exception is thrown during object construction.

8-20 D e v e l o p e r ’ s G u i d e

V C L e x c e p t i o n h a n d l i n g

Differences between C++ and VCL exception handling

Following are some noteworthy differences between C++ and VCL exception
handling.

Exceptions thrown from constructors:

• C++ destructors are called for members and base classes that are fully constructed.

• VCL base class destructors are called even if the object or base class isn’t fully
constructed.

Catching and throwing exceptions:

• C++ exceptions can be caught by reference, pointer, or value. VCL exceptions,
which are exceptions derived from TObject, can only be caught by reference or
pointer. An attempt to catch TObject exceptions by value results in a compile-time
error. Hardware or operating system exceptions, such as EAccessViolation, should
be caught by reference.

• VCL exceptions are caught by reference.

• You cannot use throw to reraise an exception that was caught within VCL code.

Handling operating system exceptions

C++Builder allows you to handle exceptions thrown by the operating system.
Operating system exceptions include access violations, integer math errors,
floating-point math errors, stack overflow, and Ctrl+C interrupts. These are handled in
the C++ RTL and converted to VCL exception class objects before being dispatched to
your application. You can then write C++ code that looks like this:

try
{
 char * p = 0;
 *p = 0;
}
// You should always catch by reference.
catch (const EAccessViolation &e)
{
 printf("You can't do that!\n");
}

The classes C++Builder uses are the same as those that Delphi uses and are only
available to C++Builder VCL applications. They are derived from TObject and
require the VCL underpinnings.

Here are some characteristics of C++Builder exception handling:

• You are not responsible for freeing the exception object.

• Operating system exceptions should be caught by reference.

• You cannot rethrow an operating system exception once the catch frame has been
exited and have it be caught by intervening VCL catch frames.

E x c e p t i o n h a n d l i n g 8-21

V C L e x c e p t i o n h a n d l i n g

• You cannot rethrow an operating system exception once the catch frame has been
exited and have it be caught by intervening operating system catch frames.

The last two points can be stated roughly as this: Once an operating system exception
is caught as a C++ exception, it cannot be rethrown as if it were an operating system
exception or a VCL exception unless you are in the catching stack frame.

Handling VCL exceptions

C++Builder broadens the semantics for handling software exceptions thrown from
the VCL or, equivalently, exceptions thrown from C++ where the exception class
being thrown is derived from TObject. In such a case, a couple of rules are derived
from the fact that VCL-style classes can only be allocated on the heap.

• VCL-style exception classes may only be caught by pointer, if it is a software
exception, or by reference (reference is preferred).

• A VCL-style exception should be thrown with “by value” syntax.

VCL exception classes

C++Builder includes a large set of built-in exception classes for automatically
handling divide-by-zero errors, file I/O errors, invalid typecasts, and many other
exception conditions. All VCL exception classes descend from one root object called
Exception. Exception encapsulates the fundamental properties and methods for all exceptions
and provides a consistent interface for applications to handle exceptions.

You can pass exceptions to a catch block that takes a parameter of type Exception. Use
the following syntax to catch VCL exceptions:

catch (const exception_class &exception_variable)

You specify the exception class that you want to catch and provide a variable by
which to refer to the exception.

Following is an example of how to throw a VCL exception:

void __fastcall TForm1::ThrowException(TObject *Sender)
{

try
{

throw Exception(“VCL component”);
}
catch(const Exception &E)
{

ShowMessage(AnsiString(E.ClassName())+ E.Message);
}

}

The throw statement in the previous example creates an instance of the Exception
class and calls its constructor. All exceptions descended from Exception have a
message that can be displayed, passed through constructors, and retrieved through
the Message property.

8-22 D e v e l o p e r ’ s G u i d e

V C L e x c e p t i o n h a n d l i n g

Selected VCL exception classes are described in Table 8.2.

As you can see from the selected list above, the built-in VCL exception classes handle
much of the exception handling for you and can simplify your code. There are other
times when you will need to create your own exception classes to handle unique
situations. You can declare a new exception class making it a descendant of type
Exception creating as many constructors as you need (or copy the constructors from
an existing class in SYSUTILS.HPP).

Portability considerations

Several Runtime Libraries (RTLs) are delivered with C++Builder. Most of them
pertain to C++Builder applications, but one of them (CW32MT.LIB) is the normal
multi-threaded RTL that does not make any references to the VCL. This RTL is

Table 8.2 Selected exception classes

Exception class Description

EAbort Stops a sequence of events without displaying an error message dialog
box.

EAccessViolation Checks for invalid memory access errors.
EBitsError Prevents invalid attempts to access a Boolean array.

EComponentError Signals an invalid attempt to register or rename a component.

EConvertError Indicates string or object conversion errors.
EDatabaseError Specifies a database access error.

EDBEditError Catches data incompatible with a specified mask.

EDivByZero Catches integer divide-by-zero errors.
EExternalException Signifies an unrecognized exception code.

EInOutError Represents a file I/O error.

EIntOverflow Specifies integer calculations whose results are too large for the allocated
register.

EInvalidCast Checks for illegal typecasting.
EInvalidGraphic Indicates an attempt to work with an unrecognized graphic file format.

EInvalidOperation Occurs when invalid operations are attempted on a component.

EInvalidPointer Results from invalid pointer operations.
EMenuError Involves a problem with menu item.

EOleCtrlError Detects problems with linking to ActiveX controls.

EOleError Specifies OLE automation errors.
EPrinterError Signals a printing error.

EPropertyError Occurs on unsuccessful attempts to set the value of a property.

ERangeError Indicates an integer value that is too large for the declared type to which
it is assigned.

ERegistryException Specifies registry errors.

EStackOverflow Occurs when the stack grows into the final guard page.

EZeroDivide Catches floating-point divide-by-zero errors.

E x c e p t i o n h a n d l i n g 8-23

V C L e x c e p t i o n h a n d l i n g

provided for support of legacy applications which may be part of a project but
should not depend on the VCL. This RTL does not have support for catching
operating system exceptions because those exception objects are derived from
TObject and would require parts of the VCL to be linked into your application.

To get the full benefits of C++Builder, use the CP32MT.LIB library. This is the
multi-threaded runtime library that provides memory management and exception
handling with the VCL.

8-24 D e v e l o p e r ’ s G u i d e

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-1

C h a p t e r

9
Chapter9C++ language support for the VCL

C++Builder leverages the Rapid Application Development (RAD) capabilities of the
Visual Component Library (VCL) written in Object Pascal. This chapter explains how
Object Pascal language features, constructs, and concepts were implemented in
C++Builder to support the VCL. It is written for programmers using VCL objects in
their applications and for developers creating new classes descended from VCL
classes.

The first half of this chapter compares C++ and Object Pascal object models,
describing how C++Builder combines these two approaches. The second half of the
chapter describes how Object Pascal language constructs were translated into C++
counterparts in C++Builder. It includes details on keyword extensions that were
added to support the VCL. Some of these extensions, like closures and properties, are
useful features independent of their support for VCL-based code.

Note References to C++ classes derived from TObject refer to classes for which TObject is
the ultimate, but not necessarily immediate, ancestor. For consistency with the
compiler diagnostics, such classes are also referred to as “VCL style classes.”

C++ and Object Pascal object models
C++ and Object Pascal are subtly different in the way they create, initialize, reference,
copy, and destroy objects. These nuances and their impact on C++Builder VCL style
classes are described in this section.

Object identity and instantiation

In C++, an instance of a class is an actual object. That object can be directly
manipulated, or it can be accessed indirectly through either a reference or a pointer to

9-2 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

it. For example, given a C++ class CPP_class with a constructor that takes no
arguments, the following are all valid instance variables of that class:

CPP_class by_value;// an object of type CPP_class
CPP_class& ref = by_value;// a reference to the object by_value, above
CPP_class* ptr = new CPP_class();// a pointer to an object of type CPP_class

By contrast, in Object Pascal a variable of type object always refers to the object
indirectly. The memory for all objects is dynamically allocated. For example, given an
Object Pascal class OP_class

ref: OP_class;
ref := OP_class.Create;

ref is a “reference” to an object of type OP_class. Translated to C++Builder code, it
would be

OP_class* ref = new OP_class;

Distinguishing C++ and Object Pascal references
Documentation frequently refers to an Object Pascal class instance variable as a
reference, but describes its behavior as that of a pointer. This is because it has
properties of both. An Object Pascal object reference is like a C++ pointer with the
following exceptions:

• An Object Pascal reference is implicitly dereferenced (in which case it acts more
like a C++ reference).

• An Object Pascal reference does not have pointer arithmetic as a defined
operation.

When comparing an Object Pascal reference with a C++ reference, there are also
similarities and differences. References in both languages are implicitly dereferenced,
however,

• An Object Pascal reference can be rebound, whereas a C++ reference cannot.

• An Object Pascal reference can be nil, whereas a C++ reference must refer to a
valid object.

Some of the design decisions underlying the VCL framework are based upon the use
of this type of instance variable. A pointer is the closest C++ language construct to an
Object Pascal reference. Consequently, nearly all VCL object identifiers are translated
into C++ pointers in C++Builder.

Note The Object Pascal var parameter type is a close match to a C++ reference. For more
information about var parameters, see “Var parameters” on page 9-12.

Copying objects
Unlike C++, Object Pascal does not have built-in compiler support for making a copy
of an object. This section describes the impact of this difference on assignment
operators and copy constructors for VCL style classes.

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-3

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

Assignment operators
The Object Pascal assignment operator (:=) is not a class assignment operator
(operator=()). The assignment operator copies the reference, not the object. In the
following code, B and C both refer to the same object:

B, C: TButton;
B:= TButton.Create(ownerCtrl);
C:= B;

This example translates to the following code in C++Builder:

TButton *B = NULL;
TButton *C = NULL;
B = new TButton(ownerCtrl);
C = B;// makes a copy of the pointer, not the object

VCL style classes in C++Builder follow the Object Pascal language rules for
assignment operators. This means that, in the following code, assignments between
dereferenced pointers are not valid because they attempt to copy the object, not the
pointer:

TVCLStyleClass *p = new TVCLStyleClass;
TVCLStyleClass *q = new TVCLStyleClass;
*p = *q;// not allowed for VCL style class objects

Note For VCL style classes, it is still valid to use C++ syntax to bind a reference. For
example, the following code is valid:

TVCLStyleClass *ptr = new TVCLStyleClass;
TVCLStyleClass &ref = *ptr;// OK for VCL style classes

Although this is not the same as using an assignment operator, the syntax is similar
enough that it is mentioned here for clarification and comparison.

Copy constructors
Object Pascal does not have built-in copy constructors. Consequently, VCL style
classes in C++Builder do not have built-in copy constructors. The following example
code attempts to create a TButton pointer by using a copy constructor:

TButton *B = new TButton(ownerCtrl);
TButton *C = new TButton(*B);// not allowed for VCL style class objects

Do not write code that depends upon a built-in copy constructor for VCL classes. To
create a copy of a VCL style class object in C++Builder, you can write code for a
member function that copies the object. Alternatively, descendants of the VCL
TPersistent class can override the Assign method to copy data from one object to
another. This is typically done, for example, in graphics classes such as TBitmap and
TIcon that contain resource images. Ultimately, the manner of copying an object can
be determined by the programmer (component writer); but be aware that some of the
copy methods used in standard C++ are not available for VCL style classes.

Objects as function arguments
As discussed previously, instance variables in C++ and in Object Pascal are not
identical. You should be aware of this when passing objects as arguments to
functions. In C++, objects can be passed to functions either by value, by reference, or

9-4 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

by pointer. In Object Pascal, when an object is passed by value to a function,
remember that the object argument is already a reference to an object. So, it is, in fact,
the reference that is passed by value, not the actual object. There is no Object Pascal
equivalent to passing an actual object by value as in C++. VCL style objects passed to
functions follow the Object Pascal rules.

Object construction for C++Builder VCL classes

C++ and Object Pascal construct objects differently. This section is an overview of
this topic and a description of how C++Builder combines these two approaches.

C++ object construction
In standard C++, the order of construction is virtual base classes, followed by base
classes, and finally the derived class. The C++ syntax uses the constructor
initialization list to call base class constructors. The runtime type of the object is that
of the class of the current constructor being called. Virtual method dispatching
follows the runtime type of the object and changes accordingly during construction.

Object Pascal object construction
In Object Pascal, only the constructor for the instantiated class is guaranteed to be
called; however, the memory for base classes is allocated. Constructing each
immediate base class is done by calling inherited in the corresponding derived
class’s constructor. By convention, VCL classes use inherited to call (non-empty)
base class constructors. Be aware, however, that this is not a requirement of the
language. The runtime type of the object is established immediately as that of the
instantiated class and does not change as base class constructors are called. Virtual
method dispatching follows the runtime type of the object and, therefore, does not
change during construction.

C++Builder object construction
VCL style objects are constructed like Object Pascal objects, but using C++ syntax.
This means that the method and order of calling base class constructors follows C++
syntax using the initialization list for all non-VCL base classes and the first
immediate VCL ancestor. This VCL base class is the first class to be constructed. It
constructs its own base class, optionally, using inherited, following the Object Pascal
method. Therefore, the VCL base classes are constructed in the opposite order from
which you might expect in C++. Then the C++ base classes are all constructed, from
the most distant ancestor to the derived class. The runtime type of the object and
virtual method dispatching are Object Pascal-based.

Figure 9.1 illustrates the construction of an instance of a VCL style class, MyDerived,
descended from MyBase, which is a direct descendant of TWinControl. MyDerived and
MyBase are implemented in C++. TWinControl is a VCL class implemented in Object
Pascal.

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-5

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

Figure 9.1 Order of VCL style object construction

Note that the order of construction might seem backwards to a C++ programmer
because it starts from the leaf-most ancestor to TObject for true VCL classes, then
constructs MyBase, and finally constructs the derived class.

Note TComponent does not call inherited because TPersistent does not have a constructor.
TObject has an empty constructor, so it is not called. If these class constructors were
called, the order would follow the diagram in which these classes appear in gray.

TObject
TWinControl

(constructor calls
inherited)

TPersistent

TComponent

TControl

TWinControl

MyBase

MyDerived

TControl
(constructor calls

inherited)

TComponent

TPersistent
(no constructor)

TObject
(empty constructor)

MyBase

MyDerived

Inheritance Order of construction

C++/Object Pascal
boundary

9-6 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

The object construction models in C++, Object Pascal, and C++Builder are
summarized in Table 9.1:

The significance of these differences is described in the following section.

Calling virtual methods in base class constructors

Virtual methods invoked from the body of VCL base class constructors, that is,
classes implemented in Object Pascal, are dispatched as in C++, according to the
runtime type of the object. Because C++Builder combines the Object Pascal model of
setting the runtime type of an object immediately, with the C++ model of
constructing base classes before the derived class is constructed, calling virtual
methods from base class constructors for VCL style classes can have subtle
side-effects. The impact of this is described below, then illustrated in an example of
an instantiated class that is derived from at least one base. In this discussion, the
instantiated class is referred to as the derived class.

Object Pascal model
In Object Pascal, programmers can use the inherited keyword, which provides
flexibility for calling base class constructors anywhere in the body of a derived class

Table 9.1 Object model comparison

C++ Object Pascal C++Builder

Order of construction
Virtual base classes, then base
classes, finally the derived
class.

Instantiated class constructor
is the first and only
constructor to be called
automatically. If subsequent
classes are constructed, they
are constructed from leaf-most
to root.

Most immediate VCL base
class, then construction
follows the Object Pascal
model, then construction
follows the C++ model (except
that no virtual base classes are
allowed).

Method of calling base class constructors
Automatically, from the
constructor initialization list.

Optionally, explicitly, and at
any time during the body of
the derived class constructor,
by using the inherited
keyword.

Automatically from the
constructor initialization list
through the most immediate
ancestor VCL base class
constructor. Then according to
the Object Pascal method,
calling constructors with
inherited.

Runtime type of the object as it is being constructed
Changes, reflecting the type of
the current constructor class.

Established immediately as
that of the instantiated class.

Established immediately as
that of the instantiated class.

Virtual method dispatching
Changes according to the
runtime type of the object as
base class constructors are
called.

Follows the runtime type of
the object, which remains the
same throughout calls to all
class constructors.

Follows the runtime type of
the object, which remains the
same throughout calls to all
class constructors.

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-7

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

constructor. Consequently, if the derived class overrides any virtual methods that
depend upon setting up the object or initializing data members, this can happen
before the base class constructor is called and the virtual methods are invoked.

C++ model
The C++ syntax does not have the inherited keyword to call the base class
constructor at any time during the construction of the derived class. For the C++
model, the use of inherited is not necessary because the runtime type of the object is
that of the current class being constructed, not the derived class. Therefore, the
virtual methods invoked are those of the current class, not the derived class.
Consequently, it is not necessary to initialize data members or set up the derived
class object before these methods are called.

C++Builder model
In C++Builder, the VCL style objects have the runtime type of the derived class
throughout calls to base class constructors. Therefore, if the base class constructor
calls a virtual method, the derived class method is invoked if the derived class
overrides it. If this virtual method depends upon anything in the initialization list or
body of the derived class constructor, the method is called before this happens. For
example, CreateParams is a virtual member function that is called indirectly in the
constructor of TWinControl. If you derive a class from TWinControl and override
CreateParams so that it depends on anything in your constructor, this code is
processed after CreateParams is called. This situation applies to any derived classes of
a base. Consider a class C derived from B, which is derived from A. Creating an
instance of C, A would also call the overridden method of B, if B overrides the
method but C does not.

Note Be aware of virtual methods like CreateParams that are not obviously called in
constructors, but are invoked indirectly.

Example: calling virtual methods
The following example compares C++ and VCL style classes that have overridden
virtual methods. This example illustrates how calls to those virtual methods from
base class constructors are resolved in both cases. MyBase and MyDerived are
standard C++ classes. MyVCLBase and MyVCLDerived are VCL style classes
descended from TObject. The virtual method what_am_I() is overridden in both
derived classes, but is called only in the base class constructors, not in derived class
constructors.

#include <sysutils.hpp>
#include <iostream.h>

// non-VCL style classes

class MyBase {
public:

MyBase() { what_am_I(); }
virtual void what_am_I() { cout << "I am a base" << endl; }

};

9-8 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

class MyDerived : public MyBase {
public:

virtual void what_am_I() { cout << "I am a derived" << endl; }
};

// VCL style classes

class MyVCLBase : public TObject {
public:

__fastcall MyVCLBase() { what_am_I(); }
virtual void __fastcall what_am_I() { cout << "I am a base" << endl; }

};

class MyVCLDerived : public MyVCLBase {
public:

virtual void __fastcall what_am_I() { cout << "I am a derived" << endl; }
};

int main(void)
{

MyDerived d;// instantiation of the C++ class
MyVCLDerived *pvd = new MyVCLDerived;// instantation of the VCL style class
return 0;

}

The output of this example is

I am a base
I am a derived

because of the difference in the runtime types of MyDerived and MyVCLDerived
during the calls to their respective base class constructors.

Constructor initialization of data members for virtual functions
Because data members may be used in virtual functions, it is important to
understand when and how they are initialized. In Object Pascal, all uninitialized data
is zero-initialized. This applies, for example, to base classes whose constructors are
not called with inherited. In standard C++, there is no guarantee of the value of
uninitialized data members. The following types of class data members must be
initialized in the initialization list of the class’s constructor:

• References
• Data members with no default constructor

Nevertheless, the value of these data members, or those initialized in the body of the
constructor, is undefined when the base class constructors are called. In C++Builder,
the memory for VCL style classes is zero-initialized.

Note Technically, it is the memory of the VCL class that is zero, that is the bits are zero, the
values are actually undefined. For example, a reference is zero.

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-9

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

A virtual function which relies upon the value of member variables initialized in the
body of the constructor or in the initialization list may behave as if the variables were
initialized to zero. This is because the base class constructor is called before the
initialization list is processed or the constructor body is entered. The following
example illustrates this:

#include <sysutils.hpp>

class Base : public TObject {
public:

__fastcall Base() { init(); }
virtual void __fastcall init() { }

};

class Derived : public Base {
public:

Derived(int nz) : not_zero(nz) { }
virtual void __fastcall init()
{

if (not_zero == 0)
throw Exception("not_zero is zero!");

}
private:

int not_zero;
};

int main(void)
{

Derived *d42 = new Derived(42);
return 0;

}

This example throws an exception in the constructor of Base. Because Base is
constructed before Derived, not_zero, has not yet been initialized with the value of 42
passed to the constructor. Be aware that you cannot initialize data members of your
VCL style class before its base class constructors are called.

Object destruction

Two mechanisms concerning object destruction work differently in C++ from the
way they do in Object Pascal. These are:

• Destructors called because of exceptions thrown from constructors
• Virtual methods called from destructors

VCL style classes combine the methods of these two languages. The issues are
discussed below.

9-10 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

Exceptions thrown from constructors
Destructors are called differently in C++ than in Object Pascal if an exception is
thrown during object construction. Take as an example, class C, derived from class B,
which is derived from class A:

class A
{

// body
};

class B: public A
{

// body
};

class C: public B
{

// body
};

Consider if an exception is raised in the constructor of class B when constructing an
instance of C. What results in C++, Object Pascal, and VCL style classes is described
here:

• In C++, first the destructors for all completely constructed object data members of
B are called, then A’s destructor is called, then the destructors for all completely
constructed data members of A are called. However, the destructors for B and C
are not called.

• In Object Pascal, only the instantiated class destructor is called automatically. This
is the destructor for C. As with constructors, it is entirely the programmer’s
responsibility to call inherited in destructors. In this example, if we assume all of
the destructors call inherited, then the destructors for C, B, and A are called in that
order. Moreover, whether or not inherited was already called in B’s constructor
before the exception occurred, A’s destructor is called because inherited was
called in B’s destructor. Calling the destructor for A is independent of whether or
not its constructor was actually called. More importantly, because it is common for
constructors to call inherited immediately, the destructor for C is called whether
or not the body of its constructor was completely executed.

• In VCL style classes, the true VCL bases (implemented in Object Pascal) follow the
Object Pascal method of calling destructors. The C++ VCL style classes
(implemented in C++) do not follow exactly either language method. What
happens is that all the destructors are called; but the bodies of those that would
not have been called, according to C++ language rules, are not entered.

Classes implemented in Object Pascal thereby provide an opportunity to process any
cleanup code you write in the body of the destructor. This includes code that frees
memory for sub-objects (data members that are objects) that are constructed before a
constructor exception occurs. Be aware that, for VCL style classes, the clean-up code
may not be processed for the instantiated class or for its C++-implemented bases,
even though the destructors are called.

For more information on handling exceptions in C++Builder, refer to “VCL exception
handling” on page 8-19.

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-11

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

Virtual methods called from destructors
Virtual method dispatching in destructors follows the same pattern that it did for
constructors. This means that for VCL style classes, the derived class is destroyed
first, but the runtime type of the object remains that of the derived class throughout
subsequent calls to base class destructors. Therefore, if virtual methods are called in
VCL base class destructors, you are potentially dispatching to a class that has already
destroyed itself.

AfterConstruction and BeforeDestruction
TObject introduces two virtual methods, BeforeDestruction and AfterConstruction, that
allow programmers to write code that is processed before and after objects are
destroyed and created, respectively. AfterConstruction is called after the last
constructor is called. BeforeDestruction is called before the first destructor is called.
These methods are public and are called automatically.

Class virtual functions
Object Pascal has the concept of a class virtual function. The C++ analogy would be a
static virtual function, if it were possible; but C++ has no exact counterpart to this
type of function. These functions are safely called internally from the VCL. However,
you should never call a function of this type in C++Builder. You can identify these
functions in the header files because they are preceded by the following comment:

/* virtual class method */

Support for Object Pascal data types and language concepts
To support the VCL, C++Builder implements, translates, or otherwise maps most
Object Pascal data types, constructs, and language concepts to the C++ language.This
is done in the following ways:

• Typedefs to native C++ types
• Classes, structs, and class templates
• C++ language counterparts
• Macros
• Keywords that are ANSI-conforming language extensions

Not all aspects of the Object Pascal language map cleanly to C++. Occasionally, using
these parts of the language can lead to unexpected behavior in your application. For
example:

• Some types exist in both Object Pascal and in C++, but are defined differently.
These can require caution when sharing code between these two languages.

• Some extensions were added to Object Pascal for the purpose of supporting
C++Builder. Occasionally these can have subtle interoperability impact.

• Object Pascal types and language constructs that have no mapping to the C++
language should be avoided in C++Builder when sharing code between these
languages.

9-12 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

This section summarizes how C++Builder implements the Object Pascal language,
and suggests when to use caution.

Typedefs

Most Object Pascal intrinsic data types are implemented in C++Builder using a
typedef to a native C++ type. These are found in sysmac.h. Whenever possible you
should use the native C++ type, rather than the Object Pascal type.

Classes that support the Object Pascal language

Some Object Pascal data types and language constructs that do not have a built-in
C++ counterpart are implemented as classes or structs. Class templates are also used
to implement data types as well as Object Pascal language constructs, like set, from
which a specific type can be declared. The declarations for these are found in the
following header files:

The classes implemented in these header files were created to support native types
used in Object Pascal routines. They are intended to be used when calling these
routines in VCL-based code.

C++ language counterparts to the Object Pascal language

Object Pascal var and untyped parameters are not native to C++. Both have C++
language counterparts that are used in C++Builder.

Var parameters
Both C++ and Object Pascal have the concept of “pass by reference.” These are
modifiable arguments. In Object Pascal they are called var parameters. The syntax for
functions that take a var parameter is

procedure myFunc(var x : Integer);

In C++, you should pass these types of parameters by reference:

void myFunc(int& x);

Both C++ references and pointers can be used to modify the object. However, a
reference is a closer match to a var parameter because, unlike a pointer, a reference
cannot be rebound and a var parameter cannot be reassigned; although, either can
change the value of what it references.

• dstring.h • syscurr.h • systdate.h

• wstring.h • sysdyn.h • systobj.h

• sysclass.h • sysopen.h • systvar.h

• syscomp.h • sysset.h • sysvari.h

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-13

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

Untyped parameters
Object Pascal allows parameters of an unspecified type. These parameters are passed
to functions with no type defined. The receiving function must cast the parameter to
a known type before using it. C++Builder interprets untyped parameters as
pointers-to-void (void *). The receiving function must cast the void pointer to a
pointer of the desired type. Following is an example:

int myfunc(void* MyName)
{

// Cast the pointer to the correct type; then dereference it.
int* pi = static_cast<int*>(MyName);
return 1 + *pi;

}

Open arrays
Object Pascal has an “open array” construct that permits an array of unspecified size
to be passed to a function. While there is no direct support in C++ for this type, an
Object Pascal function that has an open array parameter can be called by explicitly
passing both pointer to the first element of an array, and the value of the last index
(number of array elements, minus one). For example, the Mean function in math.hpp
has this declaration in Object Pascal:

function Mean(Data: array of Double): Extended;

The C++ declaration is

Extended __fastcall Mean(const double * Data, const int Data_Size);

The following code illustrates calling the Mean function from C++:

double d[] = { 3.1, 4.4, 5.6 };

// explicitly specifying last index
long double x = Mean(d, 2);

// better: use sizeof to ensure that the correct value is passed
long double y = Mean(d, (sizeof(d) / sizeof(d[0])) - 1);

// use macro in sysopen.h
long double z = Mean(d, ARRAYSIZE(d) - 1);

Note In cases similar to the above example, but where the Object Pascal function takes a
var parameter, the C++ function declaration parameters will not be const.

Calculating the number of elements
When using sizeof(), the ARRAYSIZE macro, or EXISTINGARRAY macro to calculate
the number of elements in an array, be careful not to use a pointer to the first array
element instead. Pass the name of an array instead:

double d[] = { 3.1, 4.4, 5.6 };
ARRAYSIZE(d) == 3;

double *pd = d;
ARRAYSIZE(pd) == 0; // Error!

9-14 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

Taking the “sizeof” an array is not the same as taking the “sizeof” a pointer. For
example, given the following declarations,

double d[3];
double *p = d;

taking the size of the array as shown here

sizeof(d)/sizeof d[0]

does not evaluate the same as taking the size of the pointer:

sizeof(p)/sizeof(p[0])

This example and those following use the ARRAYSIZE macro instead of the sizeof()
operator. For more information about the ARRAYSIZE macro, see the online Help.

Temporaries
Object Pascal provides support for passing unnamed temporary open arrays to
functions. There is no syntax for doing this in C++. However, since variable
definitions can be intermingled with other statements, one approach is to simply
provide the variable with a name.

Object Pascal:

Result := Mean([3.1, 4.4, 5.6]);

C++, using a named “temporary”:

double d[] = { 3.1, 4.4, 5.6 };
return Mean(d, ARRAYSIZE(d) - 1);

To restrict the scope of the named “temporary” to avoid clashing with other local
variables, open a new scope in place:

long double x;
{

double d[] = { 4.4, 333.1, 0.0 };
x = Mean(d, ARRAYSIZE(d) - 1);

}

For another solution, see “OPENARRAY macro” on page 9-15.

array of const
Object Pascal supports a language construct called an array of const. This argument
type is the same as taking an open array of TVarRec by value.

The following is an Object Pascal code segment declared to accept an array of const:

function Format(const Format: string; Args: array of const): string;

In C++, the prototype is

AnsiString __fastcall Format(const AnsiString Format;
TVarRec const *Args, const int Args_Size);

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-15

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

The function is called just like any other function that takes an open array:

void show_error(int error_code, AnsiString const &error_msg)
{

TVarRec v[] = { error_code, error_msg };
ShowMessage(Format("%d: %s", v, ARRAYSIZE(v) - 1));

}

OPENARRAY macro
The OPENARRAY macro defined in sysopen.h can be used as an alternative to using
a named variable for passing a temporary open array to a function that takes an open
array by value. The use of the macro looks like

OPENARRAY(T, (value1, value2, value3)) // up to 19 values

where T is the type of open array to construct. For example:

void show_error(int error_code, AnsiString const &error_msg)
{

ShowMessage(Format("%d: %s", OPENARRAY(TVarRec, error_code, error_msg)));
}

Up to 19 values can be passed when using the OPENARRAY macro. If a larger array
is needed, an explicit variable must be defined. Additionally, using the
OPENARRAY macro incurs an additional (but small) runtime cost, due both to the
cost of allocating the underlying array, and to an additional copy of each value.

EXISTINGARRAY macro
The EXISTINGARRAY macro defined in sysopen.h can be used to pass an existing
array where an open array is expected. The use of the macro looks like

long double Mean(const double *Data, const int Data_Size);
double d[] = { 3.1, 3.14159, 2.17128 };
Mean(EXISTINGARRAY (d));

Note The section “Calculating the number of elements” on page 9-13 also applies to the
EXISTINGARRAY macro.

C++ functions that take open array arguments
When writing a C++ function that will be passed an open array from Object Pascal, it
is important to explicitly maintain “pass by value” semantics. In particular, if the
declaration for the function corresponds to “pass by value”, be sure to explicitly copy
any elements before modifying them. In Object Pascal, an open array is a built-in
type and can be passed by value. In C++, the open array type is implemented using a
pointer, which will modify the original array unless you make a local copy of it.

Types defined differently

Types that are defined differently in Object Pascal and C++ are not normally cause
for concern. The rare cases in which they are problematic may be subtle. For this
reason, these types are mentioned in this section.

9-16 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

Boolean data types
The True value for the Object Pascal ByteBool, WordBool, and LongBool data types is
represented in Object Pascal as –1. False is represented as 0.

Note The Boolean data type remains unchanged (True = 1, False = 0).

While the C++ bool type converts these Object Pascal types correctly, there is a
problem when sharing a WinAPI function or any other function that uses a
Window’s BOOL type, which is represented as 1. If a value is passed to a parameter
of type BOOL, it evaluates to –1 in Object Pascal and to 1 in C++. Therefore, if you are
sharing code between these two languages, any comparison of the two identifiers
may fail unless they are both 0 (False, false). As a workaround, you can use the
following method of comparison:

!A == !B;

Table 9.2 shows the results of using this method of equality comparison:

With this method of comparison, any set of values will evaluate correctly.

Char data types
The char type in C++ is a signed type, whereas it is an unsigned type in Object Pascal.
It is extremely rare that a situation would occur in which this difference would be a
problem when sharing code.

Resource strings

If you have code in a Pascal unit that uses resource strings, the Pascal compiler
(DCC32) generates a global variable and a corresponding preprocessor macro for
each resource string when it generates the header file. The macros are used to
automatically load the resource strings, and are intended to be used in your C++
code in all places where the resource string is referenced. For example, the
resourcestring section in the Object Pascal code could contain

unit borrowed;
interface
resourcestring

Warning = 'Be careful when accessing string resources.';
implementation
begin
end.

Table 9.2 Equality comparison !A == !B of BOOL variables

Object Pascal C++ !A == !B

0 (False) 0 (false) !0 == !0 (TRUE)

0 (False) 1 (true) !0 == !1 (FALSE)

–1 (True) 0 (false) !–1 == !0 (FALSE)

–1 (True) 1 (true) !–1 == !1 (TRUE)

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-17

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

The corresponding code generated by the Pascal compiler for C++Builder would be

extern System::Resource ResourceString _Warning;
#define Borrowed_Warning System::LoadResourceString(&Borrowed::_Warning)

This enables you to use the exported Object Pascal resource string without having to
explicitly call LoadResourceString.

Default parameters

The Pascal compiler now accepts default parameters for compatibility with C++
regarding constructors. Unlike C++, Object Pascal constructors can have the same
number and types of parameters, since they are uniquely named. In such cases,
dummy parameters are used in the Object Pascal constructors to distinguish them
when the C++ header files are generated. For example, for a class named
TInCompatible, the Object Pascal constructors could be

constructor Create(AOwner: TComponent);
constructor CreateNew(AOwner: TComponent);

which would translate, without default parameters, to the following ambiguous code
in C++ for both constructors:

__fastcall TInCompatible(Classes::TComponent* Owner);// C++ version of the Pascal Create
constructor

__fastcall TInCompatible(Classes::TComponent* Owner);// C++ version of the Pascal CreateNew
constructor

However, using default parameters, for a class named TCompatible, the Object Pascal
constructors are

constructor Create(AOwner: TComponent);
constructor CreateNew(AOwner: TComponent; Dummy: Integer = 0);

They translate to the following unambiguous code in C++Builder:

__fastcall TCompatible(Classes::TComponent* Owner);// C++ version of the Pascal Create
constructor

__fastcall TCompatible(Classes::TComponent* Owner, int Dummy);// C++ version of the Pascal
CreateNew constructor

Note The main issue regarding default parameters is that DCC32 strips out the default
value of the default parameter. Failure to remove the default value would lead to the
ambiguity that would occur if there were not defaults at all. You should be aware of
this when using VCL classes or when using third-party components.

9-18 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

Runtime type information

Object Pascal has language constructs dealing with RTTI. Some have C++
counterparts. These are listed in Table 9.3:

In Table 9.3, ClassName is a TObject method that returns a string containing the name
of the actual type of the object, regardless of the type of the declared variable. Other
RTTI methods introduced in TObject do not have C++ counterparts. These are all
public and are listed here:

• ClassInfo returns a pointer to the runtime type information (RTTI) table of the
object type.

• ClassNameIs determines whether an object is of a specific type.

• ClassParent returns the type of the immediate ancestor of the class. In the case of
TObject, ClassParent returns nil because TObject has no parent. It is used by the is
and as operators, and by the InheritsFrom method.

• ClassType dynamically determines the actual type of an object. It is used internally
by the Object Pascal is and as operators.

• FieldAddress uses RTTI to obtain the address of a published field. It is used
internally by the steaming system.

• InheritsFrom determines the relationship of two objects. It is used internally by the
Object Pascal is and as operators.

• MethodAddress uses RTTI to find the address of a method. It is used internally by
the steaming system.

Some of these methods of TObject are primarily for internal use by the compiler or the
streaming system. For more information about these methods, see the online Help.

Unmapped types

6-byte Real types
The old Object Pascal 6-byte floating-point format is now called Real48. The old Real
type is now a double. C++ does not have a counterpart for the Real48 type.
Consequently, you should not use Object Pascal code that includes this type with
C++ code. If you do, the header file generator will generate a warning.

Table 9.3 Examples of RTTI mappings from Object Pascal to C++

Object Pascal RTTI C++ RTTI

if Sender is TButton... if (dynamic_cast <TButton*> (Sender)
// dynamic_cast returns NULL on failure.

b := Sender as TButton;
(* raises an exception on failure *)

TButton& ref_b = dynamic_cast <TButton&> (*Sender)
// throws an exception on failure.

ShowMessage(Sender.ClassName); ShowMessage(typeid(*Sender).name());

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-19

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

Arrays as return types of functions
In Object Pascal a function can take as an argument, or return as a type, an array. For
example, the syntax for a function GetLine returning an array of 80 characters is

type
Line_Data = array[0..79] of char;

function GetLine: Line_Data;

C++ has no counterpart to this concept. In C++, arrays are not allowed as return
types of functions. Nor does C++ accept arrays as the type of a function argument.

Be aware that, although the VCL does not have any properties that are arrays, the
Object Pascal language does allow this. Because properties can use Get and Set read
and write methods that take and return values of the property’s type, you cannot
have a property of type array in C++Builder.

Note Array properties, which are also valid in Object Pascal, are not a problem in C++
because the Get method takes an index value as a parameter, and the Set method
returns an object of the type contained by the array. For more information about
array properties, see “Creating array properties” on page 41-8.

Keyword extensions

This section describes ANSI-conforming keyword extensions implemented in
C++Builder to support the VCL. For a complete list of keywords and keyword
extensions in C++Builder, see the online Help.

__classid
The __classid operator is used by the compiler to generate a pointer to the vtable for
the specified classname. This operator is used to obtain the meta class from a class.

Syntax __classid(classname)

For example, __classid is used when registering property editors, components, and
classes, and with the InheritsFrom method of TObject. The following code illustrates
the use of __classid for creating a new component derived from TWinControl:

namespace Ywndctrl
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(MyWndCtrl)};
RegisterComponents("Additional", classes, 0);

}
}

__closure
The __closure keyword is used to declare a special type of pointer to a member
function. Unlike a regular C++ member function pointer, a closure contains an object
pointer.

9-20 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

In standard C++, you can assign a derived class instance to a base class pointer;
however, you cannot assign a derived class’s member function to a base class
member function pointer. The following code illustrates this:

class base
{

public:
void func(int x);

};

class derived: public base
{

public:
void new_func(int i);

};

void (base::*bptr)(int);
bptr = &derived::new_func;// illegal

However, the __closure language extension allows you to do this in C++Builder. A
closure associates a pointer to a member function with a pointer to a class instance.
The pointer to the class instance is used as the this pointer when calling the
associated member function. A closure declaration is the same as a function pointer
declaration but with the addition of the __closure keyword before the identifier
being defined. For example:

struct MyObject
{

double MemFunc(int);
};

double func1(MyObject *obj)
{

// A closure taking an int argument and returning double.
double (__closure *myClosure)(int);

// Initialize the closure.
myClosure = obj -> MemFunc;

// Use the closure to call the member function and pass it an int.
 return myClosure(1);
}

Closures are used with events in C++Builder.

__property
The __property keyword declares a property in a class declaration. Properties can
only be declared in classes. For property arrays (when <prop dim list> is used), the
index to the arrays can be of any type.

Syntax <property declaration> ::=
 __property <type> <id> [<prop dim list>] = "{" <prop attrib list> "}"
 <prop dim list> ::= "[" <type> [<id>] "]" [<prop dim list>]
 <prop attrib list> ::= <prop attrib> [, <prop attrib list>]
 <prop attrib> ::= read = <data/function id>
 <prop attrib> ::= write = <data/function id>
 <prop attrib> ::= stored = <data/function id>

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-21

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

 <prop attrib> ::= stored = <boolean constant>
 <prop attrib> ::= default = <constant>
 <prop attrib> ::= nodefault
 <prop attrib> ::= index = <const int expression>

Properties have several features that distinguish them from data members.
Properties can

• Associate read or write methods with an identifier (property)
• Set default values for the property
• Be stored in a form file
• Extend a property defined in a base class

For more information about properties, see Chapter 41, “Creating properties”.

__published
The __published keyword specifies that properties in that section are displayed in
the Object Inspector, if the class is on the Component palette. Only classes derived
from TObject can have __published sections.

The visibility rules for published members are identical to those of public members.
The only difference between published and public members is that Object
Pascal-style runtime type information (RTTI) is generated for data members and
properties declared in a __published section. RTTI enables an application to
dynamically query the data members, member functions, and properties of an
otherwise unknown class type.

Note No constructors or destructors are allowed in a __published section. Properties,
Pascal intrinsic or VCL derived data-members, member functions, and closures are
allowed in a __published section. Fields defined in a __published section must be of
a class type. Properties defined in a __published section cannot be array properties.
The type of a property defined in a __published section must be an ordinal type, a
real type, a string type, a small set type, a class type, or a method pointer type.

The __declspec keyword extension

Some arguments to the __declspec keyword extension provide language support for
the VCL. These arguments are listed below. Macros for the declspec arguments and
combinations of them are defined in sysmac.h. In most cases you do not need to
specify these. When you do need to add them, you should use the macros.

__declspec(delphiclass)
The delphiclass argument is used for declarations for classes derived from TObject.
These classes will be created with the following VCL compatibility:

• VCL-compatible RTTI
• VCL-compatible constructor/destructor behavior
• VCL-compatible exception handling

9-22 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

A VCL-compatible class has the following restrictions.

• No virtual base classes are allowed.

• No multiple inheritance is allowed.

• Must be dynamically allocated by using the global new operator.

• Must have a destructor.

• Copy constructors and assignment operators are not compiler-generated for
VCL-derived classes.

A class declaration that is translated from Object Pascal will need this modifier if the
compiler needs to know that the class is derived from TObject.

__declspec(delphireturn)
The delphireturn argument is for internal use only by the VCL in C++Builder. It is
used for declarations of classes that were created in C++Builder to support Object
Pascal’s built-in data types and language constructs because they do not have a
native C++ type. These include Currency, AnsiString, Variant, TDateTime, and Set. The
delphireturn argument marks C++ classes for VCL-compatible handling in function
calls as parameters and return values. This modifier is needed when passing a
structure by value to a function between Object Pascal and C++.

__declspec(dynamic)
The dynamic argument is used for declarations for dynamic functions. Dynamic
functions are similar to virtual functions except that they are stored only in the
vtables for the objects that define them, not in descendant vtables. If you call a
dynamic function, and that function is not defined in your object, the vtables of its
ancestors are searched until the function is found. Dynamic functions are only valid
for classes derived from TObject.

__declspec(hidesbase)
The hidesbase argument preserves Object Pascal program semantics when porting
Object Pascal virtual and override functions to C++Builder. In Object Pascal, virtual
functions in base classes can appear in the derived class as a function of the same
name, but which is intended to be a completely new function with no explicit relation
to the earlier one.

The compilers use the HIDESBASE macro, defined in sysmac.h, to specify that these
types of function declarations are completely separate. For example, if a base class T1
declares a virtual function, func, taking no arguments, and its derived class T2
declared a function with the same name and signature, DCC32 -jphn would produce
an HPP file with the following prototype:

virtual void T1::func(void);
HIDESBASE void T2::func(void);

Without the HIDESBASE declaration, the C++ program semantics indicate that
virtual function T1::func() is being overridden by T2::func().

C + + l a n g u a g e s u p p o r t f o r t h e V C L 9-23

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

__declspec(package)
The package argument indicates that the code defining the class can be compiled in a
package. This modifier is auto-generated by the compiler when creating packages in
the IDE. See Chapter 10, “Working with packages and components” for more
information about packages.

__declspec(pascalimplementation)
The pascalimplementation argument indicates that the code defining the class was
implemented in Object Pascal. This modifier appears in an Object Pascal portability
header file with a .hpp extension.

9-24 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 10-1

C h a p t e r

10
Chapter10Working with packages and

components
A package is a special dynamic-link library used by C++Builder applications, the IDE,
or both. Runtime packages provide functionality when a user runs an application.
Design-time packages are used to install components in the IDE and to create special
property editors for custom components. A single package can function at both
design time and runtime, and design-time packages frequently work by calling
runtime packages. To distinguish them from other DLLs, package libraries are stored
in files that end with the .BPL (Borland package library) extension.

Like other runtime libraries, packages contain code that can be shared among
applications. For example, the most frequently used C++Builder components reside
in a package called VCL50. Each time you create an application, you can specify that
it uses VCL50. When you compile an application created this way, the application’s
executable image contains only the code and data unique to it; the common code is in
VCL50.BPL. A computer with several package-enabled applications installed on it
needs only a single copy of VCL50.BPL, which is shared by all the applications and
the IDE itself.

C++Builder ships with several precompiled runtime packages, including VCL50, that
encapsulate VCL components. C++Builder also uses design-time packages to
manipulate components in the IDE.

You can build applications with or without packages. However, if you want to add
custom components to the IDE, you must install them as design-time packages.

You can create your own runtime packages to share among applications. If you write
C++Builder components, you can compile your components into design-time
packages before installing them.

10-2 D e v e l o p e r ’ s G u i d e

W h y u s e p a c k a g e s ?

Why use packages?
Design-time packages simplify the tasks of distributing and installing custom
components. Runtime packages, which are optional, offer several advantages over
conventional programming. By compiling reused code into a runtime library, you
can share it among applications. For example, all of your applications—including
C++Builder itself—can access standard components through packages. Since the
applications don’t have separate copies of the component library bound into their
executables, the executables are much smaller—saving both system resources and
hard disk storage. Moreover, packages allow faster compilation because only code
unique to the application is compiled with each build.

Packages and standard DLLs

Create a package when you want to make a custom component that’s available
through the IDE. Create a standard DLL when you want to build a library that can be
called from any Windows application, regardless of the development tool used to
build the application.

Note Packages share their global data with other modules in an application.

Runtime packages
Runtime packages are deployed with C++Builder applications. They provide
functionality when a user runs the application.

To run an application that uses packages, a computer must have both the
application’s .EXE file and all the packages (.BPL files) that the application uses. The
.BPL files must be on the system path for an application to use them. When you
deploy an application, you must make sure that users have correct versions of any
required .BPLs.

Using packages in an application

To use packages in an application,

1 Load or create a project in the IDE.

2 Choose Project|Options.

3 Choose the Packages tab.

4 Select the “Build with Runtime Packages” check box, and enter one or more
package names in the edit box underneath. (Runtime packages associated with
installed design-time packages are already listed in the edit box.) To add a
package to an existing list, click the Add button and enter the name of the new
package in the Add Runtime Package dialog. To browse from a list of available
packages, click the Add button, then click the Browse button next to the Package
Name edit box in the Add Runtime Package dialog.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 10-3

R u n t i m e p a c k a g e s

If you edit the Search Path edit box in the Add Runtime Package dialog, you will
be changing C++Builder’s global Library Path.

You do not need to include file extensions with package names. If you type
directly into the Runtime Packages edit box, be sure to separate multiple names
with semicolons. For example:

VCL50;VCLDB50;VCLDBX50

Packages listed in the Runtime Packages edit box are automatically linked to your
application when you compile. Duplicate package names are ignored, and if the edit
box is empty the application is compiled without packages.

Runtime packages are selected for the current project only. To make the current
choices into automatic defaults for new projects, select the “Defaults” check box at
the bottom of the dialog.

An application built with packages still must include header files for the packaged
units that it uses. For example, an application that uses database controls needs the

#include "vcldb.h"

statement, even if it uses the VCLDB40 package. In generated source files,
C++Builder creates these #include statements automatically.

Dynamically loading packages
To load a package at runtime, call the LoadPackage function. For example, the
following code could be executed when a file is chosen in a file-selection dialog.

if (OpenDialog1->Execute())
PackageList->Items->AddObject(FileName, Pointer(LoadPackage(Filename)));

To unload a package dynamically, call UnloadPackage. Be careful to destroy any
instances of classes defined in the package and to unregister classes that were
registered by it.

Deciding which runtime packages to use
C++Builder ships with several precompiled runtime packages, including VCL50,
which supply basic language and component support.

The VCL50 package contains the most commonly used components, system
functions, and Windows interface elements. It does not include database or Windows
3.1 components, which are available in separate packages.

For a list of the other runtime packages shipped with C++Builder, see “runtime
packages, precompiled” in your online Help index.

To create a client/server database application that uses packages, you need at least
two runtime packages: VCL50 and VCLDB50. If you want to use Outline components
in your application, you also need VCLX50. To use these packages, choose
Project|Options, select the Packages tab, and enter the following list in the Runtime
Packages edit box.

VCL50;VCLDB50;VCLX50

10-4 D e v e l o p e r ’ s G u i d e

D e s i g n - t i m e p a c k a g e s

Actually, you don’t have to include VCL50, because VCL50 is referenced in the
Requires list of VCLDB50. (See “The Requires list” on page 10-9.) Your application
will compile just the same whether or not VCL50 is included in the Runtime
Packages edit box.

Custom packages

A custom package is either a BPL you code and compile yourself, or a precompiled
package from a third-party vendor. To use a custom runtime package with an
application, choose Project|Options and add the name of the package to the Runtime
Packages edit box on the Packages page. For example, suppose you have a statistical
package called STATS.BPL. To use it in an application, the line you enter in the
Runtime Packages edit box might look like this:

VCL50;VCLDB50;STATS

If you create your own packages, you can add them to the list as needed.

Design-time packages
Design-time packages are used to install components on the IDE’s Component
palette and to create special property editors for custom components.

C++Builder ships with the following design-time component packages preinstalled
in the IDE.

Table 10.1 Design-time packages

Package Component palette pages

DCLSTD50.BPL Standard, Additional, System, Win32, Dialogs

DCLTEE50.BPL Additional (TChart component)

DCLDB50.BPL Data Access, Data Controls

DCLMID50.BPL Data Access (MIDAS)

DCL31W50.BPL Win 3.1

DCLNET50.BPL
NMFAST50.BPL

Internet

BCBSMP50.BPL Samples

DCLOCX50.BPL ActiveX

DCLQRT50.BPL QReport

DCLDSS50.BPL Decision Cube

IBSMP50.BPL Samples (IBEventAlerter component)

DCLINT50.BPL (International Tools—Resource DLL wizard)

RCEXPERT.BPL (Resource Expert)

DBWEBXPRT.BPL (Web Wizard)

MFCWIZARD.BPL (MFC Wizard)

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 10-5

D e s i g n - t i m e p a c k a g e s

These design-time packages work by calling runtime packages, which they reference
in their Requires lists. (See “The Requires list” on page 10-9.) For example,
DCLSTD50 references VCL50. DCLSTD50 itself contains additional functionality that
makes most of the standard components available on the Component palette.

In addition to preinstalled packages, you can install your own component packages,
or component packages from third-party developers, in the IDE. The DCLUSR50
design-time package is provided as a default container for new components.

Installing component packages

All components are installed in the IDE as packages. If you’ve written your own
components, create and compile a package that contains them. (See “Creating and
editing packages” on page 10-6.) Your component source code must follow the
model described in Part V, “Creating custom components.” If you are adding
multiple units to a single package, each with components in them, you must make a
single Register function for all components in a namespace that has the name of the
package.

To install or uninstall your own components, or components from a third-party
vendor, follow these steps:

1 If you are installing a new package, copy or move the package files to a local
directory. If the package is shipped with .BPL, .BPI, .LIB, and .OBJ files, be sure to
copy all of them. (For information about these files, see “Package files created by a
successful compilation” on page 10-12.)

The directory where you store the .BPI and header files—and the .LIB or .OBJ files,
if they are included with the distribution—must be in the C++Builder Library
Path.

2 Choose Component|Install Packages from the IDE menu, or choose
Project|Options and click the Packages tab.

3 A list of available packages appears under “Design packages”.

• To install a package in the IDE, select the check box next to it.

• To uninstall a package, deselect its check box.

• To see a list of components included in an installed package, select the package
and click Components.

• To add a package to the list, click Add and browse in the Add Design Package
dialog for the directory where the .BPL file resides (see step 1). Select a .BPL file
and click Open.

• To remove a package from the list, select the package and click Remove.

4 Click OK.

The components in the package are installed on the Component palette pages
specified in the components’ RegisterComponents procedure, with the names they
were assigned in the same procedure.

10-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

New projects are created with all available packages installed, unless you change the
default settings. To make the current installation choices into the automatic default
for new projects, check the Default check box at the bottom of the dialog box.

To remove components from the Component palette without uninstalling a package,
select Component|Configure Palette, or select Tools|Environment Options and click
the Palette tab. The Palette options tab lists each installed component along with the
name of the Component palette page where it appears. Selecting any component and
clicking Hide removes the component from the palette.

Creating and editing packages
Creating a package involves specifying

• A name for the package.

• A list of other packages to be required by, or linked to, the new package.

• A list of unit files to be contained by, or bound into, the package when it is
compiled. The package is essentially a wrapper for these source-code units, which
contain the functionality of the compiled .BPL. The Contains list is where you put
the source-code units for custom components that you want to compile into a
package.

A package is defined by a C++ source (.CPP) file and a project options file whose
name ends with the .BPK extension. These files are generated by the Package editor.

Creating a package

To create a package, follow the procedure below. Refer to “Understanding the
structure of a package” on page 10-9 for more information about the steps outlined
here.

1 Choose File|New, select the Package icon, and click OK.

2 The generated package is displayed in the Package editor.

3 The Package editor shows a Requires node and a Contains node for the new
package.

4 To add a unit to the Contains list, click the Add to package speed button. In the
Add unit page, type a .CPP file name in the Unit file name edit box, or click
Browse to browse for the file, and then click OK. The unit you’ve selected appears
under the Contains node in the Package editor. You can add additional units by
repeating this step.

5 To add a package to the Requires list, click the Add to package speed button. In
the Requires page, type a .BPI file name in the Package name edit box, or click
Browse to browse for the file, and then click OK. (This adds
USEPACKAGE("packageName.bpi") to the CPP file generated in step 1 above.) The

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 10-7

C r e a t i n g a n d e d i t i n g p a c k a g e s

package you’ve selected appears under the Requires node in the Package editor.
You can add additional packages by repeating this step.

6 Click the Options speed button, and decide what kind of package you want to
build.

• To create a design-time only package (a package that cannot be used at
runtime), select the Designtime only radio button. (Or add the -Gpd linker
switch to your BPK file: LFLAGS = ... -Gpd)

• To create a runtime-only package (a package that cannot be installed), select the
Runtime only radio button. (Or add the -Gpr linker switch to your BPK file:
LFLAGS = ... -Gpr)

• To create a package that is available at both design time and runtime, select the
Designtime and runtime radio button.

7 In the Package editor, click the Compile package speed button to compile your
package.

Editing an existing package

There are several ways to open an existing package for editing.

• Choose File|Open (or File|Reopen) and select a CPP or BPK file.

• Choose Component|Install Packages, select a package from the Design Packages
list, and click the Edit button.

• When the Package editor is open, select one of the packages in the Requires node,
right-click, and choose Open.

To edit a package’s description or set usage options, click the Options speed button in
the Package editor and select the Description tab.

The Project Options dialog has a Default check box in the lower left corner. If you
click OK when this box is checked, the options you’ve chosen are saved as default
settings for new package projects. To restore the original defaults, delete or rename
the DEFAULT.BPK file.

Package source files and project option files

Package source files have the .CPP extension. Package project option files are created
using XML format and have the .BPK (Borland package) extension. Display the
package project option file from the Package editor by right-clicking on the Contains
or Requires clause and choosing Edit Option Source.

Note C++Builder maintains the .BPK file. You do not normally need to edit it manually.
You should make changes using the Packages tab of the Project Options dialog box.

10-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

The project option file for a package called MyPack might look, in part, like this:

<MACROS>
 <VERSION value="BCB.05.02"/>
 <PROJECT value="MyPack.bpl"/>
 <OBJFILES value="MyPack.obj Unit2.obj Unit3.obj"/>
 <RESFILES value="MyPack.res"/>
 <IDLFILES value=""/>
 <IDLGENFILES value=""/>
 <DEFFILE value=""/>
 <RESDEPEN value="$(RESFILES)"/>
 <LIBFILES value=""/>
 <LIBRARIES value=""/>
 <SPARELIBS value="Vcl50.lib"/>
 <PACKAGES value="Vcl50.bpi vcldbx50.bpi"/>

.

.

.

In this case, MYPACK.CPP would include the following code:

USERES("MyPack.res");
USEPACKAGE("vcl50.bpi");
USEPACKAGE("vcldbx50.bpi");
USEUNIT("Unit2.cpp");
USEUNIT("Unit3.cpp");

MyPack’s Contains list includes three units: MyPack itself, Unit2, and Unit3.
MyPack’s Requires list includes VCL50 and VCLDBX50.

Packaging components
If you use the New Component wizard to create components (by choosing
Component|New Component), C++Builder inserts the PACKAGE macro where it is
needed. But if you have custom components from an older version of C++Builder,
you’ll have to add PACKAGE manually in two places.

The header-file declaration for a C++Builder component must include the predefined
PACKAGE macro after the word class:

class PACKAGE MyComponent : ...

And in the CPP file where the component is defined, include the PACKAGE macro in
the declaration of the Register function:

void __fastcall PACKAGE Register()

The PACKAGE macro expands to a statement that allows classes to be imported and
exported from the resulting BPL file.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 10-9

C r e a t i n g a n d e d i t i n g p a c k a g e s

Understanding the structure of a package

Packages include the following parts:

• Package name
• Requires list
• Contains list

Naming packages
Package names must be unique within a project. If you name a package STATS, the
Package editor generates a source file and project option file for it called STATS.CPP
and STATS.BPK, respectively; the compiler generates an executable, a binary image,
and (optionally) a static library called STATS.BPL, STATS.BPI, and STATS.LIB. To
use the package in an application, add STATS to the Runtime Packages edit box (after
choosing Project|Options and clicking the Packages tab).

The Requires list
The Requires list specifies other, external packages that are used by the current
package. An external package included in the Requires list is automatically linked at
compile time into any application that uses both the current package and one of the
units contained in the external package.

If the unit files contained in your package make references to other packaged units,
the other packages should appear in your package’s Requires list or you should add
them. If the other packages are omitted from the Requires list, the compiler will
import them into your package ‘implicitly contained units’.

Note Most packages that you create will require VCL50. Any package that depends on
VCL units (including SysUtils) must list VCL50, or another package that requires
VCL50, in its Requires list.

Avoiding circular package references
Packages cannot contain circular references in their Requires list. This means that

• A package cannot reference itself in its own Requires list.

• A chain of references must terminate without re-referencing any package in the
chain. If package A requires package B, then package B cannot require package A;
if package A requires package B and package B requires package C, then package
C cannot require package A.

Handling duplicate package references
Duplicate references in a package’s Requires list—or in the Runtime Packages edit
box—are ignored by the compiler. For programming clarity and readability,
however, you should catch and remove duplicate package references.

10-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

The Contains list
The Contains list identifies the unit files to be bound into the package. If you are
writing your own package, put your source code in CPP files and include them in the
Contains list.

Avoiding redundant source code uses
A package cannot appear in the Contains list of another package.

All units included directly in a package’s Contains list, or included indirectly in any
of those units, are bound into the package at compile time.

A unit cannot be contained (directly or indirectly) in more than one package used by
the same application, including the C++Builder IDE. This means that if you create a
package that contains one of the units in VCL50, you won’t be able to install your
package in the IDE. To use an already-packaged unit file in another package, put the
first package in the second package’s Requires list.

Compiling packages

You can compile a package from the IDE or from the command line. To recompile a
package by itself from the IDE,

1 Choose File|Open, select a package source file or project option file, and click
Open.

2 When the editor opens, choose Project|Make or Project|Build.

You can insert compiler directives into your package source code. For more
information, see “Package-specific compiler directives,” below.

If you compile from the command line, several package-specific linker switches are
available.For more information, see “Using the command-line compiler and linker”
on page 10-12.

Package-specific compiler directives
The following table lists package-specific compiler directives that you can insert into
your source code.

Table 10.2 Package-specific compiler directives

Directive Purpose

#pragma package(smart_init) Assures that packaged units are initialized in the
order determined by their dependencies. (Included
by default in package source file.)

#pragma package(smart_init, weak) Packages unit “weakly”. See “Weak packaging”
below.(Put directive in unit source file.)

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 10-11

C r e a t i n g a n d e d i t i n g p a c k a g e s

Weak packaging
The #pragma package(smart_init, weak) directive affects the way an .OBJ file is
stored in a package’s .BPI and .BPL files. (For information about files generated by
the compiler, see “Package files created by a successful compilation” on page 10-12.)
If #pragma package(smart_init, weak) appears in a unit file, the compiler omits the
unit from BPLs when possible, and creates a non-packaged local copy of the unit
when it is required by another application or package. A unit compiled with this
directive is said to be “weakly packaged”.

For example, suppose you’ve created a package called PACK that contains only one
unit, UNIT1. Suppose UNIT1 does not use any further units, but it makes calls to
RARE.DLL. If you put #pragma package(smart_init, weak) in UNIT1.CPP when you
compile your package, UNIT1 will not be included in PACK.BPL; you will not have
to distribute copies of RARE.DLL with PACK. However, UNIT1 will still be included
in PACK.BPI. If UNIT1 is referenced by another package or application that uses
PACK, it will be copied from PACK.BPI and compiled directly into the project.

Now suppose you add a second unit, UNIT2, to PACK. Suppose that UNIT2 uses
UNIT1. This time, even if you compile PACK with #pragma package(smart_init,
weak) in UNIT1.CPP, the compiler will include UNIT1 in PACK.BPL. But other
packages or applications that reference UNIT1 will use the (non-packaged) copy
taken from PACK.BPI.

Note Unit files containing the #pragma package(smart_init, weak) directive must not
have global variables.

#pragma package(smart_init, weak) is an advanced feature intended for developers
who distribute their BPLs to other C++Builder programmers. It can help you to avoid
distribution of infrequently used DLLs, and to eliminate conflicts among packages
that may depend on the same external library.

For example, C++Builder’s PenWin unit references PENWIN.DLL. Most projects
don’t use PenWin, and most computers don’t have PENWIN.DLL installed on them.
For this reason, the PenWin unit is weakly packaged in VCL50. When you compile a
project that uses PenWin and the VCL50 package, PenWin is copied from VCL50.BPI
and bound directly into your project; the resulting executable is statically linked to
PENWIN.DLL.

If PenWin were not weakly packaged, two problems would arise. First, VCL50 itself
would be statically linked to PENWIN.DLL, and so you could not load it on any
computer which didn’t have PENWIN.DLL installed. Second, if you tried to create a
package that contained PenWin, a compiler error would result because the PenWin
unit would be contained in both VCL50 and your package. Thus, without weak
packaging, PenWin could not be included in standard distributions of VCL50.

10-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

Using the command-line compiler and linker
When you compile from the command line, use the -Tpp linker switch to ensure that
the project is built as a package. Other package-specific switches are listed in the
following table.

The -Gpr and -Gpd switches correspond to the Runtime Package and Design
Package check boxes on the Description page of the Project Options dialog (available
for package projects only); if neither -Gpr nor -Gpd is used, the resulting package
works at both design time and runtime. The -D switch corresponds to the
Description edit box on the same page. The -Gl switch corresponds to the Generate
.LIB File check box on the Linker page of the Project Options dialog.

Package files created by a successful compilation
To create a package, you compile a source (.CPP) file using a project options file with
the .BPK extension. The base name of the source file should match the base name of
the files generated by the compiler; that is, if the source file is called TRAYPAK.CPP,
the project options file—TRAYPAK.BPK—should include

<PROJECT value="Traypak.bpl"/>

In this case, compiling the project creates a package called TRAYPAK.BPL.

The following table lists the files produced by the successful compilation of a
package.

Table 10.3 Package-specific command-line linker switches

Switch Purpose

-Tpp Builds the project as a package. Included by default in package project files.

-Gi Saves the generated BPI file. Included by default in package project files.

-Gpr Generates a runtime-only package.

-Gpd Generates a design-time–only package.

-Gl Generates a .LIB file.

-D “description” Saves the specified description with the package.

Table 10.4 Compiled package files

File extension Contents

BPI An import library. A single BPI (Borland package import library) file is created
for each package. The base name for the BPI is the base name of the package
source file.

OBJ A binary image for a unit file contained in a package. One OBJ is created, when
necessary, for each CPP file.

BPL The runtime library. This file is a Windows DLL with C++Builder-specific
features. The base name for the BPL is specified in the package project options
file and should match the base name of the package source file.

LIB A library for static linking. Generated only if -Gl (Generate .LIB File) is
selected.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 10-13

D e p l o y i n g p a c k a g e s

When compiled, the BPI, BPL, and LIB files are generated by default in the directories
specified in Library page of the Tools|Environment Options dialog. You can
override the default settings by clicking the Options speed button in the Package
editor to display the Project Options dialog; make any changes on the Directories/
Conditionals page.

Deploying packages

Deploying applications that use packages

When distributing an application that uses runtime packages, make sure that your
users have the application’s .EXE file as well as all the library (.BPL or .DLL) files that
the application calls. If the library files are in a different directory from the .EXE file,
they must be accessible through the user’s Path. You may want to follow the
convention of putting library files in the Windows\System directory. If you use
InstallShield Express, your installation script can check the user’s system for any
packages it requires before blindly reinstalling them.

Distributing packages to other developers

If you distribute runtime or design-time packages to other C++Builder developers, be
sure to supply both .BPI and .BPL files as well as any required header files. To link
components statically into their applications—that is, to build applications that don’t
use runtime packages—developers will also need .LIB (or .OBJ) files for any packages
you supply.

Package collection files

Package collections (.DPC files) offer a convenient way to distribute packages to
other developers. Each package collection contains one or more packages, including
BPLs and any additional files you want to distribute with them. When a package
collection is selected for IDE installation, its constituent files are automatically
extracted from their .PCE container; the Installation dialog box offers a choice of
installing all packages in the collection or installing packages selectively.

To create a package collection,

1 Choose Tools|Package Collection Editor to open the Package Collection editor.

2 Click the Add Package speed button, then select a BPL in the Select Package dialog
and click Open. To add more BPLs to the collection, click the Add Package speed
button again. A tree diagram on the left side of the Package editor displays the
BPLs as you add them. To remove a package, select it and click the Remove
Package speed button.

10-14 D e v e l o p e r ’ s G u i d e

D e p l o y i n g p a c k a g e s

3 Select the Collection node at the top of the tree diagram. On the right side of the
Package Collection editor, two fields will appear:

• In the Author/Vendor Name edit box, you can enter optional information
about your package collection that will appear in the Installation dialog when
users install packages.

• Under Directory List, list the default directories where you want the files in
your package collection to be installed. Use the Add, Edit, and Delete buttons to
edit this list. For example, suppose you want all source code files to be copied to
the same directory. In this case, you might enter Source as a Directory Name
with C:\MyPackage\Source as the Suggested Path. The Installation dialog box will
display C:\MyPackage\Source as the suggested path for the directory.

4 In addition to BPLs, your package collection can contain .BPI, .OBJ, and .CPP
(unit) files, documentation, and any other files you want to include with the
distribution. Ancillary files are placed in file groups associated with specific
packages (BPLs); the files in a group are installed only when their associated BPL
is installed. To place ancillary files in your package collection, select a BPL in the
tree diagram and click the Add File Group speed button; type a name for the file
group. Add more file groups, if desired, in the same way. When you select a file
group, new fields will appear on the right in the Package Collection editor,

• In the Install Directory list box, select the directory where you want files in this
group to be installed. The drop-down list includes the directories you entered
under Directory List in step 3, above.

• Check the Optional Group check box if you want installation of the files in this
group to be optional.

• Under Include Files, list the files you want to include in this group. Use the
Add, Delete, and Auto buttons to edit the list. The Auto button allows you to
select all files with specified extensions that are listed in the Contains list of the
package; the Package Collection editor uses C++Builder’s global Library Path to
search for these files.

5 You can select installation directories for the packages listed in the Requires list of
any package in your collection. When you select a BPL in the tree diagram, four
new fields appear on the right side of the Package Collection editor:

• In the Required Executables list box, select the directory where you want the
.BPL files for packages listed in the Requires list to be installed. (The drop-down
list includes the directories you entered under Directory List in step 3, above.)
The Package Collection Editor searches for these files using C++Builder’s global
Library Path and lists them under Required Executable Files.

• In the Required Libraries list box, select the directory where you want the .OBJ
and .BPI files for packages listed in the Requires list to be installed. (The
drop-down list includes the directories you entered under Directory List in step
3, above.) The Package Collection Editor searches for these files using
C++Builder’s global Library Path and lists them under Required Library Files.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 10-15

D e p l o y i n g p a c k a g e s

6 To save your package collection source file, choose File|Save. Package collection
source files should be saved with the .PCE extension.

7 To build your package collection, click the Compile speed button. The Package
Collection editor generates a .DPC file with the same name as your source (.PCE)
file. If you have not yet saved the source file, the editor queries you for a file name
before compiling.

To edit or recompile an existing .PCE file, select File|Open in the Package Collection
editor.

10-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 11-1

C h a p t e r

11
Chapter11Creating international applications

This chapter discusses guidelines for writing applications that you plan to distribute
to an international market. By planning ahead, you can reduce the amount of time
and code necessary to make your application function in its foreign market as well as
in its domestic market.

Internationalization and localization
To create an application that you can distribute to foreign markets, there are two
major steps that need to be performed:

• Internationalization
• Localization

If your version of C++Builder includes the Integrated Translation Environment, you
can use the ITE to manage localization. For more information, see the online Help for
the ITE (ITE.hlp).

Internationalization

Internationalization is the process of enabling your program to work in multiple
locales. A locale is the user’s environment, which includes the cultural conventions of
the target country as well as the language. Windows supports a large set of locales,
each of which is described by a language and country pair.

Localization

Localization is the process of translating an application to function in a specific
locale. In addition to translating the user interface, localization may include
functionality customization. For example, a financial application may be modified to
be aware of the different tax laws in different countries.

11-2 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Internationalizing applications
It is not difficult to create internationalized applications. You need to complete the
following steps:

1 You must enable your code to handle strings from international character sets.

2 You need to design your user interface so that it can accommodate the changes
that result from localization.

3 You need to isolate all resources that need to be localized.

Enabling application code

You must make sure that the code in your application can handle the strings it will
encounter in the various target locales.

Character sets
The United States edition of Windows uses the ANSI Latin-1 (1252) character set.
However, other editions of Windows use different character sets. For example, the
Japanese version of Windows uses the Shift-Jis character set (code page 932), which
represents Japanese characters as 1- or 2-byte character codes.

OEM and ANSI character sets
It is sometimes necessary to convert between the Windows character set (ANSI) and
the character set specified by the code page of the user’s machine (called the OEM
character set).

Double byte character sets
The ideographic character sets used in Asia cannot use the simple 1:1 mapping
between characters in the language and the one byte (8-bit) char type. These
languages have too many characters to be represented using the 1-byte char. Instead,
characters are represented by a mix of 1- and 2-byte character codes.

The first byte of every 2-byte character code is taken from a reserved range that
depends on the specific character set. The second byte can sometimes be the same as
the character code for a separate 1-byte character, or it can fall in the range reserved
for the first byte of 2-byte characters. Thus, the only way to tell whether a particular
byte in a string represents a single character or part of a 2-byte character is to read the
string, starting at the beginning, parsing it into 2-byte characters when a lead byte
from the reserved range is encountered.

When writing code for Asian locales, you must be sure to handle all string
manipulation using functions that are enabled to parse strings into 1- and 2-byte
characters. See “International API” in the online help for a list of the RTL functions
that are enabled to work with multibyte characters.

Remember that the length of the strings in bytes does not necessarily correspond to
the length of the string in characters. Be careful not to truncate strings by cutting a

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 11-3

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

2-byte character in half. Do not pass characters as a parameter to a function or
procedure, since the size of a character can’t be known up front. Instead, always pass
a pointer to a character or a string.

Wide characters
Another approach to working with ideographic character sets is to convert all
characters to a wide character encoding scheme such as Unicode. Wide characters are
two bytes instead of one, so that the character set can represent many more different
characters.

Using a wide character encoding scheme has the advantage that you can make many
of the usual assumptions about strings that do not work for MBCS systems. There is a
direct relationship between the number of bytes in the string and the number of
characters in the string. You do not need to worry about cutting characters in half or
mistaking the second half of a character for the start of a different character.

The biggest disadvantage of working with wide characters is that Windows 95 only
supports a few wide character API function calls. Because of this, the VCL
components represent all string values as single byte or MBCS strings. Translating
between the wide character system and the MBCS system every time you set a string
property or read its value would require tremendous amounts of extra code and slow
your application down. However, you may want to translate into wide characters for
some special string processing algorithms that need to take advantage of the 1:1
mapping between characters and WideChars.

See “International API” in the online help for a list of the RTL functions that are
enabled to work with Unicode characters.

Including bi-directional functionality in applications
Some languages do not follow the left to right reading order commonly found in
western languages, but rather read words right to left and numbers left to right.
These languages are termed bi-directional (BiDi) because of this separation. The most
common bi-directional languages are Arabic and Hebrew, although other Middle
East languages are also bi-directional.

TApplication has two properties, BiDiKeyboard and NonBiDiKeyboard, that allow you
to specify the keyboard layout. In addition, the VCL supports bi-directional
localization through the BiDiMode and ParentBiDiMode properties. The following
table lists VCL objects that have these properties:

Table 11.1 VCL objects that support BiDi

Component palette page VCL object

Standard TButton

 TCheckBox

 TComboBox

 TEdit

 TGroupBox

 TLabel

11-4 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

TListBox

 TMainMenu

 TMemo

 TPanel

 TPopupMenu

 TRadioButton

 TRadioGroup

 TScrollBar

Additional TBitBtn

 TCheckListBox

 TDrawGrid

 TMaskEdit

 TScrollBox

 TSpeedButton

 TStaticLabel

 TStringGrid

Win32 TDateTimePicker

 THeaderControl

 TListView

 TMonthCalendar

 TPageControl

 TRichEdit

 TStatusBar

 TTabControl

Data Controls TDBCheckBox

 TDBComboBox

 TDBEdit

 TDBGrid

 TDBListBox

 TDBLookupComboBox

 TDBLookupListBox

 TDBMemo

 TDBRadioGroup

 TDBRichEdit

 TDBText

QReport TQRDBText

 TQRExpr

 TQRLabel

 TQRMemo

 TQRSysData

Table 11.1 VCL objects that support BiDi (continued)

Component palette page VCL object

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 11-5

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Notes THintWindow picks up the BiDiMode of the control that activated the hint.

Bi-directional properties
The objects listed in Table 11.1, “VCL objects that support BiDi,” on page 11-3 have
the properties BiDiMode and ParentBiDiMode. These properties, along with
TApplication‘s BiDiKeyboard and NonBiDiKeyboard, support bi-directional localization.

BiDiMode property
The property BiDiMode is a new enumerated type, TBiDiMode, with four states:
bdLeftToRight, bdRightToLeft, bdRightToLeftNoAlign, and bdRightToLeftReadingOnly.

bdLeftToRight
bdLeftToRight draws text using left to right reading order, and the alignment and
scroll bars are not changed. For instance, when entering right to left text, such as
Arabic or Hebrew, the cursor goes into push mode and the text is entered right to left.
Latin text, such as English or French, is entered left to right. bdLeftToRight is the
default value.

Figure 11.1 TListBox set to bdLeftToRight

bdRightToLeft
bdRightToLeft draws text using right to let reading order, the alignment is changed
and the scroll bar is moved. Text is entered as normal for right-to-left languages such
as Arabic or Hebrew. When the keyboard is changed to a Latin language, the cursor
goes into push mode and the text is entered left-to-right.

Figure 11.2 TListBox set to bdRightToLeft

Other classes TApplication (has no ParentBiDiMode)

 TForm

 THintWindow (has no ParentBiDiMode)

 TStatusPanel

 THeaderSection

Table 11.1 VCL objects that support BiDi (continued)

Component palette page VCL object

11-6 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

bdRightToLeftNoAlign
bdRightToLeftNoAlign draws text using right to left reading order, the alignment is
not changed, and the scroll bar is moved.

Figure 11.3 TListBox set to bdRightToLeftNoAlign

bdRightToLeftReadingOnly
bdRightToLeftReadingOnly draws text using right to left reading order, and the
alignment and scroll bars are not changed.

Figure 11.4 TListBox set to bdRightToLeftReadingOnly

ParentBiDiMode property
ParentBiDiMode is a Boolean property. When True (the default) the control looks to its
parent to determine what BiDiMode to use. If the control is a TForm object, the form
uses the BiDiMode setting from Application. If all the ParentBiDiMode properties are
True, when you change Application’s BiDiMode property, all forms and controls in the
project are updated with the new setting.

FlipChildren method
The FlipChildren method allows you to flip the position of a container control’s
children. Container controls are controls that can accept other controls, such as
TForm, TPanel, and TGroupbox. FlipChildren has a single boolean parameter, AllLevels.
When False, only the immediate children of the container control are flipped. When
True, all the levels of children in the container control are flipped.

C++Builder flips the controls by changing the Left property and the alignment of the
control. If a control’s left side is five pixels from the left edge of its parent control,
after it is flipped the edit control’s right side is five pixels from the right edge of the
parent control. If the edit control is left aligned, calling FlipChildren will make the
control right aligned.

To flip a control at design-time select Edit|Flip Children and select either All or
Selected, depending on whether you want to flip all the controls, or just the children
of the selected control. You can also flip a control by selecting the control on the form,
right-clicking, and selecting Flip Children from the context menu.

Note Selecting an edit control and issuing a Flip Children|Selected command does
nothing. This is because edit controls are not containers.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 11-7

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Additional methods
There are several other methods useful for developing applications for bi-directional
users.

Locale-specific features
You can add extra features to your application for specific locales. In particular, for
Asian language environments, you may want your application to control the input
method editor (IME) that is used to convert the keystrokes typed by the user into
character strings.

VCL components offer you support in programming the IME. Most windowed
controls that work directly with text input have an ImeName property that allows you
to specify a particular IME that should be used when the control has input focus.
They also provide an ImeMode property that specifies how the IME should convert
keyboard input. TWinControl introduces several protected methods that you can use
to control the IME from classes you define. In addition, the global Screen variable
provides information about the IMEs available on the user’s system.

The global Screen variable also provides information about the keyboard mapping
installed on the user’s system. You can use this to obtain locale-specific information
about the environment in which your application is running.

Method Description

OkToChangeFieldAlignment Used with database controls. Checks to see if the
alignment of a control can be changed.

DBUseRightToLeftAlignment A wrapper for database controls for checking
alignment.

ChangeBiDiModeAlignment Changes the alignment parameter passed to it. No check
is done for BiDiMode setting, it just converts left
alignment into right alignment and vice versa, leaving
center-aligned controls alone.

IsRightToLeft Returns true if any of the right to left options are
selected. If it returns false the control is in left to right
mode.

UseRightToLeftReading Returns true if the control is using right to left reading.

UseRightToLeftAlignment Returns true if the control is using right to left
alignment. It can be overriden for customization.

UseRightToLeftScrollBar Returns true if the control is using a left scroll bar.

DrawTextBiDiModeFlags Returns the correct draw text flags for the BiDiMode of
the control.

DrawTextBiDiModeFlagsReadingOnly Returns the correct draw text flags for the BiDiMode of
the control, limiting the flag to its reading order.

AddBiDiModeExStyle Adds the appropriate ExStyle flags to the control that is
being created.

11-8 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Designing the user interface

When creating an application for several foreign markets, it is important to design
your user interface so that it can accommodate the changes that occur during
translation.

Text
All text that appears in the user interface must be translated. English text is almost
always shorter than its translations. Design the elements of your user interface that
display text so that there is room for the text strings to grow. Create dialogs, menus,
status bars, and other user interface elements that display text so that they can easily
display longer strings. Avoid abbreviations—they do not exist in languages that use
ideographic characters.

Short strings tend to grow in translation more than long phrases. Table 11.2 provides
a rough estimate of how much expansion you should plan for given the length of
your English strings:

Graphic images
Ideally, you will want to use images that do not require translation. Most obviously,
this means that graphic images should not include text, which will always require
translation. If you must include text in your images, it is a good idea to use a label
object with a transparent background over an image rather than including the text as
part of the image.

There are other considerations when creating graphic images. Try to avoid images
that are specific to a particular culture. For example, mailboxes in different countries
look very different from each other. Religious symbols are not appropriate if your
application is intended for countries that have different dominant religions. Even
color can have different symbolic connotations in different cultures.

Formats and sort order
The date, time, number, and currency formats used in your application should be
localized for the target locale. If you use only the Windows formats, there is no need
to translate formats, as these are taken from the user’s Windows Registry. However,

Table 11.2 Estimating string lengths

Length of English string
(in characters) Expected increase

1-5 100%

6-12 80%

13-20 60%

21-30 40%

31-50 20%

over 50 10%

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 11-9

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

if you specify any of your own format strings, be sure to declare them as resourced
constants so that they can be localized.

The order in which strings are sorted also varies from country to country. Many
European languages include diacritical marks that are sorted differently, depending
on the locale. In addition, in some countries, 2-character combinations are treated as a
single character in the sort order. For example, in Spanish, the combination ch is
sorted like a single unique letter between c and d. Sometimes a single character is
sorted as if it were two separate characters, such as the German eszett.

Keyboard mappings
Be careful with key-combinations shortcut assignments. Not all the characters
available on the US keyboard are easily reproduced on all international keyboards.
Where possible, use number keys and function keys for shortcuts, as these are
available on virtually all keyboards.

Isolating resources

The most obvious task in localizing an application is translating the strings that
appear in the user interface. To create an application that can be translated without
altering code everywhere, the strings in the user interface should be isolated into a
single module. C++Builder automatically creates a .DFM file that contains the
resources for your menus, dialogs, and bitmaps.

In addition to these obvious user interface elements, you will need to isolate any
strings, such as error messages, that you present to the user. String resources are not
included in the .DFM file but you can isolate them into an .RC file.

Creating resource DLLs

Isolating resources simplifies the translation process. The next level of resource
separation is the creation of a resource DLL. A resource DLL contains all the
resources and only the resources for a program. Resource DLLs allow you to create a
program that supports many translations simply by swapping the resource DLL.

Use the Resource DLL wizard to create a resource DLL for your program. The
Resource DLL wizard requires an open, saved, compiled project. It will create an RC
file that contains the string tables from used RC files and resourcestring strings of the
project, and generate a project for a resource only DLL that contains the relevant
forms and the created RES file. The RES file is compiled from the new RC file.

You should create a resource DLL for each translation you want to support. Each
resource DLL should have a file name extension specific to the target locale. The first
two characters indicate the target language, and the third character indicates the

11-10 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

country of the locale. If you use the Resource DLL wizard, this is handled for you.
Otherwise, use the following code obtain the locale code for the target translation:

/* This callback fills a listbox with the strings and their associated languages and
countries*/
BOOL __stdcall EnumLocalesProc(char* lpLocaleString)
{
 AnsiString LocaleName, LanguageName, CountryName;
 LCID lcid;
 lcid = StrToInt("$" + AnsiString(lpLocaleString));
 LocaleName = GetLocaleStr(lcid, LOCALE_SABBREVLANGNAME, "");
 LanguageName = GetLocaleStr(lcid, LOCALE_SNATIVELANGNAME, "");
 CountryName = GetLocaleStr(lcid, LOCALE_SNATIVECTRYNAME, "");
 if (lstrlen(LocaleName.c_str()) > 0)
 Form1->ListBox1->Items->Add(LocaleName + ":" + LanguageName + "-" + CountryName);
 return TRUE;
}
/* This call causes the callback to execute for every locale */
 EnumSystemLocales((LOCALE_ENUMPROC)EnumLocalesProc, LCID_SUPPORTED);

Using resource DLLs

The executable, DLLs, and packages that make up your application contain all the
necessary resources. However, to replace those resources by localized versions, you
need only ship your application with localized resource DLLs that have the same
name as your EXE, DLL, or BPL files.

When your application starts up, it checks the locale of the local system. If it finds any
resource DLLs with the same name as the EXE, DLL, or BPL files it is using, it checks
the extension on those DLLs. If the extension of the resource module matches the
language and country of the system locale, your application will use the resources in
that resource module instead of the resources in the executable, DLL, or package. If
there is not a resource module that matches both the language and the country, your
application will try to locate a resource module that matches just the language. If
there is no resource module that matches the language, your application will use the
resources compiled with the executable, DLL, or package.

If you want your application to use a different resource module than the one that
matches the locale of the local system, you can set a locale override entry in the
Windows registry. Under the HKEY_CURRENT_USER\Software\Borland\Locales
key, add your application’s path and file name as a string value and set the data
value to the extension of your resource DLLs. At startup, the application will look for
resource DLLs with this extension before trying the system locale. Setting this
registry entry allows you to test localized versions of your application without
changing the locale on your system.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 11-11

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

For example, the following procedure can be used in an install or setup program to
set the registry key value that indicates the locale to use when loading C++Builder
applications:

void SetLocalOverrides(char* FileName, char* LocaleOverride)
{
 HKEY Key;
 const char* LocaleOverrideKey = "Software\\Borland\\Locales";
 if (RegOpenKeyEx(HKEY_CURRENT_USER, LocaleOverrideKey, 0, KEY_ALL_ACCESS, &Key)
 == ERROR_SUCCESS) {
 if (lstrlen(LocaleOverride) == 3)
 RegSetValueEx(Key, FileName, 0, REG_SZ, (const BYTE*)LocaleOverride, 4);
 RegCloseKey(Key);
 }
}

Within your application, use the global FindResourceHInstance function to obtain the
handle of the current resource module. For example:

LoadString(FindResourceHInstance(HInstance), IDS_AmountDueName, szQuery, sizeof(szQuery));

You can ship a single application that adapts itself automatically to the locale of the
system it is running on, simply by providing the appropriate resource DLLs.

Dynamic switching of resource DLLs

In addition to locating a resource DLL at application startup, it is possible to switch
resource DLLs dynamically at runtime. To add this functionality to your own
applications, you need to include the ReInit unit in your project. (ReInit is located in
the Richedit sample in the Demos directory.) To switch languages, you should call
LoadResourceModule, passing the LCID for the new language, and then call
ReinitializeForms.

For example, the following code switches the interface language to French:

const FRENCH = (SUBLANG_FRENCH << 10) | LANG_FRENCH;
if (LoadNewResourceModule(FRENCH))

ReinitializeForms();

The advantage of this technique is that the current instance of the application and all
of its forms are used. It is not necessary to update the registry settings and restart the
application or reacquire resources required by the application, such as logging in to
database servers.

When you switch resource DLLs the properties specified in the new DLL overwrite
the properties in the running instances of the forms.

Note Any changes made to the form properties at runtime will be lost. Once the new DLL
is loaded, default values are not reset. Avoid code that assumes that the form objects
are reinitialized to the their startup state, apart from differences due to localization.

11-12 D e v e l o p e r ’ s G u i d e

L o c a l i z i n g a p p l i c a t i o n s

Localizing applications
Once your application is internationalized, you can create localized versions for the
different foreign markets in which you want to distribute it.

Localizing resources

Ideally, your resources have been isolated into a resource DLL that contains DFM
files and a RES file. You can open your forms in the IDE and translate the relevant
properties.

Note In a resource DLL project, you cannot add or delete components. It is possible,
however, to change properties in ways that could cause runtime errors, so be careful
to modify only those properties that require translation. To avoid mistakes, you can
configure the Object Inspector to display only localizable properties; to do so,
right-click in the Object Inspector and use the View menu to filter out unwanted
property categories.

You can open the RC file and translate relevant strings. Use the StringTable editor by
opening the RC file from the Project Manager.

D e p l o y i n g a p p l i c a t i o n s 12-1

C h a p t e r

12
Chapter12Deploying applications

Once your C++Builder application is up and running, you can deploy it. That is, you
can make it available for others to run. A number of steps must be taken to deploy an
application to another computer so that the application is completely functional. The
steps required by a given application vary, depending on the type of application. The
following sections describe those steps for deploying applications:

• Deploying general applications
• Deploying database applications
• Deploying Web applications
• Programming for varying host environments
• Software license requirements

Deploying general applications
Beyond the executable file, an application may require a number of supporting files,
such as DLLs, package files, and helper applications. In addition, the Windows
registry may need to contain entries for an application, from specifying the location
of supporting files to simple program settings. The process of copying an
application’s files to a computer and making any needed registry settings can be
automated by an installation program, such as InstallShield Express. These are the
main deployment concerns common to nearly all types of applications:

• Using installation programs
• Identifying application files

C++Builder applications that access databases and those that run across the Web
require additional installation steps beyond those that apply to general applications.
For additional information on installing database applications, see “Deploying
database applications” on page 12-4. For more information on installing Web
applications, see “Deploying Web applications” on page 12-6. For more information
on installing ActiveX controls, see “Deploying an ActiveX control on the Web” on

12-2 D e v e l o p e r ’ s G u i d e

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

page 37-16. For information on deploying CORBA applications, see . the VisiBroker
Installation and Administration Guide

Using installation programs

Simple C++Builder applications that consist of only an executable file are easy to
install on a target computer. Just copy the executable file onto the computer.
However, more complex applications that comprise multiple files require more
extensive installation procedures. These applications require dedicated installation
programs.

Setup toolkits automate the process of creating installation programs, often without
needing to write any code. Installation programs created with Setup toolkits perform
various tasks inherent to installing C++Builder applications, including: copying the
executable and supporting files to the host computer, making Windows registry
entries, and installing the Borland Database Engine for database applications.

InstallShield Express is a setup toolkit that is bundled with C++Builder. InstallShield
Express is certified for use with C++Builder and the Borland Database Engine.
InstallShield Express is not automatically installed when C++Builder is installed, and
must be manually installed to be used to create installation programs. Run the
installation program from the C++Builder CD to install InstallShield Express. For
more information on using InstallShield Express to create installation programs, see
the InstallShield Express online help.

Other setup toolkits are available, however, you should only use those certified to
deploy the Borland Database Engine.

Identifying application files
Besides the executable file, a number of other files may need to be distributed with an
application.

• Application files
• Package files
• ActiveX controls

Application files
The following types of files may need to be distributed with an application.

Table 12.1 Application files

Type File name extension

Program files .EXE and .DLL

Package files .BPL and .BCP

Help files .HLP, .CNT, and .TOC (if used)

ActiveX files .OCX (sometimes supported by a DLL)

Local table files .DBF, .MDX, .DBT, .NDX, .DB, .PX, .Y*, .X*, .MB, .VAL, .QBE

D e p l o y i n g a p p l i c a t i o n s 12-3

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

Package files
If the application uses runtime packages, those package files need to be distributed
with the application. InstallShield Express handles the installation of package files
the same as DLLs, copying the files and making necessary entries in the Windows
registry. Borland recommends installing the runtime package files supplied by
Borland in the Windows\System directory. This serves as a common location so that
multiple applications would have access to a single instance of the files. For packages
you created, it is recommended that you install them in the same directory as the
application. Only the .BPL files need to be distributed.

If you are distributing packages to other developers, supply both the .BPL and the
.BCP files.

ActiveX controls
Certain components bundled with C++Builder are ActiveX controls. The component
wrapper is linked into the application’s executable file (or a runtime package), but
the .OCX file for the component also needs to be deployed with the application.
These components include

• Chart FX, copyright SoftwareFX Inc.
• VisualSpeller Control, copyright Visual Components, Inc.
• Formula One (spreadsheet), copyright Visual Components, Inc.
• First Impression (VtChart), copyright Visual Components, Inc.
• Graph Custom Control, copyright Bits Per Second Ltd.

ActiveX controls of your own creation need to be registered on the deployment
computer before use. Installation programs such as InstallShield Express automate
this registration process. To manually register an ActiveX control, use the TRegSvr
demo application or the Microsoft utility REGSRV32.EXE (not included with all
Windows versions).

DLLs that support an ActiveX control also need to be distributed with an application.

Helper applications
Helper applications are separate programs without which your C++Builder
application would be partially or completely unable to function. Helper applications
may be those supplied with Windows, by Borland, or they might be third-party
products. An example of a helper application is the InterBase utility program Server
Manager, which administers InterBase databases, users, and security.

If an application depends on a helper program, be sure to deploy it with your
application, where possible. Distribution of helper programs may be governed by
redistribution license agreements. Consult the documentation for the helper for
specific information.

DLL locations
You can install .DLL files used only by a single application in the same directory as
the application. DLLs that will be used by a number of applications should be
installed in a location accessible to all of those applications. A common convention
for locating such community DLLs is to place them either in the Windows or the

12-4 D e v e l o p e r ’ s G u i d e

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

Windows\System directory. A better way is to create a dedicated directory for the
common .DLL files, similar to the way the Borland Database Engine is installed.

Deploying database applications
Applications that access databases involve special installation considerations beyond
copying the application’s executable file onto the host computer. Database access is
most often handled by a separate database engine, the files of which cannot be linked
into the application’s executable file. The data files, when not created beforehand,
must be made available to the application. Multi-tier database applications require
even more specialized handling on installation, because the files that make up the
application are typically located on multiple computers. Two ways of including
database access are

• Providing the database engine
• Multi-tiered Distributed Application Services (MIDAS)

Providing the database engine

Database access for an application is provided by various database engines. An
application can use the Borland Database Engine or a third-party database engine.
SQL Links is provided (not available in all versions) to enable native access to SQL
database systems. The following sections describe installation of the database access
elements of an application:

• Borland Database Engine
• Third-party database engines
• SQL Links

Borland Database Engine
For standard C++Builder data components to have database access, the Borland
Database Engine (BDE) must be present and accessible. See BDEDEPLOY.TXT for
specific rights and limitations on redistributing the BDE.

Borland recommends use of InstallShield Express (or other certified installation
program) for installing the BDE. InstallShield Express will create the necessary
registry entries and define any aliases the application may require. Using a certified
installation program to deploy the BDE files and subsets is important because:

• Improper installation of the BDE or BDE subsets can cause other applications
using the BDE to fail. Such applications include not only Borland products, but
many third-party programs that use the BDE.

• Under Windows 95 and Windows NT, BDE configuration information is stored in
the Windows registry instead of .INI files, as was the case under 16-bit Windows.
Making the correct entries and deletions for install and uninstall is a complex task.

It is possible to install only as much of the BDE as an application actually needs. For
instance, if an application only uses Paradox tables, it is only necessary to install that

D e p l o y i n g a p p l i c a t i o n s 12-5

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

portion of the BDE required to access Paradox tables. This reduces the disk space
needed for an application. Certified installation programs, like InstallShield Express,
are capable of performing partial BDE installations. Be sure to leave BDE system files
that are not used by the deployed application, but that are needed by other
programs.

Third-party database engines
You can use third-party database engines to provide database access for C++Builder
applications. Consult the documentation or vendor for the database engine regarding
redistribution rights, installation, and configuration.

SQL Links
SQL Links provides the drivers that connect an application (through the Borland
Database Engine) with the client software for an SQL database. See DEPLOY.TXT for
specific rights and limitations on redistributing SQL Links. As is the case with the
Borland Database Engine (BDE), SQL Links must be deployed using InstallShield
Express (or other certified installation program).

Note SQL Links only connects the BDE to the client software, not to the SQL database
itself. It is still necessary to install the client software for the SQL database system
used. See the documentation for the SQL database system or consult the vendor that
supplies it for more information on installing and configuring client software.

Table 12.2 shows the names of the driver and configuration files SQL Links uses to
connect to the different SQL database systems. These files come with SQL Links and
are redistributable in accordance with the C++Builder license agreement.

Install SQL Links using InstallShield Express or other certified installation program.
For specific information concerning the installation and configuration of SQL Links,
see the help file SQLLNK32.HLP, by default installed into the main BDE directory.

Table 12.2 SQL database client software files

Vendor Redistributable files

Oracle 7 SQLORA32.DLL and SQL_ORA.CNF

Oracle8 SQLORA8.DLL and SQL_ORA8.CNF

Sybase Db-Lib SQLSYB32.DLL and SQL_SYB.CNF

Sybase Ct-Lib SQLSSC32.DLL and SQL_SSC.CNF

Microsoft SQL Server SQLMSS32.DLL and SQL_MSS.CNF

Informix 7 SQLINF32.DLL and SQL_INF.CNF

Informix 9 SQLINF9.DLL and SQL_INF9.CNF

DB/2 SQLDB232.DLL and SQL_DB2.CNF

InterBase SQLINT32.DLL and SQL_INT.CNF

12-6 D e v e l o p e r ’ s G u i d e

D e p l o y i n g W e b a p p l i c a t i o n s

Multi-tiered Distributed Application Services (MIDAS)

Multi-tiered Distributed Application Services (MIDAS) provides multi-tier database
capability to C++Builder applications.

Install MIDAS along with a multi-tier application using InstallShield Express (or
other Borland-certified installation scripting utility). See the text file DEPLOY.TXT
(found in the main C++Builder directory) for details on the MIDAS files that need to
be redistributed with an application. Also see REMOTE.TXT for related information
on what MIDAS files can be redistributed and how.

Deploying Web applications
Some C++Builder applications are designed to be run over the World Wide Web,
such as those in the form of Server-side Extension (ISAPI) DLLs, CGI applications,
and ActiveForms.

The steps for installing Web applications are the same as those for general
applications, except the application’s files are deployed on the Web server. For
information on installing general applications, see “Deploying general applications”
on page 12-1.

Here are some special considerations for deploying Web applications:

• For database applications, the Borland Database Engine (or alternate database
engine) is installed along with the application files on the Web server.

• Security for the directories must not be so high that access to application files, the
BDE, or database files is not possible.

• The directory containing an application must have read and execute attributes.

• The application should not use hard-coded paths for accessing database or other
files.

• The location of an ActiveX control is indicated by the CODEBASE parameter of
the <OBJECT> HTML tag.

Programming for varying host environments
Due to the nature of the Windows environment, there are a number of factors that
vary with user preference or configuration. The following factors can affect an
application deployed to another computer:

• Screen resolutions and color depths
• Fonts
• Windows versions
• Helper applications
• DLL locations

D e p l o y i n g a p p l i c a t i o n s 12-7

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

Screen resolutions and color depths

The size of the Windows desktop and number of available colors on a computer is
configurable and dependent on the hardware installed. These attributes are also
likely to differ on the deployment computer compared to those on the development
computer.

An application’s appearance (window, object, and font sizes) on computers
configured for different screen resolutions can be handled in various ways:

• Design the application for the lowest resolution users will have (typically,
640x480). Take no special actions to dynamically resize objects to make them
proportional to the host computer’s screen display. Visually, objects will appear
smaller the higher the resolution is set.

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize all forms and objects proportional to the difference between
the screen resolutions for the development and deployment computers (a screen
resolution difference ratio).

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize only the application’s forms. Depending on the location of
visual controls on the forms, this may require the forms be scrollable for the user
to be able to access all controls on the forms.

Considerations when not dynamically resizing
If the forms and visual controls that make up an application are not dynamically
resized at runtime, design the application’s elements for the lowest resolution.
Otherwise, the forms of an application run on a computer configured for a lower
screen resolution than the development computer may overlap the boundaries of the
screen.

For example, if the development computer is set up for a screen resolution of
1024x768 and a form is designed with a width of 700 pixels, not all of that form will
be visible within the Windows desktop on a computer configured for a 640x480
screen resolution.

Considerations when dynamically resizing forms and controls
If the forms and visual controls for an application are dynamically resized,
accommodate all aspects of the resizing process to ensure optimal appearance of the
application under all possible screen resolutions. Here are some factors to consider
when dynamically resizing the visual elements of an application:

• The resizing of forms and visual controls is done at a ratio calculated by
comparing the screen resolution of the development computer to that of the
computer onto which the application installed. Use a constant to represent one
dimension of the screen resolution on the development computer: either the
height or the width, in pixels. Retrieve the same dimension for the user’s computer
at runtime using the TScreen::Height or the TScreen::Width property. Divide the
value for the development computer by the value for the user’s computer to derive
the difference ratio between the two computers’ screen resolutions.

12-8 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

• Resize the visual elements of the application (forms and controls) by reducing or
increasing the size of the elements and their positions on forms. This resizing is
proportional to the difference between the screen resolutions on the development
and user computers. Resize and reposition visual controls on forms automatically
by setting the TCustomForm::Scaled property to true and calling the
TWincontrol::ScaleBy method. The ScaleBy method does not change the form’s
height and width, though. Do this manually by multiplying the current values for
the Height and Width properties by the screen resolution difference ratio.

• The controls on a form can be resized manually, instead of automatically with the
TWincontrol::ScaleBy method, by referencing each visual control in a loop and
setting its dimensions and position. The Height and Width property values for
visual controls are multiplied by the screen resolution difference ratio. Reposition
visual controls proportional to screen resolution differences by multiplying the
Top and Left property values by the same ratio.

• If an application is designed on a computer configured for a higher screen
resolution than that on the user’s computer, font sizes will be reduced in the
process of proportionally resizing visual controls. If the size of the font at design
time is too small, the font as resized at runtime may be unreadable. For example,
the default font size for a form is 8. If the development computer has a screen
resolution of 1024x768 and the user’s computer 640x480, visual control dimensions
will be reduced by a factor of 0.625 (640 / 1024 = 0.625). The original font size of 8
is reduced to 5 (8 * 0.625 = 5). Text in the application appears jagged and
unreadable as Windows displays it in the reduced font size.

• Some visual controls, such as TLabel and TEdit, dynamically resize when the size
of the font for the control changes. This can affect deployed applications when
forms and controls are dynamically resized. The resizing of the control due to font
size changes are in addition to size changes due to proportional resizing for screen
resolutions. This effect is offset by setting the AutoSize property of these controls to
false.

• Avoid making use of explicit pixel coordinates, such as when drawing directly to a
canvas. Instead, modify the coordinates by a ratio proportionate to the screen
resolution difference ratio between the development and user computers. For
example, if the application draws a rectangle to a canvas ten pixels high by twenty
wide, instead multiply the ten and twenty by the screen resolution difference ratio.
This ensures that the rectangle visually appears the same size under different
screen resolutions.

Accommodating varying color depths
To account for all deployment computers not being configured with the same color
availability, the safest way is to use graphics with the least possible number of colors.
This is especially true for control glyphs, which should typically use 16-color
graphics. For displaying pictures, either provide multiple copies of the images in
different resolutions and color depths or explain in the application the minimum
resolution and color requirements for the application.

D e p l o y i n g a p p l i c a t i o n s 12-9

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

Fonts

Windows comes with a standard set of TrueType and raster fonts. When designing
an application to be deployed on other computers, realize that not all computers will
have fonts outside the standard Windows set.

Text components used in the application should all use fonts that are likely to be
available on all deployment computers.

When use of a nonstandard font is absolutely necessary in an application, you need
to distribute that font with the application. Either the installation program or the
application itself must install the font on the deployment computer. Distribution of
third-party fonts may be subject to limitations imposed by the font creator.

Windows has a safety measure to account for attempts to use a font that does not
exist on the computer. It substitutes another, existing font that it considers the closest
match. While this may circumvent errors concerning missing fonts, the end result
may be a degradation of the visual appearance of the application. It is better to
prepare for this eventuality at design time.

To make a nonstandard font available to an application, use the Windows API
functions AddFontResource and DeleteFontResource. Deploy the .FOT file for the
nonstandard font with the application.

Windows versions

When using Windows API functions or accessing areas of the Windows operating
system from an application, there is the possibility that the function, operation, or
area may not be available on computers with different versions of Windows. For
example, Services are only pertinent to the Windows NT operating system. If an
application is to act as a Service or interact with one, this would fail if the application
is installed under Windows 95.

To account for this possibility, you have a few options:

• Specify in the application’s system requirements the versions of Windows on
which the application can run. It is the user’s responsibility to install and use the
application only under compatible Windows versions.

• Check the version of Windows as the application is installed. If an incompatible
version of Windows is present, either halt the installation process or at least warn
the installer of the problem.

• Check the Windows version at runtime, just prior to executing an operation not
applicable to all versions. If an incompatible version of Windows is present, abort
the process and alert the user. Alternately, provide different code to run
dependent on different versions of Windows. Some operations are performed
differently in Windows 95 than in Windows NT. Use the Windows API function
GetVersionEx to determine the Windows version.

12-10 D e v e l o p e r ’ s G u i d e

S o f t w a r e l i c e n s e r e q u i r e m e n t s

Software license requirements
The distribution of some files associated with C++Builder applications is subject to
limitations or cannot be redistributed at all. The following documents describe the
legal stipulations regarding the distribution of these files:

• DEPLOY.TXT
• README.TXT
• No-nonsense license agreement
• Third-party product documentation

DEPLOY.TXT

DEPLOY.TXT covers the some of the legal aspects of distributing of various
components and utilities, and other product areas that can be part of or associated
with a C++Builder application. DEPLOY.TXT is a text file installed in the main
C++Builder directory. The topics covered include

• .EXE, .DLL, and .BPL files
• Components and design-time packages
• Borland Database Engine (BDE)
• ActiveX controls
• Sample Images
• Multi-tiered Distributed Application Services (MIDAS)
• SQL Links

README.TXT

README.TXT contains last minute information about C++Builder, possibly
including information that could affect the redistribution rights for components, or
utilities, or other product areas. README.TXT is a Windows help file installed into
the main C++Builder directory.

No-nonsense license agreement

The C++Builder no-nonsense license agreement, a printed document, covers other
legal rights and obligations concerning C++Builder.

Third-party product documentation

Redistribution rights for third-party components, utilities, helper applications,
database engines, and other products are governed by the vendor supplying the
product. Consult the documentation for the product or the vendor for information
regarding the redistribution of the product with C++Builder applications prior to
distribution.

D e v e l o p i n g d a t a b a s e a p p l i c a t i o n s

P a r t

II
Part IIDeveloping database applications

The chapters in “Developing Database Applications” present concepts and skills
necessary for creating C++Builder database applications.

Note The level of support for building database applications varies depending on your
version of C++Builder. In particular, you must have the Enterprise edition to develop
multi-tier database applications or to use client datasets.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 13-1

C h a p t e r

13
Chapter13Designing database applications

Database applications allow users to interact with information that is stored in
databases. Databases provide structure for the information, and allow it to be shared
among different applications.

C++Builder provides support for relational database applications. Relational databases
organize information into tables, which contain rows (records) and columns (fields).
These tables can be manipulated by simple operations known as the relational calculus.

When designing a database application, you must understand how the data is
structured. Based on that structure, you can then design a user interface to display
data to the user and allow the user to enter new information or modify existing data.

This chapter introduces some common considerations for designing a database
application and the decisions involved in designing a user interface.

Using databases
The components on the Data Access page, the ADO page, or the InterBase page of the
Component palette allow your application to read from and write to databases. The
components on the Data Access page use the Borland Database Engine (BDE) to access
database information which they make available to the data-aware controls in your
user interface. The ADOExpress components on the ADO page use ActiveX Data
Objects (ADO) to access the database information through OLEDB. The InterBase
Express components on the InterBase page access an InterBase database directly.

Depending on your version of C++Builder, the BDE includes drivers for different
types of databases. While all types of databases contain tables which store
information, different types support additional features such as

• Database security
• Transactions
• Data dictionary
• Referential integrity, stored procedures, and triggers

13-2 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e s

Types of databases

You can connect to different types of databases, depending on what drivers you have
installed with the BDE or ADO.

These drivers may connect your application to local databases such as Paradox,
Access, and dBASE or remote database servers like Microsoft SQL Server, Oracle,
and Informix. Similarly, the InterBase Express components can access either a local or
remote version of InterBase.

Note Different versions of C++Builder come with the components that use these drivers
(BDE or ADO), or with the InterBase Express components.

Choosing what type of database to use depends on several factors. Your data may
already be stored in an existing database. If you are creating the tables of information
your application uses, you may want to consider the following questions.

• How much data will the tables hold?
• How many users will be sharing these tables?
• What type of performance (speed) do you require from the database?

Local databases
Local databases reside on your local drive or on a local area network. They have
proprietary APIs for accessing the data. Often, they are dedicated to a single system.
When they are shared by several users, they use file-based locking mechanisms.
Because of this, they are sometimes called file-based databases.

Local databases can be faster than remote database servers because they often reside
on the same system as the database application.

Because they are file-based, local databases are more limited than remote database
servers in the amount of data they can store. Therefore, in deciding whether to use a
local database, you must consider how much data the tables are expected to hold.

Applications that use local databases are called single-tiered applications because the
application and the database share a single file system.

Examples of local databases include Paradox, dBASE, FoxPro, and Access.

Remote database servers
Remote database servers usually reside on a remote machine. They use Structured
Query Language (SQL) to enable clients to access the data. Because of this, they are
sometimes called SQL servers. (Another name is Remote Database Management
system, or RDBMS.) In addition to the common commands that make up SQL, most
remote database servers support a unique “dialect” of SQL.

Remote database servers are designed for access by several users at the same time.
Instead of a file-based locking system such as those employed by local databases,
they provide more sophisticated multi-user support, based on transactions.

Remote database servers hold more data than local databases. Sometimes, the data
from a remote database server does not even reside on a single machine, but is
distributed over several servers.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 13-3

U s i n g d a t a b a s e s

Applications that use remote database servers are called two-tiered applications or
multi-tiered applications because the application and the database operate on
independent systems (or tiers).

Examples of SQL servers include InterBase, Oracle, Sybase, Informix, Microsoft SQL
server, and DB2.

Database security

Databases often contain sensitive information. Different databases provide security
schemes for protecting that information. Some databases, such as Paradox and
dBASE, only provide security at the table or field level. When users try to access
protected tables, they are required to provide a password. Once users have been
authenticated, they can see only those fields (columns) for which they have
permission.

Most SQL servers require a password and user name to use the database server at all.
Once the user has logged in to the database, that username and password determine
which tables can be used. For information on providing passwords to SQL servers
when using the BDE, see “Controlling server login” on page 18-6. For information on
providing this information when using ADO, see “Controlling the connection login”
on page 24-7. For information on providing this information when using the
InterBase direct access components, see the OnLogin event of TIBDatabase.

When designing database applications, you must consider what type of
authentication is required by your database server. If you do not want your users to
have to provide a password, you must either use a database that does not require one
or you must provide the password and username to the server programmatically.
When providing the password programmatically, care must be taken that security
can’t be breached by reading the password from the application.

If you are requiring your user to supply a password, you must consider when the
password is required. If you are using a local database but intend to scale up to a
larger SQL server later, you may want to prompt for the password before you access
the table, even though it is not required until then.

If your application requires multiple passwords because you must log in to several
protected systems or databases, you can have your users provide a single master
password which is used to access a table of passwords required by the protected
systems. The application then supplies passwords programmatically, without
requiring the user to provide multiple passwords.

In multi-tiered applications, you may want to use a different security model
altogether. You can use HTTPs or MTS to control access to middle tiers, and let the
middle tiers handle all details of logging into database servers.

Transactions

A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If any of the
actions in the group fails, then all actions are rolled back (undone).

13-4 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e s

Transactions protect against hardware failures that occur in the middle of a database
command or set of commands. They also form the basis of multi-user concurrency
control on SQL servers. When each user interacts with the database only through
transactions, one user’s commands can’t disrupt the unity of another user’s
transaction. Instead, the SQL server schedules incoming transactions, which either
succeed as a whole or fail as a whole.

Although transaction support is not part of most local databases, the BDE drivers
provide limited transaction support for some of these databases. For SQL servers and
ODBC-compliant databases, the database transaction support is provided by the
component that represents the database connection. In multi-tiered applications, you
can create transactions that include actions other than database operations or that
span multiple databases.

For details on using transactions in BDE-based database applications, see “Using
transactions” on page 14-5. For details on using transactions in ADO-based database
applications, see “Working with (connection) transactions” on page 24-10. For details
on using transactions in multi-tiered applications, see “Managing transactions in
multi-tiered applications” on page 15-21. For details on using transactions in
applications that use the InterBase direct access components, see the online help for
the TIBTransaction component.

Data Dictionary

When you use the BDE to access your data, your application has access to the Data
Dictionary. The Data Dictionary provides a customizable storage area, independent
of your applications, where you can create extended field attribute sets that describe
the content and appearance of data.

For example, if you frequently develop financial applications, you may create a
number of specialized field attribute sets describing different display formats for
currency. When you create datasets for your application at design time, rather than
using the Object Inspector to set the currency fields in each dataset by hand, you can
associate those fields with an extended field attribute set in the data dictionary. Using
the data dictionary ensures a consistent data appearance within and across the
applications you create.

In a client/server environment, the Data Dictionary can reside on a remote server for
additional sharing of information.

To learn how to create extended field attribute sets from the Fields editor at design
time, and how to associate them with fields throughout the datasets in your
application, see “Creating attribute sets for field components” on page 20-14. To
learn more about creating a data dictionary and extended field attributes with the
SQL and Database Explorers, see their respective online help files.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 13-5

U s i n g d a t a b a s e s

A programming interface to the Data Dictionary is available in the drintf header file
(located in the include\VCL directory). This interface supplies the following
methods:

Referential integrity, stored procedures, and triggers

All relational databases have certain features in common that allow applications to
store and manipulate data. In addition, databases often provide other,
database-specific, features that can prove useful for ensuring consistent relationships
between the tables in a database. These include

• Referential integrity. Referential integrity provides a mechanism to prevent
master/detail relationships between tables from being broken. When the user
attempts to delete a field in a master table which would result in orphaned detail
records, referential integrity rules prevent the deletion or automatically delete the
orphaned detail records.

Table 13.1 Data Dictionary interface

Routine Use

DictionaryActive Indicates if the data dictionary is active.

DictionaryDeactivate Deactivates the data dictionary.

IsNullID Indicates whether a given ID is a null ID

FindDatabaseID Returns the ID for a database given its alias.

FindTableID Returns the ID for a table in a specified database.

FindFieldID Returns the ID for a field in a specified table.

FindAttrID Returns the ID for a named attribute set.

GetAttrName Returns the name an attribute set given its ID.

GetAttrNames Executes a callback for each attribute set in the dictionary.

GetAttrID Returns the ID of the attribute set for a specified field.

NewAttr Creates a new attribute set from a field component.

UpdateAttr Updates an attribute set to match the properties of a field.

CreateField Creates a field component based on stored attributes.

UpdateField Changes the properties of a field to match a specified attribute set.

AssociateAttr Associates an attribute set with a given field ID.

UnassociateAttr Removes an attribute set association for a field ID.

GetControlClass Returns the control class for a specified attribute ID.

QualifyTableName Returns a fully qualified table name (qualified by user name).

QualifyTableNameByName Returns a fully qualified table name (qualified by user name).

HasConstraints Indicates whether the dataset has constraints in the dictionary.

UpdateConstraints Updates the imported constraints of a dataset.

UpdateDataset Updates a dataset to the current settings and constraints in the
dictionary.

13-6 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

• Stored procedures. Stored procedures are sets of SQL statements that are named
and stored on an SQL server. Stored procedures usually perform common
database-related tasks on the server, and return sets of records (datasets).

• Triggers. Triggers are sets of SQL statements that are automatically executed in
response to a particular command.

Database architecture
Database applications are built from user interface elements, components that
manage the database or databases, and components that represent the data contained
by the tables in those databases (datasets). How you organize these pieces is the
architecture of your database application.

By isolating database access components in data modules, you can develop forms in
your database applications that provide a consistent user interface. By storing links to
well-designed forms and data modules in the Object Repository, you and other
developers can build on existing foundations rather than starting over from scratch
for each new project. Sharing forms and modules also makes it possible for you to
develop corporate standards for database access and application interfaces.

Many aspects of the architecture of your database application depend on the type of
database you are using, the number of users who will be sharing the database
information, and the type of information you are working with. See “Types of
databases” on page 13-2 for more information about different types of databases.

When writing applications that use information that is not shared among several
users, you may want to use a local database in a single-tiered application. This
approach can have the advantage of speed (because data is stored locally), and does
not require the purchase of a separate database server and expensive site licences.
However, it is limited in how much data the tables can hold and the number of users
your application can support.

Writing a two-tiered application provides more multi-user support and lets you use
large remote databases that can store far more information.

Note Support for two-tiered applications requires SQL Links, InterBase, or ADO.

When the database information includes complicated relationships between several
tables, or when the number of clients grows, you may want to use a multi-tiered
application. Multi-tiered applications include middle tiers that centralize the logic
which governs your database interactions so that there is centralized control over
data relationships. This allows different client applications to use the same data while
ensuring that the data logic is consistent. They also allow for smaller client
applications because much of the processing is off-loaded onto middle tiers. These
smaller client applications are easier to install, configure, and maintain because they
do not include the database connectivity software. Multi-tiered applications can also
improve performance by spreading the data-processing tasks over several systems.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 13-7

D a t a b a s e a r c h i t e c t u r e

Planning for scalability

The development process can get more involved and expensive as the number of
tiers increases. Because of this, you may want to start developing your application as
a single-tiered application. As the amount of data, the number of users, and the
number of different applications accessing the data grows, you may later need to
scale up to a multi-tiered architecture. By planning for scalability, you can protect
your development investment when writing a single- or two-tiered application so
that the code can be reused as your application grows.

The VCL data-aware components make it easy to write scalable applications by
abstracting the behavior of the database and the data stored by the database.
Whether you are writing a single-tiered, two-tiered, or multi-tiered application, you
can isolate your user interface from the data access layer as illustrated in Figure 13.1.

Figure 13.1 User-interface to dataset connections in all database applications

A form represents the user interface, and contains data controls and other user
interface elements. The data controls in the user interface connect to datasets which
represent information from the tables in the database. A data source links the data
controls to these datasets. By isolating the data source and datasets in a data module,
the form can remain unchanged as you scale your application up. Only the datasets
must change.

Note Some user interface elements require special attention when planning for scalability.
For example, different databases enforce security in different ways. See “Database
security” on page 13-3 for more information on handling user authentication in a
uniform manner as you change databases.

When using C++Builder’s data access components (whether they use the BDE,
ADOExpress, or InterBase Express) it is easy to scale from one-tiered to two-tiered.
Only a few properties on the dataset must change to direct the dataset to connect to
an SQL server rather than a local database.

A flat-file database application is easily scaled to the client in a multi-tiered
application because both architectures use the same client dataset component. In fact,

user
interface
elements

dataset
componentdata source

Data ModuleForm

Client Application

database

13-8 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

you can write an application that acts as both a flat-file application and a multi-tiered
client (see “Using the briefcase model” on page 14-16).

If you plan to scale your application up to a three-tiered architecture eventually, you
can write your one- or two-tiered application with that goal in mind. In addition to
isolating the user interface, isolate all logic that will eventually reside on the middle
tier so that it is easy to replace at a later time. You can even connect your user
interface elements to client datasets (used in multi-tiered applications), and connect
them to local versions of the InterBase, BDE- or ADO- enabled datasets in a separate
data module that will eventually move to the middle tier. If you do not want to
introduce this artifice of an extra dataset layer in your one- and two-tiered
applications, it is still easy to scale up to a three-tiered application at a later date. See
“Scaling up to a three-tiered application” on page 14-17 for more information.

Single-tiered database applications

In single-tiered database applications, the application and the database share a single
file system. They use local databases or files that store database information in a
flat-file format.

A single application comprises the user interface and incorporates the data access
mechanism (either the BDE or a system for loading and saving flat-file database
information). The type of dataset component used to represent database tables
depends on whether the data is stored in a local database (such as Paradox, dBASE,
Access, or FoxPro) or in a flat file. Figure 13.2 illustrates these two possibilities:

Figure 13.2 Single-tiered database application architectures

For more information on building single-tiered database applications, see
Chapter 14, “Building one- and two-tiered applications.”

user
interface
elements

data source
Borland

Database
Engine

BDE-enabled
dataset

component

Form

local
database

Data Module

user
interface
elements

data source
Client

dataset flat-file
data

Form Data Module

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 13-9

D a t a b a s e a r c h i t e c t u r e

Two-tiered database applications

In two-tiered database applications, a client application provides a user interface to
data, and interacts directly with a remote database server. Figure 13.3 illustrates this
relationship.

Figure 13.3 Two-tiered database application architectures

In this model, all applications are database clients. A client requests information from
and sends information to a database server. A server can process requests from many
clients simultaneously, coordinating access to and updating of data.

For more information on building two-tiered database applications, see “BDE-based
applications” on page 14-2 and “ADO-based applications” on page 14-10.

Multi-tiered database applications

In multi-tiered database applications, an application is partitioned into pieces that
reside on different machines. A client application provides a user interface to data. It
passes all data requests and updates through an application server (also called a
“remote data broker”). The application server, in turn, communicates directly with a
remote database server or some other custom dataset. Usually, in this model, the
client application, the application server, and the remote database server are on
separate machines. Figure 13.4 illustrates these relationships for different types of
multi-tiered applications.

user
interface
elements

data source

Data ModuleForm

Client Application

ADO-enabled
dataset

component

remote
databaseOLE DB

user
interface
elements

data source

Data ModuleForm

Client Application

BDE-enabled
dataset

component

remote
database

Borland
Database
Engine

13-10 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

Figure 13.4 Multi-tiered database architectures

You can use C++Builder to create both client applications and application servers.
The client application uses standard data-aware controls connected through a data
source to one or more client dataset components in order to display data for viewing
and editing. Each client dataset communicates with an application server through an
IAppServer interface that is implemented by the application server. The client
application can use a variety of protocols (TCP/IP, HTTP, DCOM, or MTS) to
establish this communication. The protocol depends on the type of connection
component used in the client application and the type of remote data module used in
the server application.

The application server contains provider components that mediate the
communication between client datasets on the client application and the datasets on
the application server. All data is passed between the client application and the
provider components through the IAppServer interface.

Remote data module

user
interface
elements Client

dataset

data source

Data ModuleForm

connection
component

Client Application

provider

BDE-enabled
dataset

component

Application Server

remote
database

Borland
Database
Engine

Remote data module

Application Server

provider

custom
dataset

user
interface
elements Client

dataset

data source

Data ModuleForm

connection
component

Client Application

Remote data module

Application Server

OLE DB

user
interface
elements Client

dataset

data source

Data ModuleForm

connection
component

Client Application

provider

ADO-enabled
dataset

component

remote
database

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 13-11

D e s i g n i n g t h e u s e r i n t e r f a c e

Usually, several client applications communicate with a single application server in
the multi-tiered model. The application server provides a gateway to your databases
for all your client applications, and it lets you provide enterprise-wide database tasks
in a central location, accessible to all your clients. For more information about
creating and using a multi-tiered database application, see Chapter 15, “Creating
multi-tiered applications.”

Designing the user interface
The Data Controls page of the Component palette provides a set of data-aware
controls that represent data from fields in a database record, and can permit users to
edit that data and post changes back to the database. Using data-aware controls, you
can build your database application’s user interface (UI) so that information is visible
and accessible to users. For more information on data-aware controls see Chapter 27,
“Using data controls.”

Data-aware controls get data from and send data to a data source component
(TDataSource. A data source component acts as a conduit between the user interface
and a dataset component which represents a set of information from the tables in a
database. Several data-aware controls on a form can share a single data source, in
which case the display in each control is synchronized so that as the user scrolls
through records, the corresponding value in the fields for the current record is
displayed in each control. An application’s data source components usually reside in
a data module, separate from the data-aware controls on forms.

The data-aware controls you add to your user interface depend on what type of data
you are displaying (plain text, formatted text, graphics, multimedia elements, and so
on). In addition, your choice of controls is determined by how you want to organize
the information and how (or if) you want to let users navigate through the records of
datasets and add or edit data.

The following sections introduce the components you can use for various types of
user interface.

Displaying a single record

In many applications, you may only want to provide information about a single
record of data at a time. For example, an order-entry application may display the
information about a single order without indicating what other orders are currently
logged. This information probably comes from a single record in an orders dataset.

Applications that display a single record are usually easy to read and understand,
because all database information is about the same thing (in the previous case, the
same order). The data-aware controls in these user interfaces represent a single field
from a database record. The Data Controls page of the Component palette provides a
wide selection of controls to represent different kinds of fields. For more information
about specific data-aware controls, see “Controls that represent a single field” on
page 27-8.

13-12 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t h e u s e r i n t e r f a c e

Displaying multiple records

Sometimes you want to display many records in the same form. For example, an
invoicing application might show all the orders made by a single customer on the
same form.

To display multiple records, use a grid control. Grid controls provide a multi-field,
multi-record view of data that can make your application’s user interface more
compelling and effective. They are discussed in “Viewing and editing data with
TDBGrid” on page 27-16 and “Creating a grid that contains other data-aware
controls” on page 27-28.

You may want to design a user interface that displays both fields from a single record
and grids that represent multiple records. There are two models that combine these
two approaches:

• Master-detail forms: You can represent information from both a master table and
a detail table by including both controls that display a single field and grid
controls. For example, you could display information about a single customer with
a detail grid that displays the orders for that customer. For information about
linking the underlying tables in a master-detail form, see “Creating master/detail
forms” on page 21-25 or “Working with nested tables” on page 21-26.

• Drill-down forms: In a form that displays multiple records, you can include single
field controls that display detailed information from the current record only. This
approach is particularly useful when the records include long memos or graphic
information. As the user scrolls through the records of the grid, the memo or
graphic updates to represent the value of the current record. Setting this up is very
easy. The synchronization between the two displays is automatic if the grid and
the memo or image control share a common data source.

Tip It is generally not a good idea to combine these two approaches on a single form.
While the result can sometimes be effective, it can be confusing for users to
understand the data relationships.

Analyzing data

Some database applications do not present database information directly to the user.
Instead, they analyze and summarize information from databases so that users can
draw conclusions from the data.

The TDBChart component on the Data Controls page of the Component palette lets
you present database information in a graphical format that enables users to quickly
grasp the import of database information.

In addition, some versions of C++Builder include a Decision Cube page on the
Component palette. It contains six components that let you perform data analysis
and cross-tabulations on data when building decision support applications. For more
information about using the Decision Cube components, see Chapter 28, “Using
decision support components.”

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 13-13

D e s i g n i n g t h e u s e r i n t e r f a c e

If you want to build your own components that display data summaries based on
various grouping criteria, you can use maintained aggregates with a client dataset.
For more information about using maintained aggregates, see “Using maintained
aggregates” on page 25-9.

Selecting what data to show

Often, the data you want to surface in your database application does not correspond
exactly to the data in a single database table. You may want to use only a subset of
the fields or a subset of the records in a table. You may want to combine the
information from more than one table into a single joined view.

The data available to your database application is controlled by your choice of
dataset component. Datasets abstract the properties and methods of a database table,
so that you do not need to make major alterations depending on whether the data is
stored in a database table or derived from one or more tables in the database. For
more information on the common properties and methods of datasets, see
Chapter 19, “Understanding datasets.”

Your application can contain more than one dataset. Each dataset represents a logical
table. By using datasets, your application logic is buffered from restructuring of the
physical tables in your databases. You might need to alter the type of dataset
component, or the way it specifies the data it contains, but the rest of your user
interface can continue to work without alteration.

When using the BDE to access your data, you can use any of the following types of
dataset:

• Table components (TTable): Tables correspond directly to the underlying tables
in the database. You can adjust which fields appear (including adding lookup
fields and calculated fields) by using persistent field components. You can limit
the records that appear using ranges or filters. Tables are described in more detail
in Chapter 21, “Working with tables.” Persistent fields are described in “Persistent
field components” on page 20-4. Ranges and filters are described in “Working
with a subset of data” on page 21-11.

• Query components (TQuery): Queries provide the most general mechanism for
specifying what appears in a BDE-based dataset. You can combine the data from
multiple tables using joins, and limit the fields and records that appear based on
any criteria you can express in SQL. For more information on queries, see
Chapter 22, “Working with queries.”

• Stored procedures (TStoredProc): Stored procedures are sets of SQL statements
that are named and stored on an SQL server. If your database server defines a
stored procedure that returns the dataset you want, you can use a stored
procedure component. For more information on stored procedures, see
Chapter 23, “Working with stored procedures.”

• Nested datasets (TNestedTable): Nested datasets represent the records in an
Oracle8 nested detail set. C++Builder does not let you create Oracle8 tables with
nested dataset fields, but you can edit and display data from existing dataset fields
using nested datasets. The nested dataset gets its data from a dataset field

13-14 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t h e u s e r i n t e r f a c e

component in a dataset which contains Oracle8 data. See “Working with nested
tables” on page 21-26 and “Working with dataset fields” on page 20-26 for more
information on using nested datasets to represent dataset fields.

When using ADO to access your data, you can use any of the following types of
dataset:

• ADO datasets (TADODataset): ADO datasets provide the most flexible
mechanism for accessing data using ADO.ADO datasets can represent a single
database table or the results of an SQL query. You can adjust which fields appear
(including adding lookup fields and calculated fields) by using persistent field
components. You can limit the records that appear using ranges or filters. You can
specify an SQL statement that generates the data. ADO datasets are described in
more detail in “Features common to all ADO dataset components” on page 24-11
and “Using TADODataSet” on page 24-18.

• ADO table components (TADOTable): ADO tables correspond directly to the
underlying tables in the database. You can adjust which fields appear (including
adding lookup fields and calculated fields) by using persistent field components.
You can limit the records that appear using ranges or filters. ADO tables are
described in more detail in “Using TADOTable” on page 24-19.

• ADO query components (TADOQuery): ADO Queries represent the result set
from running an SQL command or data definition language (DDL) statement. For
more information on ADO queries, see “Using TADOQuery” on page 24-20.

• ADO stored procedures (TADOStoredProc): If your database server defines a
stored procedure that returns the dataset you want, you can use an ADO stored
procedure component. For more information on ADO stored procedures, see
“Using TADOStoredProc” on page 24-21.

If you are using InterBase for your database server, you can use any of the following
types of dataset:

• IB datasets (TIBDataSet): IB datasets represents the result set of an SQL statement
(usually a SELECT statement). You can specify SQL statements for selecting and
updating the data buffered by the dataset.

• IB table components (TIBTable): IB tables get their data directly from an
InterBase table or view. You can adjust which fields appear (including adding
lookup fields and calculated fields) by using persistent field components. You can
limit the records that appear using filters.

• IB query components (TIBQuery): IB queries represent the result set from
running an SQL command. IB queries are the most easily scaled dataset
component when moving from local InterBase to a remote InterBase server.

• IB stored procedures (TIBStoredProc): IBStoredProc executes an InterBase
Execute stored procedure. These datasets do not return a result set: for stored
procedures that return a result set you must use TIBDataSet or TIBQuery.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 13-15

D e s i g n i n g t h e u s e r i n t e r f a c e

If you are not using the BDE, ADO, or InterBase, C++Builder provides the following
options:

• Client datasets (TClientDataSet): Client datasets cache the records of the logical
dataset in memory. Because of that, they can only hold a limited number of
records. Client datasets are populated with data in one of two ways: from an
application server or from flat-file data stored on disk. They do not require a
database engine such as BDE or ADO, but rely on a single DLL (Midas.dll). For
more information about client datasets, see Chapter 25, “Creating and using a
client dataset.”

• Custom datasets: You can create your own custom descendants of TDataSet to
represent a body of data that you create or access in code you write. Writing
custom datasets allows you the flexibility of managing the data using any method
you choose, while still letting you use the VCL data controls to build your user
interface. For more information about creating custom components, see
Chapter 39, “Overview of component creation.”

Writing reports

If you want to let your users print database information from the datasets in your
application, you can use the report components on the QReport page of the
Component palette. Using these components you can visually build banded reports
to present and summarize the information in your database tables. You can add
summaries to group headers or footers to analyze the data based on grouping
criteria.

Start a report for your application by selecting the QuickReport icon from the New
Items dialog. Select File|New from the main menu, and go to the page labeled
Business. Double-click the QuickReport Wizard icon to launch the wizard.

Note See the QuickReport demo that ships with C++Builder for an example of how to use
the components on the QReport page.

13-16 D e v e l o p e r ’ s G u i d e

B u i l d i n g o n e - a n d t w o - t i e r e d a p p l i c a t i o n s 14-1

C h a p t e r

14
Chapter14Building one- and two-tiered

applications
One- and two-tiered applications include the logic that manipulates database
information in the same application that implements the user interface. Because the
data manipulation logic is not isolated in a separate tier, these types of applications
are most appropriate when there are no other applications sharing the same database
information. Even when other applications share the database information, these
types of applications are appropriate if the database is very simple, and there are no
data semantics that must duplicated by all applications that use the data.

You may want to start by writing a one- or two-tiered application, even when you
intend to eventually scale up to a multi-tiered model as your needs increase. This
approach lets you avoid having to develop data manipulation logic up front so that
the application server can be available while you are writing the user interface. It also
allows you to develop a simpler, cheaper prototype before investing in a large,
multi-system development project. If you intend to eventually scale up to a
multi-tiered application, you can isolate the data manipulation logic so that it is easy
to move it to a middle tier at a later date.

C++Builder provides support for two types of single-tiered applications: applications
that use a local database (such as Paradox, dBase, Access, or Local InterBase) and flat-file
database applications. Two-tiered applications use a driver to access a remote database.

The considerations when writing single-tired applications that use a local database
and two-tiered applications are essentially the same, and depend primarily on the
mechanism you choose to connect to the database. C++Builder provides three
different built-in mechanisms for these types of applications:

• BDE-based applications
• ADO-based applications
• InterBase Express applications

Flat file database applications are based on the support for client datasets included in
MIDAS.DLL.

14-2 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a p p l i c a t i o n s

BDE-based applications
Because the data access components (and Borland Database Engine) handle the details
of reading data, updating data, and navigating data, writing BDE-based two-tiered
applications is essentially the same as writing BDE-based one-tiered applications.

When deploying BDE-based applications, you must include the BDE with your
application. While this increases the size of the application and the complexity of
deployment, the BDE can be shared with other BDE-based applications and provides
many advantages. BDE-based applications allow you to use the powerful library of
Borland Database Engine API calls. Even if you do not want to use the BDE API,
writing BDE-based applications gives you support for the following features not
available to other applications such as flat-file database application:

• Connecting to databases
• Using transactions
• Caching updates
• Creating and restructuring database tables

BDE-based architecture
A BDE-based one- or two-tiered application includes

• A user interface containing data-aware controls.

• One or more datasets that represent information from the database tables.

• A datasource component for each dataset to connect the data-aware controls to the
datasets.

• Optionally, one or more database components to control transactions in both one-
and two-tiered applications and to manage database connections in two-tiered
applications.

• Optionally, one or more session components to isolate data access operations such
as database connections, and to manage groups of databases.

The relationships between these elements is illustrated in Figure 14.1:

Figure 14.1 Components in a BDE-based application

user
interface
elements

data source

Borland
Database
Engine

Session

database

dataset

datasetdata source

Data ModuleForm

database

B u i l d i n g o n e - a n d t w o - t i e r e d a p p l i c a t i o n s 14-3

B D E - b a s e d a p p l i c a t i o n s

Understanding databases and datasets
Databases contain information stored in tables. They may also include tables of
information about what is contained in the database, objects such as indexes that are
used by tables, and SQL objects such as stored procedures. See Chapter 18,
“Connecting to databases” for more information about databases.

The Data Access page of the Component palette contains various dataset components
that represent the tables contained in a database or logical tables constructed out of
data stored in those database tables. See “Selecting what data to show” on page 13-13
for more information about these dataset components. You must include a dataset
component in your application to work with database information.

Each BDE-enabled dataset component on the Data Access page has a published
DatabaseName property that specifies the database which contains the table or tables
that hold the information in that dataset. When setting up your application, you must
use this property to specify the database before you can bind the dataset to specific
information contained in that database. What value you specify depends on whether

• The database has a BDE alias. You can specify a BDE alias as the value of
DatabaseName. A BDE alias represents a database plus configuration information
for that database. The configuration information associated with an alias differs by
database type (Oracle, Sybase, InterBase, Paradox, dBASE, and so on). Use the
BDE Administration tool or the SQL explorer to create and manage BDE aliases.

• The database is a Paradox or dBASE database. If you are using a Paradox or
dBASE database, DatabaseName can specify the directory where the database tables
are located.

• You are using explicit database components. Database components (TDatabase)
represent a database in your application. If you don’t add a database component
explicitly, a temporary one is created for you automatically, based on the value of
the DatabaseName property. If you are using explicit database components,
DatabaseName is the value of the DatabaseName property of the database
component. See “Understanding persistent and temporary database components”
on page 18-1 for more information about using database components.

Using sessions
Sessions isolate data access operations such as database connections, and manage
groups of databases. All use of the Borland Database Engine takes place in the
context of a session. You can use sessions to specify configuration information that
applies to all the databases in the session. This allows you to override the default
behavior specified using the BDE administration tool.

You can use a session to

• Manage BDE aliases. You can create new aliases, delete aliases, and modify
existing aliases. By default, changes affect only the session, but you can write
changes so that they are added to the permanent BDE configuration file. For more
information on managing BDE aliases, see “Working with BDE aliases” on
page 17-9.

14-4 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a p p l i c a t i o n s

• Control when database connections in two-tiered applications are closed. Keeping
database connections open when none of the datasets in the database are active
ties up resources that could be released, but improves speed and reduces network
traffic. To keep database connections open even when there are no active datasets,
the KeepConnections property should be true (the default).

• Manage access to password-protected Paradox and dBASE files in one-tiered
applications. Datasets that access password-protected Paradox and dBASE tables
use the session component to supply a password when these tables must be
opened. You can override the default behavior (a password dialog that appears
whenever a password is needed), to supply passwords programmatically. If you
intend to scale your one-tiered application to a two-tiered or multi-tiered
application, you can create a common user interface for obtaining user
authentication information that need not change when you switch to using remote
database servers which require a username and password at the server (rather
than table) level. For more information about using sessions to manage Paradox
and dBASE passwords, see “Working with password-protected Paradox and
dBASE tables” on page 17-13.

• Specify the location of special Paradox directories. Paradox databases that are
shared on a network use a net directory which contains temporary files that
specify table and record locking information. Paradox databases also use a private
directory where temporary files such as the results of queries are kept. For more
information on specifying these directory locations, see “Specifying Paradox
directory locations” on page 17-12.

If your application may be accessing the same database multiple times
simultaneously, you must use multiple sessions to isolate these uses of the database.
Failure to do so will disrupt the logic governing transactions on that database
(including transactions created for you automatically). Applications risk
simultaneous access when running concurrent queries or when using multiple
threads. For more information about using multiple sessions, see “Managing
multiple sessions” on page 17-16.

Unless you need to use multiple sessions, you can use the default session.

Connecting to databases

The Borland Database Engine includes drivers to connect to different databases. The
professional version of C++Builder include the drivers for local databases: Paradox,
dBASE, FoxPro, and Access, as well as an ODBC adapter that allows the BDE to use
ODBC drivers. By supplying an ODBC driver, your application can use any
ODBC-compliant database. Then Enterprise version also include drivers for remote
database servers. Use the drivers installed with SQL Links to communicate with
remote database servers such as InterBase, Oracle, Sybase, Informix, Microsoft SQL
server, and DB2.

Note The only difference between a BDE-based one-tiered application and a BDE-based
two-tiered application is whether it uses local databases or remote database servers.

B u i l d i n g o n e - a n d t w o - t i e r e d a p p l i c a t i o n s 14-5

B D E - b a s e d a p p l i c a t i o n s

Using transactions

A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If one of the
actions in the group fails, then all actions are rolled back (undone). By using
transactions, you ensure that the database is not left in an inconsistent state when a
problem occurs completing one of the actions that make up the transaction.

For example, in a banking application, transferring funds from one account to
another is an operation you would want to protect with a transaction. If, after
decrementing the balance in one account, an error occurred incrementing the balance
in the other, you want to roll back the transaction so that the database still reflects the
correct total balance.

By default, the BDE provides implicit transaction control for your applications. When
an application is under implicit transaction control, a separate transaction is used for
each record in a dataset that is written to the underlying database. Implicit
transactions guarantee both a minimum of record update conflicts and a consistent
view of the database. On the other hand, because each row of data written to a
database takes place in its own transaction, implicit transaction control can lead to
excessive network traffic and slower application performance. Also, implicit
transaction control will not protect logical operations that span more than one record,
such as the transfer of funds described previously.

If you explicitly control transactions, you can choose the most effective times to start,
commit, and roll back your transactions. When you develop applications in a
multi-user environment, particularly when your applications run against a remote
SQL server, you should control transactions explicitly.

Note You can also minimize the number of transactions you need by caching updates. For
more information about cached updates, see Chapter 26, “Working with cached
updates.”

Explicitly controlling transactions
There are two mutually exclusive ways to control transactions explicitly in a
BDE-based database application:

• Use the methods and properties of the database component, such as
StartTransaction, Commit, Rollback, InTransaction, and TransIsolation. The main
advantage to using the methods and properties of a database component to
control transactions is that it provides a clean, portable application that is not
dependent on a particular database or server.

• Use passthrough SQL in a query component to pass SQL statements directly to
remote SQL or ODBC servers. For more information about query components, see
Chapter 22, “Working with queries.” The main advantage to passthrough SQL is
that you can use the advanced transaction management capabilities of a particular
database server, such as schema caching. To understand the advantages of your
server’s transaction management model, see your database server documentation.

One-tiered applications can‘t use passthrough SQL. You can use the database
component to create explicit transactions for local databases. However, there are

14-6 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a p p l i c a t i o n s

limitations to using local transactions. For more information on using local
transactions, see “Using local transactions” on page 14-8.

When writing two-tiered applications (which require SQL links), you can use either a
database component or passthrough SQL to manage transactions. For more
information about using passthrough SQL, see “Using passthrough SQL” on
page 14-8.

Using a database component for transactions
When you start a transaction, all subsequent statements that read from and write to
the database occur in the context of that transaction. Each statement is considered
part of a group. Changes must be successfully committed to the database, or every
change made in the group must be undone.

Ideally, a transaction should only last as long as necessary. The longer a transaction is
active, the more simultaneous users that access the database, and the more
concurrent, simultaneous transactions that start and end during the lifetime of your
transaction, the greater the likelihood that your transaction will conflict with another
when you attempt to commit your changes.

When using a database component, you code a single transaction as follows:

1 Start the transaction by calling the database’s StartTransaction method:

DatabaseInterBase->StartTransaction();

2 Once the transaction is started, all subsequent database actions are considered part
of the transaction until the transaction is explicitly terminated. You can determine
whether a transaction is in process by checking the database component’s
InTransaction property. While the transaction is in process, your view of the data in
database tables is determined by you transaction isolation level. For more
information about transaction isolation levels, see “Using the TransIsolation
property” on page 14-7.

3 When the actions that make up the transaction have all succeeded, you can make
the database changes permanent by using the database component’s Commit
method:

DatabaseInterBase->Commit();

Commit is usually attempted in a try...catch statement. That way, if a transaction
cannot commit successfully, you can use the catch block to handle the error and
retry the operation or to roll back the transaction.

4 If an error occurs when making the changes that are part of the transaction, or
when trying to commit the transaction, you will want to discard all changes that
make up the transaction. To discard these changes, use the database component’s
Rollback method:

DatabaseInterBase->Rollback();

Rollback usually occurs in

• Exception handling code when you cannot recover from a database error.

• Button or menu event code, such as when a user clicks a Cancel button.

B u i l d i n g o n e - a n d t w o - t i e r e d a p p l i c a t i o n s 14-7

B D E - b a s e d a p p l i c a t i o n s

Using the TransIsolation property
TransIsolation specifies the transaction isolation level for a database component’s
transactions. Transaction isolation level determines how a transaction interacts with
other simultaneous transactions when they work with the same tables. In particular,
it affects how much a transaction “sees” of other transactions’ changes to a table.

The default setting for TransIsolation is tiReadCommitted. The following table
summarizes possible values for TransIsolation and describes what they mean:

Database servers may support these isolation levels differently or not at all. If the
requested isolation level is not supported by the server, the BDE uses the next highest
isolation level. The actual isolation level used by some servers is shown in Table 14.2,
“Transaction isolation levels.” For a detailed description of how each isolation level is
implemented, see your server documentation.

Table 14.1 Possible values for the TransIsolation property

Isolation level Meaning

tiDirtyRead Permit reading of uncommitted changes made to the database by other
simultaneous transactions. Uncommitted changes are not permanent, and
might be rolled back (undone) at any time. At this level your transaction is
least isolated from the changes made by other transactions.

tiReadCommitted Permit reading only of committed (permanent) changes made to the database
by other simultaneous transactions. This is the default isolation level.

tiRepeatableRead Permit a single, one time reading of the database. Your transaction cannot see
any subsequent changes to data by other simultaneous transactions. This
isolation level guarantees that once your transaction reads a record, its view of
that record will not change. At this level your transaction is most isolated from
changes made by other transactions.

Table 14.2 Transaction isolation levels

Server Specified Level Actual Level

Oracle tiDirtyRead
tiReadCommitted
tiRepeatableRead

tiReadCommitted
tiReadCommitted
tiRepeatableRead (READONLY)

Sybase, MS-SQL tiDirtyRead
tiReadCommitted
tiRepeatableRead

tiReadCommitted
tiReadCommitted
Not supported

DB2 tiDirtyRead
tiReadCommitted
tiRepeatableRead

tiDirtyRead
tiReadCommitted
tiRepeatableRead

Informix tiDirtyRead
tiReadCommitted
tiRepeatableRead

tiDirtyRead
tiReadCommitted
tiRepeatableRead

InterBase tiDirtyRead
tiReadCommitted
tiRepeatableRead

tiReadCommitted
tiReadCommitted
tiRepeatableRead

Paradox, dBASE,
Access, FoxPro

tiDirtyRead
tiReadCommitted
tiRepeatableRead

tiDirtyRead
Not supported
Not supported

14-8 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a p p l i c a t i o n s

Note When using transactions with local Paradox, dBASE, Access, and FoxPro tables, set
TransIsolation to tiDirtyRead instead of using the default value of tiReadCommitted. A
BDE error is returned if TransIsolation is set to anything but tiDirtyRead for local
tables.

If an application is using ODBC to interface with a server, the ODBC driver must also
support the isolation level. For more information, see your ODBC driver
documentation.

Using passthrough SQL
With passthrough SQL, you use a TQuery, TStoredProc, or TUpdateSQL component to
send an SQL transaction control statement directly to a remote database server. The
BDE does not process the SQL statement. Using passthrough SQL enables you to take
direct advantage of the transaction controls offered by your server, especially when
those controls are non-standard.

To use passthrough SQL to control a transaction, you must

• Install the proper SQL Links drivers. If you chose the “Typical” installation when
installing C++Builder, all SQL Links drivers are already properly installed.

• Configure your network protocol correctly. See your network administrator for
more information.

• Have access to a database on a remote server.

• Set SQLPASSTHRU MODE to NOT SHARED using the SQL Explorer.
SQLPASSTHRU MODE specifies whether the BDE and passthrough SQL
statements can share the same database connections. In most cases,
SQLPASSTHRU MODE is set to SHARED AUTOCOMMIT. However, you can’t
share database connections when using transaction control statements. For more
information about SQLPASSTHRU modes, see the help file for the BDE
Administration utility.

Note When SQLPASSTHRU MODE is NOT SHARED, you must use separate database
components for datasets that pass SQL transaction statements to the server and
datasets that do not.

Using local transactions
The BDE supports local transactions against local Paradox, dBASE, Access, and
FoxPro tables. From a coding perspective, there is no difference to you between a
local transaction and a transaction against a remote database server.

When a transaction is started against a local table, updates performed against the
table are logged. Each log record contains the old record buffer for a record. When a
transaction is active, records that are updated are locked until the transaction is
committed or rolled back. On rollback, old record buffers are applied against
updated records to restore them to their pre-update states.

B u i l d i n g o n e - a n d t w o - t i e r e d a p p l i c a t i o n s 14-9

B D E - b a s e d a p p l i c a t i o n s

Local transactions are more limited than transactions against SQL servers or ODBC
drivers. In particular, the following limitations apply to local transactions:

• Automatic crash recovery is not provided.

• Data definition statements are not supported.

• Transactions cannot be run against temporary tables.

• For Paradox, local transactions can only be performed on tables with valid
indexes. Data cannot be rolled back on Paradox tables that do not have indexes.

• Only a limited number of records can be locked and modified. With Paradox
tables, you are limited to 255 records. With dBASE the limit is 100.

• Transactions cannot be run against the BDE ASCII driver.

• TransIsolation level must only be set to tiDirtyRead.

• Closing a cursor on a table during a transaction rolls back the transaction unless:

• Several tables are open.
• The cursor is closed on a table to which no changes were made.

Caching updates

The Borland Database Engine provides support for caching updates. When you cache
updates, your application retrieves data from a database, makes all changes to a
local, cached copy of the data, and applies the cached changes to the dataset as a unit.
Cached updates are applied to the database in a single transaction.

Caching updates can minimize transaction times and reduce network traffic.
However, cached data is local to your application and is not under transaction
control. This means that while you are working on your local, in-memory, copy of the
data, other applications can be changing the data in the underlying database table.
They also can’t see any changes you make until you apply the cached updates.
Because of this, cached updates may not be appropriate for applications that work
with volatile data, as you may create or encounter too many conflicts when trying to
merge your changes into the database.

You can tell BDE-enabled datasets to cache updates using the CachedUpdates
property. When the changes are complete, they can be applied by the dataset
component, by the database component, or by a special update object. When changes
can’t be applied to the database without additional processing (for example, when
working with a joined query), you must use the OnUpdateRecord event to write
changes to each table that makes up the joined view.

For more information on caching updates, see Chapter 26, “Working with cached
updates.”

Note If you are caching updates, you may want to consider moving to a multitiered model
to have greater control over the application of updates. For more information about
the multitiered model, see Chapter 15, “Creating multi-tiered applications.”

14-10 D e v e l o p e r ’ s G u i d e

A D O - b a s e d a p p l i c a t i o n s

Creating and restructuring database tables

In BDE-based applications, you can use the TTable component to create new database
tables and to add indexes to existing tables.

You can create tables either at design time, in the Forms Designer, or at runtime. To
create a table, you must specify the fields in the table using the FieldDefs property,
add any indexes using the IndexDefs property, and call the CreateTable method (or
select the Create Table command from the table’s context menu). For more detailed
instructions on creating tables, see “Creating a table” on page 21-17.

Note When creating Oracle8 tables, you can’t create object fields (ADT fields, array fields,
reference fields, and dataset fields).

If you want to restructure a table at runtime (other than by adding indexes), you
must use the BDE API DbiDoRestructure. You can add indexes to an existing table
using the AddIndex method of TTable.

Note At design time, you can use the Database Desktop to create and restructure Paradox
and dBASE tables. To create and restructure tables on remote servers, use the SQL
Explorer and restructure the table using SQL.

ADO-based applications
C++Builder applications that use the ADO components for data access can be either
one- or two-tier. Which category an application falls under is predicated on the
database type used. For instance, using ADO to access a Microsoft SQL Server
database will always be a two-tier application because SQL Server is an SQL database
system. SQL database systems are typically located on a dedicated SQL server. On
the other hand, an application that uses ADO to access some local database type, like
dBASE or FoxPro, will always be a one-tier application.

There are four major areas involved in database access using ADO and the
C++Builder ADO components. These areas of concern are the same regardless of
whether the application is one- or two-tier:

• ADO-based architecture
• Connecting to ADO databases
• Retrieving data
• Creating and restructuring ADO database tables

ADO-based architecture

An ADO-based application includes the following functional areas:

• A user interface with visual data-aware controls. Visual data controls are optional
if all data access is done programmatically.

• One or more dataset components that represent information from tables or
queries.

B u i l d i n g o n e - a n d t w o - t i e r e d a p p l i c a t i o n s 14-11

A D O - b a s e d a p p l i c a t i o n s

• One datasource component for each dataset component to act as the conduit
between dataset component and one or more visual data-aware controls.

• A connection component to connect to the ADO data store. The connection
component acts as a conduit between the application’s dataset components and
the database accessed through the data store.

The ADO layer of an ADO-based C++Builder application consists of Microsoft ADO
2.1, an OLE DB provider or ODBC driver for the data store access, client software for
the specific database system used (in the case of SQL databases), a database back-end
system accessible to the application (for SQL database systems), and a database. All
of these external entities must be present and accessible to the ADO-based
application for it to be fully functional.

Understanding ADO databases and datasets
The ADO page of the Component Palette contains all of the components necessary
for connecting to databases and for accessing the tables in them.

All of the metadata objects an ADO-based application are contained in the database
accessed through the ADO data store. To access these objects or the data stored in
them, an application must first connect to the data store. See “Connecting to ADO
data stores” on page 24-2 for information on connecting to data stores.

The data of a database is stored in one or more tables. You must include at least one
ADO dataset component (TADODataSet, TADOQuery, and so on) in your application
to work with the data stored in a database’s tables. See “Retrieving data” on
page 14-12 and “Using ADO datasets” on page 24-11 for more information on using
ADO dataset components to access data in tables.

Connecting to ADO databases

An ADO-based application C++Builder uses ADO 2.1 to interact with an OLE DB
provider that connects to a data store and accesses its data. One of the items a data
store can represent is a database. An ADO-based application requires that ADO 2.1
be installed on the client computer. ADO and OLE DB is supplied by Microsoft and
installed with Windows.

The provider can represent one of a number of types of access, from native OLE DB
drivers to ODBC drivers. These drivers must also be installed on the client computer.
OLE DB drivers for various database systems are supplied by the database vendor or
by a third-party.

If the application uses an SQL database, such as Microsoft SQL Server or Oracle, the
client software for that database system must also be installed on the client computer.
Client software is supplied by the database vendor and installed from the database
systems CD (or disk).

To connect the application with the data store, the ADO connection component is
configured to use one of the available providers. Once the connection component is
connected to the data store, dataset components can be associated with the

14-12 D e v e l o p e r ’ s G u i d e

A D O - b a s e d a p p l i c a t i o n s

connection component to access the tables in the database. See “Connecting to ADO
data stores” on page 24-2 for information on connecting to data stores.

In addition to providing an application’s access to the database, the connection
component encapsulates the ADO transaction processing capabilities.

Retrieving data

Once an application has established a valid connection to a database, dataset
components can be used to access data in the database. The ADO page of the
Component palette contains the ADO dataset components needed to access data
from ADO data stores.

These components include TADODataSet, TADOTable, TADOQuery, and
TADOStoredProc. All of these components are capable of retrieving data from ADO
data stores, programmatically modifying the data, and presenting the data to an
application’s user for interactive use of the data. For more information on using the
ADO dataset components to retrieve and modify data, see “Using ADO datasets” on
page 24-11.

To make the data accessed with an ADO dataset component visually accessible in an
application, use the stock data-aware controls. There are no ADO-specific data-aware
controls. For details on using data-aware controls, see “Using common data control
features” on page 27-1.

The standard data source component is used as a conduit between the ADO dataset
components and the data-aware controls. There is no dedicated data source
component for ADO. For details on using data source components, see “Using data
sources” on page 27-5.

Where needed, persistent field objects can be used to represent fields in the ADO
dataset components. As with the data-aware controls and data source components,
simply use the inherent C++Builder field classes (TField and descendants). For details
on using dynamic and persistent field objects, see “Understanding field components”
on page 20-2.

Creating and restructuring ADO database tables

In a C++Builder application, you must use SQL to create and delete metadata in an
ADO database. Similarly, you need to restructure tables using SQL statements.
Changing other metadata objects cannot be done per se. Instead, you need to delete
the metadata object and then replace it with a new one with different attributes.

Many database types can be accessed through ADO and not all of the drivers for
specific database types support the same SQL syntax. It is beyond the scope of this
document to describe the SQL syntax supported by each database type and the
differences between the database types. For a comprehensive and up-to-date
discussion of the SQL implementation for a given database system, see the
documentation that comes with that database system.

B u i l d i n g o n e - a n d t w o - t i e r e d a p p l i c a t i o n s 14-13

F l a t - f i l e d a t a b a s e a p p l i c a t i o n s

In general, use the CREATE TABLE statement to create tables in the database and
CREATE INDEX to create new indexes for those tables. Where supported, use other
CREATE statements for adding various metadata objects, such as CREATE
DOMAIN, CREATE VIEW, and CREATE SCHEMA.

For each of the CREATE statements, there is a corresponding DROP statement to
delete a metadata object. These statements include DROP TABLE, DROP VIEW,
DROP DOMAIN, and DROP SCHEMA.

To change the structure of a table, use the ALTER TABLE statement. ALTER TABLE
has ADD and DROP clauses to create new elements in a table and to delete them. For
example, use the ADD COLUMN clause to add a new column to the table and DROP
CONSTRAINT to delete an existing constraint from the table.

Issue these metadata statements from the ADO command or the ADO query
component. For details on using the ADO command component to execute
commands, see “Executing commands” on page 24-25.

Flat-file database applications
Flat-file database applications are single-tiered applications that use TClientDataSet
to represent all of their datasets. The client dataset holds all its data in memory,
which means that this type of application is not appropriate for extremely large
datasets.

Flat-file database applications do not require the Borland Database Engine (BDE) or
ActiveX Data Objects (ADO). Instead, they only use MIDAS.DLL. By using only
MIDAS.DLL, flat-file applications are easier to deploy because you do not need to
install, configure, and maintain software that manages database connections.

Because these applications do not use a database, there is no support for multiple
users. Instead, the datasets are dedicated entirely to the application. Data can be
saved to flat files on disk, and loaded at a later time, but there is no built-in protection
to prevent multiple users from overwriting each other’s data files.

Client datasets (located on the MIDAS page of the Component palette) form the basis
of flat-file database applications. They provide support for most of the database
operations you perform with other datasets. You use the same data-aware controls
and data source components that you would use in a BDE-based single-tiered
application. You don’t use database components, because there is no database
connection to manage, and no transactions to support. You do not need to be
concerned with session components unless your application is multi-threaded. For
more information about using client datasets, see Chapter 25, “Creating and using a
client dataset.”

The main differences in writing flat-file database applications and other single-tiered
database applications lie in how you create the datasets and how you load and save
data.

14-14 D e v e l o p e r ’ s G u i d e

F l a t - f i l e d a t a b a s e a p p l i c a t i o n s

Creating the datasets

Because flat-file database applications do not use existing databases, you are
responsible for creating the datasets yourself. Once the dataset is created, you can
save it to a file. From then on, you do not need to recreate the table, only load it from
the file you saved. However, indexes are not saved with the table. You need to
recreate them every time you load the table.

When beginning a flat-file database application, you may want to first create and
save empty files for your datasets before beginning the writing of the application
itself. This way, you do not need to define the metadata for your client datasets in the
final application.

How you create your client dataset depends on whether you are creating an entirely
new dataset, or converting an existing BDE-based application.

Creating a new dataset using persistent fields
The following steps describe how to create a new client dataset using the Fields
Editor:

1 From the MIDAS page of the Component palette, add a TClientDataSet component
to your application.

2 Right-click the client dataset and select Fields Editor. In the Fields editor,
right-click and choose the New Field command. Describe the basic properties of
your field definition. Once the field is created, you can alter its properties in the
Object Inspector by selecting the field in the Fields editor.

Continue adding fields in the fields editor until you have described your client
dataset.

3 Right-click the client dataset and choose Create DataSet. This creates an empty
client dataset from the persistent fields you added in the Fields Editor.

4 Right-click the client dataset and choose Save To File. (This command is not
available unless the client dataset contains data.)

5 In the File Save dialog, choose a file name and save a flat file copy of your client
dataset.

Note You can also create the client dataset at runtime using persistent fields that are saved
with the client dataset. Simply call the CreateDataSet method.

Creating a dataset using field and index definitions
Creating a client dataset using field and index definitions is much like using a TTable
component to create a database table. There is no DatabaseName, TableName, or
TableType property to specify, as these are not relevant to client datasets. However,
just as with TTable, you use the FieldDefs property to specify the fields in your table
and the IndexDefs property to specify any indexes. Once the table is specified,
right-click the client dataset and choose Create DataSet at design time, or call the
CreateDataSet method at runtime.

B u i l d i n g o n e - a n d t w o - t i e r e d a p p l i c a t i o n s 14-15

F l a t - f i l e d a t a b a s e a p p l i c a t i o n s

When defining the index definitions for your client dataset, two properties of the
index definition apply uniquely to client datasets. These are TIndexDef::DescFields
and TIndexDef::CaseInsFields.

DescFields lets you define indexes that sort records in ascending order on some fields
and descending order on other fields. Instead of using the ixDescending option to sort
in descending order on all the fields in the index, list only those fields that should
sort in descending order as the value of DescFields. For example, when defining an
index that sorts on Field1, then Field2, then Field3, setting DescFields to

Field1;Field3

results in an index that sorts Field2 in ascending order and Field1 and Field3 in
descending order.

CaseInsFields lets you define indexes that sort records case-sensitively on some fields
and case-insensitively on other fields. Instead of using the isCaseInsensitive option to
sort case-insensitively on all the fields in the index, list only those fields that should
sort case-insensitively as the value of CaseInsFields. Like DescFields, CaseInsFields takes
a semicolon-delimited list of field names.

You can specify the field and index definitions at design time using the Collection
editor. Just choose the appropriate property in the Object Inspector (FieldDefs or
IndexDefs), and double-click to display the Collection editor. Use the Collection editor
to add, delete, and rearrange definitions. By selecting definitions in the Collection
editor you can edit their properties in the Object Inspector.

You can also specify the field and index definitions in code at runtime. For example,
the following code creates and activates a client dataset in the form’s OnCreate event
handler:

void __fastcall TForm1::FormCreate(TObject *Sender)
{
 TFieldDef *pDef = ClientDataSet1->FieldDefs->AddFieldDef();
 pDef->DataType = ftInteger;
 pDef->Name = "Field1";
 pDef = ClientDataSet1->FieldDefs->AddFieldDef();
 pDef->DataType = ftString;
 pDef->Size = 10;
 pDef->Name = "Field2";
 TIndexDef *pIndex = ClientDataSet1->IndexDefs->AddIndexDef();
 pIndex->Fields = "Field1";
 pIndex->Name = "IntIndex";
 ClientDataSet1->CreateDataSet();
}

Creating a dataset based on an existing table
If you are converting an existing BDE-based application into a single-tiered flat-file
application, you can copy existing tables and save them as flat-file tables from the
IDE. The following steps indicate how to copy an existing table:

1 From the Data Access page of the Component palette, add a TTable component to
your application. Set its DatabaseName and TableName properties to identify the
existing database table. Set its Active property to True.

14-16 D e v e l o p e r ’ s G u i d e

F l a t - f i l e d a t a b a s e a p p l i c a t i o n s

2 From the MIDAS page of the Component palette, add a TClientDataSet
component.

3 Right-click the client dataset and select Assign Local Data. In the dialog that
appears, choose the table component that you added in step 1. Choose OK.

4 Right-click the client dataset and choose Save To File. (This command is not
available unless the client dataset contains data.)

5 In the File Save dialog, choose a file name and save a flat-file copy of your
database table.

Loading and saving data

In flat-file database applications, all modifications to the table exist only in an
in-memory change log. This log is maintained separately from the data itself,
although it is completely transparent to objects that use the client dataset. That is,
controls that navigate the client dataset or display its data see a view of the data that
includes the changes. If you do not want to back out of changes, however, you should
merge the change log into the data of the client dataset by calling the MergeChangeLog
method. For more information about the change log, see “Editing data” on page 25-4.

Even when you have merged changes into the data of the client dataset, this data still
exists only in memory. While it will persist if you close the client dataset and reopen
it in your application, it will disappear when your application shuts down. To make
the data permanent, it must be written to disk. Write changes to disk using the
SaveToFile method. SaveToFile takes one parameter, the name of the file which is
created (or overwritten) containing the table.

When you want to read a table previously written using the SaveToFile method, use
the LoadFromFile method. LoadFromFile also takes one parameter, the name of the file
containing the table.

When you save a client dataset, the metadata that describes the record structure is
saved with the dataset, but not the indexes. Because of this, you may want to add
code that recreates the indexes when you load the data from file. Alternately, you
might want to write your application so that it always creates indexes on the fly in an
as-needed fashion.

If you always load to and save from the same file, you can use the FileName property
instead of the SaveToFile and LoadFromFile methods. When FileName is set to a valid
file name, the data is automatically loaded from the file when the client dataset is
opened and saved to the file when the client dataset is closed.

Using the briefcase model

Most of this section has described creating and using a client dataset in a one-tiered
application. The one-tiered model can be combined with a multi-tiered model to
create what is called the briefcase model.

Note The briefcase model is sometimes called the disconnected model, or mobile
computing.

B u i l d i n g o n e - a n d t w o - t i e r e d a p p l i c a t i o n s 14-17

S c a l i n g u p t o a t h r e e - t i e r e d a p p l i c a t i o n

When operating on site, a briefcase model application looks like a multi-tiered
model: a user starts a client application on one machine and connects over a network
to an application server on a remote machine. The client requests data from the
application server, and sends updates to it. The updates are applied by the
application server to a database that is presumably shared with other clients
throughout an organization.

Suppose, however, that your onsite company database contains valuable customer
contact data that your sales representatives can use and update in the field. In this
case, it would be useful if your sales reps could download some or all of the data
from the company database, work with it on their laptops as they fly across the
country, and even update records at existing or new customer sites. When the sales
reps return onsite, they need to upload their data changes to the company database
for everyone to use. This ability to work with data off-line and then apply updates
online at a later date is known as the “briefcase” model.

By using the briefcase model, you can take advantage of the client dataset
component’s ability to read and write data to flat files to create client applications
that can be used both online with an application server, and off-line, as temporary
one-tiered applications.

To implement the briefcase model, you must

1 Create a multi-tiered server application as described in “Creating the application
server” on page 15-11.

2 Create a flat-file database application as your client application. Add a connection
component and set the RemoteServer property of your client datasets to specify this
connection component. This allows them to talk to the application server created
in step 1. For more information about connection components, see “Connecting to
the application server” on page 15-17.

3 In the client application, try on start-up to connect to the application server. If the
connection fails, prompt the user for a file and read in the local copy of the data.

4 In the client application, add code to apply updates to the application server. For
more information on sending updates from a client application to an application
server, see “Updating records” on page 25-20.

Scaling up to a three-tiered application
In a two-tiered client/server application, the application is a client that talks directly
to a database server. Even so, the application can be thought of as having two parts: a
database connection and a user interface. To make a two-tiered client/server
application into a multi-tiered application you must:

• Split your existing application into an application server that handles the database
connection, and a client application that contains the user interface.

• Add an interface between the client and the application server.

14-18 D e v e l o p e r ’ s G u i d e

S c a l i n g u p t o a t h r e e - t i e r e d a p p l i c a t i o n

There are a number of ways to proceed, but the following sequential steps may best
keep your translation work to a minimum:

1 Create a new project for the application server, starting with a remote data
module. See “Creating the application server” on page 15-11 for details on how to
do this.

2 Duplicate the relevant database connection portions of your former two-tiered
application, and for each dataset, add a provider component that will act as a data
conduit between the application server and the client. For more information on
using a provider component, see Chapter 16, “Using provider components.”

3 Copy your existing two-tiered project, remove its direct database connections, add
an appropriate connection component to it. For more information about creating
and using connection components, see “Connecting to the application server” on
page 15-17.

4 Substitute a client dataset for each dataset component in the original project. For
general information about using a client dataset component, see Chapter 25,
“Creating and using a client dataset.”

5 In the client application, add code to apply updates to the application server. For
more information on sending updates from a client application to an application
server, see “Updating records” on page 25-20.

6 Move the dataset components to the application server’s data modules. Set the
DataSet property of each provider to specify the corresponding datasets. For more
information about linking a dataset to a provider component, see Chapter 16,
“Using provider components.”

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-1

C h a p t e r

15
Chapter15Creating multi-tiered applications

This chapter describes how to create a multi-tiered, client/server database
application. A multi-tiered client/server application is partitioned into logical units
which run in conjunction on separate machines. Multi-tiered applications share data
and communicate with one another over a local-area network or even over the
Internet. They provide many benefits, such as centralized business logic and thin
client applications.

In its simplest form, sometimes called the “three-tiered model,” a multi-tiered
application is partitioned into thirds:

• Client application: provides a user interface on the user’s machine.

• Application server: resides in a central networking location accessible to all clients
and provides common data services.

• Remote database server: provides the relational database management system
(RDBMS).

In this three-tiered model, the application server manages the flow of data between
clients and the remote database server, so it is sometimes called a “data broker.” With
C++Builder you usually only create the application server and its clients, although, if
you are really ambitious, you could create your own database back end as well.

In more complex multi-tiered applications, additional services reside between a
client and a remote database server. For example, there might be a security services
broker to handle secure Internet transactions, or bridge services to handle sharing of
data with databases on platforms not directly supported by C++Builder.

C++Builder support for multi-tiered applications is based on the Multi-tier
Distributed Application Services Suite (MIDAS). This chapter focuses on creating a
three-tiered database application using the MIDAS technology. Once you
understand how to create and manage a three-tiered application, you can create and
add additional service layers based on your needs.

15-2 D e v e l o p e r ’ s G u i d e

A d v a n t a g e s o f t h e m u l t i - t i e r e d d a t a b a s e m o d e l

Advantages of the multi-tiered database model
The multi-tiered database model breaks a database application into logical pieces.
The client application can focus on data display and user interactions. Ideally, it
knows nothing about how the data is stored or maintained. The application server
(middle tier) coordinates and processes requests and updates from multiple clients. It
handles all the details of defining datasets and interacting with the remote database
server.

The advantages of this multi-tiered model include the following:

• Encapsulation of business logic in a shared middle tier. Different client
applications all access the same middle tier. This allows you to avoid the
redundancy (and maintenance cost) of duplicating your business rules for each
separate client application.

• Thin client applications. Your client applications can be written to make a small
footprint by delegating more of the processing to middle tiers. Not only are client
applications smaller, but they are easier to deploy because they don’t need to
worry about installing, configuring, and maintaining the database connectivity
software (such as the Borland Database Engine). Thin client applications can be
distributed over the internet for additional flexibility.

• Distributed data processing. Distributing the work of an application over several
machines can improve performance because of load balancing, and allow
redundant systems to take over when a server goes down.

• Increased opportunity for security. You can isolate sensitive functionality into
tiers that have different access restrictions. This provides flexible and configurable
levels of security. Middle tiers can limit the entry points to sensitive material,
allowing you to control access more easily. If you are using HTTP or MTS, you can
take advantage of the security models they support.

Understanding MIDAS technology
MIDAS provides the mechanism by which client applications and application servers
communicate database information. Using MIDAS requires MIDAS.DLL, which is
used by both client and server applications to manage datasets stored as data
packets. Building MIDAS applications may also require the SQL explorer to help in
database administration and to import server constraints into the Data Dictionary so
that they can be checked at any level of the multi-tiered application.

Note You must purchase server licenses for deploying your MIDAS applications.

MIDAS-based multi-tiered applications use the components on the MIDAS page of
the component palette, plus a remote data module that is created by a wizard on the

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-3

U n d e r s t a n d i n g M I D A S t e c h n o l o g y

Multitier page of the New Items dialog. These components are described in Table
15.1:

Overview of a MIDAS-based multi-tiered application

The following numbered steps illustrate a normal sequence of events for a
MIDAS-based multi-tiered application:

1 A user starts the client application. The client connects to the application server
(which can be specified at design time or runtime). If the application server is not
already running, it starts. The client receives an IAppServer interface from the
application server.

2 The client requests data from the application server. A client may request all data
at once, or may request chunks of data throughout the session (fetch on demand).

3 The application server retrieves the data (first establishing a database connection,
if necessary), packages it for the client, and returns a data packet to the client.
Additional information, (for example, about data constraints imposed by the
database) can be included in the metadata of the data packet. This process of
packaging data into data packets is called “providing.”

4 The client decodes the data packet and displays the data to the user.

5 As the user interacts with the client application, the data is updated (records are
added, deleted, or modified). These modifications are stored in a change log by the
client.

6 Eventually the client applies its updates to the application server, usually in
response to a user action. To apply updates, the client packages its change log and
sends it as a data packet to the server.

7 The application server decodes the package and posts updates in the context of a
transaction. If a record can’t be posted to the server (for example, because another
application changed the record after the client requested it and before the client
applied its updates), the application server either attempts to reconcile the client’s
changes with the current data, or saves the records that could not be posted. This
process of posting records and caching problem records is called “resolving.”

Table 15.1 MIDAS components

Component Description

remote data modules Specialized data modules that work with a COM Automation server
to give client applications access to any providers they contain.
Used on the application server.

provider component A data broker that provides data by creating data packets and
resolves client updates. Used on the application server.

client dataset component A specialized dataset that uses MIDAS.DLL to manage data stored
in data packets.

connection components A family of components that locate the server, form connections,
and make the IAppServer interface available to client datasets. Each
connection component is specialized to use a particular
communications protocol.

15-4 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g M I D A S t e c h n o l o g y

8 When the application server finishes the resolving process, it returns any
unposted records to the client for further resolution.

9 The client reconciles unresolved records. There are many ways a client can
reconcile unresolved records. Typically the client attempts to correct the situation
that prevented records from being posted or discards the changes. If the error
situation can be rectified, the client applies updates again.

10 The client refreshes its data from the server.

The structure of the client application

To the end user, the client application of a multi-tiered application looks and behaves
no differently than a traditional two-tiered application that uses cached updates.
Structurally, the client application looks a lot like a flat-file single-tiered application.
User interaction takes place through standard data-aware controls that display data
from a client dataset component. For detailed information about using the properties,
events, and methods of client datasets, see Chapter 25, “Creating and using a client
dataset.”

Unlike in a flat-file application, the client dataset in a multi-tiered application obtains
its data through the IAppServer interface on the application server. It uses this
interface to post updates to the application server as well. For more information
about the IAppServer interface, see “Using the IAppServer interface” on page 15-8.
The client gets this interface from a connection component.

The connection component establishes the connection to the application server.
Different connection components are available for using different communications
protocols. These connection components are summarized in the following table:

Note Three other connection components, TRemoteServer, TMIDASConnection, and
TOLEnterpriseConnection are provided for backward compatibility.

For more information about using connection components, see “Connecting to the
application server” on page 15-17.

The structure of the application server

 The application server contains a special class, called the implementation object, that
descends from REMOTEDATAMODULE_IMPL(). REMOTEDATAMODULE_IMPL
is a macro defined in Atlvcl.h that lists the ancestors for the implementation object.
These include the ATL classes CComObjectRootEx and CComCoClass, as well as the

Table 15.2 Connection components

Component Protocol

TDCOMConnection DCOM

TSocketConnection Windows sockets (TCP/IP)

TWebConnection HTTP

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-5

U n d e r s t a n d i n g M I D A S t e c h n o l o g y

IAppServer interface, which client applications use to communicate with data
providers.

If you are creating an application server that can take advantage of the distributed
application services provided by MTS or COM+, REMOTEDATAMODULE_IMPL
also includes the IObjectControl interface, which is required of all transactional
objects. The implementation class, which is generated for you by a wizard, has access
to an IObjectContext interface, which is provided by the system on its behalf and
which it uses to manage transactions, free resources, and take advantage of security
support.

In addition to the class that supports the IAppServer interface, application servers
contain a remote data module that includes a dataset provider component for each
dataset the application server makes available to client applications. A dataset
provider

• Receives data requests from the client, fetches the requested data from the
database server, packages the data for transmission, and sends the data to the
client dataset. This activity is called “providing.”

• Receives updated data from the client dataset, applies updates to the database or
source dataset, and logs any updates that cannot be applied, returning unresolved
updates to the client for further reconciliation. This activity is called “resolving.”

Often, the provider uses BDE- or ADO-enabled datasets such as you find in a
two-tiered application. You can add database and session components as needed,
just as in a BDE-based two-tiered application, or add ADO connection components as
in an ADO-based two-tiered application.

Note Do not confuse the ADO connection component, which is analogous to a database
component in a BDE-based application, with the connection components used by
client applications in a multitiered application.

For more information about two-tiered applications, see Chapter 14, “Building one-
and two-tiered applications.”

If the application server is to be deployed under MTS or COM+, the remote data
module includes events for when the application server is activated or deactivated.
This permits the application server to acquire database connections when activated
and release them when deactivated.

Using transactional data modules
You can write an application server that takes advantage of special services for
distributed applications that are supplied by MTS (before Windows 2000) or COM+
(under Windows 2000 and later). To do so, you create a transactional data module
instead of an ordinary remote data module.

When you use a transactional data module, your application can take advantage of
the following special services:

• Security. MTS and COM+ provide role-based security for your application server.
Clients are assigned roles, which determine how they can access the application
server’s interface. In addition, you can use the IObjectContext interface which is

15-6 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g M I D A S t e c h n o l o g y

accessed through your implementation class, to access these security services. For
more information about MTS security, see “Role-based security” on page 38-16.

• Database handle pooling. Transactional data modules automatically pool
database connections that are made via ADO or (if you are using MTS and turn on
MTS POOLING) the BDE. When one client is finished with a database connection,
another client can reuse it. This cuts down on network traffic, because your middle
tier does not need to log off of the remote database server and then log on again.
When pooling database handles, your database or ADO connection component
should set its KeepConnection property to false, so that your application maximizes
the sharing of connections. For more information about pooling database handles,
see “Database resource dispensers” on page 38-5.

• Transactions. When using a transactional data module, you can provide enhanced
transaction support beyond that available with a single database connection.
Transactional databases can participate in transactions that span multiple
databases, or include functions that do not involve databases at all. For more
information about the transaction support provided by transactional objects such
as transactional databases, see “Managing transactions in multi-tiered
applications” on page 15-21.

• Just-in-time activation and as-soon-as-possible deactivation. You can write your
server so that instances are activated and deactivated on an as-needed basis. When
using just-in-time activation and as-soon-as-possible deactivation, your
application server is instantiated only when it is needed to handle client requests.
This prevents it from tying up resources such as database handles when they are
not in use.

Using just-in-time activation and as-soon-as-possible deactivation provides a
middle ground between routing all clients through a single remote data module
instance, and creating a separate instance for every client connection. With a single
remote data module instance, the application server must handle all database calls
through a single database connection. This acts as a bottleneck, and can impact
performance when there are many clients. With multiple instances of the remote
data module, each instance can maintain a separate database connection, thereby
avoiding the need to serialize database access. However, this monopolizes
resources because other clients can’t use the database connection while it is
associated with another client’s remote data module.

To take advantage of transactions, just-in-time activation, and as-soon-as-possible
deactivation, remote data module instances must be stateless. This means you must
provide additional support if your client relies on state information. For example, the
client must pass information about the current record when performing incremental
fetches. For more information about state information and remote data modules in
multi-tiered applications, see “Supporting state information in remote data modules”
on page 15-23.

By default, all automatically generated calls to a transactional data module are
transactional (that is, they assume that when the call exits, the data module can be
deactivated and any current transactions committed or rolled back). You can write a
transactional data module that depends on persistent state information by setting the

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-7

U n d e r s t a n d i n g M I D A S t e c h n o l o g y

AutoComplete property to false, but it will not support transactions, just-in-time
activation, or as-soon-as-possible deactivation unless you use a custom interface.

Warning Application servers containing transactional data modules should not open database
connections until the data module is activated. While developing your application,
be sure that all datasets are not active and the database is not connected before
running your application. In the application itself, add code to open database
connections when the data module is activated and close them when it is deactivated.

Pooling remote data modules
Object pooling allows you to create a cache of application servers that are shared by
their clients, thereby conserving resources. How this works depends on the type of
remote data module and on the connection protocol.

If you are creating a transactional data module that will be installed to COM+, you
can use the COM+ Component Manager to install the application server as a pooled
object. See “Object pooling” on page 38-9 for details.

Even if you are not using a transactional data module, you can take advantage of
object pooling if the connection is formed using HTTP. Under this second type of
object pooling, you limit the number of instances of your application server that are
created. This limits the number of database connections that you must hold, as well
as any other resources used by the application server.

When the Web Server application (which passes calls to your application server)
receives client requests, it passes them on to the first available application server in
the pool. If there is no available application server, it creates a new one (up to a
maximum number that you specify). This provides a middle ground between routing
all clients through a single application server instance (which can act as a bottleneck),
and creating a separate instance for every client connection (which can consume
many resources).

If an application server instance in the pool does not receive any client requests for a
while, it is automatically freed. This prevents the pool from monopolizing resources
unless they are used.

To set up object pooling when using a Web connection (HTTP), do the following:

1 Locate the UpdateRegistry method of the implementation class. This method
appears in the header file of your implementation unit:

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)
{

TRemoteDataModuleRegistrar regObj(GetObjectCLSID(), GetProgID(), GetDescription());
return regObj.UpdateRegistry(bRegister);

}

2 Set the RegisterPooled flag of the regObj variable, which is an instance of
TRemoteDataModuleRegistrar, to true. You will also want to set other properties of
regObj to indicate how the cache of remote data modules should be managed. For

15-8 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g M I D A S t e c h n o l o g y

example, the following code allows a maximum of 10 remote data module
instances and frees them from the cache if they are idle for more than 15 minutes:

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)
{

TRemoteDataModuleRegistrar regObj(GetObjectCLSID(), GetProgID(), GetDescription());
regObj.RegisterPooled = true;
regObj.Timeout = 15;
regObj.Max = 10;
return regObj.UpdateRegistry(bRegister);

}

When using either method of object pooling, your application server must be
stateless. This is because a single instance potentially handles requests from several
clients. If it relied on persistent state information, clients could interfere with each
other. See “Supporting state information in remote data modules” on page 15-23 for
more information on how to ensure that your remote data module is stateless.

Using the IAppServer interface
Application servers support the IAppServer interface. Connection components on
client applications look for this interface to form connections.

IAppServer provides the bridge between client applications and the provider
components in the application server. Most client applications do not use IAppServer
directly, but invoke it indirectly through the properties and methods of the client
dataset. However, when necessary, you can make direct calls to the IAppServer
interface by using the AppServer property of the client dataset.

Table 15.3 lists the methods of the IAppServer interface, as well as the corresponding
methods and events on the provider component and the client dataset. These
IAppServer methods include a Provider parameter to indicate which provider on the
application server should provide data or resolve updates. In addition, most
methods include an OleVariant parameter called OwnerData that allows the client
application and application server to pass custom information back and forth.
OwnerData is not used by default, but is passed to all event handlers so that you can
write code that allows your application server to adjust for this information before
and after each client call.

Table 15.3 AppServer interface members

IAppServer Provider component TClientDataSet

AS_ApplyUpdates method ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event

ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event.

AS_DataRequest method DataRequest method,
OnDataRequest event

DataRequest method.

AS_Execute method Execute method,
BeforeExecute event,
AfterExecute event

Execute method,
BeforeExecute event,
AfterExecute event.

AS_GetParams method GetParams method,
BeforeGetParams event,
AfterGetParams event

FetchParams method,
BeforeGetparams event,
AfterGetParams event.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-9

U n d e r s t a n d i n g M I D A S t e c h n o l o g y

Choosing a connection protocol

Each communications protocol you can use to connect your client applications to the
application server provides its own unique benefits. Before choosing a protocol,
consider how many clients you expect, how you are deploying your application, and
future development plans.

Using DCOM connections
DCOM provides the most direct approach to communication, requiring no
additional runtime applications on the server. However, because DCOM is not
included with Windows 95, some older client machines may not have DCOM
installed.

DCOM provides the only approach that lets you use security services when writing a
transactional data module. These security services are based on assigning roles to the
callers of transactional objects. When using DCOM, DCOM identifies the caller to the
system that calls your application server (MTS or COM+). Therefore, it is possible to
accurately determine the role of the caller. When using other protocols, however,
there is a runtime executable, separate from the application server, that receives
client calls. This runtime executable makes COM calls into the application server on
behalf of the client. Because of this, it is impossible to assign roles to separate clients:
The runtime executable is, effectively, the only client. For more information about
security and transactional objects, see “Role-based security” on page 38-16.

Using Socket connections
TCP/IP Sockets let you create lightweight clients. For example, if you are writing a
Web-based client application, you can’t be sure that client systems support DCOM.
Sockets provide a lowest common denominator that you know will be available for
connecting to the application server. For more information about sockets, see
Chapter 31, “Working with sockets.”

Instead of instantiating the remote data module directly from the client (as happens
with DCOM), sockets use a separate application on the server (ScktSrvr.exe), which
accepts client requests and instantiates the application server using COM. The

AS_GetProviderNames method Used to identify all available
providers.

Used to create a design-time list
for ProviderName property.

AS_GetRecords method GetRecords method,
BeforeGetRecords event,
AfterGetRecords event

GetNextPacket method,
Data property,
BeforeGetRecords event,
AfterGetRecords event

AS_RowRequest method RowRequest method,
BeforeRowRequest event,
AfterRowRequest event

FetchBlobs method,
FetchDetails method,
RefreshRecord method,
BeforeRowRequest event,
AfterRowRequest event

Table 15.3 AppServer interface members (continued)

IAppServer Provider component TClientDataSet

15-10 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g M I D A S t e c h n o l o g y

connection component on the client and ScktSrvr.exe on the server are responsible
for marshaling IAppServer calls.

Note ScktSrvr.exe can run as an NT service application. Register it with the Service
manager by starting it using the -install command line option. You can unregister it
using the -uninstall command line option.

Before you can use a socket connection, the application server must register its
availability to clients using a socket connection. By default, all new remote data
modules automatically register themselves via the TRemoteDataModuleRegistrar
object in the UpdateRegistry method of the implementation object. You can prevent
this registration by setting that object’s EnableSocket property to false.

Note Because older servers did not add this registration, you can disable the check for
whether an application server is registered by unchecking the
Connections|Registered Objects Only menu item on ScktSrvr.exe.

When using sockets, there is no protection on the server against client systems failing
before they release a reference to interfaces on the application server. While this
results in less message traffic than when using DCOM (which sends periodic
keep-alive messages), this can result in an application server that can’t release its
resources because it is unaware that the client has gone away.

Using Web connections
HTTP lets you create clients that can communicate with an application server that is
protected by a “firewall”. HTTP messages provide controlled access to internal
applications so that you can distribute your client applications safely and widely.
Like Socket connections, HTTP messages provide a lowest common denominator
that you know will be available for connecting to the application server. For more
information about HTTP messages, see Chapter 30, “Creating Internet server
applications.”

Instead of instantiating the remote data module directly from the client (as happens
with DCOM), HTTP-based connections use a Web server application on the server
(httpsrvr.dll) that accepts client requests and instantiates the application server using
COM. Because of this, they are also called Web connections. The connection
component on the client and httpsrvr.dll on the server are responsible for marshaling
IAppServer calls.

Web connections can take advantage of the SSL security provided by wininet.dll (a
library of internet utilities that runs on the client system). Once you have configured
the Web server on the server system to require authentication, you can specify the
user name and password using the properties of the Web connection component.

As an additional security measure, the application server must register its availability
to clients using a Web connection. By default, all new remote data modules
automatically register themselves via the TRemoteDataModuleRegistrar object in the
UpdateRegistry method of the implementation object. You can prevent this
registration by setting that object’s EnableWeb property to false.

Web connections can take advantage of object pooling. This allows your server to
create a limited pool of application server instances that are available for client
requests. By pooling the application servers, your server does not consume the

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-11

B u i l d i n g a m u l t i - t i e r e d a p p l i c a t i o n

resources for the data module and its database connection except when they are
needed. For more information on object pooling, see “Pooling remote data modules”
on page 15-7.

Unlike other connection components, you can’t use callbacks when the connection is
formed via HTTP.

Building a multi-tiered application
The general steps for creating a multi-tiered database application are

1 Create the application server.

2 Register or install the application server.

• If the application server uses DCOM, HTTP, or sockets as a communication
protocol, it acts as an Automation server and must be registered like any other r
COM server. For information about registering an application, see “Registering
a COM object” on page 35-16.

• If you are using a transactional data module, you do not register the application
server. Instead, you install it with MTS or COM+. For information about
installing transactional objects, see “Installing transactional objects” on
page 38-24.

3 Create a client application.

The order of creation is important. You should create and run the application server
before you create a client. At design time, you can then connect to the application
server to test your client. You can, of course, create a client without specifying the
application server at design time, and only supply the server name at runtime.
However, doing so prevents you from seeing if your application works as expected
when you code at design time, and you will not be able to choose servers and
providers using the Object Inspector.

Note If you are not creating the client application on the same system as the server, and
you are not using a Web connection or socket connection, you may want to register
or install the application server on the client system. This makes the connection
component aware of the application server at design time so that you can choose
server names and provider names from a drop-down list in the Object Inspector. (If
you are using a Web connection or socket connection, the connection component
fetches the names of registered servers from the server machine.)

Creating the application server
You create an application server very much as you create most database applications.
The major difference is that the application server includes a dataset provider.

15-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

To create an application server, start a new project, save it, and follow these steps:

1 Add a new remote data module to the project. From the main menu, choose
File|New. Choose the Multitier page in the new items dialog, and select

• Remote Data Module if you are creating a COM Automation server that clients
access using DCOM, HTTP, or sockets.

• Transactional Data Module if you are creating a remote data module that runs
under MTS or COM+. Connections can be formed using DCOM, HTTP, or
sockets. However, only DCOM supports the security services.

For more detailed information about setting up a remote data module, see “Setting
up the remote data module” on page 15-13.

Note When you add a remote data module to your project, the Wizard also creates a
special COM Automation object that contains a reference to the remote data
module and uses it to look for providers. This object is called the implementation
object.

2 Place the appropriate dataset components on the data module and set them up to
access the database server.

3 Place a TDataSetProvider component on the data module for each dataset. This
provider is required for brokering client requests and packaging data.

4 Set the DataSet property for each provider component to the name of the dataset to
access. There are additional properties that you can set for the provider. For more
detailed information about setting up a provider, see Chapter 16, “Using provider
components.”

5 Write application server code to implement events, shared business rules, shared
data validation, and shared security. You may want to extend the application
server’s interface to provide additional ways that the client application can call the
server. For more information about extending the application server’s interface,
see “Extending the application server’s interface” on page 15-15.

6 Save, compile, and register or install the application server.

• When the application server uses DCOM, HTTP, or sockets as a communication
protocol, it acts as an Automation server and must be registered like any other
ActiveX or COM server. For information about registering an application, see
“Registering a COM object” on page 35-16.

• If you are using a transactional data module, you do not register the application
server. Instead, you install it with MTS or COM+. For information about
installing transactional objects, see “Installing transactional objects” on
page 38-24.

7 If your server application does not use DCOM, you must install the runtime
software that receives client messages, instantiates the remote data module, and
marshals interface calls.

• For TCP/IP sockets this is a socket dispatcher application, Scktsrvr.exe.

• For HTTP connections this is httpsrvr.dll, an ISAPI/NSAPI DLL that must be
installed with your Web server.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-13

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

Setting up the remote data module

When you set up and run an application server, it does not establish any connection
with client applications. Instead, connection is maintained by client applications. The
client application uses its connection component to establish a connection to the
application server, which it uses to communicate with its selected provider. All of
this happens automatically, without your having to write code to manage incoming
requests or supply interfaces.

When you create the remote data module, you must provide certain information that
indicates how it responds to client requests. This information varies, depending on
whether your remote data module is transactional.

Configuring the remote data module when it is not transactional
To add a remote data module to your application without including transactional
attributes, choose File|New and select Remote Data Module from the Multitier page
of the new items dialog. You will see the Remote Data Module wizard.

You must supply a class name for your remote data module. This is the base name of
a descendant of TCRemoteDataModule that your application creates. It is also the base
name of the application server’s interface. For example, if you specify the class name
MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TCRemoteDataModule. In the unit header, the Wizard also declares a the
implementation class (TMyDataServerImpl) that implements IMyDataServer, a
descendant of IAppServer.

Note You can add your own properties and methods to the new interface. For more
information, see “Extending the application server’s interface” on page 15-15.

You must specify the threading model in the Remote Data Module wizard. You can
choose Single-threaded, Apartment-threaded, Free-threaded, or Both.

• If you choose Single-threaded, COM ensures that only one client request is
serviced at a time. You do not need to worry about client requests interfering with
each other.

• If you choose Apartment-threaded, COM ensures that any instance of your remote
data module services one request at a time. When writing code in an
Apartment-threaded library, you must guard against thread conflicts if you use
global variables or objects not contained in the remote data module. This is the
recommended model if you are using BDE-enabled datasets. (Note that you will
need a session component with its AutoSessionName property set to true to handle
threading issues on BDE-enabled datasets)

• If you choose Free-threaded, your application can receive simultaneous client
requests on several threads. You are responsible for ensuring your application is
thread-safe. Because multiple clients can access your remote data module
simultaneously, you must guard your instance data (properties, contained objects,
and so on) as well as global variables. This is the recommended model if you are
using ADO datasets.

15-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

• If you choose Both, your library works the same as when you choose
Free-threaded, with one exception: all callbacks (calls to client interfaces) are
serialized for you.

• If you choose Neutral, the remote data module can receive simultaneous calls on
separate threads, as in the Free-threaded model, but COM guarantees that no two
threads access the same method at the same time.

Configuring a transactional remote data module
To add a remote data module to your application when you will be using MTS or
COM+, choose File|New and select Transactional Data Module from the Multitier
page of the new items dialog. You will see the Transactional Data Module wizard.

You must supply a class name for your remote data module. This is the base name of
a descendant of TCRemoteDataModule that your application creates. It is also the base
name of the application server’s interface. For example, if you specify the class name
MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TCRemoteDataModule. In the unit header, the Wizard also declares the
implementation class (TMyDataServerImpl) that implements both IMyDataServer (a
descendant of IAppServer) and IObjectControl (which is required of all transactional
objects). TMyDataServerImpl includes a data member for the IObjectContext interface,
which you can use to manage transactions, check security, and so on.

Note You can add your own properties and methods to your new interface. For more
information, see “Extending the application server’s interface” on page 15-15.

You must specify the threading model in the Transactional Data Module wizard.
Choose Single, Apartment, or Both.

• If you choose Single, client requests are serialized so that your application services
only one at a time. You do not need to worry about client requests interfering with
each other.

• If you choose Apartment, the system ensures that any instance of your remote
data module services one request at a time, and calls always use the same thread.
You must guard against thread conflicts if you use global variables or objects not
contained in the remote data module. Instead of using global variables, you can
use the shared property manager. For more information on the shared property
manager, see “Shared property manager” on page 38-6.

• If you choose Both, MTS calls into the application server’s interface in the same
way as when you choose Apartment. However, any callbacks you make to client
applications are serialized, so that you don’t need to worry about them interfering
with each other.

Note The Apartment model under MTS or COM+ is different from the corresponding
model under DCOM.

You must also specify the transaction attributes of your remote data module. You can
choose from the following options:

• Requires a transaction. When you select this option, every time a client uses your
application server’s interface, that call is executed in the context of a transaction. If
the caller supplies a transaction, a new transaction need not be created.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-15

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

• Requires a new transaction. When you select this option, every time a client uses
your application server’s interface, a new transaction is automatically created for
that call.

• Supports transactions. When you select this option, your application server can be
used in the context of a transaction, but the caller must supply the transaction
when it invokes the interface.

• Does not support transactions. When you select this option, your application
server can’t be used in the context of transactions.

Creating a data provider for the application server

Each remote data module on an application server contains one or more provider
components. Each client dataset uses a specific provider, which acts as the bridge
between the client dataset and the data it represents. A provider component
(TDataSetProvider) takes care of packaging data into data packets that it sends to
clients and applying updates received from the client.

Most of the data logic in the application server is handled by the provider
components contained in the remote data module. Event handlers that respond to
client requests implement your business and data logic, while properties on the
provider component control what information is included in data packets. See
Chapter 16, “Using provider components” for details on how to use a provider
component to control the interaction with client applications.

Extending the application server’s interface

Client applications interact with the application server by creating or connecting to
the implementation class that was created by the data module Wizard. They use its
interface as the basis of all communication with the application server.

You can add to your implementation class’s interface to provide additional support
for your client applications. This interface is a descendant of IAppServer and is
created for you automatically by the wizard when you create the remote data
module.

To add to the implementation class’s interface, use the type library editor. For more
information about using the type library editor, see Chapter 33, “Working with type
libraries.”

 When you add to a COM interface, your changes are added to your unit source code
and the type library file (.TLB).

Note You must explicitly save the TLB file by choosing Refresh in the type library editor
and then saving the changes from the IDE.

Once you have added to your implementation class’s interface, locate the properties
and methods that were added to your implementation class. Add code to finish this
implementation by filling in the bodies of the new methods.

15-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Client applications call your interface extensions using the AppServer property of
their connection component. For more information on how to do this, see “Calling
server interfaces” on page 15-21.

Adding callbacks to the application server’s interface
You can allow the application server to call your client application by introducing a
callback. To do this, the client application passes an interface to one of the application
server’s methods, and the application server later calls this method as needed.
However, if your extensions to the implementation class’s interface include callbacks,
you can’t use an HTTP-based connection. TWebConnection does not support
callbacks. If you are using a socket-based connection, client applications must
indicate whether they are using callbacks by setting the SupportCallbacks property.
All other types of connection automatically support callbacks.

Extending a transactional application server’s interface
When using transactions or just-in-time activation, you must be sure all new methods
call the IObjectContext’s SetComplete method to indicate when they are finished. This
allows transactions to complete and permits the application server to be deactivated.

Furthermore, you can’t return any values from your new methods that allow the
client to communicate directly with objects or interfaces on the application server
unless they provide a safe reference. If you are using a stateless MTS data module,
neglecting to use a safe reference can lead to crashes because you can’t guarantee that
the remote data module is active. For more information on safe references, see
“Passing object references” on page 38-22.

Creating the client application
In most regards, creating a multi-tiered client application is similar to creating a
traditional two-tiered client. The major differences are that a multi-tiered client uses

• A connection component to establish a conduit to the application server.

• One or more TClientDataSet components to link to a data provider on the
application server. Data-aware controls on the client are connected through data
source components to these client datasets instead of TTable, TQuery, TStoredProc
or TADODataSet components.

To create a multi-tiered client application, start a new project and follow these steps:

1 Add a new data module to the project.

2 Place a connection component on the data module. The type of connection
component you add depends on the communication protocol you want to use. See
“The structure of the client application” on page 15-4 for details.

3 Set properties on your connection component to specify the application server
with which it should establish a connection. To learn more about setting up the
connection component, see “Connecting to the application server” on page 15-17.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-17

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

4 Set the other connection component properties as needed for your application. For
example, you might set the ObjectBroker property to allow the connection
component to choose dynamically from several servers. For more information
about using the connection components, see “Managing server connections” on
page 15-20.

5 Place as many TClientDataSet components as needed on the data module, and set
the RemoteServer property for each component to the name of the connection
component you placed in Step 2. For a full introduction to client datasets, see
Chapter 25, “Creating and using a client dataset.”

6 Set the ProviderName property for each TClientDataSet component. If your
connection component is connected to the application server at design time, you
can choose available application server providers from the ProviderName
property’s drop-down list.

7 Create the client application in much the same way you would create any other
database application. You will probably want to use some of the special features of
client datasets that support their interaction with the provider components on the
application server. These are described in “Using a client dataset with a data
provider” on page 25-14.

Connecting to the application server

To establish and maintain a connection to an application server, a client application
uses one or more connection components. You can find these components on the
MIDAS page of the Component palette.

Use a connection component to

• Identify the protocol for communicating with the application server. Each type of
connection component represents a different communication protocol. See
“Choosing a connection protocol” on page 15-9 for details on the benefits and
limitations of the available protocols.

• Indicate how to locate the server machine. The details of identifying the server
machine vary depending on the protocol.

• Identify the application server on the server machine using the ServerName or
ServerGUID property. ServerName identifies the base name of the class you specify
when creating the remote data module on the application server. See “Setting up
the remote data module” on page 15-13 for details on how this value is specified
on the server. If the server is registered or installed on the client machine, or if the
connection component is connected to the server machine, you can set the
ServerName property at design time by choosing from a drop-down list in the
Object Inspector. ServerGUID specifies the GUID of the remote data module’s
interface. You can look up this value using the type library editor.

• Manage server connections. Connection components can be used to create or drop
connections and to call application server interfaces.

Usually the application server is on a different machine from the client application,
but even if the server resides on the same machine as the client application (for

15-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

example, during the building and testing of the entire multi-tier application), you can
still use the connection component to identify the application server by name, specify
a server machine, and use the application server interface.

Specifying a connection using DCOM
When using DCOM to communicate with the application server, client applications
include a TDCOMConnection component for connecting to the application server.
TDCOMConnection uses the ComputerName property to identify the machine on
which the server resides.

When ComputerName is blank, the DCOM connection component assumes that the
application server resides on the client machine or that the application server has a
system registry entry. If you do not provide a system registry entry for the
application server on the client when using DCOM, and the server resides on a
different machine from the client, you must supply ComputerName.

Note Even when there is a system registry entry for the application server, you can specify
ComputerName to override this entry. This can be especially useful during
development, testing, and debugging.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for ComputerName. For more
information, see “Brokering connections” on page 15-19.

If you supply the name of a host computer or server that cannot be found, the DCOM
connection component throws an exception when you try to open the connection.

Specifying a connection using sockets
You can establish a connection to the application server using sockets from any
machine that has a TCP/IP address. This method has the advantage of being
applicable to more machines, but does not provide for using any security protocols.
When using sockets, include a TSocketConnection component for connecting to the
application server.

TSocketConnection identifies the server machine using the IP Address or host name of
the server system, and the port number of the socket dispatcher program
(Scktsrvr.exe) that is running on the server machine. For more information about IP
addresses and port values, see “Describing sockets” on page 31-3.

Three properties of TSocketConnection specify this information:

• Address specifies the IP Address of the server.

• Host specifies the host name of the server.

• Port specifies the port number of the socket dispatcher program on the application
server.

Address and Host are mutually exclusive. Setting one unsets the value of the other.
For information on which one to use, see “Describing the host” on page 31-4.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for Address or Host. For more
information, see “Brokering connections” on page 15-19.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-19

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

By default, the value of Port is 211, which is the default port number of the socket
dispatcher programs supplied with C++Builder. If the socket dispatcher has been
configured to use a different port, set the Port property to match that value.

Note You can configure the port of the socket dispatcher while it is running by
right-clicking the Borland Socket Server tray icon and choosing Properties.

Although socket connections do not provide for using security protocols, you can
customize the socket connection to add your own encryption. To do this, create and
register a COM object that supports the IDataIntercept interface. This is an interface
for encrypting and decrypting data. Next, set the InterceptGUID property of the
socket connection component to the GUID for this COM object. Finally, right click the
Borland Socket Server tray icon, choose Properties, and on the properties tab set the
Intercept GUID to the same GUID. This mechanism can also be used for data
compression and decompression.

Specifying a connection using HTTP
You can establish a connection to the application server using HTTP from any
machine that has a TCP/IP address. Unlike sockets, however, HTTP allows you to
take advantage of SSL security and to communicate with a server that is protected
behind a firewall. When using HTTP, include a TWebConnection component for
connecting to the application server.

The Web connection component establishes a connection to the Web server
application (httpsrvr.dll), which in turn communicates with the application server.
TWebConnection locates httpsrvr.dll using a Uniform Resource Locator (URL). The
URL specifies the protocol (http or, if you are using SSL security, https), the host
name for the machine that runs the Web server and httpsrvr.dll, and the path to the
Web server application (Httpsrvr.dll). Specify this value using the URL property.

Note When using TWebConnection, wininet.dll must be installed on the client machine. If
you have IE3 or higher installed, wininet.dll can be found in the Windows system
directory.

If the Web server requires authentication, or if you are using a proxy server that
requires authentication, you must set the values of the UserName and Password
properties so that the connection component can log on.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for URL. For more
information, see “Brokering connections” on page 15-19.

Brokering connections
If you have multiple servers that your client application can choose from, you can use
an Object Broker to locate an available server system. The object broker maintains a
list of servers from which the connection component can choose. When the
connection component needs to connect to an application server, it asks the Object
Broker for a computer name (or IP address, host name, or URL). The broker supplies
a name, and the connection component forms a connection. If the supplied name
does not work (for example, if the server is down), the broker supplies another name,
and so on, until a connection is formed.

15-20 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Once the connection component has formed a connection with a name supplied by
the broker, it saves that name as the value of the appropriate property
(ComputerName, Address, Host, RemoteHost, or URL). If the connection component
closes the connection later, and then needs to reopen the connection, it tries using this
property value, and only requests a new name from the broker if the connection fails.

Use an Object Broker by specifying the ObjectBroker property of your connection
component. When the ObjectBroker property is set, the connection component does
not save the value of ComputerName, Address, Host, RemoteHost, or URL to disk.

Managing server connections

The main purpose of connection components is to locate and connect to the
application server. Because they manage server connections, you can also use
connection components to call the methods of the application server’s interface.

Connecting to the server
To locate and connect to the application server, you must first set the properties of
the connection component to identify the application server. This process is
described in “Connecting to the application server” on page 15-17. In addition, before
opening the connection, any client datasets that use the connection component to
communicate with the application server should indicate this by setting their
RemoteServer property to specify the connection component.

The connection is opened automatically when client datasets try to access the
application server. For example, setting the Active property of the client dataset to
true opens the connection, as long as the RemoteServer property has been set.

If you do not link any client datasets to the connection component, you can open the
connection by setting the Connected property of the connection component to true.

Before a connection component establishes a connection to an application server, it
generates a BeforeConnect event. You can perform any special actions prior to
connecting in a BeforeConnect handler that you code. After establishing a connection,
the connection component generates an AfterConnect event for any special actions.

Dropping or changing a server connection
A connection component drops a connection to the application server when you

• set the Connected property to false.

• free the connection component. A connection object is automatically freed when a
user closes the client application.

• change any of the properties that identify the application server (ServerName,
ServerGUID, ComputerName, and so on). Changing these properties allows you to
switch among available application servers at runtime. The connection component
drops the current connection and establishes a new one.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-21

M a n a g i n g t r a n s a c t i o n s i n m u l t i - t i e r e d a p p l i c a t i o n s

Note Instead of using a single connection component to switch among available
application servers, a client application can instead have more than one connection
component, each of which is connected to a different application server.

Before a connection component drops a connection, it automatically calls its
BeforeDisconnect event handler, if one is provided. To perform any special actions
prior to disconnecting, write a BeforeDisconnect handler. Similarly, after dropping the
connection, the AfterDisconnect event handler is called. If you want to perform any
special actions after disconnecting, write an AfterDisconnect handler.

Calling server interfaces

Applications do not need to call the IAppServer interface directly because the
appropriate calls are made automatically when you use the properties and methods
of the client dataset. However, while it is not necessary to work directly with the
IAppServer interface, you may have added your own extensions to the application
server’s interface. When you extend the application server’s interface, you need a
way to call those extensions using the connection created by your connection
component. You can do this using the AppServer property of the connection
component. For more information about extending the application server’s interface,
see “Extending the application server’s interface” on page 15-15.

AppServer is a Variant that represents the application server’s interface. To call this
interface, you must obtain a dispatch interface from this Variant. The dispatch
interface has the same name as the interface that was created when you created the
remote data module, but with the string “Disp” appended. Thus, if your remote data
module is called MyAppServer, you can use AppServer to call its interface as follows:

IDispatch* disp = (IDispath*)(MyConnection->AppServer)
IMyAppServerDisp TempInterface((IMyAppServer*)disp);
TempInterface.SpecialMethod(x,y);

Note The dispatch interface is declared in the _TLB.h file generated by the Type Library
editor.

Managing transactions in multi-tiered applications
When client applications apply updates to the application server, the provider
component automatically wraps the process of applying updates and resolving
errors in a transaction. This transaction is committed if the number of problem
records does not exceed the MaxErrors value specified as an argument to the
ApplyUpdates method. Otherwise, it is rolled back.

In addition, you can add transaction support to your server application by adding a
database component or using passthrough SQL. This works the same way that you
would manage transactions in a two-tiered application. For more information about
this sort of transaction control, see “Using transactions” on page 14-5 and “Working
with (connection) transactions” on page 24-10.

15-22 D e v e l o p e r ’ s G u i d e

S u p p o r t i n g m a s t e r / d e t a i l r e l a t i o n s h i p s

If you have a transactional data module, you can broaden your transaction support
by using MTS or COM+ transactions. These transactions can include any of the
business logic on your application server, not just the database access. In addition,
because they support two-phase commits, they can span multiple databases.

Only the BDE- and ADO-based data access components support two-phase commit.
Do not use InterbaseExpress components if you want to have transactions that span
multiple databases.

Warning When using the BDE, two-phase commit is fully implemented only on Oracle7 and
MS-SQL databases. If your transaction involves multiple databases, and some of
them are remote servers other than Oracle7 or MS-SQL, your transaction runs a small
risk of only partially succeeding. Within any one database, however, you will always
have transaction support.

By default, all IAppServer calls on a transactional data module are transactional. You
need only set the transaction attribute of your data module to indicate that it must
participate in transactions. In addition, you can extend the application server’s
interface to include method calls that encapsulate transactions that you define.

If your transaction attribute indicates that the application server requires a
transaction, then every time a client calls a method on its interface, it is automatically
wrapped in a transaction. All client calls to your application server are then enlisted
in that transaction until you indicate that the transaction is complete. These calls
either succeed as a whole or are rolled back.

Note Do not combine MTS or COM+ transactions with explicit transactions created by a
database or ADO connection component or using passthrough SQL. When your
transactional data module is enlisted in a transaction, it automatically enlists all of
your database calls in the transaction as well.

For more information about using MTS and COM+ transactions, see “MTS and
COM+ transaction support” on page 38-9.

Supporting master/detail relationships
You can create master/detail relationships between client datasets in your client
application in the same way you set up master/detail forms in one- and two-tiered
applications. For more information about setting up master/detail forms, see
“Creating master/detail forms” on page 21-25.

However, this approach has two major drawbacks:

• The detail table must fetch and store all of its records from the application server
even though it only uses one detail set at a time. This problem can be mitigated by
using parameters. For more information, see “Limiting records with parameters”
on page 25-16.

• It is very difficult to apply updates, because client datasets apply updates at the
dataset level and master/detail updates span multiple datasets. Even in a
two-tiered environment, where you can use the database to apply updates for
multiple tables in a single transaction, applying updates in master/detail forms is

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-23

S u p p o r t i n g s t a t e i n f o r m a t i o n i n r e m o t e d a t a m o d u l e s

tricky. See “Applying updates for master/detail tables” on page 26-6 for more
information on applying updates in traditional master/detail forms.

In multi-tiered applications, you can avoid these problems by using nested tables to
represent the master/detail relationship. To do this, set up a master/detail
relationship between the tables on the application server. Then set the DataSet
property of your provider component to the master table.

When clients call the GetRecords method of the provider, it automatically includes the
detail datasets as a DataSet field in the records of the data packet. When clients call
the ApplyUpdates method of the provider, it automatically handles applying updates
in the proper order.

See “Representing master/detail relationships” on page 25-3 for more information
on using nested datasets to support master/detail relationships in client datasets.

Supporting state information in remote data modules
The IAppServer interface, which controls all communication between client datasets
and providers on the application server, is mostly stateless. When an application is
stateless, it does not “remember” anything that happened in previous calls by the
client. This stateless quality is useful if you are pooling database connections in a
transactional data module, because your application server does not need to
distinguish between database connections for persistent information such as record
currency. Similarly, this stateless quality is important when you are sharing remote
data module instances between many clients, as occurs with just-in-time activation or
object pooling.

However, there are times when you want to maintain state information between calls
to the application server. For example, when requesting data using incremental
fetching, the provider on the application server must “remember” information from
previous calls (the current record).

This is not a problem if the remote data module is configured so that each client has
its own instance. When each client has its own instance of the remote data module,
there are no other clients to change the state of the data module between client calls.

However, it is reasonable to want the benefits of sharing remote data module
instances while still managing persistent state information. For example, you may
need to use incremental fetching to display a dataset that is too large to fit in memory
at one time.

Before and after any calls to the IAppServer interface that the client dataset sends to
the application server (AS_ApplyUpdates, AS_Execute, AS_GetParams, AS_GetRecords,
or AS_RowRequest), it receives an event where it can send or retrieve custom state
information. Similarly, before and after providers respond to these client-generated
calls, they receive events where they can retrieve or send custom state information.
Using this mechanism, you can communicate persistent state information between
client applications and the application server, even if the application server is

15-24 D e v e l o p e r ’ s G u i d e

W r i t i n g M I D A S W e b a p p l i c a t i o n s

stateless. For example, to enable incremental fetching in a stateless application server,
you can do the following:

• Use the client dataset’s BeforeGetRecords event to send the key value of the last
record to the application server:

TDataModule1::ClientDataSet1BeforeGetRecords(TObject *Sender; OleVariant &OwnerData)
{

TClientDataSet *pDS = (TClientDataSet *)Sender;
if (!pDS->Active)

return;
void *CurRecord = pDS->GetBookmark(); // save current record
try
{
// locate the last record in the current packet. Note this only works if FetchOnDemand
// is False. If FetchOnDemand is True, you can save the key value of the last record
// fetch in an AfterGetRecords event handler and use that instead
pDS->Last(); // locate the last record in the new packet
OwnerData = pDS->FieldValues["Key"]; // Send key value for the last record to app server
pDS->GotoBookmark(CurRecord); // return to current record

}
__finally
{

pDS->FreeBookmark(CurRecord);
}

}

• On the server, use the provider’s BeforeGetRecords event to locate the appropriate
set of records:

TRemoteDataModule1::Provider1BeforeGetRecords(TObject *Sender, OleVarient &OwnerData)
{

TLocateOptions opts;
if (!VarIsEmpty(OwnerData))
{

TDataSet *pDS = ((TDataSetProvider *)Sender)->DataSet;
if (pDS->Locate("Key", OwnerData, opts))
pDS->Next;

}

Note The previous example uses a key value to mark the end of the record set rather than a
bookmark. This is because bookmarks may not be valid between IAppServer calls if
the server application pools database handles.

Writing MIDAS Web applications
If you want to create Web-based clients for your multi-tiered database application,
you must replace the client tier with a special Web applications that acts
simultaneously as a client to the application server and as a Web server application
that is installed with a Web server on the same machine. This architecture is
illustrated in Figure 15.1.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-25

W r i t i n g M I D A S W e b a p p l i c a t i o n s

Figure 15.1 Web-based multi-tiered database application

There are two approaches that you can take to build the MIDAS Web application:

• You can combine the MIDAS architecture with C++Builder’s ActiveX support to
distribute a MIDAS client application as an ActiveX control. This allows any
browser that supports ActiveX to run your client application as an in-process
server.

• You can use XML data packets to build an InternetExpress application. This allows
browsers that supports javascript to interact with your client application through
html pages.

These two approaches are very different. Which one you choose depends on the
following considerations:

• Each approach relies on a different technology (ActiveX vs. javascript and XML).
Consider what systems your end-users will use. The first approach requires a
browser to support ActiveX (which limits clients to a Windows platform). The
second approach requires a browser to support javascript and the DHTML
capabilities introduced by Netscape 4 and Internet Explorer 4.

• ActiveX controls must be downloaded to the browser to act as an in-process
server. As a result, the clients using an ActiveX approach require much more
memory than the clients of an html-based application.

• The InternetExpress approach can be integrated with other HTML pages. An
ActiveX client must run in a separate window.

• The InternetExpress approach uses standard HTTP, thereby avoiding any firewall
issues that confront an ActiveX application.

• The ActiveX approach provides greater flexibility in how you program your
application. You are not limited by the capabilities of the javascript libraries. The
client datasets used in the ActiveX approach surface more features (such as filters,
ranges, aggregation, optional parameters, delayed fetching of BLOBs or nested
details, and so on) than the XML brokers used in the InternetExpress approach.

Caution Your Web client application may look and act differently when viewed from
different browsers. Test your application with the browsers you expect your
end-users to use.

B ro wser

Ap p licat io n
S erver

M I D AS
W eb

Ap p licat io n

W eb
S erver remo te

d atab ase

15-26 D e v e l o p e r ’ s G u i d e

W r i t i n g M I D A S W e b a p p l i c a t i o n s

Distributing a client application as an ActiveX control

The MIDAS architecture can be combined with C++Builder’s ActiveX features to
distribute a MIDAS client application as an ActiveX control.

When you distribute your client application as an ActiveX control, create the
application server as you would for any other multi-tiered application. For details on
creating the application server, see “Creating the application server” on page 15-11.

When creating the client application, you must use an Active Form as the basis
instead of an ordinary form. See “Creating an Active Form for the client application,”
below, for details.

Once you have built and deployed your client application, it can be accessed from
any ActiveX-enabled Web browser on another machine. For a Web browser to
successfully launch your client application, the Web server must be running on the
machine that has the client application.

If the client application uses DCOM to communicate between the client application
and the application server, the machine with the Web browser must be enabled to
work with DCOM. If the machine with the Web browser is a Windows 95 machine, it
must have installed DCOM95, which is available from Microsoft.

Creating an Active Form for the client application
1 Because the client application will be deployed as an ActiveX control, you must

have a Web server that runs on the same system as the client application. You can
use a ready-made server such as Microsoft’s Personal Web server or you can write
your own using the socket components described in Chapter 31, “Working with
sockets.”

2 Create the client application following the steps described in “Creating the client
application” on page 15-16, except start by choosing File|New|Active Form,
rather than beginning the client project as an ordinary C++Builder project.

3 If your client application uses a data module, add a call to explicitly create the data
module in the active form initialization.

4 When your client application is finished, compile the project, and select Project |
Web Deployment Options. In the Web Deployment Options dialog, you must do
the following:

1 On the Project page, specify the Target directory, the URL for the target
directory, and the HTML directory. Typically, the Target directory and the
HTML directory will be the same as the projects directory for your Web Server.
The target URL is typically the name of the server machine that is specified in
the Windows Network|DNS settings.

2 On the Additional Files page, include midas.dll with your client application.

5 Finally, select Project|WebDeploy to deploy the client application as an active
form.

Any Web browser that can run Active forms can run your client application by
specifying the .HTM file that was created when you deployed the client application.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-27

W r i t i n g M I D A S W e b a p p l i c a t i o n s

This .HTM file has the same name as your client application project, and appears in
the directory specified as the Target directory.

Building Web applications using InternetExpress

MIDAS clients can request that the application server provide data packets that are
coded in XML instead of OleVariants. By combining XML-coded data packets,
special javascript libraries of database functions, and C++Builder’s Web server
application support, you can create thin client applications that can be accessed using
a Web browser that supports javascript. These applications make up C++Builder’s
InternetExpress support.

Before building an InternetExpress application, you should understand C++Builder’s
Web server application architecture. This is described in Chapter 30, “Creating
Internet server applications.”

On the InternetExpress page of the component palette, you can find a set of
components that extend this Web server application architecture to act as a MIDAS
client. Using these components, the Web application generates HTML pages that
contain a mixture of HTML, XML, and javascript. The HTML governs the layout and
appearance of the pages seen by end users in their browsers. The XML encodes the
data packets and delta packets that represent database information. The javascript
allows the HTML controls to interpret and manipulate the data in these XML data
packets.

If the InternetExpress application uses DCOM to connect to the application server,
you must take additional steps to ensure that the application server grants access and
launch permissions to its clients. See “Granting permission to access and launch the
application server” on page 15-29 for details.

Tip You can use the components on the InternetExpress page to build Web server
applications with “live” data even if you do not have an application server. Simply
add the provider and its dataset to the Web module.

Building an InternetExpress application
The following steps describe how to build a Web application that creates HTML
pages for allowing users to interact with the data from an application server via a
javascript-enabled Web browser.

1 Choose File|New to display the New Items dialog box, and on the New page
select Web Server application. This process is described in “Creating Web server
applications” on page 30-6.

2 From the MIDAS page of the component palette, add a connection component to
the Web Module that appears when you create a new Web server application. The
type of connection component you add depends on the communication protocol
you want to use. See “Choosing a connection protocol” on page 15-9 for details.

3 Set properties on your connection component to specify the application server
with which it should establish a connection. To learn more about setting up the
connection component, see “Connecting to the application server” on page 15-17.

15-28 D e v e l o p e r ’ s G u i d e

W r i t i n g M I D A S W e b a p p l i c a t i o n s

4 Instead of a client dataset, add an XML broker from the InternetExpress page of
the component palette to the Web module. Like TClientDataSet, TXMLBroker
represents the data from a provider on the application server and interacts with
the application server through its IAppServer interface. However, unlike client
datasets, XML brokers request data packets as XML instead of as OleVariants and
interact with InternetExpress components instead of data controls.

5 Set the RemoteServer property of the XML broker to point to the connection
component you added in step 2. Set the ProviderName property to indicate the
provider on the application server that provides data and applies updates. For
more information about setting up the XML broker, see “Using an XML broker”
on page 15-30.

6 Add a MIDAS page producer to the Web module for each separate page that users
will see in their browsers. For each MIDAS page producer, you must set the
IncludePathURL property to indicate where it can find the javascript libraries that
augment its generated HTML controls with data management capabilities.

7 Right-click a Web page and choose Action Editor to display the Action editor. Add
action items for every message you want to handle from browsers. Associate the
page producers you added in step 6 with these actions by setting their Producer
property or writing code in an OnAction event handler. For more information on
adding action items using the Action editor, see “Adding actions to the
dispatcher” on page 30-9.

8 Double-click each Web page to display the Web Page editor. (You can also display
this editor by clicking the ellipses button in the Object Inspector next to the
WebPageItems property.) In this editor you can add Web Items to design the pages
that users see in their browsers. For more information about designing Web pages
for your InternetExpress application, see “Creating Web pages with a MIDAS
page producer” on page 15-32.

9 Build your Web application. Once you install this application with your Web
server, browsers can call it by specifying the name of the application as the
scriptname portion of the URL and the name of the Web Page component as the
pathinfo portion.

Using the javascript libraries
The HTML pages generated by the InternetExpress components and the Web items
they contain make use of several javascript libraries that ship with C++Builder:

Table 15.4 Javascript libraries

Library Description

xmldom.js This library is a DOM-compatible XML parser written in javascript. It allows
parsers that do not support XML to use XML data packets. Note that this does
not include support for XML Islands, which are supported by IE5 and later.

xmldb.js This library defines data access classes that manage XML data packets and
XML delta packets.

xmldisp.js This library defines classes that associate the data access classes in xmldb with
HTML controls in the HTML page.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-29

W r i t i n g M I D A S W e b a p p l i c a t i o n s

These libraries can be found in the Source/Webmidas directory. Once you have
installed these libraries, you must set the IncludePathURL property of all MIDAS page
producers to indicate where they can be found.

It is possible to write your own HTML pages using the javascript classes provided in
these libraries instead of using Web items to generate your Web pages. However, you
must ensure that your code does not do anything illegal, as these classes include
minimal error checking (so as to minimize the size of the generated Web pages).

The classes in the javascript libraries are an evolving standard, and are updated
regularly. If you want to use them directly rather than relying on Web items to
generate the javascript code, you can get the latest versions and documentation of
how to use them from CodeCentral available through community.borland.com.

Granting permission to access and launch the application server
Requests from the InternetExpress application appear to the application server as
originating from a guest account with the name IUSR_computername, where
computername is the name of the system running the Web application. By default,
this account does not have access or launch permission for the application server. If
you try to use the Web application without granting these permissions, when the
Web browser tries to load the requested page it times out with EOLE_ACCESS_ERROR.

Note Because the application server runs under this guest account, it can’t be shut down
by other accounts.

To grant the Web application access and launch permissions, run DCOMCnfg.exe,
which is located in the System32 directory of the machine that runs the application
server. The following steps describe how to configure your application server:

1 When you run DCOMCnfg, select your application server in the list of
applications on the Applications page.

2 Click the Properties button. When the dialog changes, select the Security page.

3 Select Use Custom Access Permissions, and press the Edit button. Add the name
IUSR_computername to the list of accounts with access permission, where
computername is the name of the machine that runs the Web application.

4 Select Use Custom Launch Permissions, and press the Edit button. Add
IUSR_computername to this list as well.

5 Click the Apply button.

xmlerrdisp.js This library defines classes that can be used when reconciling update errors.
These classes are not used by any of the built-in InternetExpress components,
but are useful when writing a Reconcile producer.

xmlshow.js This library includes functions to display formatted XML data packets and
XML delta packets. This library is not used by any of the InternetExpress
components, but is useful when debugging.

Table 15.4 Javascript libraries (continued)

Library Description

15-30 D e v e l o p e r ’ s G u i d e

W r i t i n g M I D A S W e b a p p l i c a t i o n s

Using an XML broker

The XML broker serves two major functions:

• It fetches XML data packets from the application server and makes them available
to the Web Items that generate HTML for the InternetExpress application.

• It receives updates in the form of XML delta packets from browsers and applies
them to the application server.

Fetching XML data packets
Before the XML broker can supply XML data packets to the components that
generate HTML pages, it must fetch them from the application server. To do this, it
uses the IAppServer interface of the application server, which it acquires through a
connection component. You must set the following properties so that the XML
producer can use the application server’s IAppServer interface:

• Set the RemoteServer property to the connection component that establishes the
connection to the application server and gets its IAppServer interface. At design
time, you can select this value from a drop-down list in the object inspector.

• Set the ProviderName property to the name of the provider component on the
application server that represents the dataset for which you want XML data
packets. This provider both supplies XML data packets and applies updates from
XML delta packets. At design time, if the RemoteServer property is set and the
connection component has an active connection, the Object Inspector displays a
list of available providers. (If you are using a DCOM connection the application
server must also be registered on the client machine).

Two properties let you indicate what you want to include in data packets:

• You can limit the number of records that are added to the data packet by setting
the MaxRecords property. This is especially important for large datasets because
InternetExpress applications send the entire data packet to client Web browsers. If
the data packet is too large, the download time can become prohibitively long.

• If the provider on the application server represents a query or stored procedure,
you may want to provide parameter values before obtaining an XML data packet.
You can supply these parameter values using the Params property.

The components that generate HTML and javascript for the InternetExpress
application automatically use the XML broker’s XML data packet once you set their
XMLBroker property. To obtain the XML data packet directly in code, use the
RequestRecords method.

Note When the XML broker supplies a data packet to another component (or when you
call RequestRecords), it receives an OnRequestRecords event. You can use this event to
supply your own XML string instead of the data packet from the application server.
For example, you could fetch the XML data packet from the application server using
GetXMLRecords and then edit it before supplying it to the emerging Web page.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-31

W r i t i n g M I D A S W e b a p p l i c a t i o n s

Applying updates from XML delta packets
When you add the XML broker to the Web module (or data module containing a
TWebDispatcher), it automatically registers itself with the Web dispatcher as an
auto-dispatching object. This means that, unlike other components, you do not need
to create an action item for the XML broker in order for it to respond to update
messages from a Web browser. These messages contain XML delta packets that
should be applied to the application server. Typically, they originate from a button
that you create on one of the HTML pages produced by the Web client application.

So that the dispatcher can recognize messages for the XML broker, you must describe
them using the WebDispatch property. Set the PathInfo property to the path portion of
the URL to which messages for the XML broker are sent. Set MethodType to the value
of the method header of update messages addressed to that URL (typically mtPost). If
you want to respond to all messages with the specified path, set MethodType to
mtAny. If you don’t want the XML broker to respond directly to update messages (for
example, if you want to handle them explicitly using an action item), set the Enabled
property to false. For more information on how the Web dispatcher determines
which component handles messages from the Web browser, see “Dispatching
request messages” on page 30-9.

When the dispatcher passes an update message on to the XML broker, it passes the
updates on to the application server and, if there are update errors, receives an XML
delta packet describing all update errors. Finally, it sends a response message back to
the browser, which either redirects the browser to the same page that generated the
XML delta packet or sends it some new content.

A number of events allow you to insert custom processing at all steps of this update
process:

1 When the dispatcher first passes the update message to the XML broker, it receives
a BeforeDispatch event, where you can preprocess the request or even handle it
entirely. This event allows the XML broker to handle messages other than update
messages.

2 If the BeforeDispatch event handler does not handle the message, the XML broker
receives an OnRequestUpdate event, where you can apply the updates yourself
rather than using the default processing.

3 If the OnRequestUpdate event handler does not handle the request, the XML broker
applies the updates and receives a delta packet containing any update errors.

4 If there are no update errors, the XML broker receives an OnGetResponse event,
where you can create a response message that indicates the updates were
successfully applied or sends refreshed data to the browser. If the OnGetResponse
event handler does not complete the response (does not set the Handled parameter
to true), the XML broker sends a response that redirects the browser back to the
document that generated the delta packet.

5 If there are update errors, the XML broker receives an OnGetErrorResponse event
instead. You can use this event to try to resolve update errors or to generate a Web
page that describes them to the end user. If the OnGetErrorResponse event handler
does not complete the response (does not set the Handled parameter to true), the

15-32 D e v e l o p e r ’ s G u i d e

W r i t i n g M I D A S W e b a p p l i c a t i o n s

XML broker calls on a special content producer called the ReconcileProducer to
generate the content of the response message.

6 Finally, the XML broker receives an AfterDispatch event, where you can perform
any final actions before sending a response back to the Web browser.

Creating Web pages with a MIDAS page producer

Each MIDAS page producer generates an HTML document that appears in the
browsers of your application’s clients. If your application includes several separate
Web documents, use a separate MIDAS page producer for each of them.

The MIDAS page producer is a special page producer component. As with other
page producers, you can assign it as the Producer property of an action item or call it
explicitly from an OnAction event handler. For more information about using content
producers with action items, see “Responding to request messages with action items”
on page 30-12. For more information about page producers, see “Using page
producer components” on page 30-18.

Unlike most page producers, the MIDAS page producer has a default template as the
value of its HTMLDoc property. This template contains a set of HTML-transparent
tags that the MIDAS page producer uses to assemble an HTML document (with
embedded javascript and XML) including content produced by other components.
Before it can translate all of the HTML-transparent tags and assemble this document,
you must indicate the location of the javascript libraries used for the embedded
javascript on the page. This location is specified by setting the IncludePathURL
property.

You can specify the components that generate parts of the Web page using the Web
page editor. Display the Web page editor by double-clicking the Web page
component or clicking the ellipsis button next to the WebPageItems property in the
Object Inspector.

The components you add in the Web page editor generate the HTML that replaces
one of the HTML-transparent tags in the MIDAS page producer’s default template.
These components become the value of the WebPageItems property. After adding the
components in the order you want them, you can customize the template to add your
own HTML or change the default tags.

Using the Web page editor
The Web page editor lets you add Web items to your MIDAS page producer and
view the resulting HTML page. Display the Web page editor by double-clicking on a
MIDAS page producer component.

Note You must have Internet Explorer 4 or better installed to use the Web page editor.

The top of the Web page editor displays the Web items that generate the HTML
document. These Web items are nested, where each type of Web item assembles the
HTML generated by its subitems. Different types of items can contain different
subitems. On the left, a tree view displays all of the Web items, indicating how they
are nested. On the right, you can see the Web items included by the currently selected

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-33

W r i t i n g M I D A S W e b a p p l i c a t i o n s

item. When you select a component in the top of the Web page editor, you can set its
properties using the Object Inspector.

Click the New Item button to add a subitem to the currently selected item. The Add
Web Component dialog lists only those items that can be added to the currently
selected item.

The MIDAS page producer can contain one of two types of item, each of which
generates an HTML form:

• TDataForm, which generates an HTML form for displaying data and the controls
that manipulate that data or submit updates.

Items you add to TDataForm display data in a multi-record grid (TDataGrid) or in a
set of controls each of which represents a single field from a single record
(TFieldGroup). In addition, you can add a set of buttons to navigate through data or
post updates (TDataNavigator), or a button to apply updates back to the Web client
(TApplyUpdatesButton). Each of these items contains subitems to represent
individual fields or buttons. Finally, as with most Web items, you can add a layout
grid (TLayoutGroup), that lets you customize the layout of any items it contains.

• TQueryForm, which generates an HTML form for displaying or reading
application-defined values. For example, you can use this form for displaying and
submitting parameter values.

Items you add to TQueryForm display application-defined
values(TQueryFieldGroup) or a set of buttons to submit or reset those values
(TQueryButtons). Each of these items contains subitems to represent individual
values or buttons. You can also add a layout grid to a query form, just as you can
to a data form.

The bottom of the Web page editor displays the generated HTML code and lets you
see what it looks like in a browser (IE4).

Setting Web item properties
The Web items that you add using the Web page editor are specialized components
that generate HTML. Each Web item class is designed to produce a specific control or
section of the final HTML document, but a common set of properties influences the
appearance of the final HTML.

When a Web item represents information from the XML data packet (for example,
when it generates a set of field or parameter display controls or a button that
manipulates the data), the XMLBroker property associates the Web item with the
XML broker that manages the data packet. You can further specify a dataset that is
contained in a dataset field of that data packet using the XMLDataSetField property. If
the Web item represents a specific field or parameter value, the Web item has a
FieldName or ParamName property.

You can apply a style attribute to any Web item, thereby influencing the overall
appearance of all the HTML it generates. Styles and style sheets are part of the
HTML 4 standard. They allow an HTML document to define a set of display

15-34 D e v e l o p e r ’ s G u i d e

W r i t i n g M I D A S W e b a p p l i c a t i o n s

attributes that apply to a tag and everything in its scope. Web items offer a flexible
selection of ways to use them:

• The simplest way to use styles is to define a style attribute directly on the Web
item. To do this, use the Style property. The value of Style is simply the attribute
definition portion of a standard HTML style definition, such as

color: red.

• You can also define a style sheet that defines a set of style definitions. Each
definition includes a style selector (the name of a tag to which the style always
applies or a user-defined style name) and the attribute definition in curly braces:

H2 B {color: red}
.MyStyle {font-family: arial; font-weight: bold; font-size: 18px }

The entire set of definitions is maintained by the MIDAS page producer as its
Styles property. Each Web item can then reference the styles with user-defined
names by setting its StyleRule property.

• If you are sharing a style sheet with other applications, you can supply the style
definitions as the value of the MIDAS page producer’s StylesFile property instead
of the Styles property. Individual Web items still reference styles using the
StyleRule property.

Another common property of Web items is the Custom property. Custom includes a
set of options that you add to the generated HTML tag. HTML defines a different set
of options for each type of tag. The VCL reference for the Custom property of most
Web items gives an example of possible options. For more information on possible
options, use an HTML reference.

Customizing the MIDAS page producer template
The template of a MIDAS page producer is an HTML document with extra
embedded tags that your application translates dynamically. Initially, the MIDAS
page producer generates a default template as the value of the HTMLDoc property.
This default template has the form

<HTML>
<HEAD>
</HEAD>
<BODY>
<#INCLUDES> <#STYLES> <#WARNINGS> <#FORMS> <#SCRIPT>
</BODY>
</HTML>

The HTML-transparent tags in the default template are translated as follows:

<#INCLUDES> generates the statements that include the javascript libraries. These
statements have the form

<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldom.js"> </SCRIPT>
<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldb.js"> </SCRIPT>
<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmlbind.js"> </
SCRIPT>

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 15-35

W r i t i n g M I D A S W e b a p p l i c a t i o n s

<#STYLES> generates the statements that defines a style sheet from definitions listed in
the Styles or StylesFile property of the MIDAS page producer.

<#WARNINGS> generates nothing at runtime. At design time, it adds warning messages
for problems detected while generating the HTML document. You can see these
messages in the Web page editor.

<#FORMS> generates the HTML produced by the components that you add in the Web
page editor. The HTML from each component is generated in the order it appears in
WebPageItems.

<#SCRIPT> generates a block of javascript declarations that are used in the HTML
generated by the components added in the Web page editor.

You can replace the default template by changing the value of HTMLDoc or setting
the HTMLFile property. The customized HTML template can include any of the
HTML-transparent tags that make up the default template. The MIDAS page
producer automatically translates these tags when you call the Content method. In
addition, The MIDAS page producer automatically translates three additional tags:

<#BODYELEMENTS> is replaced by the same HTML as results from the 5 tags in the default
template. It is useful when generating a template in an HTML editor when you want
to use the default layout but add additional elements using the editor.

<#COMPONENT Name=WebComponentName> is replaced by the HTML that the component
named WebComponentName generates. This component can be one of the components
added in the Web page editor, or it can be any component that supports the
IWebContent interface and has the same Owner as the MIDAS page producer.

<#DATAPACKET XMLBroker=BrokerName> is replaced with the XML data packet obtained
from the XML broker specified by BrokerName. When, in the Web page editor, you see
the HTML that the MIDAS page producer generates, you see this tag instead of the
actual XML data packet.

In addition, the customized template can include any other HTML-transparent tags
that you define. When the MIDAS page producer encounters a tag that is not one of
the seven types it translates automatically, it generates an OnHTMLTag event, where
you can write code to perform your own translations. For more information about
HTML templates in general, see “HTML templates” on page 30-18.

Tip The components that appear in the Web page editor generate static code. That is,
unless the application server changes the metadata that appears in data packets, the
HTML is always the same, no matter when it is generated. You can avoid the
overhead of generating this code dynamically at runtime in response to every request
message by copying the generated HTML in the Web page editor and using it as a
template. Because the Web page editor displays a <#DATAPACKET> tag instead of
the actual XML, using this as a template still allows your application to fetch data
packets from the application server dynamically.

15-36 D e v e l o p e r ’ s G u i d e

U s i n g p r o v i d e r c o m p o n e n t s 16-1

C h a p t e r

16
Chapter16Using provider components

Provider components (TDataSetProvider) supply the mechanism by which client
datasets obtain their data (unless they are using flat files). Providers are responsible
for packaging data into data packets that are then sent to client datasets and applying
updates received from client datasets. Usually they reside on an application server as
part of a multi-tiered application, but they can appear as part of the same application
as the client dataset (or XML broker). Providers work in conjunction with resolver
components that handle the details of resolving data to the database or dataset.

Most of the work of a provider component happens automatically. You need not
write any code on the provider to create a fully functioning application server.
However, provider components include a number of events and properties that
allow your application more direct control over what information is packaged for
clients and how your application responds to client requests.

This chapter describes how to use a provider component to control the interaction
with client applications.

Determining the source of data
When you use a provider component, you must specify a dataset that it can use to get
the data it assembles into data packets. To do this, set the DataSet property of the
provider to the name of the dataset to use. At design time, select from available
datasets in the DataSet property drop-down list in the Object Inspector.

TDataSetProvider can work with any dataset that supports the IProviderSupport
interface. This interface is introduced by TDataSet, so it is available for all datasets.
However, the IProviderSupport methods implemented in TDataSet are mostly stubs
that don’t do anything or that throw exceptions. Most of the dataset classes that ship
with C++Builder (BDE-enabled datasets, ADO-enabled datasets, Client datasets, and
InterBase Express components) override these methods to implement the
IProviderSupport interface in a more useful fashion.

16-2 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o a p p l y u p d a t e s

Note Because the provider relies on an interface belonging to the dataset, it has no specific
dependencies on the data access mechanism (BDE, DBOLE, or some other
mechanism). These dependencies all fall to the dataset that the provider uses.

Component writers that create their own custom descendants from TDataSet must
override all appropriate IProviderSupport methods if their datasets are to work in an
application server. If the provider only provides data packets on a read-only basis
(that is, if it does not apply updates), the IProviderSupport methods implemented in
TDataSet may be sufficient.

Choosing how to apply updates
By default, when TDataSetProvider components apply updates and resolve update
errors, they communicate directly with the database server using dynamically
generated SQL statements. This approach has the advantage that your server
application does not need to merge updates twice (first to the dataset, and then to the
remote server).

However, you may not always want to take this approach. For example, you may
want to use some of the events on the dataset component. Alternately, the dataset
you use may not support the use of SQL statements (for example if you are providing
from a TClientDataSet component).

TDataSetProvider lets you decide whether to apply updates to the database server
using SQL or to the source dataset by setting the ResolveToDataSet property. When
this property is true, updates are applied to the dataset. When it is false, updates are
applied directly to the underlying database server.

Controlling what information is included in data packets
There are a number of ways to control what information is included in data packets
that are sent to and from the client. These include

• Specifying what fields appear in data packets

• Setting options that influence the data packets

• Adding custom information to data packets

Specifying what fields appear in data packets

To control what fields are included in data packets, create persistent fields on the
dataset that the provider uses to build the packets. The provider then includes only
these fields. Fields whose values are generated dynamically on the server (such as
calculated fields or lookup fields) can be included, but appear to client datasets on
the receiving end as static read-only fields. For information about creating persistent
fields, see “Creating persistent fields” on page 20-5.

U s i n g p r o v i d e r c o m p o n e n t s 16-3

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

If the client dataset will be editing the data and applying updates to the application
server, you must include enough fields so that there are no duplicate records in the
data packet. Otherwise, when the updates are applied, it is impossible to determine
which record to update. If you do not want the client dataset to be able to see or use
extra fields provided only to ensure uniqueness, set the ProviderFlags property for
those fields to include pfHidden.

Note Including enough fields to avoid duplicate records is also a consideration when
using queries on the application server. The query should include enough fields so
that records are unique, even if your application does not use all the fields.

Setting options that influence the data packets

The Options property of the provider component lets you specify when BLOBs or
nested detail tables are sent, whether field display properties are included, what type
of updates are allowed, and so on. The following table lists the possible values that
can be included in Options.

Table 16.1 Provider options

Value Meaning

poFetchBlobsOnDemand BLOB field values are not included in the data packet. Instead,
client applications must request these values on an as-needed
basis. If the client dataset’s FetchOnDemand property is true, the
client requests these values automatically. Otherwise, the client
application uses the client dataset’s FetchBlobs method to retrieve
BLOB data.

poFetchDetailsOnDemand When the provider represents the master of a master/detail
relationship, nested detail values are not included in the data
packet. Instead, client applications request these on an as-needed
basis. If the client dataset’s FetchOnDemand property is true, the
client requests these values automatically. Otherwise, the client
application uses the client dataset’s FetchDetails method to
retrieve nested details.

poIncFieldProps The data packet includes the following field properties (where
applicable): Alignment, DisplayLabel, DisplayWidth, Visible,
DisplayFormat, EditFormat, MaxValue, MinValue, Currency,
EditMask, DisplayValues.

poCascadeDeletes When the provider represents the master of a master/detail
relationship, detail records are deleted by the server
automatically when master records are deleted. To use this
option, the database server must be set up to perform cascaded
deletes as part of its referential integrity.

poCascadeUpdates When the provider represents the master of a master/detail
relationship, key values on detail tables are updated
automatically when the corresponding values are changed in
master records. To use this option, the database server must be
set up to perform cascaded updates as part of its referential
integrity.

poReadOnly The client dataset can’t apply updates to the provider.

16-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

Adding custom information to data packets

Providers can send application-defined information to the data packets using the
OnGetDataSetProperties event. This information is encoded as an OleVariant, and
stored under a name you specify. Client datasets in the client application can then
retrieve the information using their GetOptionalParam method. You can also specify
that the information be included in delta packets that the client dataset sends when
updating records. In this case, the client application may never be aware of the
information, but the server can send a round-trip message to itself.

When adding custom information in the OnGetDataSetProperties event, each
individual attribute (sometimes called an “optional parameter”) is specified using a
variant array that contains three elements: the name (a string), the value (a Variant),
and a boolean flag indicating whether the information should be included in delta
packets when the client applies updates. Multiple attributes can be added by creating
a variant array of variant arrays. For example, the following OnGetDataSetProperties
event handler sends two values, the time the data was provided and the total number

poAllowMultiRecordUpdates A single update can cause more than one record of the
underlying database table to change. This can be the result of
triggers, referential integrity, custom SQL statements, and so on.
Note that if an error occurs, the event handlers provide access to
the record that was updated, not the other records that change in
consequence.

poDisableEdits Clients can’t modify existing data values. If the client tries to edit
a field an exception is raised. (This does not affect the client’s
ability to insert or delete records).

poDisableInserts Clients can’t insert new records. If the client tries to insert a new
record an exception is raised. (This does not affect the client’s
ability to delete records or modify existing data)

poDisableDeletes Clients can’t delete new records. If the client tries to delete a
record an exception is raised. (This does not affect the client’s
ability to insert or modify records)

poNoReset Clients can’t specify that the provider should reposition the
cursor on the first record before providing data.

poAutoRefresh The provider refreshes the client dataset with current record
values whenever it applies updates.

poPropogateChanges Changes made by the server to updated records as part of the
update process are sent back to the client and merged into the
client dataset.

poAllowCommandText The client can override the associated dataset’s SQL text or the
name of the table or stored procedure it represents.

Table 16.1 Provider options (continued)

Value Meaning

U s i n g p r o v i d e r c o m p o n e n t s 16-5

R e s p o n d i n g t o c l i e n t d a t a r e q u e s t s

of records in the source dataset. Only information about the time the data was
provided is returned when clients apply updates:

void __fastcall TMyDataModule1::Provider1GetDataSetProperties(TObject *Sender, TDataSet
*DataSet, out OleVariant Properties)
{

int ArrayBounds[2];
ArrayBounds[0] = 0;
ArrayBounds[1] = 1;
Properties = VarArrayCreate(ArrayBounds, 1, varVariant);
Variant values[3];
values[0] = Variant("TimeProvided");
values[1] = Variant(Now());
values[2] = Variant(true);
Properties[0] = VarArrayOf(values,2);
values[0] = Variant("TableSize");
values[1] = Variant(DataSet->RecordCount);
values[2] = Variant(false);
Properties[1] = VarArrayOf(values,2);

}

When the client applies updates, the time the original records were provided can be
read in the provider’s OnUpdateData event:

void __fastcall TMyDataModule1::Provider1UpdateData(TObject *Sender, TClientDataSet
*DataSet)
{

Variant WhenProvided = DataSet->GetOptionalParam("TimeProvided");
...

}

Responding to client data requests
In most multi-tiered applications, client requests for data are handled automatically.
A client dataset requests a data packet by calling GetRecords (indirectly, through the
IAppServer interface). The provider responds automatically by fetching data from the
associated dataset, creating a data packet, and sending the packet to the client.

The provider has the option of editing data after it has been assembled into a data
packet but before the packet is sent to the client. For example, the provider might want
to encrypt sensitive data before it is sent on to the client, or to remove records from the
packet based on some criterion (such as the user’s role in an MTS application).

To edit the data packet before sending it on to the client, write an OnGetData event
handler. The data packet is provided as a parameter in the form of a client dataset.
Using the methods of this client dataset, data can be edited before it is sent to the client.

As with all method calls that are made through the IAppServer interface, the provider
has an opportunity to communicate persistent state information with the client
application before and after the call to GetRecords. This communication takes place
using the BeforeGetRecords and AfterGetRecords event handlers. For a discussion of
persistent state information in application servers, see “Supporting state information
in remote data modules” on page 15-23.

16-6 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Responding to client update requests
A provider applies updates to database records based on a Delta data packet received
from a client application. The client requests updates by calling the ApplyUpdates
method (indirectly, through the IAppServer interface).

As with all method calls that are made through the IAppServer interface, the provider
has an opportunity to communicate persistent state information with the client
application before and after the call to ApplyUpdates. This communication takes place
using the BeforeApplyUpdates and AfterApplyUpdates event handlers. For a discussion
of persistent state information in application servers, see “Supporting state
information in remote data modules” on page 15-23.

When a provider receives an update request, it generates an OnUpdateData event,
where you can edit the Delta packet before it is written to the dataset or influence
how updates are applied. After the OnUpdateData event, the provider uses its
associated resolver component to write the changes to the database.

The resolver component performs the update on a record-by-record basis. Before the
resolver applies each record, it generates a BeforeUpdateRecord event on the provider,
which you can use to screen updates before they are applied. If an error occurs when
updating a record, the resolver calls the provider’s OnUpdateError event handler to
resolve the error. Usually errors occur because the change violates a server constraint
or the database record was changed by a different application subsequent to its
retrieval by this client application, but prior to the client’s request to apply updates.

Update errors can be processed by either the application server or the client.
Application servers should handle all update errors that do not require user
interaction to resolve. When the application server can’t resolve an error condition, it
temporarily stores a copy of the offending record. When record processing is
complete, the application server returns a count of the errors it encountered to the
client dataset, and copies the unresolved records into a results data packet that it
passes back to the client for further reconciliation.

The event handlers for all provider events are passed the set of updates as a client
dataset. If your event handler is only dealing with certain types of updates, you can
filter the dataset on the update status of records so that your event handler does not
need to sort through records it won’t be using. To do this, set the StatusFilter property
of the client dataset.

Note Applications must supply extra support when the updates are directed at a dataset
that does not represent a single table. For details on how to do this, see “Applying
updates to datasets that do not represent a single table” on page 16-9.

Editing delta packets before updating the database

Before the provider applies updates to the database, it generates an OnUpdateData
event. The OnUpdateData event handler receives a copy of the Delta packet as a
parameter. This is a client dataset.

U s i n g p r o v i d e r c o m p o n e n t s 16-7

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

In the OnUpdateData event handler, you can use any of the properties and methods of
the client dataset to edit the Delta packet before it is written to the dataset. One
particularly useful property is the UpdateStatus property. UpdateStatus indicates what
type of modification the current record in the delta packet represents. It can have any
of the values in Table 16.2.

For example, the following OnUpdateData event handler inserts the current date into
every new record that is inserted into the database:

void __fastcall TMyDataModule1::Provider1UpdateData(TObject *Sender, TClientDataSet
*DataSet)
{

DataSet->First();
while (!DataSet->Eof)
{

if (DataSet->UpdateStatus == usInserted)
{
DataSet->Edit();
DataSet->FieldByName("DateCreated")->AsDateTime = Date();
DataSet->Post();

}
DataSet->Next();

}
}

Influencing how updates are applied

The OnUpdateData event also gives your provider a chance to indicate how records in
the delta packet are applied to the database.

By default, changes in the delta packet are written to the database using
automatically generated SQL UPDATE, INSERT, or DELETE statements such as

UPDATE EMPLOYEES
 set EMPNO = 748, NAME = 'Smith', TITLE = 'Programmer 1', DEPT = 52
WHERE
 EMPNO = 748 and NAME = 'Smith' and TITLE = 'Programmer 1' and DEPT = 47

Unless you specify otherwise, all fields in the delta packet records are included in the
UPDATE clause and in the WHERE clause. However, you may want to exclude some

Table 16.2 UpdateStatus values

Value Description

usUnmodified Record contents have not been changed

usModified Record contents have been changed

usInserted Record has been inserted

usDeleted Record has been deleted

16-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

of these fields. One way to do this is to set the UpdateMode property of the provider.
UpdateMode can be assigned any of the following values:

You might, however, want even more control. For example, with the previous
statement, you might want to prevent the EMPNO field from being modified by
leaving it out of the UPDATE clause and leave the TITLE and DEPT fields out of the
WHERE clause to avoid update conflicts when other applications have modified the
data. To specify the clauses where a specific field appears, use the ProviderFlags
property. ProviderFlags is a set that can include any of the values in Table 16.4

Thus, the following OnUpdateData event handler excludes the EMPNO field from the
UPDATE clause and the TITLE and DEPT fields from the WHERE clause:

void __fastcall TMyDataModule1::Provider1UpdateData(TObject *Sender, TClientDataSet
*DataSet)
{

DataSet->FieldByName("EMPNO")->ProviderFlags.Clear();
DataSet->FieldByName("EMPNO")->ProviderFlags << pfInUpdate;
DataSet->FieldByName("TITLE")->ProviderFlags.Clear();
DataSet->FieldByName("TITLE")->ProviderFlags << pfInWhere;
DataSet->FieldByName("DEPT")->ProviderFlags.Clear();
DataSet->FieldByName("DEPT")->ProviderFlags << pfInWhere;

}

Note You can use the UpdateFlags property to influence how updates are applied even if
you are updating to a dataset and not using dynamically generated SQL. These flags
still determine which fields are used to locate records and which fields get updated.

Table 16.3 UpdateMode values

Value Meaning

upWhereAll All fields are used to locate fields (the WHERE clause).

upWhereChanged Only key fields and fields that are changed are used to locate records.

upWhereOnly Only key fields are used to locate records.

Table 16.4 ProviderFlags values

Value Description

pfInWhere The field does not appear in the WHERE clause of generated INSERT, DELETE,
and UPDATE statements.

pfInUpdate The field does not appear in the UPDATE clause of generated UPDATE
statements.

pfInKey The field is used in the WHERE clause of a generated SELECT statement that
executes when update failures occur. This SELECT statement tries to locate the
current value of modified or deleted records, or a record causing key violations
when insertions fail.

pfHidden The field is included in records to ensure uniqueness, but can’t be seen or used on
the client side.

U s i n g p r o v i d e r c o m p o n e n t s 16-9

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Screening individual updates

Immediately before each update is applied, the provider receives a
BeforeUpdateRecord event. You can use this event to edit records before they are
applied, similar to the way you can use the OnUpdateData event to edit entire delta
packets. For example, the provider does not compare BLOB fields (such as memos)
when checking for update conflicts. If you want to check for update errors involving
BLOB fields, you can use the BeforeUpdateRecord event.

In addition, you can use this event to apply updates yourself or to screen and reject
updates. The BeforeUpdateRecord event handler lets you signal to the resolver that an
update has been handled already and should not be applied. The resolver then skips
that record, but does not count it as an update error. For example, this event provides
a mechanism for applying updates to a stored procedure (which can’t be updated
automatically), allowing the provider to skip any automatic processing once the
record is updated from within the event handler.

Resolving update errors on the provider

When an error condition arises as the application server tries to post a record in the
delta packet, an OnUpdateError event occurs. If the application server can’t resolve an
update error, it temporarily stores a copy of the offending record. When record
processing is complete, the application server returns a count of the errors it
encountered to the client dataset, and copies the unresolved records into a results
data packet that it passes back to the client for further reconciliation.

This mechanism lets you handle any update errors you can resolve mechanically on
the application server, while still allowing user interaction on the client application to
correct error conditions.

The OnUpdateError handler gets a copy of the record that could not be changed, an
error code from the database, and an indication of whether the resolver was trying to
insert, delete, or update the record. The problem record is passed back in a client
dataset. You should never use the data navigation methods on this dataset. However,
for each field in the dataset, you can use the NewValue, OldValue, and CurValue
properties to determine the cause of the problem and make any modifications to
resolve the update error. If the OnUpdateError event handler can correct the problem,
it sets the Response parameter so that the corrected record is applied.

Applying updates to datasets that do not represent a single table

When a resolver component generates SQL statements that apply updates directly to
a database server, it needs the name of the database table that contains the records.
This can be handled automatically for many datasets such as TTable or “live” TQuery
components.

Automatic updates are a problem however, if the resolver must apply updates to the
data underlying a stored procedure with a result set or a multi-table query. This is

16-10 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t - g e n e r a t e d e v e n t s

because there is no easy way to obtain the name of the table to which updates should
be applied.

If the query or stored procedure is a BDE-enabled dataset (TQuery or TStoredProc)
and it has an associated update object, the provider will use the update object.
However, if there is no update object, you can supply the table name
programmatically in an OnGetTableName event handler. Once an event handler
supplies the table name, the resolver component can generate appropriate SQL
statements to apply updates.

Note Supplying a table name only works if the target of the updates is a single database
table (that is, only the records in one table need to be updated). If the update requires
making changes to multiple underlying database tables, you must explicitly apply
the updates in code using the BeforeUpdateRecord event of the provider. Once this
event handler has applied an update, you can set the event handler’s Applied
parameter to true so that the resolver does not generate an error.

Responding to client-generated events
Provider components implement a general-purpose event that lets you create your
own calls from clients directly to the provider. This is the OnDataRequest event.

OnDataRequest is not part of the normal functioning of the provider. It is simply a
hook to allow your clients to communicate directly with providers on the application
server. The event handler takes an OleVariant as an input parameter and returns an
OleVariant. By using OleVariants, the interface is sufficiently general to
accommodate almost any information you want to pass to or from the provider.

To generate an OnDataRequest event, the client application calls the DataRequest
method of the client dataset.

Handling server constraints
Most relational database management systems implement constraints on their tables
to enforce data integrity. A constraint is a rule that governs data values in tables and
columns, or that governs data relationships across columns in different tables. For
example, most SQL-92 compliant relational databases support the following
constraints:

• NOT NULL, to guarantee that a value supplied to a column has a value.

• NOT NULL UNIQUE, to guarantee that column value has a value and does not
duplicate any other value already in that column for another record.

• CHECK, to guarantee that a value supplied to a column falls within a certain
range, or is one of a limited number of possible values.

• CONSTRAINT, a table-wide check constraint that applies to multiple columns.

U s i n g p r o v i d e r c o m p o n e n t s 16-11

H a n d l i n g s e r v e r c o n s t r a i n t s

• PRIMARY KEY, to designate one or more columns as the table’s primary key for
indexing purposes.

• FOREIGN KEY, to designate one or more columns in a table that reference another
table.

Note This list is not exclusive. Your database server may support some or all of these
constraints in part or in whole, and may support additional constraints. For more
information about supported constraints, see your server documentation.

Database server constraints obviously duplicate many kinds of data checks that
traditional desktop database applications have managed in the past. You can take
advantage of server constraints in your multi-tiered database applications without
having to duplicate the constraints in application server or client application code.

The provider is working with a BDE-enabled dataset, its Constraints property enables
you to replicate and apply server constraints to data passed to and received from
client applications. When Constraints is true (the default), your server’s constraints
are replicated to clients and affect client attempts to update data.

Important Before the application server can pass constraint information on to the client
application, it must retrieve the constraints from the database server. To import
database constraints from the server, use SQL explorer to import the database
server’s constraints and default expressions into the Data Dictionary. Constraints and
default expressions in the Data Dictionary are automatically made available to BDE-
enabled datasets in the application server.

There may be times when you do not want to apply server constraints to data sent to
a client application. For example, a client application that receives data in packets
and permits local updating of records prior to fetching more records may need to
disable some server constraints that might be triggered because of the temporarily
incomplete set of data. To prevent constraint replication from the application server
to a client dataset, set Constraints to false. Note that client datasets can disable and
enable constraints using the DisableConstraints and EnableConstraints methods. For
more information about enabling and disabling constraints from the client dataset,
see “Handling constraints” on page 25-18.

16-12 D e v e l o p e r ’ s G u i d e

M a n a g i n g d a t a b a s e s e s s i o n s 17-1

C h a p t e r

17
Chapter17Managing database sessions

Both standalone, full client database applications and database application servers
can communicate with databases through the Borland Database Engine (BDE). An
application’s database connections, drivers, cursors, queries, and so on are
maintained within the context of one or more BDE sessions. Sessions isolate a set of
database access operations, such as database connections, without the need to start
another instance of the application.

In an application, you can manage BDE sessions using the TSession and TSessionList
components. Each TSession component in an application encapsulates a single BDE
session. All sessions within an application are managed by a single TSessionList
component.

All database applications automatically include a session component, named Session,
that encapsulates the default BDE session. Applications can declare, create, and
manipulate additional session components as needed.

All database applications also automatically include a session list component, named
Sessions, that enables the application to manage all of its session components.

This chapter describes the session and session list components and explains how to
use them to control BDE sessions in your full client database applications and
database application servers.

Note The default session and session list components provide a widely applicable set of
defaults that can be used as is by most applications. Only applications that use
multiple sessions (for example, because of the need to run concurrent queries against
a single database) may need to manipulate its session and session list components.

Working with a session component
A session component provides global management for a group of database
connections within an application. When you create a full client database application
or an application server, your application automatically contains a session

17-2 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

component, named Session. As you add database and dataset components to the
application, they are automatically associated with this default session. It also
controls access to password protected Paradox files, and it specifies directory
locations for sharing Paradox files over a network. Applications can control database
connections and access to Paradox files by using the properties, events, and methods
of the session.

You can use the default session to control all database connections in an application.
Alternatively, you can add additional session components at design time or create
them dynamically at runtime to control a subset of database connections in an
application.

Some applications require additional session components, such as applications that
run concurrent queries against the same database. In this case, each concurrent query
must run under its own session. Multi-threaded database applications also require
multiple sessions. Applications that use multiple sessions must manage those
sessions through the session list component, Sessions. For more information about
managing multiple sessions see, “Managing multiple sessions” on page 17-16.

Using the default session

All database applications automatically include a default session. C++Builder creates
a default session component named Session for a database application each time it
runs (note that its SessionName is “Default”). The default session provides global
control over all database components not associated with another session, whether
they are temporary (created by the session at runtime when a dataset is opened that
is not associated with a database component you create) or persistent (explicitly
created by your application). The default session is not visible in your data module or
form at design time, but you can access its properties and methods in your code at
runtime.

When you create a database component, it is automatically associated with the
default session. You need only associate a database component with an explicitly
named session if the component performs a simultaneous query against a database
already opened by the default session. When creating a multi-threaded database
application, you must create one additional session to handle each additional thread.

To use the default session, you need write no code unless your application must

• Modify the properties of the session, such as specifying when database
connections for automatically generated database components should
automatically be kept or dropped.

• Respond to session events, such as when the application attempts to access a
password-protected Paradox file.

• Execute a session’s methods, such as opening or closing a database in response to
user-initiated actions.

• Set the NetFileDir property to access Paradox tables on a network and set the
PrivateDir property to a local hard drive to speed performance.

M a n a g i n g d a t a b a s e s e s s i o n s 17-3

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

Whether you add database components to an application at design time or create
them dynamically at runtime, they are automatically associated with the default
session unless you specifically assign them to a different session. If your application
opens a dataset that is not associated with a database component, C++Builder
automatically

• Creates a database component for it at runtime.

• Associates the database component with the default session.

• Initializes some of the database component’s key properties based on the default
session’s properties.

Among the most important of these properties is KeepConnections, which determines
when database connections are maintained or dropped by an application. For more
information about KeepConnections, see “Specifying default database connection
behavior” on page 17-6. Additional properties, events, and methods of the TSession
component which apply to the default session and any additional sessions you create
in your applications are described in the rest of this chapter.

Creating additional sessions

You can create sessions to supplement the default session. At design time, you can
place additional sessions on a data module (or form), set their properties in the
Object Inspector, write event handlers for them, and write code that calls their
methods. You can also create sessions, set their properties, and call their methods at
runtime. This section describes how to create and delete sessions at runtime.

Note Keep in mind that creating additional sessions is optional unless an application runs
concurrent queries against a database or the application is multi-threaded.

To enable dynamic creation of a session component at runtime, follow these steps:

1 Declare a pointer to a TSession variable.

2 Instantiate a new session using the new operator.This operator calls the TSession
constructor to create and initialize a new session. The constructor sets up an empty
list of database components for the session, sets up an empty list of BDE callbacks
for the session, sets the KeepConnections property to true, and adds the session to
the list of sessions maintained by the application’s session list component.

3 Set the SessionName property for the new session to a unique name. This property
is used to associate database components with the session. For more information
about the SessionName property, see “Naming a session” on page 17-4.

4 Activate the session and optionally adjust its properties.

Note Never delete the default session.

You can also manage creating and opening of sessions using the OpenSession method
of TSessionList. Using OpenSession is safer than using the new operator, because
OpenSession only creates a session if it does not already exist. For more information
about using OpenSession, see “Managing multiple sessions” on page 17-16.

17-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

The following code creates a new session component, assigns it a name, and opens
the session for database operations that follow (not shown here). After use, it is
destroyed with a call to the Free method.

TSession *SecondSession = new TSession(Form1);
try
{

SecondSession->SessionName = "SecondSession";
SecondSession->KeepConnections = false;
SecondSession->Open();
ƒ

}
__finally
{

delete SecondSession;
};

Naming a session

A session’s SessionName property is used to name the session so that you can
associate databases and datasets with it. For the default session, SessionName is
“Default,” For each additional session component you create, you must set its
SessionName property to a unique value.

Database and dataset components have SessionName properties that correspond to
the SessionName property of a session component. If you leave the SessionName
property blank for a database or dataset component it is automatically associated
with the default session. You can also set SessionName for a database or dataset
component to a name that corresponds to the SessionName of a session component
you create.

For more information about using the TSessionList component—and Sessions in
particular—to control multiple sessions, see “Managing multiple sessions” on
page 17-16.

The following code uses the OpenSession method of the default TSessionList
component, Sessions, to open a new session component, sets its SessionName to
“InterBaseSession,” activate the session, and associate an existing database
component Database1 with that session:

TSession *IBSession = Sessions->OpenSession("InterBaseSession");
Database1->SessionName = "InterBaseSession";

Activating a session

Active is a Boolean property that determines if database and dataset components
associated with a session are open. You can use this property to read the current state
of a session’s database and dataset connections, or to change it.

To determine the current state of a session, check Active. If Active is false (the default),
all databases and datasets associated with the session are closed. If true, databases
and datasets are open.

M a n a g i n g d a t a b a s e s e s s i o n s 17-5

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

Setting Active to true triggers a session’s OnStartup event, sets the NetFileDir and
PrivateDir properties if they are assigned values, and sets the ConfigMode property.
You can write an OnStartup event handler to perform other specific database start-up
activities. For more information about OnStartup, see “Working with
password-protected Paradox and dBASE tables” on page 17-13. The NetFileDir and
PrivateDir properties are only used for connecting to Paradox tables. For more
information about them, see “Specifying the control file location” on page 17-13 and
“Specifying a temporary files location” on page 17-13. ConfigMode determines how
the BDE handles BDE aliases created within the context of the session. For more
information about ConfigMode, see “Specifying alias visibility” on page 17-10. To
open database components within a session, see “Creating, opening, and closing
database connections” on page 17-6.

After you activate a session, you can open its database connections by calling the
OpenDatabase method.

For session components you place in a data module or form, setting Active to false
when there are open databases or datasets closes them. At runtime, closing databases
and datasets may invoke events associated with them.

Note You cannot set Active to false for the default session at design time. While you can
close the default session at runtime, it is not recommended.

For session components you create, use the Object Inspector to set Active to false at
design time to disable all database access for a session with a single property change.
You might want to do this if, during application design, you do not want to receive
exceptions because a remote database is temporarily unavailable.

You can also use a session’s Open and Close methods to activate or deactivate sessions
other than the default session at runtime. For example, the following single line of
code closes all open databases and datasets for a session:

Session1->Close();

This code sets Session1’s Active property to false. When a session’s Active property is
false, any subsequent attempt by the application to open a database or dataset resets
Active to true and calls the session’s OnStartup event handler if it exists. You can also
explicitly code session reactivation at runtime. The following code reactivates
Session1:

Session1->Open();

Note If a session is active you can also open and close individual database connections. For
more information, see “Closing a single database connection” on page 17-7.

Customizing session start-up

You can customize a session’s start-up behavior by writing an OnStartup event
handler for it. OnStartup is triggered when a session is activated. A session is activated
when it is first created, and subsequently, whenever its Active property is changed to
true from false (for example, when a database or dataset is associated with a session is
opened and there are currently no other open databases or datasets).

17-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

Specifying default database connection behavior

KeepConnections provides the default value for the KeepConnection property of
temporary database components created at runtime. KeepConnection specifies what
happens to a database connection established for a database component when all its
datasets are closed. If true (the default), a constant, or persistent, database connection
is maintained even if no dataset is active. If false, a database connection is dropped as
soon as all its datasets are closed.

Note Connection persistence for a database component you explicitly place in a data
module or form is controlled by that database component’s KeepConnection property.
If set differently, KeepConnection for a database component always overrides the
KeepConnections property of the session. For more information about controlling
individual database connections within a session, see “Creating, opening, and
closing database connections” on page 17-6.

KeepConnections should always be set to true for applications that frequently open
and close all datasets associated with a database on a remote server. This setting
reduces network traffic and speeds data access because it means that a connection
need only be opened and closed once during the lifetime of the session. Otherwise,
every time the application closes or reestablishes a connection, it incurs the overhead
of attaching and detaching the database.

Note Even when KeepConnections is true for a session, you can close inactive database
connections for all temporary database components, and then free the temporary
database components by calling the DropConnections method. For more information
about DropConnections, see “Dropping temporary database connections” on
page 17-7.

For example, the following code drops inactive connections and frees all temporary
database components for the default session:

Session->DropConnections();

Creating, opening, and closing database connections

To open a database connection within a session, call the OpenDatabase method.
OpenDatabase takes one parameter, the name of the database to open. This name is a
BDE alias or the name of a database component. For Paradox or dBASE, the name can
also be a fully qualified path name. For example, the following statement uses the
default session and attempts to open a database connection for the database pointed
to by the BCDEMOS alias:

TDatabase *BCDemosDatabase = Session->OpenDatabase("BCDEMOS");

OpenDatabase makes its own session active if it is not already active, and then
determines if the specified database name matches the DatabaseName property of any
database components for the session. If the name does not match an existing database
component, OpenDatabase creates a temporary database component using the
specified name. Each call to OpenDatabase increments a reference count for the
database by 1. As long as this reference count remains greater than 0, the database is

M a n a g i n g d a t a b a s e s e s s i o n s 17-7

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

open. Finally, OpenDatabase calls the Open method of the database component to
connect to the server.

Closing a single database connection
You can close an individual database connection with the CloseDatabase method, or
close all connections for a session at once with the Close method. When you call
CloseDatabase, a reference count for the database is decremented by 1. When the
reference count for the database is 0, the database is closed and freed. CloseDatabase
takes one parameter, the database to close. For example, the following statement
closes the database connection opened in the example in the previous section:

Session->CloseDatabase(BCDemosDatabase);

If the specified database name is associated with a temporary database component,
and the session’s KeepConnections property is false, the temporary database
component is freed, effectively closing the connection.

Note If KeepConnections is false temporary database components are closed and freed
automatically when the last dataset associated with the database component is
closed. An application can always call CloseDatabase prior to that time to force
closure. To free temporary database components when KeepConnections is true, call
the database component’s Close method, and then call the session’s DropConnections
method.

If the database component is persistent (meaning that the application specifically
declares the component and instantiates it), and the session’s KeepConnections
property is false, CloseDatabase calls the database component’s Close method to close
the connection.

Note Calling CloseDatabase for a persistent database component does not actually close the
connection. To close the connection, call the database component’s Close method
directly.

Closing all database connections
You can close all database connections in two ways:

• Set the Active property for the session to false.
• Call the Close method for the session.

When you set Active to false, C++Builder automatically calls the Close method. Close
disconnects from all active databases by freeing temporary database components and
calling each persistent database component’s Close method. Finally, Close sets the
session’s BDE handle to NULL.

Dropping temporary database connections

If the KeepConnections property for a session is true (the default), then database
connections for temporary database components are maintained even if all the
datasets used by the component are closed. You can eliminate these connections and
free all inactive temporary database components for a session by calling the

17-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

DropConnections method. For example, the following code frees all inactive,
temporary database components for the default session:

Session->DropConnections();

Temporary database components for which one or more datasets are active are not
dropped or freed by this call. To free these components, call Close.

Searching for a database connection

Use a session’s FindDatabase method to determine whether or not a specified
database component is already associated with a session. FindDatabase takes one
parameter, the name of the database to search for. This name is a BDE alias or
database component name. For Paradox or dBASE, the name can also be a
fully-qualified path name.

FindDatabase returns the database component if it finds a match. Otherwise it returns
NULL.

The following code searches the default session for a database component using the
BCDEMOS alias, and if it is not found, creates one and opens it:

TDatabase *DB = Session->FindDatabase("BCDEMOS");
if (!DB) // Database does not exist for session so

DB = Session->OpenDatabase("BCDEMOS"); // create and open it
if (DB && DB->Connected)
{

if (!DB->InTransaction)
{

DB->StartTransaction();
ƒ

}
}

Retrieving information about a session

You can retrieve information about a session and its database components by using a
session’s informational methods. For example, one method retrieves the names of all
aliases known to the session, and another method retrieves the names of tables
associated with a specific database component used by the session. Table 17.1
summarizes the informational methods to a session component:

Table 17.1 Database-related informational methods for session components

Method Purpose

GetAliasDriverName Retrieves the BDE driver for a specified alias of a database.
GetAliasNames Retrieves the list of BDE aliases for a database.

GetAliasParams Retrieves the list of parameters for a specified BDE alias of a database.

GetConfigParams Retrieves specific configuration information from the BDE configuration
file.

M a n a g i n g d a t a b a s e s e s s i o n s 17-9

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

Except for GetAliasDriverName, these methods return a set of values into a string list
declared and maintained by your application. (GetAliasDriverName returns a single
string, the name of the current BDE driver for a particular database component used
by the session.)

For example, the following code retrieves the names of all database components and
aliases known to the default session:

TStringList *List = new TStringList();
try
{

Session->GetDatabaseNames(List);
ƒ

}
catch (...)
{
 delete List;
 throw;
}
delete List;

For a complete description of a session’s informational methods, see the TSession
topic in the VCL online help reference.

Working with BDE aliases

Because a session usually encapsulates a series of database connections, one property
and many of a session component’s methods work with BDE aliases. Each database
component associated with a session has a BDE alias (although optionally a
fully-qualified path name may be substituted for an alias when accessing Paradox
and dBASE tables. BDE aliases and the associated TSession methods have three main
uses:

• Determining visibility
• Retrieving alias and driver information
• Creating, modifying, and deleting aliases

The following sections describe these functional areas.

GetDatabaseNames Retrieves the list of BDE aliases and the names of any TDatabase
components currently in use.

GetDriverNames Retrieves the names of all currently installed BDE drivers.
GetDriverParams Retrieves the list of parameters for a specified BDE driver.

GetStoredProcNames Retrieves the names of all stored procedures for a specified database.

GetTableNames Retrieves the names of all tables matching a specified pattern for a
specified database.

Table 17.1 Database-related informational methods for session components (continued)

Method Purpose

17-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

Specifying alias visibility
A session’s ConfigMode property determines what BDE aliases are visible to the
session. ConfigMode is a set that describes which types of sessions are visible. The
default setting is cmAll, which translates into the set [cfmVirtual, cfmPersistent]. If
ConfigMode is cmAll, a session can see all aliases created within the session, all aliases
in the BDE configuration file on a user’s system, and all aliases that the BDE
maintains in memory.

The main purpose of ConfigMode is to enable an application to specify and restrict
alias visibility at the session level. For example, setting ConfigMode to cfmSession
restricts a session’s view of aliases to those created within the session. All other
aliases in the BDE configuration file and in memory are not available.

For a full description of ConfigMode and its settings, see the online reference for the
object and component library.

Making session aliases visible to other sessions and applications
When an alias is created during a session, the BDE stores a copy of the alias in
memory. By default this copy is local only to the session in which it is created.
Another session in the same application can only see the alias if its ConfigMode
property is cmAll or cfmPersistent.

To make an alias available to all sessions and to other applications, use the session’s
SaveConfigFile method. SaveConfigFile writes aliases in memory to the BDE
configuration file where they can be read and used by other BDE-enabled
applications.

Determining known aliases, drivers, and parameters
Five methods for session components enable an application to retrieve information
about BDE aliases, including parameter information and driver information. They
are:

• GetAliasNames, to list the aliases to which a session has access.

• GetAliasParams, to list the parameters for a specified alias.

• GetAliasDriverName, to return a string containing the name of the BDE driver used
by the alias.

• GetDriverNames, to return a list of all BDE drivers available to the session.

• GetDriverParams, to return driver parameters for a specified driver.

For more information about using a session’s informational methods, see “Retrieving
information about a session” on page 17-8. For more information about BDE aliases,
parameters, and drivers, see the online BDE help file, BDE32.HLP.

Creating, modifying, and deleting aliases
A session can create, modify, and delete aliases during its lifetime. The AddAlias
method creates a new BDE alias for an SQL database server. AddStandardAlias creates
a new BDE alias for Paradox, dBASE, or ASCII tables.

M a n a g i n g d a t a b a s e s e s s i o n s 17-11

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

AddAlias takes three parameters: a string containing a name for the alias, a string that
specifies the SQL Links driver to use, and a string list populated with parameters for
the alias. For more information about AddAlias, see the topic for this method in the
online VCL reference. For more information about BDE aliases and the SQL Links
drivers, see the BDE online help, BDE32.HLP.

AddStandardAlias takes three string parameters: the name for the alias, the
fully-qualified path to the Paradox or dBASE table to access, and the name of the
default driver to use when attempting to open a table that does not have an
extension. For more information about AddStandardAlias, see the online reference for
the object and component libraries. For more information about BDE aliases, see the
BDE online help, BDE32.HLP.

Note When you add an alias to a session, it is only available to this session and any other
sessions with cfmPersistent included in the ConfigMode property. To make a newly
created alias available to all applications, call SaveConfigFile after creating the alias.
For more information about ConfigMode, see “Working with BDE aliases” on
page 17-9.

After you create an alias, you can make changes to its parameters by calling
ModifyAlias. ModifyAlias takes two parameters: the name of the alias to modify and a
string list containing the parameters to change and their values.

To delete an alias previously created in a session, call the DeleteAlias method.
DeleteAlias takes one parameter, the name of the alias to delete. DeleteAlias makes an
alias unavailable to the session.

Note DeleteAlias does not remove an alias from the BDE configuration file if the alias was
written to the file by a previous call to SaveConfigFile. To remove the alias from the
configuration file after calling DeleteAlias, call SaveConfigFile again.

The following statements use AddAlias to add a new alias for accessing an InterBase
server to the default session:

TStringList *AliasParams = new TStringList();
try
{

AliasParams->Add("OPEN MODE=READ");
AliasParams->Add("USER NAME=TOMSTOPPARD");
AliasParams->Add("SERVER NAME=ANIMALS:/CATS/PEDIGREE.GDB");
Session->AddAlias("CATS", "INTRBASE", AliasParams);
ƒ

}
catch (...)
{

delete AliasParams;
throw;

}
delete AliasParams;

The following statement uses AddStandardAlias to create a new alias for accessing a
Paradox table:

Session->AddStandardAlias("MYBCDEMOS", "C:\\TESTING\\DEMOS\\", "Paradox");

17-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

The following statements use ModifyAlias to change the OPEN MODE parameter for
the CATS alias to READ/WRITE in the default session:

TStringList *List = new TStringList();
List->Clear();
List->Add("OPEN MODE=READ/WRITE");
Session->ModifyAlias("CATS", List);
delete List;

Iterating through a session’s database components

Two session component properties, Databases and DatabaseCount, enable you to cycle
through all the database components associated with a session.

Databases is an array of all currently active database components associated with a
session. Used with the DatabaseCount property, Databases can be used to iterate
through all active database components to perform a selective or universal action.

DatabaseCount is an integer property that indicates the number of currently active
databases associated with a session. As connections are opened or closed during a
session’s life-span, this number can change. For example, if a session’s
KeepConnections property is false and all database components are created as needed
at runtime, each time a unique database is opened, DatabaseCount increases by one.
Each time a unique database is closed, DatabaseCount decreases by one. If
DatabaseCount is zero, there are no currently active database components for the
session.

DatabaseCount is typically used with the Databases property to perform actions
common to active database components.

The following example code sets the KeepConnection property of each active database
in the default session to true:

if (Session->DatabaseCount > 0)
for (int MaxDbCount = 0; MaxDbCount < Session->DatabaseCount; MaxDbCount++)

Session->Databases[MaxDbCount]->KeepConnection = true;

Specifying Paradox directory locations

Two session component properties, NetFileDir and PrivateDir, are specific to
applications that work with Paradox tables. NetFileDir specifies the directory that
contains the Paradox network control file, PDOXUSRS.NET. This file governs
sharing of Paradox tables on network drives. All applications that need to share
Paradox tables must specify the same directory for the network control file (typically
a directory on a network file server).

PrivateDir specifies the directory for storing temporary table processing files, such as
those generated by the BDE to handle local SQL statements.

M a n a g i n g d a t a b a s e s e s s i o n s 17-13

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

Specifying the control file location
C++Builder derives a value for NetFileDir from the Borland Database Engine (BDE)
configuration file for a given database alias. If you set NetFileDir yourself, the value
you supply overrides the BDE configuration setting, so be sure to validate the new
value.

At design time, you can specify a value for NetFileDir in the Object Inspector. You can
also set or change NetFileDir in code at runtime. The following code sets NetFileDir
for the default session to the location of the directory from which your application
runs:

Session->NetFileDir = ExtractFilePath(ParamStr(0));

Note NetFileDir can only be changed when an application does not have any open Paradox
files. If you change NetFileDir at runtime, verify that it points to a valid network
directory that is shared by your network users.

Specifying a temporary files location
If no value is specified for the PrivateDir property, the BDE automatically uses the
current directory at the time it is initialized. If your application runs directly from a
network file server, you can improve application performance at runtime by setting
PrivateDir to a user’s local hard drive before opening the database.

Note Do not set PrivateDir at design time and then open the session in the IDE. Doing so
generates a Directory is busy error when running your application from the IDE.

The following code changes the setting of the default session’s PrivateDir property to
a user’s C:\TEMP directory:

Session->PrivateDir = "C:\\TEMP";

Important Do not set PrivateDir to a root directory on a drive. Always specify a subdirectory.

Working with password-protected Paradox and dBASE tables

A session component provides four methods and one event that are exclusively used
to manage access to password-protected Paradox and dBASE files. The methods are
AddPassword, GetPassword, RemoveAllPasswords, and RemovePassword. The event is
OnPassword. The PasswordDialog function is also available for adding and removing
one or more passwords from a session.

Using the AddPassword method
The TSession::AddPassword method provides an optional way for an application to
provide a password for a session prior to opening an encrypted Paradox or dBASE
table that requires a password for access. AddPassword takes one parameter, a string

17-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

containing the password to use. You can call AddPassword as many times as necessary
to add passwords to access files protected with different passwords.

AnsiString PassWrd;
Passwrd = InputBox(”Enter password”, ”Password:”, ””);
Session->AddPassword(Passwrd);
try
{

Table1->Open();
}
catch(...)
{

ShowMessage(”Could not open table!”);
Application->Terminate();

}

Use of the InputBox function, above, is for demonstration purposes. In a real-world
application, use password entry facilities that mask the password as it is entered,
such as the PasswordDialog function or a custom form. On a custom password entry
form, use a TEdit with the PasswordChar set to an asterisk (“*”).

The Add button of the PasswordDialog function dialog has the same effect as the
AddPassword method.

if (PasswordDlg(Session))
Table1->Open();

else
ShowMessage(”No password given, could not open table!”);

Note You need to call AddPassword to specify one or more passwords (one at a time) to use
when accessing password-protected files. If you do not, when your application
attempts to open a password-protected table, a dialog box prompts the user for a
password.

Using the RemovePassword and RemoveAllPasswords methods
TSession::RemovePassword deletes a previously added password from memory.
RemovePassword takes one parameter, a string containing the password to delete.

Session->RemovePassword("secret");

TSession::RemoveAllPasswords deletes all previously added passwords from memory.

Session->RemoveAllPasswords();

Using the GetPassword method and OnPassword event
The TSession::OnPassword event can be triggered by two circumstances. The first is an
attempt to open a password-protected table (dBASE or Paradox) when a valid
password has not already been supplied to the session. (If a valid password for that
table has already been supplied, the OnPassword event does not fire.)

M a n a g i n g d a t a b a s e s e s s i o n s 17-15

W o r k i n g w i t h a s e s s i o n c o m p o n e n t

The other circumstance that will trigger the OnPassword event is a call to the
TSession::GetPassword method. A call to the GetPassword method affords the
opportunity to determine whether the end-user entered a password (any non-blank
string, valid as a password or not). GetPassword returns a true value if a password
was entered in the GetPassword dialog, and false if no entry at all was made.

If a procedure is provided and designated as the handler for the OnPassword event,
this procedure is executed when the OnPassword event fires. The designation of a
handler can occur virtually anywhere in the application, but is typically done in the
handler for the main form’s OnCreate event. Provide a handler for the OnPassword
event if you wish to override the default password handling behavior. If you do not
provide a handler, C++Builder presents a default dialog for entering a password and
no special behavior is provided -- the table open attempt simply either succeeds or it
fails (an exception is thrown).

If a handler for the OnPassword event is provided, do two things in the procedure:
call the TSession::AddPassword method and set the event handler’s Continue
parameter to true. The AddPassword method passes a string to the session to be used
as a password for the table. The Continue parameter indicates to C++Builder that no
further password prompting need be done for this table open attempt. The default
value for Continue is false, and so requires explicitly setting it to true. If Continue is
false after the event handler has finished executing, an OnPassword event fires again
-- even if a valid password has been passed using AddPassword. If Continue is true
after execution of the event handler and the string passed with AddPassword turns out
not to be a valid password, the table open attempt fails and an exception is thrown.
No further attempt on the part of C++Builder to solicit a password is made.

In the following example, the procedure Password is designated as the handler for the
OnPassword event by assigning the procedure’s name to the TSession::OnPassword
property.

void __fastcall TForm1::FormCreate(TObject *Sender)
{

Session->OnPassword = Password;
}

In the Password procedure, the InputBox function is used to prompt the user for a
password. The TSession::AddPassword method is used to programmatically supply
the password entered in the dialog to the session.

void __fastcall TForm1::Password(TObject *Sender, bool &Continue)
{

AnsiString PassWrd = InputBox("Enter password", "Password:", "");
Session->AddPassword(PassWrd);
Continue = (PassWrd > "");

}

The OnPassword event (and thus the Password event handler) is triggered by an
attempt to open a password-protected table, as demonstrated below. Exception
handling can be used to accommodate a failed attempt to open the table. Even
though the user is prompted for a password in the handler for the OnPassword event,

17-16 D e v e l o p e r ’ s G u i d e

M a n a g i n g m u l t i p l e s e s s i o n s

the table open attempt can still fail if they enter an invalid password or something
else goes wrong.

void __fastcall TForm1::OpenTableBtnClick(TObject *Sender)
{

try
{

// this line triggers the OnPassword event
Table1->Open();

}
// exception if cannot open table
catch(...)
{

ShowMessage("Could not open table!");
Application->Terminate();

}
}

Managing multiple sessions
If you create a single application that uses multiple threads to perform database
operations, you must create one additional session for each thread. The Data Access
page on the Component palette contains a session component that you can place in a
data module or on a form at design time.

Important When you place a session component, you must also set its SessionName property to a
unique value so that it does not conflict with the default session’s SessionName
property.

Placing a session component at design time presupposes that the number of threads
(and therefore sessions) required by the application at runtime is static. More likely,
however, is that an application needs to create sessions dynamically. To create
sessions dynamically, call the global function Sessions::OpenSession at runtime.

Sessions::OpenSession requires a single parameter, a name for the session that is
unique across all session names for the application. The following code dynamically
creates and activates a new session with a uniquely generated name:

Sessions->OpenSession("RunTimeSession" + IntToStr(Sessions->Count + 1));

This statement generates a unique name for a new session by retrieving the current
number of sessions, and adding one to that value. Note that if you dynamically create
and destroy sessions at runtime, this example code will not work as expected.
Nevertheless, this example illustrates how to use the properties and methods of
Sessions to manage multiple sessions.

Sessions is a variable of type TSessionList that is automatically instantiated for
database applications. You use the properties and methods of Sessions to keep track
of multiple sessions in a multi-threaded database application. Table 17.2 summarizes
the properties and methods of the TSessionList component:

M a n a g i n g d a t a b a s e s e s s i o n s 17-17

U s i n g a s e s s i o n c o m p o n e n t i n d a t a m o d u l e s

As an example of using Sessions properties and methods in a multi-threaded
application, consider what happens when you want to open a database connection.
To determine if a connection already exists, use the Sessions property to walk through
each session in the sessions list, starting with the default session. For each session
component, examine its Databases property to see if the database in question is open.
If you discover that another thread is already using the desired database, examine
the next session in the list.

If an existing thread is not using the database, then you can open the connection
within that session.

If, on the other hand, all existing threads are using the database, you must open a
new session in which to open another database connection.

If you are replicating a data module that contains a session in a multi-threaded
application, where each thread contains its own copy of the data module, you can use
the AutoSessionName property to make sure that all datasets in the data module use
the correct session. Setting AutoSessionName to true causes the session to generate its
own unique name dynamically when it is created at runtime. It then assigns this
name to every dataset in the data module, overriding any explicitly set session
names. This ensures that each thread has its own session, and each dataset uses the
session in its own data module.

Using a session component in data modules
You can safely place session components in data modules. If you put a data module
that contains one or more session components into the Object Repository, however,
make sure to set the AutoSessionName property to true to avoid namespace conflicts
when users inherit from it.

Table 17.2 TSessionList properties and methods

Property or
Method Purpose

Count Returns the number of sessions, both active and inactive, in the sessions list.

FindSession Searches the session list for a session with a specified name, and returns a
pointer to the session component, or NULL if there is no session with the
specified name. If passed a blank session name, FindSession returns a pointer
to the default session, Session.

GetSessionNames Populates a string list with the names of all currently instantiated session
components. This procedure always adds at least one string, “Default” for
the default session (note that the default session’s name is actually a blank
string).

List Returns the session component for a specified session name. If there is no
session with the specified name, an exception is raised.

OpenSession Creates and activates a new session or reactivates an existing session for a
specified session name.

Sessions Accesses the session list by ordinal value.

17-18 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o d a t a b a s e s 18-1

C h a p t e r

18
Chapter18Connecting to databases

When a C++Builder application uses the Borland Database Engine (BDE) to connect
to a database, that connection is encapsulated by a TDatabase component. A database
component encapsulates the connection to a single database in the context of a BDE
session. This chapter describes database components and how to manipulate
database connections.

Database components are also used to manage transactions in BDE-based
applications. For more information about using databases to manage transactions,
see “Using transactions” on page 14-5.

Another use for database components is applying cached updates for related tables.
For more information about using a database component to apply cached updates,
see “Applying cached updates with a database component method” on page 26-5.

Understanding persistent and temporary database components
Each BDE-based database connection in an application is encapsulated by a database
component whether or not you explicitly provide a database component at design
time or create it dynamically at runtime. When an application attempts to connect to
a database, it either uses an explicitly instantiated, or persistent, database component,
or it generates a temporary database component that exists only for the lifetime of the
connection.

Temporary database components are created as necessary for any datasets in a data
module or form for which you do not create yourself. Temporary database
components provide broad support for many typical desktop database applications
without requiring you to handle the details of the database connection.

18-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g p e r s i s t e n t a n d t e m p o r a r y d a t a b a s e c o m p o n e n t s

For most client/server applications, however, you should create your own database
components instead of relying on temporary ones. You gain greater control over
your databases, including the ability to perform the following tasks:

• Create persistent database connections.

• Customize database server logins.

• Control transactions and specify transaction isolation levels.

• Create BDE aliases local to your application.

Using temporary database components

Temporary database components are automatically generated as needed. For
example, if you place a TTable component on a form, set its properties, and open the
table without first placing and setting up a TDatabase component and associating the
table component with it, C++Builder creates a temporary database component for
you behind the scenes.

Some key properties of temporary database components are determined by the
session to which they belong. For example, the controlling session’s KeepConnections
property determines whether a database connection is maintained even if its
associated datasets are closed (the default), or if the connections are dropped when
all its datasets are closed. Similarly, the default OnPassword event for a session
guarantees that when an application attempts to attach to a database on a server that
requires a password, it displays a standard password prompt dialog box. Other
properties of temporary database components provide standard login and
transaction handling. For more information about sessions and session control over
temporary database connections, see “Working with a session component” on
page 17-1.

The default properties created for temporary database components provide
reasonable, general behaviors meant to cover a wide variety of situations. For
complex, mission-critical client/server applications with many users and different
requirements for database connections, however, you should create your own
database components to tune each database connection to your application’s needs.

Creating database components at design time

The Data Access page of the Component palette contains a database component you
can place in a data module or form. The main advantages to creating a database
component at design time are that you can set its initial properties and write OnLogin
events for it. OnLogin offers you a chance to customize the handling of security on a
database server when a database component first connects to the server. For more
information about managing connection properties, see “Connecting to a database
server” on page 18-7. For more information about server security, see “Controlling
server login” on page 18-6.

C o n n e c t i n g t o d a t a b a s e s 18-3

U n d e r s t a n d i n g p e r s i s t e n t a n d t e m p o r a r y d a t a b a s e c o m p o n e n t s

Creating database components at runtime

You can create database components dynamically at runtime. An application might
do this when the number of database components needed at runtime is unknown,
and your application needs explicit control over the database connection. In fact, this
is how C++Builder itself creates temporary database components as needed at
runtime. When you create a database component at runtime, you need to give it a
unique name and to associate it with a session.

You create the component using the new operator. Given both a database name and a
session name, the following function creates a database component at runtime,
associates it with a specified session (creating a new session if necessary), and sets a
few key database component properties:

TDatabase* __fastcall TForm1::RunTimeDbCreate(const AnsiString DatabaseName,
 const AnsiString SessionName)
{
 // If the session exists, make it active; if not, create a new session
 Sessions->OpenSession(SessionName);
 TSession *pSession = Sessions->FindSession(SessionName);
 TDatabase *TempDatabase = pSession->FindDatabase(DatabaseName);
 // if the database already exists, just return it
 if (TempDatabase)
 return TempDatabase;
 // Create a new database component
 TempDatabase = new TDatabase(this);
 try
 {
 TempDatabase->DatabaseName = DatabaseName;
 TempDatabase->SessionName = SessionName;
 TempDatabase->KeepConnection = true;
 return pSession->OpenDatabase(DatabaseName);
 }
 catch (...)
 {
 delete TempDatabase;
 throw;
 }
}

The following code fragment illustrates how you might call this function to create a
database component for the default session at runtime:

TDatabase *MyDatabase[10]; // an array of pointers to databases
int MyDBCount = 0; // initialize MyDBCount early on
ƒ
// Later, create a database component at runtime
MyDatabase[MyDBCount] = RunTimeDbCreate(AnsiString("MyDb") +
 IntToStr(MyDBCount++), "");
ƒ

18-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g c o n n e c t i o n s

Controlling connections
Whether you create a database component at design time or runtime, you can use the
properties, events, and methods of TDatabase to control and change its behavior in
your applications. The following sections describe how to manipulate database
components. For details about all TDatabase properties, events, and methods, see the
online reference for the object and component libraries.

Associating a database component with a session

All database components must be associated with a BDE session. Two database
component properties, Session and SessionName, establish this association.

SessionName identifies the session alias with which to associate a database
component. When you first create a database component at design time, SessionName
is set to “Default”. Multi-threaded or reentrant BDE applications may have more
than one session. At design time, you can pick a valid SessionName from the
drop-down list in the Object Inspector. Session names in the list come from the
SessionName properties of each session component in the application.

The Session property is a runtime, read-only property that points to the session
component specified by the SessionName property. For example, if SessionName is
blank or “Default”, then the Session property references the same TSession instance
referenced by the global Session variable. Session enables applications to access the
properties, methods, and events of a database component’s parent session
component without knowing the session’s actual name. This is useful when a
database component is assigned to a different session at runtime.

For more information about BDE sessions, see Chapter 17, “Managing database
sessions.”

Specifying a BDE alias

AliasName and DriverName are mutually exclusive BDE-specific properties.
AliasName specifies the name of an existing BDE alias to use for the database
component. The alias appears in subsequent drop-down lists for dataset components
so that you can link them to a particular database component. If you specify
AliasName for a database component, any value already assigned to DriverName is
cleared because a driver name is always part of a BDE alias.

Note You create and edit BDE aliases using the Database Explorer or the BDE
Administration utility. For more information about creating and maintaining BDE
aliases, see the online documentation for these utilities.

DatabaseName enables you to provide an application-specific name for a database
component. The name you supply is in addition to AliasName or DriverName, and is
local to your application. DatabaseName can be a BDE alias, or, for Paradox and
dBASE files, a fully-qualified path name. Like AliasName, DatabaseName appears in

C o n n e c t i n g t o d a t a b a s e s 18-5

C o n t r o l l i n g c o n n e c t i o n s

subsequent drop-down lists for dataset components to enable you to link them to a
database component.

DriverName is the name of a BDE driver. A driver name is one parameter in a BDE
alias, but you may specify a driver name instead of an alias when you create a local
BDE alias for a database component using the DatabaseName property. If you specify
DriverName, any value already assigned to AliasName is cleared to avoid potential
conflicts between the driver name you specify and the driver name that is part of the
BDE alias identified in AliasName.

At design time, to specify a BDE alias, assign a BDE driver, or create a local BDE alias,
double-click a database component to invoke the Database Properties editor.

You can enter a DatabaseName in the Name edit box in the properties editor. You can
enter an existing BDE alias name in the Alias name combo box for the Alias property,
or you can choose from existing aliases in the drop-down list. The Driver name
combo box enables you to enter the name of an existing BDE driver for the
DriverName property, or you can choose from existing driver names in the
drop-down list.

Note The Database Properties editor also enables you to view and set BDE connection
parameters, and set the states of the LoginPrompt and KeepConnection properties. To
work with connection parameters, see “Setting BDE alias parameters” on page 18-5.
To set the state of LoginPrompt, see “Controlling server login” on page 18-6, and to set
KeepConnection see “Connecting to a database server” on page 18-7.

To set DatabaseName, AliasName, or DriverName at runtime, include the appropriate
assignment statement in your code. For example, the following code uses the text
from an edit box to create a local alias for the database component Database1:

Database1->DatabaseName = Edit1->Text;

Setting BDE alias parameters

At design time you can create or edit connection parameters in three ways:

• Use the Database Explorer or BDE Administration utility to create or modify BDE
aliases, including parameters. For more information about these utilities, see their
online Help files.

• Double-click the Params property in the Object Inspector to invoke the String List
editor. To learn more about the String List editor, see “Working with string lists”
in the on-line help.

• Double-click a database component in a data module or form to invoke the
Database Properties editor.

All of these methods edit the Params property for the database component. Params is
a string list containing the database connection parameters for the BDE alias
associated with a database component. Some typical connection parameters include
path statement, server name, schema caching size, language driver, and SQL query
mode.

18-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g c o n n e c t i o n s

When you first invoke the Database Properties editor, the parameters for the BDE
alias are not visible. To see the current settings, click Defaults. The current
parameters are displayed in the Parameter overrides memo box. You can edit
existing entries or add new ones. To clear existing parameters, click Clear. Changes
you make take effect only when you click OK.

At runtime, an application can set alias parameters only by editing the Params
property directly. For more information about parameters specific to using SQL
Links drivers with the BDE, see your online SQL Links help file.

Controlling server login

Most remote database servers include security features to prohibit unauthorized
access. Generally, the server requires a user name and password login before
permitting database access.

At design time, if a server requires a login, a standard login dialog box prompts for a
user name and password when you first attempt to connect to the database.

At runtime, there are three ways you can handle a server’s request for a login:

• Let the default login dialog and processes handle the login. This is the default
approach. Set the LoginPrompt property of the database component to true (the
default). Your application displays the standard login dialog box when the server
requests a user name and password.

• Supply the login information from the application, before the attempt to login.
Assign values to the USER NAME and PASSWORD parameters of the database
component through its Params property. Set the LoginPrompt to false, to prevent the
default login dialog from appearing. The values in the Params property may be set
at design-time through the Object Inspector or programmatically at runtime. For
example:

Database1->Params->Add("USER NAME=SYSDBA");
Database1->Params->Add("PASSWORD=masterkey");
Database1->LoginPrompt = false;
Database1->Connected = true;

Important Setting the values in the Params property at design-time causes the values to be
embedded in the application’s executable file and easy to find. This compromises
server security, so it is not recommended. Values provided at runtime, such as
entered by the end-user into a custom login dialog, do not present this situation
and so do not compromise database security.

• Provide your own custom handling for the login event. Set the LoginPrompt
property to true and write procedure to act as a handler for the OnLogin event for
the database component. In the procedure used for the OnLogin event handler, set
the login parameters. A copy of the database component’s parameters is passed to
the event handler in its LoginParams parameter. Assign values to the USER NAME
and PASSWORD database parameters in this passed string list object. Provide
what information is needed to successfully login to the database. For instance, the
USER NAME may already be provided by a BDE alias and only the PASSWORD
parameter needs to be supplied. Use the Values property of TStrings to set or

C o n n e c t i n g t o d a t a b a s e s 18-7

C o n t r o l l i n g c o n n e c t i o n s

change login parameters. Here is an example where the values for the USER
NAME and PASSWORD database parameters are provided from memory
AnsiString variables set elsewhere in the application:

void __fastcall TForm1::Database1Login(TDatabase *Database,
TStrings *LoginParams)

{
LoginParams->Values["USER NAME"] = UserName;
LoginParams->Values["PASSWORD"] = PasswordSearch(UserName);

}

On exit, OnLogin passes its LoginParams values back to Params, which is used to
establish a connection.

Important As is the case when hard-coding the password into the Params property,
supplying the PASSWORD parameter’s value in LoginParams from a value
hard-coded into the application will compromise database security. The value for
the PASSWORD parameter is an AnsiString and so can come from such sources as
an encrypted value in the executable file or entered by the end-user at runtime
through a login dialog of your own creation.

Important The OnLogin even will not fire at all unless the LoginPrompt property is set to true.
So having a LoginPrompt value of false and assigning a handler for the OnLogin
event creates a situation where it is impossible to login to the database. The default
dialog does not appear and the OnLogin event handler never executes.

Connecting to a database server

There are two ways to connect to a database server using a database component:

• Call the Open method.
• Set the Connected property to true.

Setting Connected to true executes the Open method. Open verifies that the database
specified by the DatabaseName or Directory properties exists, and the OnLogin event
for the database component fires. If a procedure has been assigned as the handler for
the OnLogin event and the LoginPrompt is set to true, this event handler is executed
when the OnLogin event fires. Otherwise, the default login dialog box appears.

Note When a database component is not connected to a server and an application attempts
to open a dataset associated with the database component, the database component’s
Open method is first called to establish the connection. If the dataset is not associated
with an existing database component, a temporary database component is created
and used to establish the connection.

Once a database connection is established the connection is maintained as long as
there is at least one active dataset. When there are no more active datasets, whether
or not the connection is dropped depends on the setting of the database component’s
KeepConnection property.

KeepConnection determines if your application maintains a connection to a database
even when all datasets associated with that database are closed. If true, a connection
is maintained. For connections to remote database servers, or for applications that
frequently open and close datasets, make sure KeepConnection is true to reduce

18-8 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g c o n n e c t i o n s

network traffic and speed up your application. If false a connection is dropped when
there are no active datasets using the database. If a dataset is later opened which uses
the database, the connection must be reestablished and initialized.

Special considerations when connecting to a remote server

When you connect to a remote database server from an application, the application
uses the BDE and the Borland SQL Links driver to establish the connection. (The BDE
can communicate with an ODBC driver that you supply.) You need to configure the
SQL Links or ODBC driver for your application prior to making the connection. SQL
Links and ODBC parameters are stored in the Params property of a database
component. For information about SQL Links parameters, see the online SQL Links
User’s Guide. To edit the Params property, see “Setting BDE alias parameters” on
page 18-5.

Working with network protocols
As part of configuring the appropriate SQL Links or ODBC driver, you may need to
specify the network protocol used by the server, such as SPX/IPX or TCP/IP,
depending on the driver’s configuration options. In most cases, network protocol
configuration is handled using a server’s client setup software. For ODBC it may also
be necessary to check the driver setup using the ODBC driver manager.

Establishing an initial connection between client and server can be problematic. The
following troubleshooting checklist should be helpful if you encounter difficulties:

• Is your server’s client-side connection properly configured?

• If you are using TCP/IP:

• Is your TCP/IP communications software installed? Is the proper
WINSOCK.DLL installed?

• Is the server’s IP address registered in the client’s HOSTS file?

• Is the Domain Name Services (DNS) properly configured?

• Can you ping the server?

• Are the DLLs for your connection and database drivers in the search path?

For more troubleshooting information, see the online SQL Links User’s Guide and
your server documentation.

Using ODBC
An application can use ODBC data sources (for example, Btrieve). An ODBC driver
connection requires

• A vendor-supplied ODBC driver.
• The Microsoft ODBC Driver Manager.
• The BDE Administration utility.

To set up a BDE alias for an ODBC driver connection, use the BDE Administration
utility. For more information, see the BDE Administration utility’s online help file.

C o n n e c t i n g t o d a t a b a s e s 18-9

U n d e r s t a n d i n g d a t a b a s e a n d s e s s i o n c o m p o n e n t i n t e r a c t i o n s

Disconnecting from a database server

There are two ways to disconnect a server from a database component:

• Set the Connected property to false.

• Call the Close method.

Setting Connected to false calls Close. Close closes all open datasets and disconnects
from the server. For example, the following code closes all active datasets for a
database component and drops its connections:

Database1->Connected = false;

Note Close disconnects from a database server even if KeepConnection is true.

Closing datasets without disconnecting from a server

There may be times when you want to close all datasets without disconnecting from
the database server. To close all open datasets without disconnecting from a server,
follow these steps:

1 Set the database component’s KeepConnection property to true.

2 Call the database component’s CloseDataSets method.

Iterating through a database component’s datasets

A database component provides two properties that enable an application to iterate
through all the datasets associated with the component: DataSets and DataSetCount.

DataSets is an indexed array of all active datasets (TTable, TQuery, and TStoredProc)
for a database component. An active dataset is one that is currently open.
DataSetCount is a read-only integer value specifying the number of currently active
datasets.

You can use DataSets with DataSetCount to cycle through all currently active datasets
in code. For example, the following code cycles through all active datasets to set the
CachedUpdates property for each dataset of type TTable to true:

for (int i = 0; i < pDatabase->DataSetCount; i++)
 if (pDatabase->DataSets[i]->ClassNameIs("TTable"))
 pDatabase->DataSets[i]->CachedUpdates = true;

Understanding database and session component interactions
In general, session component properties, such as KeepConnection, provide global,
default behaviors that apply to all temporary database components created as
needed at runtime.

Session methods apply somewhat differently. TSession methods affect all database
components, regardless of database component status. For example, the session

18-10 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e c o m p o n e n t s i n d a t a m o d u l e s

method DropConnections closes all datasets belonging to a session’s database
components, and then drops all database connections, even if the KeepConnection
property for individual database components is true.

Database component methods apply only to the datasets associated with a given
database component. For example, suppose the database component Database1 is
associated with the default session. Database1->CloseDataSets() closes only those
datasets associated with Database1. Open datasets belonging to other database
components within the default session remain open.

Using database components in data modules
You can safely place database components in data modules. If you put a data module
that contains a database component into the Object Repository, however, and you
want other users to be able to inherit from it, you must set the HandleShared property
of the database component to true to prevent global name space conflicts.

Executing SQL statements from a TDatabase component
Simple Data Definition Language (DDL) SQL statements can be executed directly
from a TDatabase component using its Execute method. These are statements that do
not return result sets and only operate on or create a database’s metadata. The
Execute method can also be used to execute Data Manipulation Language (DML) SQL
statements, as long as the statements are those that do not return result sets.

Use the Execute method to execute one SQL statement at a time. It is not possible to
execute multiple SQL statements with a single call to Execute, such as with SQL
scripting utilities. To execute more than one statement: replace the contents of the
SQL parameter with a new SQL statement and call the Execute method again,
repeating these two steps as many times as there are statements to execute. It may be
necessary or appropriate to make other changes as well, such as changing parameter
values between statement executions, depending on the actual situation.

Executing SQL statements from TDatabase

DDL SQL statements and some DML statements fulfill their purposes without
producing result sets. These statements are executed, affect metadata (for DDL
statements) or data (DML statements), and then cease all interaction with the
database. Examples of DDL statements include: CREATE INDEX, ALTER TABLE,
and DROP DOMAIN. The DML statements that perform an action on data but do not
return a result set are: INSERT, DELETE, and UPDATE.

To execute these statements that do not produce a result set, make a call to the
TDatabase::Execute method. The SQL statement to be executed is represented by a
AnsiString value (either variable or literal) which is used as the SQL parameter of the
Execute method. If no parameters are used in the SQL statement, pass a NULL value
for the Params parameter of Execute. For information on using parameters with the

C o n n e c t i n g t o d a t a b a s e s 18-11

E x e c u t i n g S Q L s t a t e m e n t s f r o m a T D a t a b a s e c o m p o n e n t

Execute method, see “Executing parameterized SQL statements” on page 18-11. As
these statements do not return a result set, pass a NULL value in the Cursor
parameter of Execute.

In the example below, a CREATE TABLE statement (DDL) without any parameters is
executed with the Execute method.

void __fastcall TDataForm::CreateTableButtonClick(TObject *Sender)
{

AnsiString SQLstmt;
Database1->Connected = true;
SQLstmt = "CREATE TABLE NewCusts " +
SQLstmt += "(" +
SQLstmt += " CustNo INTEGER, " +
SQLstmt += " Company CHAR(40), " +
SQLstmt += " State CHAR(2), " +
SQLstmt += " PRIMARY KEY (CustNo) " +
SQLstmt += ")" +
Database1->Execute(SQLstmt, NULL, false, NULL);

}

In the following example, an INSERT statement (DDL) without any parameters and
not returning a result set is executed.

void __fastcall TDataForm::InsertRecordButtonClick(TObject *Sender)
{

AnsiString SQLstmt;
Database1->Connected = true;
SQLstmt = "INSERT INTO Customer " +
SQLstmt += "(Custno, Company, State) " +
SQLstmt += "VALUES (9999, 'Prom Night Tuxedos', 'CA')";
Database1->Execute(SQLstmt, NULL, false, NULL);

}

Executing parameterized SQL statements

Some SQL statements include parameters through which data values are passed.

To execute these statements that include parameters, make a call to the
TDatabase::Execute method and pass an object of type TParams in the Params
parameter of the Execute method. The SQL statement to execute is passed as a
AnsiString value (either variable or literal) in the SQL parameter. Pass a NULL value
in the Cursor parameter (this parameter is only used internally by the VCL).

For each parameter in the SQL statement, create one TParam object in the TParams
object. Use the TParams::CreateParam method to add each TParam. Use properties and
methods of TParam to set the value of the TParam object to give the corresponding
parameter in the SQL statement a value when the Execute method is called. For
instance, to assign a AnsiString value to a TParam with a DataType of ftString, use the
TParam::AsString property.

In the example below, an SQL statement using parameters is executed. The INSERT
statement includes a single parameter named StateParam. A TParams object (called
stmtParams) is created within the routine and the TParams.CreateParam method is

18-12 D e v e l o p e r ’ s G u i d e

E x e c u t i n g S Q L s t a t e m e n t s f r o m a T D a t a b a s e c o m p o n e n t

called to add a single TParam object to stmtParams. After the TParam object has been
created, it is assigned a value of “CA”. Then the Execute method is called using the
stmtParams object for the Params parameter.

void __fastcall TDataForm::INSERT_WithParamsButtonClick(TObject *Sender)
}

AnsiString SQLstmt;
TParams *stmtParams = new TParams;
try
{

Database1->Connected = true;
stmtParams->CreateParam(ftString, "StateParam", ptInput);
stmtParams->ParamByName("StateParam")->AsString = "CA";
SQLstmt = "INSERT INTO 'Custom.db' ";
SQLstmt += "(CustNo, Company, State) ";
SQLstmt += "VALUES (7777, 'Robin Dabank Consulting', :StateParam)";
Database1->Execute(SQLstmt, stmtParams, false, NULL);

}
__finally
{

delete stmtParams;
}

}

Successfully executing a parameterized SQL statement using the Execute method
depends on these requirements being fulfilled:

1 Parameters must appear in the SQL statement (these being tokens prefixed with
colons).

2 A TParams object must be created to contain TParam objects.

3 One TParam object must be created in the TParams object for each parameter in the
SQL statement.

4 The TParams object must be used for the Params parameter of the Execute method.

If a parameter token is in the SQL statement but no TParam object is created to
represent it, the parameter in the SQL statement cannot be given a value and the SQL
statement may cause an error when executed (depends on the particular database
back-end used). If a TParam object is provided but there is no corresponding
parameter token in the SQL statement, an exception is thrown when the application
attempts to use the TParam.

U n d e r s t a n d i n g d a t a s e t s 19-1

C h a p t e r

19
Chapter19Understanding datasets

In C++Builder, the fundamental unit for accessing data is the dataset family of
objects. Your application uses datasets for all database access. Generally, a dataset
object represents a specific table belonging to a database, or it represents a query or
stored procedure that accesses a database.

All dataset objects that you will use in your database applications descend from the
virtualized dataset object, TDataSet, and they inherit data fields, properties, events,
and methods from TDataSet. This chapter describes the functionality of TDataSet that
is inherited by the dataset objects you will use in your database applications. You
need to understand this shared functionality to use any dataset object.

Figure 19.1 illustrates the hierarchical relationship of all the dataset components:

Figure 19.1 C++Builder Dataset hierarchy

TDataSet

TClientDataSetTBDEDataSet

TTable

TStoredProc

TQuery

TNestedTable

TCustomADODataSet

TADOCommand

TADODataSet

TADOQuery

TADOStoredProc

TDBDataSet

19-2 D e v e l o p e r ’ s G u i d e

W h a t i s T D a t a S e t ?

What is TDataSet?
TDataSet is the ancestor for all dataset objects you use in your applications. It defines
a set of data fields, properties, events, and methods shared by all dataset objects.
TDataSet is a virtualized dataset, meaning that many of its properties and methods
are virtual or pure virtual. A virtual method is a function or procedure declaration
where the implementation of that method can be (and usually is) overridden in
descendant objects. A pure virtual method is a function or procedure declaration
without an actual implementation. The declaration is a prototype that describes the
method (and its parameters and return type, if any) that must be implemented in all
descendant dataset objects, but that might be implemented differently by each of
them.

Because TDataSet contains pure virtual methods, you cannot use it directly in an
application without generating a runtime error. Instead, you either create instances
of TDataSet’s descendants, such as TTable, TQuery, TStoredProc, and TClientDataSet,
and use them in your application, or you derive your own dataset object from
TDataSet or its descendants and write implementations for all its pure virtual
methods.

Nevertheless, TDataSet defines much that is common to all dataset objects. For
example, TDataSet defines the basic structure of all datasets: an array of TField
components that correspond to actual columns in one or more database tables,
lookup fields provided by your application, or calculated fields provided by your
application. For more information about TField components, see Chapter 20,
“Working with field components.”

The following topics are discussed in this chapter:

• Types of datasets
• Opening and closing datasets
• Determining and setting dataset states
• Navigating datasets
• Searching datasets
• Displaying and editing a subset of data using filters
• Modifying data
• Using dataset events
• Using BDE-enabled datasets

Types of datasets
To understand the concepts common to all dataset objects, and to prepare for
developing your own custom dataset objects that do not rely on either the Borland
Database Engine (BDE) or ActiveX Data Objects (ADO), read this chapter.

To develop traditional, two-tier client/server database applications using the
Borland Database Engine (BDE), see “Overview of BDE-enablement” on page 19-28.
That section introduces TBDEDataSet and TDBDataSet, and focuses on the shared
features of TQuery, TStoredProc, and TTable, the dataset components used most
commonly in all database applications.

U n d e r s t a n d i n g d a t a s e t s 19-3

O p e n i n g a n d c l o s i n g d a t a s e t s

With some versions of C++Builder, you can develop multi-tier database applications
using distributed datasets. To learn about working with client datasets in
multi-tiered applications, see Chapter 15, “Creating multi-tiered applications.” That
chapter discusses how to use TClientDataSet and connect the client to an application
server.

Opening and closing datasets
To read or write data in a table or through a query, an application must first open a
dataset. You can open a dataset in two ways,

• Set the Active property of the dataset to true, either at design time in the Object
Inspector, or in code at runtime:

CustTable->Active = true;

• Call the Open method for the dataset at runtime,

CustQuery->Open();

You can close a dataset in two ways,

• Set the Active property of the dataset to false, either at design time in the Object
Inspector, or in code at runtime,

CustQuery->Active = false;

• Call the Closemethod for the dataset at runtime,

CustTable->Close();

You may need to close a dataset when you want to change certain of its properties,
such as TableName on a TTable component. At runtime, you may also want to close a
dataset for other reasons specific to your application.

Determining and setting dataset states
The state—or mode—of a dataset determines what can be done to its data. For
example, when a dataset is closed, its state is dsInactive, meaning that nothing can be
done to its data. At runtime, you can examine a dataset’s read-only State property to
determine its current state. The following table summarizes possible values for the
State property and what they mean:

Table 19.1 Values for the dataset State property

Value State Meaning

dsInactive Inactive DataSet closed. Its data is unavailable.

dsBrowse Browse DataSet open. Its data can be viewed, but not changed. This is
the default state of an open dataset.

dsEdit Edit DataSet open. The current row can be modified.

dsInsert Insert DataSet open. A new row is inserted or appended.

19-4 D e v e l o p e r ’ s G u i d e

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

When an application opens a dataset, it appears by default in dsBrowse mode. The
state of a dataset changes as an application processes data. An open dataset changes
from one state to another based on either the

• code in your application, or
• built-in behavior of data-related components.

To put a dataset into dsBrowse, dsEdit, dsInsert, or dsSetKey states, call the method
corresponding to the name of the state. For example, the following code puts
CustTable into dsInsert state, accepts user input for a new record, and writes the new
record to the database:

CustTable->Insert(); // explicitly set dataset state to Insert
AddressPromptDialog->ShowModal();
if (AddressPromptDialog->ModalResult == mrOK)

CustTable->Post(); // dataset state changes to Browse on successful completion
else

CustTable->Cancel(); // dataset state changes to Browse on cancel

This example also illustrates that the state of a dataset automatically changes to
dsBrowse when

• The Post method successfully writes a record to the database. (If Post fails, the
dataset state remains unchanged.)

• The Cancel method is called.

Some states cannot be set directly. For example, to put a dataset into dsInactive state,
set its Active property to false, or call the Close method for the dataset. The following
statements are equivalent:

CustTable->Active = false;

CustTable->Close();

The remaining states (dsCalcFields, dsCurValue, dsNewValue, dsOldValue, and dsFilter)
cannot be set by your application. Instead, the state of the dataset changes
automatically to these values as necessary. For example, dsCalcFields is set when a
dataset’s OnCalcFields event is called. When the OnCalcFields event finishes, the
dataset is restored to its previous state.

dsSetKey SetKey TTable and TClientDataSet only. DataSet open. Enables setting of
ranges and key values used for ranges and GotoKey operations.

dsCalcFields CalcFields DataSet open. Indicates that an OnCalcFields event is under way.
Prevents changes to fields that are not calculated.

dsCurValue CurValue Internal use only.
dsNewValue NewValue Internal use only.

dsOldValue OldValue Internal use only.

dsFilter Filter DataSet open. Indicates that a filter operation is under way. A
restricted set of data can be viewed, and no data can be changed.

Table 19.1 Values for the dataset State property (continued)

Value State Meaning

U n d e r s t a n d i n g d a t a s e t s 19-5

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

Note Whenever a dataset’s state changes, the OnStateChange event is called for any data
source components associated with the dataset. For more information about data
source components and OnStateChange, see “Using data sources” on page 27-5.

The following sections provide overviews of each state, how and when states are set,
how states relate to one another, and where to go for related information, if
applicable.

Inactivating a dataset

A dataset is inactive when it is closed. You cannot access records in a closed dataset.
At design time, a dataset is closed until you set its Active property to true. At runtime,
a dataset is initially closed until an application opens it by calling the Open method,
or by setting the Active property to true.

When you open an inactive dataset, its state automatically changes to the dsBrowse
state. The following diagram illustrates the relationship between these states and the
methods that set them.

Figure 19.2 Relationship of Inactive and Browse states

To make a dataset inactive, call its Close method. You can write BeforeClose and
AfterClose event handlers that respond to the Close method for a dataset. For example,
if a dataset is in dsEdit or dsInsert modes when an application calls Close, you should
prompt the user to post pending changes or cancel them before closing the dataset.
The following code illustrates such a handler:

void __fastcall TForm1::VerifyBeforeClose(TDataSet *DataSet)
{
 if (DataSet->State == dsEdit || DataSet->State == dsInsert)
 {
 TMsgDlgButtons btns;
 btns << mbYes << mbNo;
 if (MessageDlg(“Post changes before closing?”, mtConfirmation, btns, 0) == mrYes)
 DataSet->Post();
 else
 DataSet->Cancel();
 }
}

To associate a procedure with the BeforeClose event for a dataset at design time:

1 Select the table in the data module (or form).

2 Click the Events page in the Object Inspector.

3 Enter the name of the procedure for the BeforeClose event (or choose it from the
drop-down list).

Inactive Browse
Open

Close

19-6 D e v e l o p e r ’ s G u i d e

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

Browsing a dataset

When an application opens a dataset, the dataset automatically enters dsBrowse state.
Browsing enables you to view records in a dataset, but you cannot edit records or
insert new records. You mainly use dsBrowse to scroll from record to record in a
dataset. For more information about scrolling from record to record, see “Navigating
datasets” on page 19-9.

From dsBrowse all other dataset states can be set. For example, calling the Insert or
Append methods for a dataset changes its state from dsBrowse to dsInsert (note that
other factors and dataset properties, such as CanModify, may prevent this change).
Calling SetKey to search for records puts a dataset in dsSetKey mode. For more
information about inserting and appending records in a dataset, see “Modifying
data” on page 19-21.

Two methods associated with all datasets can return a dataset to dsBrowse state.
Cancel ends the current edit, insert, or search task, and always returns a dataset to
dsBrowse state. Post attempts to write changes to the database, and if successful, also
returns a dataset to dsBrowse state. If Post fails, the current state remains unchanged.

The following diagram illustrates the relationship of dsBrowse both to the other
dataset modes you can set in your applications, and the methods that set those
modes.

Figure 19.3 Relationship of Browse to other dataset states

dsBrowse

Open Close

dsInactive

dsSetKey

dsEditdsInsert

Insert
Append Edit

Post (success)
Cancel
Delete

Post (success)
Cancel
Delete

Post
(unsuccessful)

Post
(unsuccessful)

SetKey, EditKey
SetRange

Post, Cancel,
GotoKey, FindKey
ApplyRange, CancelRange

U n d e r s t a n d i n g d a t a s e t s 19-7

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

Enabling dataset editing

A dataset must be in dsEdit mode before an application can modify records. In your
code you can use the Edit method to put a dataset into dsEdit mode if the read-only
CanModify property for the dataset is true. CanModify is true if the database
underlying a dataset permits read and write privileges.

On forms in your application, some data-aware controls can automatically put a
dataset into dsEdit state if:

• The control’s ReadOnly property is false (the default),
• The AutoEdit property of the data source for the control is true, and
• CanModify is true for the dataset.

Important For TTable components, if the ReadOnly property is true, CanModify is false, preventing
editing of records. Similarly, for TQuery components, if the RequestLive property is
false, CanModify is false.

Note Even if a dataset is in dsEdit state, editing records may not succeed for SQL-based
databases if your application user does not have proper SQL access privileges.

You can return a dataset from dsEdit state to dsBrowse state in code by calling the
Cancel, Post, or Delete methods. Cancel discards edits to the current field or record.
Post attempts to write a modified record to the dataset, and if it succeeds, returns the
dataset to dsBrowse. If Post cannot write changes, the dataset remains in dsEdit state.
Delete attempts to remove the current record from the dataset, and if it succeeds,
returns the dataset to dsBrowse state. If Delete fails, the dataset remains in dsEdit state.

Data-aware controls for which editing is enabled automatically call Post when a user
executes any action that changes the current record (such as moving to a different
record in a grid) or that causes the control to lose focus (such as moving to a different
control on the form).

For a complete discussion of editing fields and records in a dataset, see “Modifying
data” on page 19-21.

Enabling insertion of new records

A dataset must be in dsInsert mode before an application can add new records. In
your code you can use the Insert or Append methods to put a dataset into dsInsert
mode if the read-only CanModify property for the dataset is true. CanModify is true if
the database underlying a dataset permits read and write privileges.

On forms in your application, the data-aware grid and navigator controls can put a
dataset into dsInsert state if

• The control’s ReadOnly property is false (the default),
• The AutoEdit property of the data source for the control is true, and
• CanModify is true for the dataset.

Important For TTable components, if the ReadOnly property is true, CanModify is false, preventing
editing of records. Similarly, for TQuerycomponents, if the RequestLive property is
false, CanModify is false.

19-8 D e v e l o p e r ’ s G u i d e

D e t e r m i n i n g a n d s e t t i n g d a t a s e t s t a t e s

Note Even if a dataset is in dsInsert state, inserting records may not succeed for SQL-based
databases if your application user does not have proper SQL access privileges.

You can return a dataset from dsInsert state to dsBrowse state in code by calling the
Cancel, Post, or Delete methods. Delete and Cancel discard the new record. Post
attempts to write the new record to the dataset, and if it succeeds, returns the dataset
to dsBrowse. If Post cannot write the record, the dataset remains in dsInsert state.

Data-aware controls for which inserting is enabled automatically call Post when a
user executes any action that changes the current record (such as moving to a
different record in a grid).

For more discussion of inserting and appending records in a dataset, see “Modifying
data” on page 19-21.

Enabling index-based searches and ranges on tables

You can search against any dataset using the Locate and Lookup methods of TDataSet.
TTable components, however, provide an additional family of GotoKey and FindKey
methods that enable you to search for records based on an index for the table. To use
these methods on table components, the component must be in dsSetKey mode.
dsSetKey mode applies only to TTable components. You put a dataset into dsSetKey
mode with the SetKey method at runtime. The GotoKey, GotoNearest, FindKey, and
FindNearest methods, which carry out searches, returns the dataset to dsBrowse state
upon completion of the search. For more information about searching a table based
on its index, see “Searching for records based on indexed fields” on page 21-5.

You can temporarily view and edit a subset of data for any dataset by using filters.
For more information about filters, see “Displaying and editing a subset of data using
filters” on page 19-17. TTable components also support an additional way to access a
subset of available records, called ranges. To create and apply a range to a table, a
table must be in dsSetKey mode. For more information about using ranges, see
“Working with a subset of data” on page 21-11.

Calculating fields

C++Builder puts a dataset into dsCalcFields mode whenever an application calls the
dataset’s OnCalcFields event handler. This state prevents modifications or additions
to the records in a dataset except for the calculated fields the handler is designed to
modify. The reason all other modifications are prevented is because OnCalcFields
uses the values in other fields to derive values for calculated fields. Changes to those
other fields might otherwise invalidate the values assigned to calculated fields.

When the OnCalcFields handler finishes, the dataset is returned to dsBrowse state.

For more information about creating calculated fields and OnCalcFields event
handlers, see “Using OnCalcFields” on page 19-26.

U n d e r s t a n d i n g d a t a s e t s 19-9

N a v i g a t i n g d a t a s e t s

Filtering records

C++Builder puts a dataset into dsFilter mode whenever an application calls the
dataset’s OnFilterRecord event handler. This state prevents modifications or additions
to the records in a dataset during the filtering process so that the filter request is not
invalidated. For more information about filtering, see “Displaying and editing a
subset of data using filters” on page 19-17.

When the OnFilterRecord handler finishes, the dataset is returned to dsBrowse state.

Updating records

When performing cached update operations, C++Builder may put the dataset into
dsNewValue, dsOldValue, or dsCurValue states temporarily. These states indicate that
the corresponding properties of a field component (NewValue, OldValue, and
CurValue, respectively) are being accessed, usually in an OnUpdateError event
handler. Your applications cannot see or set these states.

Navigating datasets
Each active dataset has a cursor, or pointer, to the current row in the dataset. The
current row in a dataset is the one whose values can be manipulated by edit, insert,
and delete methods, and the one whose field values currently show in single-field,
data-aware controls on a form, such as TDBEdit, TDBLabel, and TDBMemo.

You can change the current row by moving the cursor to point at a different row. The
following table lists methods you can use in application code to move to different
records:

The data-aware, visual component TDBNavigator encapsulates these methods as
buttons that users can click to move among records at runtime. For more information
about the navigator component, see Chapter 27, “Using data controls.”

Table 19.2 Navigational methods of datasets

Method Description

First Moves the cursor to the first row in a dataset.

Last Moves the cursor to the last row in a dataset.
Next Moves the cursor to the next row in a dataset.

Prior Moves the cursor to the previous row in a dataset.

MoveBy Moves the cursor a specified number of rows forward or back in a dataset.

19-10 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

In addition to these methods, the following table describes two Boolean properties of
datasets that provide useful information when iterating through the records in a
dataset.

Using the First and Last methods

The First method moves the cursor to the first row in a dataset and sets the Bof
property to true. If the cursor is already at the first row in the dataset, First does
nothing.

For example, the following code moves to the first record in CustTable:

CustTable->First();

The Last method moves the cursor to the last row in a dataset and sets the Eof
property to true. If the cursor is already at the last row in the dataset, Last does
nothing.

The following code moves to the last record in CustTable:

CustTable->Last();

Note While there may be programmatic reasons to move to the first or last rows in a
dataset without user intervention, you should enable your users to navigate from
record to record using the TDBNavigator component. The navigator component
contains buttons that when active and visible enables a user to move to the first and
last rows of an active dataset. The OnClick events for these buttons call the First and
Last methods of the dataset. For more information about making effective use of the
navigator component, see Chapter 27, “Using data controls.”

Using the Next and Prior methods

The Next method moves the cursor forward one row in the dataset and sets the Bof
property to false if the dataset is not empty. If the cursor is already at the last row in the
dataset when you call Next, nothing happens.

For example, the following code moves to the next record in CustTable:

CustTable->Next();

Table 19.3 Navigational properties of datasets

Property Description

Bof (Beginning-of-file) true: the cursor is at the first row in the dataset.
false: the cursor is not known to be at the first row in the dataset.

Eof (End-of-file) true: the cursor is at the last row in the dataset.
false: the cursor is not known to be at the last row in the dataset.

U n d e r s t a n d i n g d a t a s e t s 19-11

N a v i g a t i n g d a t a s e t s

The Prior method moves the cursor back one row in the dataset, and sets Eof to false if
the dataset is not empty. If the cursor is already at the first row in the dataset when
you call Prior, Prior does nothing.

For example, the following code moves to the previous record in CustTable:

CustTable->Prior();

Using the MoveBy method

MoveBy enables you to specify how many rows forward or back to move the cursor in
a dataset. Movement is relative to the current record at the time that MoveBy is called.
MoveBy also sets the Bof and Eof properties for the dataset as appropriate.

This function takes an integer parameter, the number of records to move. Positive
integers indicate a forward move and negative integers indicate a backward move.

MoveBy returns the number of rows it moves. If you attempt to move past the
beginning or end of the dataset, the number of rows returned by MoveBy differs from
the number of rows you requested to move. This is because MoveBy stops when it
reaches the first or last record in the dataset.

The following code moves two records backward in CustTable:

CustTable->MoveBy(-2);

Note If you use MoveBy in your application and you work in a multi-user database
environment, keep in mind that datasets are fluid. A record that was five records
back a moment ago may now be four, six, or even an unknown number of records
back because several users may be simultaneously accessing the database and
changing its data.

Using the Eof and Bof properties

Two read-only, runtime properties, Eof (End-of-file) and Bof (Beginning-of-file), are
useful for controlling dataset navigation, particularly when you want to iterate
through all records in a dataset.

Eof
When Eof is true, it indicates that the cursor is unequivocally at the last row in a
dataset. Eof is set to true when an application

• Opens an empty dataset.

• Calls a dataset’s Last method.

• Calls a dataset’s Next method, and the method fails (because the cursor is
currently at the last row in the dataset.

• Calls SetRange on an empty range or dataset.

Eof is set to false in all other cases; you should assume Eof is false unless one of the
conditions above is met and you test the property directly.

19-12 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

Eof is commonly tested in a loop condition to control iterative processing of all
records in a dataset. If you open a dataset containing records (or you call First) Eof is
false. To iterate through the dataset a record at a time, create a loop that terminates
when Eof is true. Inside the loop, call Next for each record in the dataset. Eof remains
false until you call Next when the cursor is already on the last record.

The following code illustrates one way you might code a record-processing loop for a
dataset called CustTable:

CustTable->DisableControls();
try
{

CustTable->First(); // Go to first record, which sets Eof false
while (!CustTable->Eof) // Cycle until Eof is true
(

// Process each record here
ƒ
CustTable->Next();
// Eof false on success; Eof true when Next fails on last record

}
}
__finally
{

CustTable->EnableControls();
}

Tip This example also demonstrates how to disable and enable data-aware visual
controls tied to a dataset. If you disable visual controls during dataset iteration, it
speeds processing because C++Builder does not have to update the contents of the
controls as the current record changes. After iteration is complete, controls should be
enabled again to update them with values for the new current row. Note that
enabling of the visual controls takes place in the __finally clause of a try...__finally
statement. This guarantees that even if an exception terminates loop processing
prematurely, controls are not left disabled.

Bof
When Bof is true, it indicates that the cursor is unequivocally at the first row in a
dataset. Bof is set to true when an application

• Opens a dataset.

• Calls a dataset’s First method.

• Calls a dataset’s Prior method, and the method fails (because the cursor is
currently at the first row in the dataset.

• Calls SetRange on an empty range or dataset.

Bof is set to false in all other cases; you should assume Bof is false unless one of the
conditions above is met and you test the property directly.

U n d e r s t a n d i n g d a t a s e t s 19-13

N a v i g a t i n g d a t a s e t s

Like Eof, Bof can be in a loop condition to control iterative processing of records in a
dataset. The following code illustrates one way you might code a record-processing
loop for a dataset called CustTable:

CustTable->DisableControls(); // Speed up processing; prevent screen flicker
try
{

while (!CustTable->Bof) // Cycle until Bof is true
(

// Process each record here
ƒ
CustTable->Prior();
// Bof false on success; Bof true when Prior fails on first record

}
}
catch (...)
{

CustTable->EnableControls();
throw;

}
CustTable->EnableControls();

Marking and returning to records

In addition to moving from record to record in a dataset (or moving from one record
to another by a specific number of records), it is often also useful to mark a particular
location in a dataset so that you can return to it quickly when desired. TDataSet and
its descendants implement a bookmarking feature that enables you to tag records
and return to them later. The bookmarking feature consists of a Bookmark property
and five bookmark methods.

The Bookmark property indicates which bookmark among any number of bookmarks
in your application is current. Bookmark is a string that identifies the current
bookmark. Each time you add another bookmark, it becomes the current bookmark.

TDataSet implements virtual bookmark methods. While these methods ensure that
any dataset object derived from TDataSet returns a value if a bookmark method is
called, the return values are merely defaults that do not keep track of the current
location. Descendants of TDataSet, such as TBDEDataSet, reimplement the bookmark
methods to return meaningful values as described in the following list:

• BookmarkValid, for determining if a specified bookmark is in use.

• CompareBookmarks, to test two bookmarks to see if they are the same.

• GetBookmark, to allocate a bookmark for your current position in the dataset.

• GotoBookmark, to return to a bookmark previously created by GetBookmark.

• FreeBookmark, to free a bookmark previously allocated by GetBookmark.

To create a bookmark, you must declare a variable of type TBookmark in your
application, then call GetBookmark to allocate storage for the variable and set its value
to a particular location in a dataset. The TBookmark type is a pointer (void *).

19-14 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

Before calling GotoBookmark to move to a specific record, you can call BookmarkValid
to determine if the bookmark points to a record. BookmarkValid returns true if a
specified bookmark points to a record. In TDataSet, BookmarkValid is a virtual method
that always returns false, indicating that the bookmark is not valid. TDataSet
descendants reimplement this method to provide a meaningful return value.

You can also call CompareBookmarks to see if a bookmark you want to move to is
different from another (or the current) bookmark. TDataSet::CompareBookmarks
always returns 0, indicating that the bookmarks are identical. TDataSet descendants
reimplement this method to provide a meaningful return value.

When passed a bookmark, GotoBookmark moves the cursor for the dataset to the
location specified in the bookmark. TDataSet::GotoBookmark calls an internal pure
virtual method which generates a runtime error if called. TDataSet descendants
reimplement this method to provide a meaningful return value.

FreeBookmark frees the memory allocated for a specified bookmark when you no
longer need it. You should also call FreeBookmark before reusing an existing
bookmark.

The following code illustrates one use of bookmarking:

void DoSomething (const TTable *Tbl)
{

TBookmark Bookmark = Tbl->GetBookmark(); // Allocate memory and assign a value
Tbl->DisableControls(); // Turn off display of records in data controls
try
{

Tbl->First(); // Go to first record in table
while (!Tbl->Eof) // Iterate through each record in table
{
// Do your processing here
ƒ
Tbl->Next();

}
}
__finally
{

Tbl->GotoBookmark(Bookmark);
Tbl->EnableControls(); // Turn on display of records in data controls
Tbl->FreeBookmark(Bookmark); // Deallocate memory for the bookmark
throw;

}
}

Before iterating through records, controls are disabled. Should an error occur during
iteration through records, the __finally clause ensures that controls are always
enabled and that the bookmark is always freed even if the loop terminates
prematurely.

U n d e r s t a n d i n g d a t a s e t s 19-15

S e a r c h i n g d a t a s e t s

Searching datasets
You can search any dataset for specific records using the generic search methods
Locate and Lookup. These methods enable you to search on any type of columns in any
dataset.

Using Locate

Locate moves the cursor to the first row matching a specified set of search criteria. In
its simplest form, you pass Locate the name of a column to search, a field value to
match, and an options flag specifying whether the search is case-insensitive or if it
can use partial-key matching. For example, the following code moves the cursor to
the first row in the CustTable where the value in the Company column is “Professional
Divers, Ltd.”:

TLocateOptions SearchOptions;
SearchOptions.Clear();
SearchOptions << loPartialKey;
bool LocateSuccess = CustTable->Locate(“Company”, “Professional Divers, Ltd.”,

SearchOptions);

If Locate finds a match, the first record containing the match becomes the current
record. Locate returns true if it finds a matching record, false if it does not. If a search
fails, the current record does not change.

The real power of Locate comes into play when you want to search on multiple
columns and specify multiple values to search for. Search values are variants, which
enables you to specify different data types in your search criteria. To specify multiple
columns in a search string, separate individual items in the string with semicolons.

Because search values are variants, if you pass multiple values, you must either pass
a variant array type as an argument (for example, the return values from the Lookup
method), or you must construct the variant array on the fly using the VarArrayOf
function. The following code illustrates a search on multiple columns using multiple
search values and partial-key matching:

TLocateOptions Opts;
Opts.Clear();
Opts << loPartialKey;
Variant locvalues[2];
locvalues[0] = Variant(“Sight Diver”);
locvalues[1] = Variant(“P”);
CustTable->Locate(“Company;Contact”, VarArrayOf(locvalues, 1), Opts);

Locate uses the fastest possible method to locate matching records. If the columns to
search are indexed and the index is compatible with the search options you specify,
Locate uses the index.

19-16 D e v e l o p e r ’ s G u i d e

S e a r c h i n g d a t a s e t s

Using Lookup

Lookup searches for the first row that matches specified search criteria. If it finds a
matching row, it forces the recalculation of any calculated fields and lookup fields
associated with the dataset, then returns one or more fields from the matching row.
Lookup does not move the cursor to the matching row; it only returns values from it.

In its simplest form, you pass Lookup the name of field to search, the field value to
match, and the field or fields to return. For example, the following code looks for the
first record in the CustTable where the value of the Company field is “Professional
Divers, Ltd.”, and returns the company name, a contact person, and a phone number
for the company:

Variant LookupResults = CustTable->Lookup(“Company”, “Professional Divers, Ltd”,
“Company;Contact;Phone”);

Lookup returns values for the specified fields from the first matching record it finds.
Values are returned as variants. If more than one return value is requested, Lookup
returns a variant array. If there are no matching records, Lookup returns a Null
variant. For more information about variant arrays, see the online help.

The real power of Lookup comes into play when you want to search on multiple
columns and specify multiple values to search for. To specify strings containing
multiple columns or result fields, separate individual fields in the string items with
semi-colons.

Because search values are variants, if you pass multiple values, you must either pass
a variant array type as an argument (for example, the return values from the Lookup
method), or you must construct the variant array on the fly using the VarArrayOf
function. The following code illustrates a lookup search on multiple columns:

Variant LookupResults;
Variant locvalues[2];
Variant v;

locvalues[0] = Variant(“Sight Diver”);
locvalues[1] = Variant(“Kato Paphos”);
LookupResults = CustTable->Lookup(“Company;City”, VarArrayOf(locvalues, 1),

“Company;Addr1;Addr2;State;Zip”);
// now put the results in a global stringlist (created elsewhere)
pFieldValues->Clear();
for (int i = 0; i < 5; i++) // Lookup call requested 5 fields
{
 v = LookupResults.GetElement(i);
 if (v.IsNull())
 pFieldValues->Add(““);
 else
 pFieldValues->Add(v);
}

Lookup uses the fastest possible method to locate matching records. If the columns to
search are indexed, Lookup uses the index.

U n d e r s t a n d i n g d a t a s e t s 19-17

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

Displaying and editing a subset of data using filters
An application is frequently interested in only a subset of records within a dataset.
For example, you may be interested in retrieving or viewing only those records for
companies based in California in your customer database, or you may want to find a
record that contains a particular set of field values. In each case, you can use filters to
restrict an application’s access to a subset of all records in the dataset.

A filter specifies conditions a record must meet to be displayed. Filter conditions can
be stipulated in a dataset’s Filter property or coded into its OnFilterRecord event
handler. Filter conditions are based on the values in any specified number of fields in
a dataset whether or not those fields are indexed. For example, to view only those
records for companies based in California, a simple filter might require that records
contain a value in the State field of “CA”.

Note Filters are applied to every record retrieved in a dataset. When you want to filter
large volumes of data, it may be more efficient to use a query to restrict record
retrieval, or to set a range on an indexed table rather than using filters.

Enabling and disabling filtering

Enabling filters on a dataset is a three-step process:

1 Create a filter.
2 Set filter options for string-based filter tests, if necessary.
3 Set the Filtered property to true.

When filtering is enabled, only those records that meet the filter criteria are available
to an application. Filtering is always a temporary condition. You can turn off filtering
by setting the Filtered property to false.

Creating filters

There are two ways to create a filter for a dataset:

• Specify simple filter conditions in the Filter property. Filter is especially useful for
creating and applying filters at runtime.

• Write an OnFilterRecord event handler for simple or complex filter conditions.
With OnFilterRecord, you specify filter conditions at design time. Unlike the Filter
property, which is restricted to a single string containing filter logic, an
OnFilterRecord event can take advantage of branching and looping logic to create
complex, multi-level filter conditions.

The main advantage to creating filters using the Filter property is that your
application can create, change, and apply filters dynamically, (for example, in
response to user input). Its main disadvantages are that filter conditions must be
expressible in a single text string, cannot make use of branching and looping
constructs, and cannot test or compare its values against values not already in the
dataset.

19-18 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

The strengths of the OnFilterRecord event are that a filter can be complex and
variable, can be based on multiple lines of code that use branching and looping
constructs, and can test dataset values against values outside the dataset, such as the
text in an edit box. The main weakness of using OnFilterRecord is that you set the
filter at design time and it cannot be modified in response to user input. (You can,
however, create several filter handlers and switch among them in response to general
application conditions.)

The following sections describe how to create filters using the Filter property and the
OnFilterRecord event handler.

Setting the Filter property

To create a filter using the Filter property, set the value of the property to a string that
contains the filter conditions. The string contains the filter’s test condition. For
example, the following statement creates a filter that tests a dataset’s State field to see
if it contains a value for the state of California:

Dataset1->Filter = “State = ‘CA’”;

You can also supply a value for Filter based on the text entered in a control. For
example, the following statement assigns the text in an edit box to Filter:

Dataset1->Filter = Edit1->Text;

You can, of course, create a string based on both hard-coded text and data entered by
a user in a control:

Dataset1->Filter = AnsiString(“State = ‘”) + Edit1->Text + “‘”;

After you specify a value for Filter, to apply the filter to the dataset, set the Filtered
property to true.

You can also compare field values to literals, and to constants using the following
comparison and logical operators:

Table 19.4 Comparison and logical operators that can appear in a filter

Operator Meaning

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Not equal to

AND Tests two statements are both true

NOT Tests that the following statement is not true

OR Tests that at least one of two statements is true

U n d e r s t a n d i n g d a t a s e t s 19-19

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

By using combinations of these operators, you can create fairly sophisticated filters.
For example, the following statement checks to make sure that two test conditions
are met before accepting a record for display:

(Custno > 1400) AND (Custno < 1500);

Note When filtering is on, user edits to a record may mean that the record no longer meets
a filter’s test conditions. The next time the record is retrieved from the dataset, it may
therefore “disappear.” If that happens, the next record that passes the filter condition
becomes the current record.

Writing an OnFilterRecord event handler

A filter for a dataset is an event handler that responds to OnFilterRecord events
generated by the dataset for each record it retrieves. At the heart of every filter
handler is a test that determines if a record should be included in those that are
visible to the application.

To indicate whether a record passes the filter condition, your filter handler must set
an Accept parameter to true to include a record, or false to exclude it. For example, the
following filter displays only those records with the State field set to “CA”:

void __fastcall TForm1::Table1FilterRecord(TDataSet *DataSet; bool &Accept)
{

Accept = DataSet->FieldByName[“State”]->AsString == “CA”;
}

When filtering is enabled, an OnFilterRecord event is generated for each record
retrieved. The event handler tests each record, and only those that meet the filter’s
conditions are displayed. Because the OnFilterRecord event is generated for every
record in a dataset, you should keep the event handler as tightly-coded as possible to
avoid adversely affecting the performance of your application.

Switching filter event handlers at runtime
You can code any number of filter event handlers and switch among them at
runtime. To switch to a different filter event handler at runtime, assign the new event
handler to the dataset’s OnFilterRecord property.

For example, the following statements switch to an OnFilterRecord event handler
called NewYorkFilter:

DataSet1->OnFilterRecord = NewYorkFilter;
Refresh;

Setting filter options

The FilterOptions property enables you to specify whether or not a filter that
compares string-based fields accepts records based on partial comparisons and
whether or not string comparisons are case-sensitive. FilterOptions is a set property

19-20 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

that can be an empty set (the default), or that can contain either or both of the
following values:

For example, the following statements set up a filter that ignores case when
comparing values in the State field:

TFilterOptions FilterOptions;
FilterOptions->Clear();
FilterOptions << foCaseInsensitive;
Table1->FilterOptions = FilterOptions;
Table1->Filter = “State = 'CA'”;

Navigating records in a filtered dataset

There are four dataset methods that enable you to navigate among records in a
filtered dataset. The following table lists these methods and describes what they do:

For example, the following statement finds the first filtered record in a dataset:

DataSet1->FindFirst();

Provided that you set the Filter property or create an OnFilterRecord event handler for
your application, these methods position the cursor on the specified record whether
or not filtering is currently enabled for the dataset. If you call these methods when
filtering is not enabled, then they

• Temporarily enable filtering.
• Position the cursor on a matching record if one is found.
• Disable filtering.

Note If filtering is disabled and you do not set the Filter property or create an
OnFilterRecord event handler, these methods do the same thing as First(), Last(),
Next(), and Prior().

Table 19.5 FilterOptions values

Value Meaning

foCaseInsensitive Ignore case when comparing strings.
foNoPartialCompare Disable partial string matching (i.e., do not match strings ending with an

asterisk (*)).

Table 19.6 Filtered dataset navigational methods

Method Purpose

FindFirst Move to the first record in the dataset that matches the current filter criteria. The
search for the first matching record always begins at the first record in the
unfiltered dataset.

FindLast Move to the last record in the dataset that matches the current filter criteria.
FindNext Moves from the current record in the filtered dataset to the next one.

FindPrior Move from the current record in the filtered dataset to the previous one.

U n d e r s t a n d i n g d a t a s e t s 19-21

M o d i f y i n g d a t a

All navigational filter methods position the cursor on a matching record (if one if
found) make that record the current one, and return true. If a matching record is not
found, the cursor position is unchanged, and these methods return false. You can
check the status of the Found property to wrap these calls, and only take action when
Found is true. For example, if the cursor is already on the last matching record in the
dataset, and you call FindNext, the method returns false, and the current record is
unchanged.

Modifying data
You can use the following dataset methods to insert, update, and delete data:

Editing records

A dataset must be in dsEdit mode before an application can modify records. In your
code you can use the Edit method to put a dataset into dsEdit mode if the read-only
CanModify property for the dataset is true. CanModify is true if the table(s) underlying
a dataset permits read and write privileges.

On forms in your application, some data-aware controls can automatically put a
dataset into dsEdit state if

• The control’s ReadOnly property is false (the default),
• The AutoEdit property of the data source for the control is true, and
• CanModify is true for the dataset.

Important For TTable components with the ReadOnly property set to true and TQuery
components with the RequestLive property set to false, CanModify is false, preventing
editing of records.

Note Even if a dataset is in dsEdit state, editing records may not succeed for SQL-based
databases if your application’s user does not have proper SQL access privileges.

Once a dataset is in dsEdit mode, a user can modify the field values for the current
record that appears in any data-aware controls on a form. Data-aware controls for
which editing is enabled automatically call Post when a user executes any action that
changes the current record (such as moving to a different record in a grid).

Table 19.7 Dataset methods for inserting, updating, and deleting data

Method Description

Edit Puts the dataset into dsEdit state if it is not already in dsEdit or dsInsert states.

Append Posts any pending data, moves current record to the end of the dataset, and puts the
dataset in dsInsert state.

Insert Posts any pending data, and puts the dataset in dsInsert state.
Post Attempts to post the new or altered record to the database. If successful, the dataset

is put in dsBrowse state; if unsuccessful, the dataset remains in its current state.
Cancel Cancels the current operation and puts the dataset in dsBrowse state.

Delete Deletes the current record and puts the dataset in dsBrowse state.

19-22 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

If you provide a navigator component on your forms, users can cancel edits by
clicking the navigator’s Cancel button. Canceling edits returns a dataset to dsBrowse
state.

In code, you must write or cancel edits by calling the appropriate methods. You write
changes by calling Post. You cancel them by calling Cancel. In code, Edit and Post are
often used together. For example,

Table1->Edit();
Table1->FieldValues[“CustNo”] = 1234;
Table1->Post();

In the previous example, the first line of code places the dataset in dsEdit mode. The
next line of code assigns the number 1234 to the CustNo field of the current record.
Finally, the last line writes, or posts, the modified record to the database.

Note If the CachedUpdates property for a dataset is true, posted modifications are written to
a temporary buffer. To write cached edits to the database, call the ApplyUpdates
method for the dataset. For more information about cached updates, see Chapter 26,
“Working with cached updates.”

Adding new records

A dataset must be in dsInsert mode before an application can add new records. In
code, you can use the Insert or Append methods to put a dataset into dsInsert mode if
the read-only CanModify property for the dataset is true. CanModify is true if the
database underlying a dataset permits read and write privileges.

On forms in your application, the data-aware grid and navigator controls can put a
dataset into dsInsert state if

• The control’s ReadOnly property is false (the default), and
• CanModify is true for the dataset.

Once a dataset is in dsInsert mode, a user or application can enter values into the
fields associated with the new record. Except for the grid and navigational controls,
there is no visible difference to a user between Insert and Append. On a call to Insert,
an empty row appears in a grid above what was the current record. On a call to
Append, the grid is scrolled to the last record in the dataset, an empty row appears at
the bottom of the grid, and the Next and Last buttons are dimmed on any navigator
component associated with the dataset.

Data-aware controls for which inserting is enabled automatically call Post when a
user executes any action that changes which record is current (such as moving to a
different record in a grid). Otherwise you must call Post in your code.

Post writes the new record to the database, or, if cached updates are enabled, Post
writes the record to a buffer. To write cached inserts and appends to the database,
call the ApplyUpdates method for the dataset.

U n d e r s t a n d i n g d a t a s e t s 19-23

M o d i f y i n g d a t a

Inserting records
Insert opens a new, empty record before the current record, and makes the empty
record the current record so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post (or ApplyUpdates when cached updating is enabled), a
newly inserted record is written to a database in one of three ways:

• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a
position based on its index.

• For unindexed tables, the record is inserted into the dataset at its current position.

• For SQL databases, the physical location of the insertion is
implementation-specific. If the table is indexed, the index is updated with the new
record information.

Appending records
Append opens a new, empty record at the end of the dataset, and makes the empty
record the current one so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post (or ApplyUpdates when cached updating is enabled), a
newly appended record is written to a database in one of three ways:

• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a
position based on its index.

• For unindexed tables, the record is added to the end of the dataset.

• For SQL databases, the physical location of the append is implementation-specific.
If the table is indexed, the index is updated with the new record information.

Deleting records

A dataset must be active before an application can delete records. Delete deletes the
current record from a dataset and puts the dataset in dsBrowse mode. The record that
followed the deleted record becomes the current record. If cached updates are
enabled for a dataset, a deleted record is only removed from the temporary cache
buffer until you call ApplyUpdates.

If you provide a navigator component on your forms, users can delete the current
record by clicking the navigator’s Delete button. In code, you must call Delete
explicitly to remove the current record.

Posting data to the database

The Post method is central to a C++Builder application’s interaction with a database
table. Post writes changes to the current record to the database, but it behaves

19-24 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

differently depending on a dataset’s state.

• In dsEdit state, Post writes a modified record to the database (or buffer if cached
updates is enabled).

• In dsInsert state, Post writes a new record to the database (or buffer if cached
updates is enabled).

• In dsSetKey state, Post returns the dataset to dsBrowse state.

Posting can be done explicitly, or implicitly as part of another procedure. When an
application moves off the current record, Post is called implicitly. Calls to the First,
Next, Prior, and Last methods perform a Post if the table is in dsEdit or dsInsert modes.
The Append and Insert methods also implicitly post any pending data.

Note The Close method does not call Post implicitly. Use the BeforeClose event to post any
pending edits explicitly.

Canceling changes

An application can undo changes made to the current record at any time, if it has not
yet directly or indirectly called Post. For example, if a dataset is in dsEdit mode, and a
user has changed the data in one or more fields, the application can return the record
back to its original values by calling the Cancel method for the dataset. A call to Cancel
always returns a dataset to dsBrowse state.

On forms, you can allow users to cancel edit, insert, or append operations by
including the Cancel button on a navigator component associated with the dataset, or
you can provide code for your own Cancel button on the form.

Modifying entire records

On forms, all data-aware controls except for grids and the navigator provide access
to a single field in a record.

In code, however, you can use the following methods that work with entire record
structures provided that the structure of the database tables underlying the dataset is
stable and does not change. The following table summarizes the methods available
for working with entire records rather than individual fields in those records:

Table 19.8 Methods that work with entire records

Method Description

AppendRecord([array of values]) Appends a record with the specified column values at the end
of a table; analogous to Append. Performs an implicit Post.

InsertRecord([array of values]) Inserts the specified values as a record before the current
cursor position of a table; analogous to Insert. Performs an
implicit Post.

SetFields([array of values]) Sets the values of the corresponding fields; analogous to
assigning values to TFields. Application must perform an
explicit Post.

U n d e r s t a n d i n g d a t a s e t s 19-25

M o d i f y i n g d a t a

These method take an array of Tavern values as an argument, where each value
corresponds to a column in the underlying dataset. Use the ARRAYOFCONST macro
to create these arrays. The values can be literals, variables, or NULL. If the number of
values in an argument is less than the number of columns in a dataset, then the
remaining values are assumed to be NULL.

For unindexed datasets, AppendRecord adds a record to the end of the dataset and
InsertRecord inserts a record after the current cursor position. For indexed tables, both
methods place the record in the correct position in the table, based on the index. In
both cases, the methods move the cursor to the record’s position.

 SetFields assigns the values specified in the array of parameters to fields in the
dataset. To use SetFields, an application must first call Edit to put the dataset in dsEdit
mode. To apply the changes to the current record, it must perform a Post.

If you use SetFields to modify some, but not all fields in an existing record, you can
pass NULL values for fields you do not want to change. If you do not supply enough
values for all fields in a record, SetFields assigns NULL values to them. NULL values
overwrite any existing values already in those fields.

For example, suppose a database has a COUNTRY table with columns for Name,
Capital, Continent, Area, and Population. If a TTable component called CountryTable
were linked to the COUNTRY table, the following statement would insert a record
into the COUNTRY table:

CountryTable->InsertRecord(ARRAYOFCONST((“Japan”, “Tokyo”, “Asia”)));

This statement does not specify values for Area and Population, so NULL values are
inserted for them. The table is indexed on Name, so the statement would insert the
record based on the alphabetic collation of “Japan”.

To update the record, an application could use the following code:

TLocateOptions SearchOptions;
SearchOptions->Clear();
SearchOptions << loCaseInsensitive;
if (CountryTable->Locate(“Name”, “Japan”, SearchOptions))
{

CountryTable->Edit();
CountryTable->SetFields(ARRAYOFCONST(((void *)NULL, (void *)NULL, (void *)NULL,

344567, 164700000)));
CountryTable->Post();

}

This code assigns values to the Area and Population fields and then posts them to the
database. The three NULL pointers act as place holders for the first three columns to
preserve their current contents.

Warning When using NULL pointers with SetFields to leave some field values untouched, be
sure to cast the NULL to a void *. If you use NULL as a parameter without the cast,
you will set the field to a blank value.

19-26 D e v e l o p e r ’ s G u i d e

U s i n g d a t a s e t e v e n t s

Using dataset events
Datasets have a number of events that enable an application to perform validation,
compute totals, and perform other tasks. The events are listed in the following table.

For more information about events for the TDataSet component, see the online VCL
Reference.

Aborting a method

To abort a method such as an Open or Insert, call the Abort procedure in any of the
Before event handlers (BeforeOpen, BeforeInsert, and so on). For example, the following
code requests a user to confirm a delete operation or else it aborts the call to Delete:

void __fastcall TForm1::TableBeforeDelete (TDataSet *Dataset)
{

if (MessageBox(0, "Delete This Record?", "CONFIRM", MB_YESNO) != IDYES)
 Abort();
}

Using OnCalcFields

The OnCalcFields event is used to set the values of calculated fields. The
AutoCalcFields property determines when OnCalcFields is called. If AutoCalcFields is
true, OnCalcFields is called when

• A dataset is opened.

• Focus moves from one visual component to another, or from one column to
another in a data-aware grid control and the current record has been modified.

• A record is retrieved from the database.

OnCalcFields is always called whenever a value in a non-calculated field changes,
regardless of the setting of AutoCalcFields.

Table 19.9 Dataset events

Event Description

BeforeOpen, AfterOpen Called before/after a dataset is opened.

BeforeClose, AfterClose Called before/after a dataset is closed.

BeforeInsert, AfterInsert Called before/after a dataset enters Insert state.

BeforeEdit, AfterEdit Called before/after a dataset enters Edit state.

BeforePost, AfterPost Called before/after changes to a table are posted.

BeforeCancel, AfterCancel Called before/after the previous state is canceled.

BeforeDelete, AfterDelete Called before/after a record is deleted.

OnNewRecord Called when a new record is created; used to set default values.

OnCalcFields Called when calculated fields are calculated.

U n d e r s t a n d i n g d a t a s e t s 19-27

U s i n g B D E - e n a b l e d d a t a s e t s

Caution OnCalcFields is called frequently, so the code you write for it should be kept short.
Also, if AutoCalcFields is true, OnCalcFields should not perform any actions that
modify the dataset (or the linked dataset if it is part of a master-detail relationship),
because this can lead to recursion. For example, if OnCalcFields performs a Post, and
AutoCalcFields is true, then OnCalcFields is called again, leading to another Post, and
so on.

If AutoCalcFields is false, then OnCalcFields is not called when individual fields within
a single record are modified.

When OnCalcFields executes, a dataset is in dsCalcFields mode, so you cannot set the
values of any fields other than calculated fields. After OnCalcFields is completed, the
dataset returns to dsBrowse state.

Using BDE-enabled datasets
BDE-enabled datasets provide functionality to the dataset components that use the
Borland Database Engine (BDE) to access data. Support for BDE-enablement occurs
in TBDEDataSet, which is a direct descendant of TDataSet. Additional database and
session control features occur in TDBDataSet, which is a direct descendant of
TBDEDataSet.

Figure 19.4 Dataset component hierarchy

This section introduces the dataset features provided by TBDEDataSet and
TDBDataSet. It assumes you are already familiar with TDataSet discussed earlier in this
chapter. For a general understanding of dataset components descended from
TDataSet, see the beginning of this chapter.

Note Although you need to understand the functionality provided by TBDEDataSet and
TDBDataSet, unless you develop your own custom BDE-enabled datasets, you never use
TBDEDataSet and TDBDataSet directly in your applications. Instead, you use the direct
descendants of TDBDataSet: TQuery, TStoredProc, and TTable. For specific information
about using TStoredProc, see Chapter 23, “Working with stored procedures.” For specific

TDataSet

TClientDataSet TBDEDataSet

TTable

TStoredProc

TQuery

TDBDataSet

TNestedTable

19-28 D e v e l o p e r ’ s G u i d e

U s i n g B D E - e n a b l e d d a t a s e t s

information about using TQuery, see Chapter 22, “Working with queries.” For specific
information about TTable, see Chapter 21, “Working with tables.”

Overview of BDE-enablement

The TBDEDataSet component implements the abstract methods of TDataSet that
control record navigation, indexing, and bookmarking. It also reimplements many of
TDataSet’s virtual methods and events to take advantage of the BDE. The
BDE-specific implementations of TDataSet’s features do not depart from the general
description about using these features with TDataSet, so for more information about
them, see at the beginning of this chapter.

In addition to BDE-specific features common to all datasets, TBDEDataSet introduces
new properties, events, and methods for handling BLOBs, cached updates, and
communicating with a remote database server. TDBDataSet introduces a method and
properties for handling database connections and associating a dataset with a BDE
session. The following sections describe these features and point to other sections in
the Developer’s Guide that are also relevant to using them.

Handling database and session connections

The TDBDataSet component introduces the following properties and function for
working with database and session connections:

Table 19.10 TDBDataSet database and session properties and function

Function or property Purpose

CheckOpen function Determines if a database is open. Returns true if the connection is active,
false otherwise.

Database Identifies the database component with which the dataset is associated.

DBHandle Specifies the BDE database handle for the database component specified
in the Database property. Used only when making some direct BDE API
calls.

DBLocale Specifies the BDE locale information for the database component
specified in the Database property. Used only when making some direct
BDE API calls.

DBSession Specifies the BDE session handle for the session component specified by
the SessionName property. Used only when making some direct BDE API
calls.

DatabaseName Specifies the BDE alias or database component name for the database
used by this dataset. If the dataset is a Paradox or dBASE table,
DatabaseName can be a full path specification for the database’s directory
location.

SessionName Specifies the session with which this dataset component is associated. If
you use both database and session components with a dataset, the
setting for SessionName should be the same as the database component’s
SessionName property.

U n d e r s t a n d i n g d a t a s e t s 19-29

U s i n g B D E - e n a b l e d d a t a s e t s

Using the DatabaseName and SessionName properties
Of the TDBDataSet database and session properties, the most commonly used are
DatabaseName and SessionName. If you work with databases on a remote database
server, such as Sybase, Oracle, or InterBase, your application usually maintains that
connection through a TDatabase component. You should set the DatabaseName
property of each dataset to match the name of the database component that
establishes the database connection used by the dataset. If you do not use database
components, DatabaseName should be set to a BDE alias (or, optionally, a full path
specification for dBASE and Paradox).

SessionName indicates the BDE session with which to associate a dataset. If you do not
use explicit session components in your application, you do not have to provide a
value for this property. It is supplied for you. If your application provides more than
one session, you can set a dataset’s SessionName property to match the SessionName
property of the appropriate session component in your application. If your
application uses both multiple session components and one or more database
components, the SessionName property for a dataset must match the SessionName
property for the database component with which the dataset is associated.

For more information about handling database connections with TDatabase, see
Chapter 18, “Connecting to databases.” For more information about managing
sessions with TSession and TSessionList, see Chapter 17, “Managing database
sessions.”

Working with BDE handle properties
Unless you bypass the built-in functionality of dataset components and make direct
API calls to the BDE, you do not need to use the DBHandle, DBLocale, and DBSession
properties. These properties are read-only properties that are automatically assigned
to a dataset when it is connected to a database server through the BDE. These
properties are provided as a resource for application developers who need to make
direct API calls to BDE functions, some of which take handle parameters. For more
information about the BDE API, see the online help file, BDE32.HLP.

Using cached updates

Cached updates enable you to retrieve data from a database, cache and edit it locally,
and then apply the cached updates to the database as a unit. When cached updates
are enabled, updates to a dataset (such as posting changes or deleting records) are
stored in an internal cache instead of being written directly to the dataset’s
underlying table. When changes are complete, your application calls a method that
writes the cached changes to the database and clears the cache.

The recommended approach when caching updates is to use a client dataset rather
than a BDE-enabled dataset. However, TBDEDataSet provides an alternate approach,
with built-in methods for handling cached updates. Table 19.11 lists the relevant
properties, events, and methods for cached updating.

19-30 D e v e l o p e r ’ s G u i d e

U s i n g B D E - e n a b l e d d a t a s e t s

Using cached updates and coordinating them with other applications that access data
in a multi-user environment is an advanced topic that is fully covered in Chapter 26,
“Working with cached updates.”

For information about using a client dataset instead, see Chapter 25, “Creating and
using a client dataset.”

Caching BLOBs

TBDEDataSet provides the CacheBlobs property to control whether BLOB fields are
cached locally by the BDE when an application reads BLOB records. By default,
CacheBlobs is true, meaning that the BDE caches a local copy of BLOB fields. Caching
BLOBs improves application performance by enabling the BDE to store local copies
of BLOBs instead of fetching them repeatedly from the database server as a user
scrolls through records.

In applications and environments where BLOBs are frequently updated or replaced,
and a fresh view of BLOB data is more important than application performance, you
can set CacheBlobs to false to ensure that your application always sees the latest
version of a BLOB field.

Table 19.11 Properties, events, and methods for cached updates

Property, event, or method Purpose

CachedUpdates property Determines whether or not cached updates are in effect for the
dataset. If true, cached updating is enabled. If false, cached
updating is disabled.

UpdateObject property Indicates the name of the TUpdateSQL component used to update
datasets based on queries.

UpdatesPending property Indicates whether or not the local cache contains updated records
that need to be applied to the database. true indicates there are
records to update. false indicates the cache is empty.

UpdateRecordTypes property Indicates the kind of updated records to make visible to the
application during the application of cached updates.

UpdateStatus method Indicates if a record is unchanged, modified, inserted, or deleted.
OnUpdateError event A developer-created procedure that handles update errors on a

record-by-record basis.

OnUpdateRecord event A developer-created procedure that processes updates on a
record-by-record basis.

ApplyUpdates method Applies records in the local cache to the database.

CancelUpdates method Removes all pending updates from the local cache without
applying them to the database.

CommitUpdates method Clears the update cache following successful application of
updates.

FetchAll method Copies all database records to the local cache for editing and
updating.

RevertRecord method Undoes updates to the current record if updates are not yet
applied on the server side.

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-1

C h a p t e r

20
Chapter20Working with field components

This chapter describes the properties, events, and methods common to the TField
object and its descendants. Descendants of TField represent individual database
columns in datasets. This chapter also describes how to use descendant field
components to control the display and editing of data in your applications.

You never use a TField component directly in your applications. By default, when
you first place a dataset in your application and open it, C++Builder automatically
assigns a dynamic, data-type-specific descendant of TField to represent each column
in the database table(s). At design time, you can override dynamic field defaults by
invoking the Fields editor to create persistent fields that replace these defaults.

The following table lists each descendant field component, its standard purpose, and,
where appropriate, the range of values it can represent:

Table 20.1 Field components

Component name Purpose

 TADTField An ADT (Abstract Data Type) field.

 TAggregateField A maintained aggregate in a client dataset.

 TArrayField An array field.
 TAutoIncField Whole number with a range of -2,147,483,648 to 2,147,483,647. Used in

Paradox for fields whose values are automatically incremented.

 TBCDField Real number with a fixed number of decimal places, accurate to 18 digits.
Range depends on the number of decimal places.

 TBooleanField true or false values.

 TBlobField Binary data: Theoretical maximum limit: 2GB.
 TBytesField Binary data: Theoretical maximum limit: 2GB.

TCurrencyField Real numbers with a range of 5.0 * 10-324 to 1.7 * 10308. Used in Paradox
for fields with two decimals of precision.

TDataSetField Nested data set value.
TDateField Date value.

TDateTimeField Date and time value.

20-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g f i e l d c o m p o n e n t s

This chapter discusses the properties and methods all field components inherit from
TField. In many cases, TField declares or implements standard functionality that the
descendant objects override. When several descendant objects share overridden
functionality, that functionality is also described in this chapter and noted for your
convenience. For complete information about individual field components, see the
online VCL Reference.

Understanding field components
Like all C++Builder data access components, field components are nonvisual. Field
components are also not directly visible at design time. Instead they are associated
with a dataset component and provide data-aware components such as TDBEdit and
TDBGrid access to database columns through that dataset.

Generally speaking, a single field component represents the characteristics of a single
column in a database field, such as its data type and size. It also represents the field’s
display characteristics, such as alignment, display format, and edit format. Finally, as
you scroll from record to record within a dataset, a field component also enables you to
view and change the value for that field in the current record. For example, a
TFloatField component has four properties that directly affect the appearance of its data:

TFloatField Real numbers with a range of 5.0 * 10-324 to 1.7 * 10308.

TBytesField Binary data: Maximum number of bytes: 255.
TIntegerField Whole number with a range of -2,147,483,648 to 2,147,483,647.

TLargeintField Whole number with a range of -263 to 263.

TMemoField Text data: Theoretical maximum limit: 2GB.
TNumericField Real numbers with a range of 3.4 * 10-4932 to 1.1 * 104932

 TReferenceField A pointer to an object relational database object.

TSmallintField Whole number with a range of -32,768 to 32,768.
TStringField String data: Maximum size in bytes: 8192, including a null termination

character.
TTimeField Time value.

TVarBytesField Binary data: Maximum number of bytes: 255.

TWordField Whole numbers with a range of 0 to 65,535.

Table 20.1 Field components (continued)

Component name Purpose

Table 20.2 TFloatField properties that affect data display

Property Purpose

Alignment Specifies whether data is displayed left-aligned, centered, or right-aligned.

DisplayWidth Specifies the number of digits to display in a control at one time.

DisplayFormat Specifies data formatting for display (such as how many decimal places to show).

EditFormat Specifies how to display a value during editing.

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-3

U n d e r s t a n d i n g f i e l d c o m p o n e n t s

Field components have many properties in common with one another (such as
DisplayWidth and Alignment), and they have properties specific to their data types
(such as Precision for TFloatField). Each of these properties affect how data appears to
an application’s users on a form. Some properties, such as Precision, can also affect
what data values the user can enter in a control when modifying or entering data.

All field components for a dataset are either dynamic (automatically generated for
you based on the underlying structure of database tables), or persistent (generated
based on specific field names and properties you set in the Fields editor). Dynamic
and persistent fields have different strengths and are appropriate for different types
of applications. The following sections describe dynamic and persistent fields in
more detail and offer advice on choosing between them.

Dynamic field components

Dynamically generated field components are the default. In fact, all field components
for any dataset start out as dynamic fields the first time you place a dataset on a data
module, associate the dataset with a database, and open it. A field component is
dynamic if it is created automatically based on the underlying physical characteristics
of the columns in one or more database tables accessed by a dataset. C++Builder
generates one field component for each column in the underlying tables or query.
The exact TField descendant created for each column in an underlying database table
is determined by field type information received from the Borland Database Engine
(BDE) or (in multi-tiered applications) a provider component.

A field component’s type determines its properties and how data associated with
that field is displayed in data-aware controls on a form. Dynamic fields are
temporary. They exist only as long as a dataset is open.

Each time you reopen a dataset that uses dynamic fields, C++Builder rebuilds a
completely new set of dynamic field components for it based on the current structure
of the database tables underlying the dataset. If the columns in those database tables
are changed, then the next time you open a dataset that uses dynamic field
components, the automatically generated field components are also changed to
match.

Use dynamic fields in applications that must be flexible about data display and
editing. For example, to create a database exploration tool like the SQL Explorer, you
must use dynamic fields because every database table has different numbers and
types of columns. You might also want to use dynamic fields in applications where
user interaction with data mostly takes place inside grid components and you know
that the database tables used by the application change frequently.

To use dynamic fields in an application:

1 Place datasets and data sources in a data module.

2 Associate the datasets with database tables and queries, and associate the data
sources with the datasets.

3 Place data-aware controls in the application’s forms, add the data module to each
uses clause for each form’s unit, and associate each data-aware control with a data

20-4 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g f i e l d c o m p o n e n t s

source in the module. In addition, associate a field with each data-aware control
that requires one.

4 Open the datasets.

Aside from ease of use, dynamic fields can be limiting. Without writing code, you
cannot change the display and editing defaults for dynamic fields, you cannot safely
change the order in which dynamic fields are displayed, and you cannot prevent
access to any fields in the dataset. You cannot create additional fields for the dataset,
such as calculated fields or lookup fields, and you cannot override a dynamic field’s
default data type. To gain control and flexibility over fields in your database
applications, you need to invoke the Fields editor to create persistent field
components for your datasets.

Persistent field components

By default, dataset fields are dynamic. Their properties and availability are
automatically set and cannot be changed in any way. To gain control over a field’s
properties and events so that you can set or change the field’s visibility or display
characteristics at design time or runtime, create new fields based on existing fields in
a dataset, or validate data entry, you must create persistent fields for the dataset.

At design time, you can—and should—use the Fields editor to create persistent lists
of the field components used by the datasets in your application. Persistent field
component lists are stored in your application, and do not change even if the
structure of a database underlying a dataset is changed.

Creating persistent field components offers the following advantages. You can:

• Restrict the fields in your dataset to a subset of the columns available in the
underlying database.

• Add field components to the list of persistent components.

• Remove field components from the list of persistent components to prevent your
application from accessing particular columns in an underlying database.

• Define new fields—usually to replace existing fields—based on columns in the
table or query underlying a dataset.

• Define calculated fields that compute their values based on other fields in the
dataset.

• Define lookup fields that compute their values based on fields in other datasets.

• Modify field component display and edit properties.

A persistent field is one that C++Builder generates based on field names and
properties you specify in the Fields editor. Once you create persistent fields with the
Fields editor, you can also create event handlers for them that respond to changes in
data values and that validate data entries.

Note When you create persistent fields for a dataset, only those fields you select are
available to your application at design time and runtime. At design time, you can

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-5

C r e a t i n g p e r s i s t e n t f i e l d s

always choose Add Fields from the Fields editor to add or remove persistent fields
for a dataset.

All fields used by a single dataset are either persistent or dynamic. You cannot mix
field types in a single dataset. If you create persistent fields for a dataset, and then
want to revert to dynamic fields, you must remove all persistent fields from the
dataset. For more information about dynamic fields, see “Dynamic field
components” on page 20-3.

Note One of the primary uses of persistent fields is to gain control over the appearance and
display of data. You can also control data appearance in other ways. For example,
you can use the Data Dictionary to assign field attributes to a field component. You
can also control the appearance of columns in data-aware grids. For more
information about the Data Dictionary, see “Creating attribute sets for field
components” on page 20-14. To learn about controlling column appearance in grids,
see “Creating a customized grid” on page 27-17.

Creating persistent fields
Persistent field components created with the Fields editor provide efficient, readable,
and type-safe programmatic access to underlying data. Using persistent field
components guarantees that each time your application runs, it always uses and
displays the same columns, in the same order even if the physical structure of the
underlying database has changed. Data-aware components and program code that
rely on specific fields always work as expected. If a column on which a persistent
field component is based is deleted or changed, C++Builder generates an exception
rather than running the application against a nonexistent column or mismatched
data.

To create persistent fields for a dataset:

1 Place a dataset in a data module.

2 Set the DatabaseName property for the dataset.

3 Set the TableName property (for a TTable), or the SQL property (for a TQuery).

4 Double-click the dataset component in the data module to invoke the Fields editor.
The Fields editor contains a title bar, navigator buttons, and a list box.

The title bar of the Fields editor displays both the name of the data module or form
containing the dataset, and the name of the dataset itself. For example, if you open
the Customers dataset in the CustomerData data module, the title bar displays
‘CustomerData.Customers,’ or as much of the name as fits.

Below the title bar is a set of navigation buttons that enable you to scroll
one-by-one through the records in an active dataset at design time, and to jump to
the first or last record. The navigation buttons are dimmed if the dataset is not
active or if the dataset is empty.

The list box displays the names of persistent field components for the dataset. The
first time you invoke the Fields editor for a new dataset, the list is empty because
the field components for the dataset are dynamic, not persistent. If you invoke the

20-6 D e v e l o p e r ’ s G u i d e

A r r a n g i n g p e r s i s t e n t f i e l d s

Fields editor for a dataset that already has persistent field components, you see the
field component names in the list box.

5 Choose Add Fields from the Fields editor context menu.

6 Select the fields to make persistent in the Add Fields dialog box. By default, all
fields are selected when the dialog box opens. Any fields you select become
persistent fields.

The Add Fields dialog box closes, and the fields you selected appear in the Fields
editor list box. Fields in the Fields editor list box are persistent. If the dataset is active,
note, too, that the Next and Last navigation buttons above the list box are enabled.

From now on, each time you open the dataset, C++Builder no longer creates dynamic
field components for every column in the underlying database. Instead it only creates
persistent components for the fields you specified.

Each time you open the dataset, C++Builder verifies that each non-calculated
persistent field exists or can be created from data in the database. If it cannot, it raises
an exception warning you that the field is not valid, and does not open the dataset.

Arranging persistent fields
The order in which persistent field components are listed in the Fields editor list box
is the default order in which the fields appear in a data-aware grid component. You
can change field order by dragging and dropping fields in the list box.

To change the order of fields:

1 Select the fields. You can select and order one or more fields at a time.

2 Drag the fields to a new location.

If you select a noncontiguous set of fields and drag them to a new location, they are
inserted as a contiguous block. Within the block, the order of fields does not change.

Alternatively, you can select the field, and use Ctrl+Up and Ctrl+Dn to change an
individual field’s order in the list.

Defining new persistent fields
Besides making existing dataset fields into persistent fields, you can also create
special persistent fields as additions to or replacements of the other persistent fields
in a dataset. The following table lists the types of additional fields you can create:

Table 20.3 Special persistent field kinds

Field kind Purpose

Data Replaces an existing field (for example to change its data type, based on
columns in the table or query underlying a dataset.)

Calculated Displays values calculated at runtime by a dataset’s OnCalcFields event handler.

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-7

D e f i n i n g n e w p e r s i s t e n t f i e l d s

These types of persistent fields are only for display purposes. The data they contain
at runtime are not retained either because they already exist elsewhere in your
database, or because they are temporary. The physical structure of the table and data
underlying the dataset is not changed in any way.

To create a new persistent field component, invoke the context menu for the Fields
editor and choose New field. The New Field dialog box appears.

The New Field dialog box contains three group boxes: Field properties, Field type,
and Lookup definition.

The Field type radio group enables you to specify the type of new field component to
create. The default type is Data. If you choose Lookup, the Dataset and Source Fields
edit boxes in the Lookup definition group box are enabled. You can also create
Calculated fields, and if you are working with a TClientDataSet component, you can
also create InternalCalc fields.

The Field properties group box enables you to enter general field component
information. Enter the component’s field name in the Name edit box. The name you
enter here corresponds to the field component’s FieldName property. C++Builder uses
this name to build a component name in the Component edit box. The name that
appears in the Component edit box corresponds to the field component’s Name
property and is only provided for informational purposes (Name contains the
identifier by which you refer to the field component in your source code).
C++Builder discards anything you enter directly in the Component edit box.

The Type combo box in the Field properties group enables you to specify the field
component’s data type. You must supply a data type for any new field component
you create. For example, to display floating-point currency values in a field, select
Currency from the drop-down list. The Size edit box enables you to specify the
maximum number of characters that can be displayed or entered in a string-based
field, or the size of Bytes and VarBytes fields. For all other data types, Size is
meaningless.

The Lookup definition group box is only used to create lookup fields. For more
information, see “Defining a lookup field” on page 20-9.

Defining a data field

A data field replaces an existing field in a dataset. For example, for programmatic
reasons you might want to replace a TSmallIntField with a TIntegerField. Because you
cannot change a field’s data type directly, you must define a new field to replace it.

InternalCalc Displays values calculated at runtime by a client dataset and stored with its
data.

Lookup Retrieve values from a specified dataset at runtime based on search criteria you
specify.

Aggregate Displays a summary value of the data in a set of records.

Table 20.3 Special persistent field kinds (continued)

Field kind Purpose

20-8 D e v e l o p e r ’ s G u i d e

D e f i n i n g n e w p e r s i s t e n t f i e l d s

Important Even though you define a new field to replace an existing field, the field you define
must derive its data values from an existing column in a table underlying a dataset.

To create a replacement data field for a field in a table underlying a dataset, follow
these steps:

1 Remove the field from the list of persistent fields assigned for the dataset, and then
choose New Field from the context menu.

2 In the New Field dialog box, enter the name of an existing field in the database
table in the Name edit box. Do not enter a new field name. You are actually
specifying the name of the field from which your new field will derive its data.

3 Choose a new data type for the field from the Type combo box. The data type you
choose should be different from the data type of the field you are replacing. You
cannot replace a string field of one size with a string field of another size. Note that
while the data type should be different, it must be compatible with the actual data
type of the field in the underlying table.

4 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

5 Select Data in the Field type radio group if it is not already selected.

6 Choose OK. The New Field dialog box closes, the newly defined data field
replaces the existing field you specified in Step 1, and the component declaration
in the data module or form’s type declaration is updated.

To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 20-12.

Defining a calculated field

A calculated field displays values calculated at runtime by a dataset’s OnCalcFields
event handler. For example, you might create a string field that displays
concatenated values from other fields.

To create a calculated field in the New Field dialog box:

1 Enter a name for the calculated field in the Name edit box. Do not enter the name
of an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

4 Select Calculated in the Field type radio group.

5 Choose OK. The newly defined calculated field is automatically added to the end
of the list of persistent fields in the Field editor list box, and the component
declaration is automatically added to the form’s type declaration in the source
code.

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-9

D e f i n i n g n e w p e r s i s t e n t f i e l d s

6 Place code that calculates values for the field in the OnCalcFields event handler for
the dataset. For more information about writing code to calculate field values, see
“Programming a calculated field” on page 20-9.

Note To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 20-12.

If you are working with a client dataset or query component, you can also create an
InternalCalc field. You create and program an internally calculated field just like you
do a calculated field. For a client dataset, the significant difference between these
types of calculated fields is that the values calculated for an InternalCalc field are
stored and retrieved as part of the client dataset’s data. To create an InternalCalc
field, select the InternalCalc radio button in the Field type group.

Programming a calculated field

After you define a calculated field, you must write code to calculate its value.
Otherwise, it always has a null value. Code for a calculated field is placed in the
OnCalcFields event for its dataset.

To program a value for a calculated field:

1 Select the dataset component from the Object Inspector drop-down list.

2 Choose the Object Inspector Events page.

3 Double-click the OnCalcFields property to bring up or create a CalcFields procedure
for the dataset component.

4 Write the code that sets the values and other properties of the calculated field as
desired.

For example, suppose you have created a CityStateZip calculated field for the
Customers table on the CustomerData data module. CityStateZip should display a
company’s city, state, and zip code on a single line in a data-aware control.

To add code to the CalcFields procedure for the Customers table, select the Customers
table from the Object Inspector drop-down list, switch to the Events page, and
double-click the OnCalcFields property.

The TCustomerData::CustomersCalcFields procedure appears in the unit’s source code
window. Add the following code to the procedure to calculate the field:

CustomersCityStateZip->Value = CustomersCity->Value + AnsiString(“, “) +
CustomersState->Value + AnsiString(“ “) + CustomersZip->Value;

Defining a lookup field

A lookup field is a read-only field that displays values at runtime based on search
criteria you specify. In its simplest form, a lookup field is passed the name of an

20-10 D e v e l o p e r ’ s G u i d e

D e f i n i n g n e w p e r s i s t e n t f i e l d s

existing field to search on, a field value to search for, and a different field in a lookup
dataset whose value it should display.

For example, consider a mail-order application that enables an operator to use a
lookup field to determine automatically the city and state that correspond to the zip
code a customer provides. The column to search on might be called ZipTable->Zip,
the value to search for is the customer’s zip code as entered in Order->CustZip, and
the values to return would be those for the ZipTable->City and ZipTable->State
columns of the record where the value of ZipTable->Zip matches the current value in
the Order->CustZip field.

To create a lookup field in the New Field dialog box:

1 Enter a name for the lookup field in the Name edit box. Do not enter the name of
an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

4 Select Lookup in the Field type radio group. Selecting Lookup enables the Dataset
and Key Fields combo boxes.

5 Choose from the Dataset combo box drop-down list the dataset in which to look
up field values. The lookup dataset must be different from the dataset for the field
component itself, or a circular reference exception is raised at runtime. Specifying
a lookup dataset enables the Lookup Keys and Result Field combo boxes.

6 Choose from the Key Fields drop-down list a field in the current dataset for which
to match values. To match more than one field, enter field names directly instead
of choosing from the drop-down list. Separate multiple field names with
semicolons. If you are using more than one field, you must use persistent field
components.

7 Choose from the Lookup Keys drop-down list a field in the lookup dataset to
match against the Source Fields field you specified in step 6. If you specified more
than one key field, you must specify the same number of lookup keys. To specify
more than one field, enter field names directly, separating multiple field names
with semicolons.

8 Choose from the Result Field drop-down list a field in the lookup dataset to return
as the value of the lookup field you are creating.

When you design and run your application, lookup field values are determined
before calculated field values are calculated. You can base calculated fields on lookup
fields, but you cannot base lookup fields on calculated fields. You can use the
LookupCache property to hone this behavior. LookupCache determines whether the
values of a lookup field are cached in memory when a dataset is first opened, or
looked up dynamically every time the current record in the dataset changes.

Set LookupCache to true to cache the values of a lookup field when the LookupDataSet is
unlikely to change and the number of distinct lookup values is small. Caching lookup
values can speed performance, because the lookup values for every set of
LookupKeyFields values are preloaded when the DataSet is opened. When the current

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-11

D e f i n i n g n e w p e r s i s t e n t f i e l d s

record in the DataSet changes, the field object can locate its Value in the cache, rather
than accessing the LookupDataSet. This performance improvement is especially
dramatic if the LookupDataSet is on a network where access is slow.

Tip You can use a lookup cache to provide lookup values programmatically rather than
from a secondary dataset. Create a TLookupList object at runtime, and use its Add
method to fill it with lookup values. Set the LookupList property of the lookup field to
this TLookupList object and set its LookupCache property to true. If the other lookup
properties of the field are not set, the field will use the supplied lookup list without
overwriting it with values from a lookup dataset.

If every record of DataSet has different values for KeyFields, the overhead of locating
values in the cache can be greater than any performance benefit provided by the
cache. The overhead of locating values in the cache increases with the number of
distinct values that can be taken by KeyFields.

If LookupDataSet is volatile, caching lookup values can lead to inaccurate results. Call
tRefreshLookupLis to update the values in the lookup cache. RefreshLookupList
regenerates the LookupList property, which contains the value of the LookupResultField
for every set of LookupKeyFields values.

When setting LookupCache at runtime, call RefreshLookupList to initialize the cache.

Defining an aggregate field

An aggregate field displays values from a maintained aggregate in a client dataset.
An aggregate is a calculation that summarizes the data in a set of records.

To create an aggregate field in the New Field dialog box:

1 Enter a name for the aggregate field in the Name edit box. Do not enter the name
of an existing field.

2 Choose aggregate data type for the field from the Type combo box.

3 Select Aggregate in the Field type radio group.

4 Choose OK. The newly defined aggregate field is automatically added to the client
dataset’s Aggregates is automatically updated to include the appropriate aggregate
specification, and the component declaration is automatically added to the form’s
type declaration in the source code.

5 Place the calculation for the aggregate in the ExprText property of the newly
created aggregate field. For more information about defining an aggregate, see
“Specifying aggregates” on page 25-10.

Once a persistent TAggregateField is created, a TDBText control can be bound to the
aggregate field. The TDBText control will then display the value of the aggregate
field that is relevant to the current record of the underlying client data set.

20-12 D e v e l o p e r ’ s G u i d e

S e t t i n g p e r s i s t e n t f i e l d p r o p e r t i e s a n d e v e n t s

Deleting persistent field components

Deleting a persistent field component is useful for accessing a subset of available
columns in a table, and for defining your own persistent fields to replace a column in
a table. To remove one or more persistent field components for a dataset:

1 Select the field(s) to remove in the Fields editor list box.
2 Press Del.

Note You can also delete selected fields by invoking the context menu and choosing Delete.

Fields you remove are no longer available to the dataset and cannot be displayed by
data-aware controls. You can always re-create persistent field components that you
delete by accident, but any changes previously made to its properties or events is
lost. For more information, see “Creating persistent fields” on page 20-5.

Note If you remove all persistent field components for a dataset, the dataset reverts to
using dynamic field components for every column in the underlying database table.

Setting persistent field properties and events
You can set properties and customize events for persistent field components at
design time. Properties control the way a field is displayed by a data-aware
component, for example, whether it can appear in a TDBGrid, or whether its value
can be modified. Events control what happens when data in a field is fetched,
changed, set, or validated.

To set the properties of a field component or write customized event handlers for it,
select the component in the Fields editor, or select it from the component list in the
Object Inspector.

Setting display and edit properties at design time

To edit the display properties of a selected field component, switch to the Properties
page on the Object Inspector window. The following table summarizes display
properties that can be edited.

Table 20.4 Field component properties

Property Purpose

Alignment Left justifies, right justifies, or centers a field contents within a
data-aware component.

ConstraintErrorMessage Specifies the text to display when edits clash with a constraint
condition.

CustomConstraint Specifies a local constraint to apply to data during editing.

Currency Numeric fields only. true: displays monetary values.
false (default): does not display monetary values.

DisplayFormat Specifies the format of data displayed in a data-aware component.

DisplayLabel Specifies the column name for a field in a data-aware grid component.

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-13

S e t t i n g p e r s i s t e n t f i e l d p r o p e r t i e s a n d e v e n t s

DisplayWidth Specifies the width, in characters, of a grid column that display this
field.

EditFormat Specifies the edit format of data in a data-aware component.
EditMask Limits data-entry in an editable field to specified types and ranges of

characters, and specifies any special, non-editable characters that
appear within the field (hyphens, parentheses, and so on).

FieldKind Specifies the type of field to create.

FieldName Specifies the actual name of a column in the table from which the field
derives its value and data type.

HasConstraints Indicates whether or not there are constraint conditions imposed on a
field.

ImportedConstraint Specifies an SQL constraint imported from the Data Dictionary or an
SQL server.

Index Specifies the order of the field in a dataset.
LookupDataSet Specifies the table used to look up field values when Lookup is true.

LookupKeyFields Specifies the field(s) in the lookup dataset to match when doing a
lookup.

LookupResultField Specifies the field in the lookup dataset from which to copy values
into this field.

MaxValue Numeric fields only. Specifies the maximum value a user can enter for
the field.

MinValue Numeric fields only. Specifies the minimum value a user can enter for
the field.

Name Specifies the component name of the field component within
C++Builder.

Origin Specifies the name of the field as it appears in the underlying
database.

Precision Numeric fields only. Specifies the number of significant digits.

ReadOnly true: Displays field values in data-aware components, but prevents
editing.
false (the default): Permits display and editing of field values.

Size Specifies the maximum number of characters that can be displayed or
entered in a string-based field, or the size, in bytes, of TBytesField and
TVarBytesField fields.

Tag Long integer bucket available for programmer use in every
component as needed.

Transliterate true (default): specifies that translation to and from the respective
locales will occur as data is transferred between a dataset and a
database.
false: Locale translation does not occur.

Visible true (the default): Permits display of field in a data-aware grid
component.
false: Prevents display of field in a data-aware grid component.
User-defined components can make display decisions based on this
property.

Table 20.4 Field component properties (continued)

Property Purpose

20-14 D e v e l o p e r ’ s G u i d e

S e t t i n g p e r s i s t e n t f i e l d p r o p e r t i e s a n d e v e n t s

Not all properties are available for all field components. For example, a field
component of type TStringField does not have Currency, MaxValue, or DisplayFormat
properties, and a component of type TFloatField does not have a Size property.

While the purpose of most properties is straightforward, some properties, such as
Calculated, require additional programming steps to be useful. Others, such as
DisplayFormat, EditFormat, and EditMask, are interrelated; their settings must be
coordinated. For more information about using DisplayFormat, EditFormat, and
EditMask, see “Controlling and masking user input” on page 20-15.

Setting field component properties at runtime

You can use and manipulate the properties of field component at runtime. For
example, the following code sets the ReadOnly property for the CityStateZip field in
the Customers table to true:

CustomersCityStateZip->ReadOnly = true;

And this statement changes field ordering by setting the Index property of the
CityStateZip field in the Customers table to 3:

CustomersCityStateZip->Index = 3;

Creating attribute sets for field components

When several fields in the datasets used by your application share common
formatting properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat,
MaxValue, MinValue, and so on), it is more convenient to set the properties for a
single field, then store those properties as an attribute set in the Data Dictionary.
Attribute sets stored in the data dictionary can be easily applied to other fields.

To create an attribute set based on a field component in a dataset:

1 Double-click the dataset to invoke the Fields editor.

2 Select the field for which to set properties.

3 Set the desired properties for the field in the Object Inspector.

4 Right-click the Fields editor list box to invoke the context menu.

5 Choose Save Attributes to save the current field’s property settings as an attribute
set in the Data Dictionary.

The name for the attribute set defaults to the name of the current field. You can
specify a different name for the attribute set by choosing Save Attributes As instead
of Save Attributes from the context menu.

Note You can also create attribute sets directly from the SQL Explorer. When you create an
attribute set from the data dictionary, it is not applied to any fields, but you can
specify two additional attributes: a field type (such as TFloatField, TStringField, and so
on) and a data-aware control (such as TDBEdit, TDBCheckBox, and so on) that is
automatically placed on a form when a field based on the attribute set is dragged to
the form. For more information, see the online help for the SQL Explorer.

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-15

S e t t i n g p e r s i s t e n t f i e l d p r o p e r t i e s a n d e v e n t s

Associating attribute sets with field components

When several fields in the datasets used by your application share common
formatting properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat,
MaxValue, MinValue, and so on), and you have saved those property settings as
attribute sets in the Data Dictionary, you can easily apply the attribute sets to fields
without having to recreate the settings manually for each field. In addition, if you
later change the attribute settings in the Data Dictionary, those changes are
automatically applied to every field associated with the set the next time field
components are added to the dataset.

To apply an attribute set to a field component:

1 Double-click the dataset to invoke the Fields editor.

2 Select the field for which to apply an attribute set.

3 Invoke the context menu and choose Associate Attributes.

4 Select or enter the attribute set to apply from the Associate Attributes dialog box. If
there is an attribute set in the Data Dictionary that has the same name as the
current field, that set name appears in the edit box.

Important If the attribute set in the Data Dictionary is changed at a later date, you must reapply
the attribute set to each field component that uses it. You can invoke the Fields editor
to multi-select field components within a dataset to which to reapply attributes.

Removing attribute associations

If you change your mind about associating an attribute set with a field, you can
remove the association by following these steps:

1 Invoke the Fields editor for the dataset containing the field.

2 Select the field or fields from which to remove the attribute association.

3 Invoke the context menu for the Fields editor and choose Unassociate Attributes.

Important Unassociating an attribute set does not change any field properties. A field retains
the settings it had when the attribute set was applied to it. To change these
properties, select the field in the Fields editor and set its properties in the Object
Inspector.

Controlling and masking user input

The EditMask property provides a way to control the type and range of values a user
can enter into a data-aware component associated with TStringField, TDateField,
TTimeField, and TDateTimeField components. You can use existing masks, or create
your own. The easiest way to use and create edit masks is with the Input Mask editor.
You can, however, enter masks directly into the EditMask field in the Object
Inspector.

Note For TStringField components, the EditMask property is also its display format.

20-16 D e v e l o p e r ’ s G u i d e

S e t t i n g p e r s i s t e n t f i e l d p r o p e r t i e s a n d e v e n t s

To invoke the Input Mask editor for a field component:

1 Select the component in the Fields editor or Object Inspector.

2 Click the Properties page in the Object Inspector.

3 Double-click the values column for the EditMask field in the Object Inspector, or
click the ellipsis button. The Input Mask editor opens.

The Input Mask edit box enables you to create and edit a mask format. The Sample
Masks grid lets you select from predefined masks. If you select a sample mask, the
mask format appears in the Input Mask edit box where you can modify it or use it as
is. You can test the allowable user input for a mask in the Test Input edit box.

The Masks button enables you to load a custom set of masks—if you have created
one—into the Sample Masks grid for easy selection.

Using default formatting for numeric, date, and time fields

C++Builder provides built-in display and edit format routines and intelligent default
formatting for TFloatField, TCurrencyField, TIntegerField, TSmallIntField, TWordField,
TDateField, TDateTimeField, and TTimeField components. To use these routines, you
need do nothing.

Default formatting is performed by the following routines:

Only format properties appropriate to the data type of a field component are
available for a given component.

Default formatting conventions for date, time, currency, and numeric values are
based on the Regional Settings properties in the Control Panel. For example, using
the default settings for the United States, a TFloatField column with the Currency
property set to true sets the DisplayFormat property for the value 1234.56 to $1234.56,
while the EditFormat is 1234.56.

At design time or runtime, you can edit the DisplayFormat and EditFormat properties
of a field component to override the default display settings for that field. You can
also write OnGetText and OnSetText event handlers to do custom formatting for field
components at runtime. For more information about setting field component
properties at runtime, see “Setting field component properties at runtime” on
page 20-14.

Table 20.5 Field component formatting routines

Routine Used by . . .

FormatFloat TFloatField, TCurrencyField

FormatDateTime TDateField, TTimeField, TDateTimeField

FormatCurr TCurrencyField

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-17

W o r k i n g w i t h f i e l d c o m p o n e n t m e t h o d s a t r u n t i m e

Handling events

Like most components, field components have events associated with them.
Functions can be assigned as handlers for these events. By writing these handlers you
can react to the occurrence of these events that affect data entered in fields through
data-aware controls and perform actions of your own design. The following table
lists the events associated with field components:

OnGetText and OnSetText events are primarily useful to programmers who want to
do custom formatting that goes beyond the built-in formatting functions. OnChange
is useful for performing application-specific tasks associated with data change, such
as enabling or disabling menus or visual controls. OnValidate is useful when you
want to control data-entry validation in your application before returning values to a
database server.

To write an event handler for a field component:

1 Select the component.

2 Select the Events page in the Object Inspector.

3 Double-click the Value field for the event handler to display its source code
window.

4 Create or edit the handler code.

Working with field component methods at runtime
Field components methods available at runtime enable you to convert field values
from one data type to another, and enable you to set focus to the first data-aware
control in a form that is associated with a field component.

Controlling the focus of data-aware components associated with a field is important
when your application performs record-oriented data validation in a dataset event
handler (such as BeforePost). Validation may be performed on the fields in a record
whether or not its associated data-aware control has focus. Should validation fail for
a particular field in the record, you want the data-aware control containing the faulty
data to have focus so that the user can enter corrections.

You control focus for a field’s data-aware components with a field’s FocusControl
method. FocusControl sets focus to the first data-aware control in a form that is
associated with a field. An event handler should call a field’s FocusControl method

Table 20.6 Field component events

Event Purpose

OnChange Called when the value for a field changes.

OnGetText Called when the value for a field component is retrieved for display or editing.

OnSetText Called when the value for a field component is set.
OnValidate Called to validate the value for a field component whenever the value is

changed because of an edit or insert operation.

20-18 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

before validating the field. The following code illustrates how to call the FocusControl
method for the Company field in the Customers table:

CustomersCompany->FocusControl();

The following table lists some other field component methods and their uses. For a
complete list and detailed information about using each method, see the entries for
TField and its descendants in the online VCL Reference.

Displaying, converting, and accessing field values
Data-aware controls such as TDBEdit and TDBGrid automatically display the values
associated with field components. If editing is enabled for the dataset and the
controls, data-aware controls can also send new and changed values to the database.
In general, the built-in properties and methods of data-aware controls enable them to
connect to datasets, display values, and make updates without requiring extra
programming on your part. Use them whenever possible in your database
applications. For more information about data-aware control, see Chapter 27, “Using
data controls.”

Standard controls can also display and edit database values associated with field
components. Using standard controls, however, may require additional
programming on your part.

Displaying field component values in standard controls

An application can access the value of a database column through the Value property
of a field component. For example, the following statement assigns the value of the
CustomersCompany field to the text in a TEdit control:

Edit3->Text = CustomersCompany->Value;

This method works well for string values, but may require additional programming
to handle conversions for other data types. Fortunately, field components have
built-in functions for handling conversions.

Note You can also use variants to access and set field values. Variants are a new and
flexible data type. For more information about using variants to access and set field
values, see “Accessing field values with the default dataset property” on page 20-20.

Table 20.7 Selected field component methods

Method Purpose

AssignValue Sets a field value to a specified value using an automatic conversion function
based on the field’s type.

Clear Clears the field and sets its value to NULL.

GetData Retrieves unformatted data from the field.

IsValidChar Determines if a character entered by a user in a data-aware control to set a
value is allowed for this field.

SetData Assigns unformatted data to this field.

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-19

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

Converting field values

Conversion functions attempt to convert one data type to another. For example, the
AsString function converts numeric and Boolean values to string representations. The
following table lists field component conversion functions, and which functions are
recommended for field components by field-component type:

Note that the AsVariant method is recommended to translate among all data types.
When in doubt, use AsVariant.

In some cases, conversions are not always possible. For example, AsDateTime can be
used to convert a string to a date, time, or datetime format only if the string value is
in a recognizable datetime format. A failed conversion attempt raises an exception.

In some other cases, conversion is possible, but the results of the conversion are not
always intuitive. For example, what does it mean to convert a TDateTimeField value
into a float format? AsFloat converts the date portion of the field to the number of
days since 12/31/1899, and it converts the time portion of the field to a fraction of 24
hours. Table 20.9 lists permissible conversions that produce special results:

In other cases, conversions are not possible at all. In these cases, attempting a
conversion also raises an exception.

Table 20.8 Field component conversion functions

Function T
St

rin
gF

ie
ld

 T
In

te
ge

rF
ie

ld

 T
Sm

al
lin

tF
ie

ld

 T
W

or
dF

ie
ld

 T
Fl

oa
tF

ie
ld

 T
C

ur
re

nc
yF

ie
ld

 T
BC

D
Fi

el
d

 T
D

at
eT

im
eF

ie
ld

 T
D

at
eF

ie
ld

 T
Ti

m
eF

ie
ld

TB
oo

le
an

Fi
el

d

 T
By

te
sF

ie
ld

 T
Va

rB
yt

es
Fi

el
d

 T
Bl

ob
Fi

el
d

 T
M

em
oF

ie
ld

 T
G

ra
ph

ic
Fi

el
d

AsVariant ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AsString ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AsInteger ✓ ✓ ✓ ✓

AsFloat ✓ ✓ ✓ ✓ ✓ ✓ ✓

AsCurrency ✓ ✓ ✓ ✓ ✓ ✓ ✓

AsDateTime ✓

AsBoolean ✓

Table 20.9 Special conversion results

Conversion Result

String to Boolean Converts “true,” “false,” “Yes,” and “No” to Boolean. Other values raise
exceptions.

Float to Integer Rounds float value to nearest integer value.

DateTime to Float Converts date to number of days since 12/31/1899, time to a fraction of 24
hours.

Boolean to String Converts any Boolean value to “true” or “false.”

20-20 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

You use a conversion function as you would use any method belonging to a
component: append the function name to the end of the component name wherever
it occurs in an assignment statement. Conversion always occurs before an actual
assignment is made. For example, the following statement converts the value of
CustomersCustNo to a string and assigns the string to the text of an edit control:

Edit1->Text = CustomersCustNo->AsString;

Conversely, the next statement assigns the text of an edit control to the
CustomersCustNo field as an integer:

MyTableMyField->AsInteger = StrToInt(Edit1->Text);

An exception occurs if an unsupported conversion is performed at runtime.

Accessing field values with the default dataset property

The preferred method for accessing a field’s value is to use variants with the
FieldValues property. For example, the following statement puts the value of an edit
box into the CustNo field in the Customers table:

Customers->FieldValues[“CustNo”] = Edit2->Text;

For more information about variants, see the online help.

Accessing field values with a dataset’s Fields property

You can access the value of a field with the Fields property of the dataset component
to which the field belongs. Accessing field values with a dataset’s Fields property is
useful when you need to iterate over a number of columns, or if your application
works with tables that are not available to you at design time.

To use the Fields property you must know the order of and data types of fields in the
dataset. You use an ordinal number to specify the field to access. The first field in a
dataset is numbered 0. Field values must be converted as appropriate using the field
component’s conversion routine. For more information about field component
conversion functions, see “Converting field values” on page 20-19.

For example, the following statement assigns the current value of the seventh column
(Country) in the Customers table to an edit control:

Edit1->Text = CustTable->Fields->Fields[6]->AsString;

Conversely, you can assign a value to a field by setting the Fields property of the
dataset to the desired field. For example:

Customers->Edit();
Customers->Insert();
Customers->Fields->Fields[6]->AsString = Edit1->Text;
Customers->Post();

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-21

C h e c k i n g a f i e l d ’ s c u r r e n t v a l u e

Accessing field values with a dataset’s FieldByName method

You can also access the value of a field with a dataset’s FieldByName method. This
method is useful when you know the name of the field you want to access, but do not
have access to the underlying table at design time.

To use FieldByName, you must know the dataset and name of the field you want to
access. You pass the field’s name as an argument to the method. To access or change
the field’s value, convert the result with the appropriate field component conversion
function, such as AsString or AsInteger. For example, the following statement assigns
the value of the CustNo field in the Customers dataset to an edit control:

Edit2->Text = Customers->FieldByName(“CustNo”)->AsString;

Conversely, you can assign a value to a field:

Customers->Edit();
Customers->FieldByName(“CustNo”)->AsString = Edit2->Text;
Customers->Post();

Checking a field’s current value
If your application uses TClientDataSet or administers a dataset that is the source
dataset for a TProvider component on an application server, and you encounter
difficulties when updating records, you can use the CurValue property to examine
the field value in the record causing problems. CurValue represents the current value
of the field component including changes made by other users of the database.

Use CurValue to examine the value of a field when a problem occurs in posting a
value to the database. If the current field value is causing a problem, such as a key
violation, when posting the value to the database, an OnReconcileError occurs. In an
OnReconcileError event handler, NewValue is the unposted value that caused the
problem, OldValue is the value that was originally assigned to the field before any
edits were made, and CurValue is the value that is currently assigned to the field.
CurValue may differ from OldValue if another user changed the value of the field after
OldValue was read.

Setting a default value for a field
You can specify how a default value for a field should be calculated at runtime using
the DefaultExpression property. DefaultExpression can be any valid SQL value
expression that does not refer to field values. If the expression contains literals other
than numeric values, they must appear in quotes. For example, a default value of
noon for a time field would be

‘12:00:00’

including the quotes around the literal value.

20-22 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h c o n s t r a i n t s

Working with constraints
Field components can use SQL server constraints. In addition, your applications can
create and use custom constraints that are local to your application. All constraints
are rules or conditions that impose a limit on the scope or range of values that a field
can store. The following sections describe working with constraints at the field
component level.

Creating a custom constraint

A custom constraint is not imported from the server like other constraints. It is a
constraint that you declare, implement, and enforce in your local application. As
such, custom constraints can be useful for offering a pre-validation enforcement of
data entry, but a custom constraint cannot be applied against data received from or
sent to a server application.

To create a custom constraint, set the CustomConstraint property to specify a
constraint condition, and set ConstraintErrorMessage to the message to display when a
user violates the constraint at runtime.

CustomConstraint is an SQL string that specifies any application-specific constraints
imposed on the field’s value. Set CustomConstraint to limit the values that the user
can enter into a field. CustomConstraint can be any valid SQL search expression such
as

x > 0 and x < 100

The name used to refer to the value of the field can be any string that is not a reserved
SQL keyword, as long as it is used consistently throughout the constraint expression.

Custom constraints are imposed in addition to any constraints to the field’s value
that come from the server. To see the constraints imposed by the server, read the
ImportedConstraint property.

Using server constraints

Most production SQL databases use constraints to impose conditions on the possible
values for a field. For example, a field may not permit NULL values, may require that
its value be unique for that column, or that its values be greater than 0 and less than
150. While you could replicate such conditions in your client applications,
C++Builder offers the ImportedConstraint property to propagate a server’s constraints
locally.

ImportedConstraint is a read-only property that specifies an SQL clause that limits
field values in some manner. For example:

Value > 0 and Value < 100

Do not change the value of ImportedConstraint, except to edit nonstandard or
server-specific SQL that has been imported as a comment because it cannot be
interpreted by the database engine.

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-23

U s i n g o b j e c t f i e l d s

To add additional constraints on the field value, use the CustomConstraint property.
Custom constraints are imposed in addition to the imported constraints. If the server
constraints change, the value of ImportedConstraint also changed but constraints
introduced in the CustomConstraint property persist.

Removing constraints from the ImportedConstraint property will not change the validity
of field values that violate those constraints. Removing constraints results in the
constraints being checked by the server instead of locally. When constraints are checked
locally, the error message supplied as the ConstraintErrorMessage property is displayed
when violations are found, instead of displaying an error message from the server.

Using object fields
Object field (TObjectField) descendants support the field types ADT (Abstract Data
Type), Array, DataSet, and Reference. All of these field types either contain or
reference child fields or other data sets.

ADT fields and reference fields map to fields that contain child fields. An ADT field
contains child fields, which themselves can be any scalar or object type. An array
field contains an array of child fields, all of the same type.

Dataset and reference fields map to fields that access other data sets. A dataset field
provides access to a nested data set and a reference field stores a pointer (reference)
to another persistent object (ADT).

When you add fields with the Fields editor to a dataset that contains object fields,
persistent object fields of the correct type are automatically created for you. Adding
persistent object fields to a dataset automatically sets the dataset’s ObjectView
property to True, which instructs the fields to be stored hierarchically rather than
flattened out.

The following properties are common to all object field descendants and provide the
functionality to handle child fields and datasets.

Table 20.10 Types of object field components

Component name Purpose

TADTField Represents an ADT (Abstract Data Type) field.

TArrayField Represents an array field.

TDataSetField Represents a field that contains a nested data set reference.

TReferenceField Represents a REF field, a pointer to an ADT.

Table 20.11 Common object field descendant properties

Property Purpose

Fields Contains the child fields belonging to the object field.

ObjectType Classification of the object field.

FieldCount Number of child fields belonging to the object field.

FieldValues Provides access to the values of the child fields of the object field.

20-24 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Displaying ADT and array fields

Both ADT and array fields contain child fields that can be displayed through
data-aware controls. Data-Aware controls such as TDBEdit and TDBGrid
automatically display ADT and array field types.

Data-aware controls with a DataField property automatically displays any ADT and array
fields and their child fields in the drop-down list. When an ADT or array field is bound to
a data-aware control, the child fields appear in an uneditable comma delimited string in
the control. A child field is bound to the control as a normal data field.

A TDBGrid control displays ADT and array field data differently, depending on the
value of the dataset’s ObjectView property. When ObjectView is False, each child field
appears in a single column. When ObjectView is True, an ADT or array field can be
expanded and collapsed by clicking on the arrow in the title bar of the column. When
the field is expanded, each child field appears in its own column and title bar, all below
the title bar of the ADT or array itself. When the ADT or array is collapsed, only one
column appears with an uneditable comma delimited string containing the child fields.

Working with ADT fields

ADTs are user-defined types created on the server, and are similar to structures. An ADT
can contain most scalar field types, array fields, reference fields, and nested ADTs.

Accessing ADT field values
There are a variety of ways to access the data in ADT field types. Creating and using
persistent fields is strongly recommended. The following examples assign a child
field value to an edit box called CityEdit, and uses the following ADT structure,

Address
Street
City
State
Zip

and the following persistent fields created for the Customer table component,

CustomerAddress: TADTField;
CustomerAddrStreet: TStringField;
CustomerAddrCity: TStringField;
CustomerAddrState: TStringField;
CustomerAddrZip: TStringField;

This line of code uses a persistent field and demonstrates the recommended method
of accessing data in ADT fields.

CityEdit->Text = CustomerAddrCity->AsString;

The following code examples require that the dataset’s ObjectView property be set to
True in order to compile. They don’t require persistent fields.

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-25

U s i n g o b j e c t f i e l d s

This example uses a fully qualified name with the FieldByName method on the
dataset.

CityEdit->Text = Customer->FieldByName(“Address.City”)->AsString;

You can access the value of a child field with the TADTField’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert fields of any
type. The index parameter takes an integer value which specifies the offset of the
field. For example,

CityEdit->Text = ((TADTField*)Customer->FieldByName("Address"))->FieldValues[1];

This code uses the Fields property of the TADTField component.

CityEdit->Text = ((TADTField*)Customer->FieldByName("Address"))->Fields->
Fields[1]->AsString;

This code uses the Fields property of the TADTField component with FieldByName of
both the dataset and the TFields object.

CityEdit->Text =
((TADTField*)Customer->FieldByName("Address"))->Fields->FieldByName("City")->AsString;

As you can see from this last example, accessing the field’s data through persistent
fields is much simpler. These additional access methods are primarily useful when
the structure of the database table is not fixed or known at design time.

ADT field values can also be accessed with a dataset’s FieldValues property:

Customer->Edit();
Customer->FieldValues["Address.City"] = CityEdit->Text;
Customer->Post();

The next statement reads a string value from the City child field of the ADT field
Address into an edit box:

CityEdit->Text = Customer->FieldValues["Address.City"];

Note The dataset’s ObjectView property can be either true or false for these lines of code to
compile.

Working with array fields

Array fields consist of a set of fields of the same type. The field types can be scalar
(e.g. float, string), or non-scalar (an ADT), but an array field of arrays is not
permitted. The SparseArrays property of TDataSet determines whether a unique
TField object is created for each element of the array field.

Accessing array field values
There are a variety of ways to access the data in array field types. The following
example populates a list box with all of the non-null array elements.

for (int i = 0; (!OrderDates->Fields->Fields[i]->IsNull) && (i < OrderDates->Size - 1); ++i)
 OrderDateListBox->Items->Add(OrderDates->Fields->Fields[i]->AsString);

20-26 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

The following examples assign a child field value to an edit box called TelEdit, and uses
the array TelNos_Array, which is a six element array of strings. The following persistent
fields created for the Customer table component are used by the following examples:

CustomerTELNOS_ARRAY: TArrayField;
CustomerTELNOS_ARRAY0: TStringField;
CustomerTELNOS_ARRAY1: TStringField;
CustomerTELNOS_ARRAY2: TStringField;
CustomerTELNOS_ARRAY3: TStringField;
CustomerTELNOS_ARRAY4: TStringField;
CustomerTELNOS_ARRAY5: TStringField;

This line of code uses a persistent field to assign an array element value to an edit box.

TelEdit->Text = CustomerTELNOS_ARRAY0->AsString;

The following code examples require that the dataset’s ObjectView property be set to
True in order to compile. They don’t require persistent fields.

You can access the value of a child field with the dataset’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert fields of any
type. For example,

TelEdit->Text = ((TArrayField*)Customer->FieldByName("TelNos_Array"))->FieldValues[1];

This next code example uses the Fields property of the TArrayField component.

TelEdit->Text = ((TArrayField*)Customer->FieldByName("TelNos_Array"))->Fields->
Fields[1]->AsString;

Working with dataset fields
Dataset fields provide access to data stored in a nested dataset. The NestedDataSet
property references the nested dataset. The data in the nested dataset is then accessed
through the field objects of the nested dataset.

Displaying dataset fields
TDBGrid controls enable the display of data stored in data set fields. In a TDBGrid
control, a dataset field is indicated in each cell of a dataset column with a “(DataSet)”,
and at runtime an ellipsis button also exists to the right. Clicking on the ellipsis
brings up a new form with a grid displaying the dataset associated with the current
record’s dataset field. This form can also be brought up programmatically with the
DB grid’s ShowPopupEditor method. For example, if the seventh column in the grid
represents a dataset field, the following code will display the dataset associated with
that field for the current record.

DBGrid1->ShowPopupEditor(DBGrid1->Columns->Items[7], -1, -1);

Accessing data in a nested dataset
A dataset field is not normally bound directly to a data aware control. Rather, since a
nested data set is just that, a data set, the means to get at its data is via a TDataSet
descendant. This particular TDataSet descendant is TNestedTable, and it provides the
specific functionality needed to access data stored in nested datasets. Once a

W o r k i n g w i t h f i e l d c o m p o n e n t s 20-27

U s i n g o b j e c t f i e l d s

TDataSetField is associated with a dataset field, persistent fields can be created for the
fields of the nested dataset.

To access the data in a dataset field you first create a persistent TDataSetField object
by invoking the table’s Fields editor, and then link to this field using the DataSetField
property on a TNestedTable or TClientDataSet object. If the nested dataset field for the
current record is assigned, the nested dataset will contain records with the nested
data; otherwise, the nested dataset will be empty.

Before inserting records into a nested dataset, you should be sure to post the
corresponding record in the master table, if it has just been inserted. If the inserted
record is not posted, it will be automatically posted before the nested dataset posts.

Working with reference fields
Reference fields store a pointer or reference to another ADT object. This ADT object is
a single record of another object table. Reference fields always refer to a single record
in a dataset (object table). The data in the referenced object is actually returned in a
nested dataset, but can also be accessed via the Fields property on the TReferenceField.

Displaying reference fields
In a TDBGrid control a reference field is designated in each cell of the dataset column,
with (Reference) and, at runtime, an ellipsis button to the right. At runtime, clicking
on the ellipsis brings up a new form with a grid displaying the object associated with
the current record’s reference field.

This form can also be brought up programmatically with the DB grid’s
ShowPopupEditor method. For example, if the seventh column in the grid represents a
reference field, the following code will display the object associated with that field
for the current record.

DBGrid1->ShowPopupEditor(DBGrid1->Columns->Items[7], -1, -1);

Accessing data in a reference field
To access the data in a reference field you first create a persistent TDataSetField, and
then link to this field using the DataSetField property on a TNestedTable or
TClientDataSet. If the reference is assigned, the reference will contain a single record
with the referenced data. If the reference is null, the reference will be empty.

The following example assigns data from the reference field CustomerRefCity to an
edit box called CityEdit:

CityEdit->Text = CustomerADDRESS_REF->NestedDataSet->Fields->Fields[1]->AsString;

When data in a reference field is edited, it is actually the referenced data that is modified.

To assign a reference field, you need to first use a SELECT statement to select the
reference from the table, and then assign. For example:

AddressQuery->SQL->Text = "SELECT REF(A) FROM AddressTable A WHERE A.City = 'San
Francisco'";
AddressQuery->Open();
CustomerAddressRef->Assign(AddressQuery->Fields->Fields[0]);

20-28 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t a b l e s 21-1

C h a p t e r

21
Chapter21Working with tables

This chapter describes how to use the TTable dataset component in your database
applications. A table component encapsulates the full structure of and data in an
underlying database table. A table component inherits many of its fundamental
properties and methods from TDataSet, TBDEDataSet, and TDBDataSet. Therefore,
you should be familiar with the general discussion of datasets in “Understanding
datasets,” and the BDE-specific discussion of datasets in “Using BDE-enabled
datasets” on page 19-27 before reading about the unique properties and methods of
table components discussed here.

Using table components
A table component gives you access to every row and column in an underlying
database table, whether it is from Paradox, dBASE, Access, FoxPro, an
ODBC-compliant database, or an SQL database on a remote server, such as InterBase,
Sybase, or SQL Server.

You can view and edit data in every column and row of a table. You can work with a
range of rows in a table, and you can filter records to retrieve a subset of all records in
a table based on filter criteria you specify. You can search for records, copy, rename,
or delete entire tables, and create master/detail relationships between tables.

Note A table component always references a single database table. If you need to access
multiple tables with a single component, or if you are only interested in a subset of
rows and columns in one or more tables, you should use a query component instead
of a table component. For more information about query components, see
Chapter 22, “Working with queries.”

21-2 D e v e l o p e r ’ s G u i d e

S e t t i n g u p a t a b l e c o m p o n e n t

Setting up a table component
The following steps are general instructions for setting up a table component at
design time. There may be additional steps you need to tailor a table’s properties to
the requirements of your application.

• To create a table component,

1 Place a table component from the Data Access page of the Component palette in
a data module or on a form, and set its Name property to a unique value
appropriate to your application.

2 Set the DatabaseName of the component to the name of the database to access.

3 Set the TableName property to the name of the table in the database. You can select
tables from the drop-down list if the DatabaseName property is already specified.

4 Place a data source component in the data module or on the form, and set its
DataSet property to the name of the table component. The data source component
is used to pass a result set from the table to data-aware components for display.

• To access the data encapsulated by a table component,

1 Place a data source component from the Data Access page of the Component
palette in the data module or form, and set its DataSet property to the name of
the table component.

2 Place a data-aware control, such as TDBGrid, on a form, and set the control’s
DataSource property to the name of the data source component placed in the
previous step.

3 Set the Active property of the table component to true.

Specifying a database location

The DatabaseName property specifies where the table component looks for a database
table. For Paradox and dBASE, DatabaseName can be a Borland Database Engine (BDE)
alias, or an explicit directory path. For SQL tables, DatabaseName must be a BDE alias.

The advantage of using BDE aliases in all cases is that you can change the data source
for an entire application by simply changing the alias definition in the SQL Explorer.
To change the alias definition using SQL explorer, right click the SQL explorer and
select Rename. This displays the BDE Administration Tool. For more information
about setting and using BDE aliases, see the online help for the SQL Explorer.

To set the DatabaseName property,

1 Set the table’s Active property to false if necessary.
2 Specify the BDE alias or directory path in the DatabaseName property.

Tip If your application uses database components to control database transactions,
DatabaseName can be set to a local alias defined for the database component instead.
For more information about database components, see Chapter 18, “Connecting to
databases.”

W o r k i n g w i t h t a b l e s 21-3

S e t t i n g u p a t a b l e c o m p o n e n t

Specifying a table name

The TableName property specifies the table in a database to access with the table
component. To specify a table, follow these steps:

1 Set the table’s Active property to false, if necessary.

2 Set the DatabaseName property to a BDE alias or directory path. For more
information about setting DatabaseName, see “Specifying a database location” on
page 21-2.

3 Set the TableName property to the table to access. At design time you can choose
from valid table names in the drop-down list for the TableName property in the
Object Inspector. At runtime, you must specify a valid name in code.

Once you specify a valid table name, you can set the table component’s Active
property to true to connect to the database, open the table, and display and edit data.

At runtime, you can set or change the table associated with a table component by:

• Setting Active to false.

• Assigning a valid table name to the TableName property.

For example, the following code changes the table name for the OrderOrCustTable
table component based on its current table name:

OrderOrCustTable->Active = false; // Close the table
if (OrderOrCustTable->TableName == “CUSTOMER.DB”)

OrderOrCustTable->TableName = “ORDERS.DB”;
else

OrderOrCustTable->TableName = “CUSTOMER.DB”;
OrderOrCustTable->Active = true; // Reopen with a new table

Specifying the table type for local tables

If an application accesses Paradox, dBASE, FoxPro, or comma-delimited ASCII text
tables, then the BDE uses the TableType property to determine the table’s type (its
expected structure). TableType is not used when an application accesses SQL-based
tables on database servers.

By default TableType is set to ttDefault. When TableType is ttDefault, the BDE
determines a table’s type from its file-name extension. Table 21.1 summarizes the file
name extensions recognized by the BDE and the assumptions it makes about a table’s
type:

Table 21.1 Table types recognized by the BDE based on file extension

Extension Table type

No file extension Paradox

.DB Paradox

.DBF dBASE

.TXT ASCII text

21-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g r e a d / w r i t e a c c e s s t o a t a b l e

If your local Paradox, dBASE, and ASCII text tables use the file extensions as
described in Table 21.1, then you can leave TableType set to ttDefault. Otherwise, your
application must set TableType to indicate the correct table type. Table 21.2 indicates
the values you can assign to TableType:

Opening and closing a table

To view and edit a table’s data in a data-aware control such as TDBGrid, open the
table. There are two ways to open a table. You can set its Active property to true, or
you can call its Open method. Opening a table puts it into dsBrowse state and displays
data in any active controls associated with the table’s data source.

To end display and editing of data, or to change the values for a table component’s
fundamental properties (e.g., DatabaseName, TableName, and TableType), first post or
discard any pending changes. If cached updates are enabled, call the ApplyUpdates
method to write the posted changes to the database. Finally, close the table.

There are two ways to close a table. You can set its Active property to false, or you can
call its Close method. Closing a table puts the table into dsInactive state. Active
controls associated with the table’s data source are cleared.

Controlling read/write access to a table
By default when a table is opened, it requests read and write access for the
underlying database table. Depending on the characteristics of the underlying
database table, the requested write privilege may not be granted (for example, when
you request write access to an SQL table on a remote server and the server restricts
the table’s access to read only).

There are three properties for table components that can affect an application’s read
and write access to a table: CanModify, ReadOnly, and Exclusive.

CanModify is a read-only property that specifies whether or not a table component is
permitted read/write access to the underlying database table. After you open a table
at runtime, your application can examine CanModify to test whether or not the table
has write access. If CanModify is false, the application cannot write to the database. If
CanModify is true, your application can write to the database provided that the table’s
ReadOnly property is false.

Table 21.2 TableType values

Value Table type

ttDefault Table type determined automatically by the BDE

ttParadox Paradox

ttDBase dBASE

ttFoxPro FoxPro

ttASCII Comma-delimited ASCII text

W o r k i n g w i t h t a b l e s 21-5

S e a r c h i n g f o r r e c o r d s

ReadOnly determines whether or not a user can both view and edit data. When
ReadOnly is false (the default), a user can both view and edit data. To restrict a user to
viewing data, set ReadOnly to true before opening a table.

Exclusive controls whether or not an application gains sole read/write access to a
Paradox, dBASE, or FoxPro table. To gain sole read/write access for these table
types, set the table component’s Exclusive property to true before opening the table. If
you succeed in opening a table for exclusive access, other applications cannot read
data from or write data to the table. Your request for exclusive access is not honored
if the table is already in use when you attempt to open it.

The following statements open a table for exclusive access:

CustomersTable->Exclusive = true; // Set request for exclusive lock
CustomersTable->Active = true; // Now open the table

Note You can attempt to set Exclusive on SQL tables, but some servers may not support
exclusive table-level locking. Others may grant an exclusive lock, but permit other
applications to read data from the table. For more information about exclusive
locking of database tables on your server, see your server documentation.

Searching for records
You can search for specific records in a table in various ways. The most flexible way
to search for a record is to use the generic search methods Locate and Lookup. These
methods enable you to search on any type of fields in any table, whether or not they
are indexed or keyed.

• Locate finds the first row matching a specified set of criteria and moves the cursor
to that row.

• Lookup returns values from the first row that matches a specified set of criteria, but
does not move the cursor to that row.

You can use Locate and Lookup with any kind of dataset, not just TTable. For a
complete discussion of Locate and Lookup, see Chapter 19, “Understanding datasets.”

Because tables have indexes, however, they support additional, indexed-based
methods for locating records. Because these methods use an index, they can often
locate records faster. However, they require that the table have an index on the fields
used to define the search criteria.

Searching for records based on indexed fields

Table components support a set of Goto and Find search methods that search for a
record based on indexed fields, referred to as a key, and make the first record found
the new current record.

For Paradox and dBASE tables, the key must always be an index, which you can
specify in a table component’s IndexNameproperty. For SQL tables, the key can also
be a list of fields you specify in the IndexFieldNames property. You can also specify a
field list for Paradox or dBASE tables, but the fields must have an index defined on

21-6 D e v e l o p e r ’ s G u i d e

S e a r c h i n g f o r r e c o r d s

them. For more information about IndexName and IndexFieldNames, see “Searching on
alternate indexes” on page 21-8.

Tip To search on nonindexed fields in a Paradox or dBASE table, use Locate.
Alternatively, you can use a TQuery component and a SELECT statement to search on
nonindexed fields in Paradox and dBASE fields. For more information about TQuery,
see Chapter 22, “Working with queries.”

The following table summarizes the six related Goto and Find methods an application
can use to search for a record:

GotoKey and FindKey are boolean functions that, if successful, move the cursor to a
matching record and return true. If the search is unsuccessful, the cursor is not
moved, and these functions return false.

GotoNearest and FindNearest always reposition the cursor either on the first exact
match found or, if no match is found, on the first record that is greater than the
specified search criteria.

Executing a search with Goto methods
To execute a search using Goto methods, follow these general steps:

1 Specify the index to use for the search in the IndexName property, if necessary. (For
SQL tables, list the fields to use as a key in IndexFieldNames instead.) If you use a
table’s primary index, you do not need to set these properties.

2 Open the table.

3 Put the table in dsSetKey state with SetKey.

4 Specify the value(s) to search on in the Fields property. Fields is a string list that
you index into with ordinal numbers corresponding to columns. The first column
number in a table is 0.

5 Search for and move to the first matching record found with GotoKey or
GotoNearest.

Table 21.3 Index-based search methods

Method Purpose

EditKey Preserves the current contents of the search key buffer and puts the table into
dsSetKey state so your application can modify existing search criteria prior to
executing a search.

FindKey Combines the SetKey and GotoKey methods in a single method.
FindNearest Combines the SetKey and GotoNearest methods in a single method.

GotoKey Searches for the first record in a dataset that exactly matches the search criteria,
and moves the cursor to that record if one is found.

GotoNearest Searches on string-based fields for the closest match to a record based on partial
key values, and moves the cursor to that record.

SetKey Clears the search key buffer and puts the table into dsSetKey state so your
application can specify new search criteria prior to executing a search.

W o r k i n g w i t h t a b l e s 21-7

S e a r c h i n g f o r r e c o r d s

For example, the following code, attached to a button’s OnClick event, moves to the
first record containing a field value that exactly matches the text in an edit box on a
form:

void __fastcall TSearchDemo::SearchExactClick(TObject *Sender)
{

Table1->SetKey();
Table1->Fields[0]->AsString = Edit1->Text;
if (!Table1->GotoKey())

ShowMessage(“Record not found”);
}

GotoNearest is similar. It searches for the nearest match to a partial field value. It can
be used only for string fields. For example,

Table1->SetKey();
Table1->Fields[0]->AsString = “Sm”;
Table1->GotoNearest();

If a record exists with “Sm” as the first two characters, the cursor is positioned on
that record. Otherwise, the position of the cursor does not change and GotoNearest
returns false.

Executing a search with Find methods
To execute a search using Find methods, follow these general steps:

1 Specify the index to use for the search in the IndexName property, if necessary. (For
SQL tables, list the fields to use as a key in IndexFieldNames instead.) If you use a
table’s primary index, you do not need to set these properties.

2 Open the table.

3 Search for and move to the first or nearest record with FindKey or FindNearest. Both
methods take a single parameter, a comma-delimited list of field values, where
each value corresponds to an indexed column in the underlying table.

Note FindNearest can only be used for string fields.

Specifying the current record after a successful search
By default, a successful search positions the cursor on the first record that matches
the search criteria. If you prefer, you can set the KeyExclusive property for a table
component to true to position the cursor on the next record after the first matching
record.

By default, KeyExclusive is false, meaning that successful searches position the cursor
on the first matching record.

Searching on partial keys
If a table has more than one key column, and you want to search for values in a
sub-set of that key, set KeyFieldCount to the number of columns on which you are
searching. For example, if a table has a three column primary key, and you want to
search for values in just the first column, set KeyFieldCount to 1.

21-8 D e v e l o p e r ’ s G u i d e

S o r t i n g r e c o r d s

For tables with multiple-column keys, you can search only for values in contiguous
columns, beginning with the first. For example, for a three-column key you can
search for values in the first column, the first and second, or the first, second, and
third, but not just the first and third.

Searching on alternate indexes
If you want to search on an index other than the primary index for a table, then you
must specify the name of the index to use in the IndexName property for the table. For
example, if the CUSTOMER table had a secondary index named “CityIndex” on
which you wanted to search for a value, you need to set the value of the table’s
IndexName property to “CityIndex”:

Customer->Close();
Customer->IndexName = “CityIndex”;
Customer->Open();
Customer->SetKey();
Customer->FieldValues[“City”] = Edit1->Text;
Customer->GotoNearest();

Instead of specifying an index name, you can list fields to use as a key in the
IndexFieldNames property. For Paradox and dBASE tables, the fields you list must be
indexed, or an exception is raised when you execute the search. For SQL tables, the
fields you list need not be indexed.

Repeating or extending a search
Each time you call SetKey or FindKey it clears any previous values in the Fields
property. If you want to repeat a search using previously set fields, or you want to
add to the fields used in a search, call EditKey in place of SetKey and FindKey. For
example, if the “CityIndex” index includes both the City and Country fields, to find a
record with a specified company name in a specified city, use the following code:

Customer->EditKey();
Customer->FieldValues[“Country”] = Variant(Edit2->Text);
Customer->GotoNearest();

Sorting records
An index determines the display order of records in a table. In general, records
appear in ascending order based on a primary index (for dBASE tables without a
primary index, sort order is based on physical record order). This default behavior
does not require application intervention. If you want a different sort order,
however, you must specify either

• An alternate index.
• A list of columns on which to sort (SQL only).

Specifying a different sort order requires the following steps:

1 Determining available indexes.
2 Specifying the alternate index or column list to use.

W o r k i n g w i t h t a b l e s 21-9

S o r t i n g r e c o r d s

Retrieving a list of available indexes with GetIndexNames

At runtime, your application can call the GetIndexNames method to retrieve a list of
available indexes for a table. GetIndexNames returns a string list containing valid
index names. For example, the following code determines the list of indexes available
for the CustomersTable dataset:

TStringList *IndexList = new TStringList();
CustomersTable->GetIndexNames(IndexList);

Note For Paradox tables, the primary index is unnamed, and is therefore not returned by
GetIndexNames. If you need to return to using a primary index on a Paradox table
after using an alternative index, set the table’s IndexName property to a null string.

Specifying an index with IndexName

Indexes allow you to present the data from a table in different orders, without
physically rearranging the rows in the table to the new ordering. Indexes also
provide a fast means for finding a specific table row or filtering a dataset to just those
rows that meet a logical criteria. Use the IndexName property to cause an index to be
active. Once active, an index can be used as the basis for a master-detail link, an
index-based search (as with the TTable::FindKey method), or an index-based filtering
(as with the TTable::SetRange method).

To activate an index, set the IndexName property to the name of the index. In some
database systems, primary indexes do not have names. To activate one of these
indexes, set IndexName to a blank string.

At design-time, set IndexName by typing the name of the index into the edit field for
the property in the Object Inspector. Alternately, you can select an index from a list of
available indexes by clicking the property’s ellipsis button in the Object Inspector.

At runtime set IndexName using a AnsiString literal or variable. A list of available
indexes can be obtained for use in the IndexName property using the
TTable::GetIndexNames method. For example, the following code sets the index for
CustomersTable to CustDescending:

CustomersTable->IndexName = “CustDescending”;

Specifying a dBASE index file
For dBASE tables that use non-production index files or dBASE III PLUS-style
indexes (*.NDX), use the IndexFiles and IndexName properties to specify indexes. Set
the IndexFiles property to the name of the non-production index file or list the .NDX
files. Then, specify one index in the IndexName property to have it actively sorting the
dataset.

At design time, click the ellipsis button in the IndexFiles property value in the Object
Inspector to invoke the Index Files editor. To add one non-production index file or
.NDX file: click the Add button in the Index Files dialog and select the file from the
Open dialog. Repeat this process once for each non-production index file or .NDX
file. Click the OK button in the Index Files dialog after adding all desired indexes.

21-10 D e v e l o p e r ’ s G u i d e

S o r t i n g r e c o r d s

This same operation can also be performed programatically at runtime, if desired. To
do this, access the IndexFiles property using properties and methods of string list
objects. Call the Clear method of the IndexFiles property (if adding a new set of
indexes) to remove any existing entries. Call the Add method to add each
non-production index file or .NDX file.

Table2->IndexFiles->Clear();
Table2->IndexFiles->Add("Bystate.ndx");
Table2->IndexFiles->Add("Byzip.ndx");
Table2->IndexFiles->Add("Fullname.ndx");
Table2->IndexFiles->Add("St_name.ndx");

After adding any desired non-production index files, the names of individual index
tags in the non-production index file are available for use. Such use is the same as for
index tags in a production index file and includes such index-based operations as
searches, filters, and master-detail linking. The index tags are also listed when using
the TTable::GetIndexNames method and when inspecting index definitions through
the TIndexDef objects in the TTable::IndexDefs property. In the example below, the
IndexFiles for the AnimalsTable table component is set to the non-production index file
ANIMALS.MDX, and then its IndexName property is set to the index tag called
“NAME”:

AnimalsTable->IndexFiles->Add(“ANIMALS.MDX”);
AnimalsTable->IndexName = "NAME";

Similarly, explicitly listing .NDX files in the IndexFiles property, those indexes are
available for use just like index tags. Properly listed .NDX files are automatically
updated as data is added, changed, or deleted in the table (whether or not a given
index is used in the IndexName property). There are two special considerations when
using dBASE III PLUS-style .NDX indexes in C++Builder applications. The first is
that .NDX files cannot be used as the basis for master-detail links. The second is that
when activating a .NDX index with the IndexName property, you must include the
.NDX extension in the property value as part of the index name.

Table1->IndexName = "ByState.NDX";
TVarRec vr = ("NE");
Table1->FindKey(&vr, 0);

Specifying sort order for SQL tables

In SQL, sort order of rows is determined by the ORDER BY clause. You can specify
the index used by this clause either with the

• IndexName property, to specify an existing index, or

• IndexFieldNames property, to create a pseudo-index based on a subset of columns
in the table.

IndexName and IndexFieldNames are mutually exclusive. Setting one property clears
values set for the other. To use IndexName, see “Searching on alternate indexes” on
page 21-8.

W o r k i n g w i t h t a b l e s 21-11

W o r k i n g w i t h a s u b s e t o f d a t a

Specifying fields with IndexFieldNames
IndexFieldNames is a string list property. To specify a sort order, list each column
name to use in the order it should be used, and delimit the names with semicolons.
Sorting is by ascending order only. Case-sensitivity of the sort depends on the
capabilities of your server. See your server documentation for more information.

The following code sets the sort order for PhoneTable based on LastName, then
FirstName:

PhoneTable->IndexFieldNames = "LastName;FirstName";

Note If you use IndexFieldNames on Paradox and dBASE tables, C++Builder attempts to
find an index that uses the columns you specify. If it cannot find such an index, it
raises an exception.

Examining the field list for an index

When your application uses an index at runtime, it can examine the

• IndexFieldCount property, to determine the number of columns in the index.

• IndexFields property, to examine a list of column names that comprise the index.

IndexFields is a string list containing the column names for the index. The following
code fragment illustrates how you might use IndexFieldCount and IndexFields to
iterate through a list of column names in an application:

AnsiString ListOfIndexFields[20];
for (int i = 0; i < CustomersTable->IndexFieldCount; i++)

ListOfIndexFields[i] = CustomersTable->IndexFields[i]->FieldName;

Note IndexFieldCount is not valid for a base table opened on an expression index.

Working with a subset of data
Production tables can be huge, so applications often need to limit the number of rows
with which they work. For table components, there are two ways to limit records
used by an application: ranges and filters. Filters can be used with any kind of
dataset, including TTable, TQuery, and TStoredProc components. Because they apply
to all datasets, you can find a full discussion of using filters in Chapter 19,
“Understanding datasets.”

Ranges only apply to TTable components. Despite their similarities, ranges and filters
have different uses. The following section discusses the differences between ranges
and filters and then discusses how to use ranges.

Understanding the differences between ranges and filters

Both ranges and filters restrict visible records in a table to a subset of all available
records, but the way they do so differs. A range is a set of contiguously indexed
records that fall between specified boundary values. For example, in an employee

21-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s u b s e t o f d a t a

database indexed on last name, you might apply a range to display all employees
whose last names are greater than “Jones” and less than “Smith”. Because ranges
depend on indexes, ranges can only be applied to indexed Paradox and dBASE tables
(for SQL tables, ranges can be applied to any fields you list in the IndexFieldNames
property). Ranges can only be ordered based on existing indexes.

A filter, on the other hand, is any set of contiguous and noncontiguous records that
share specified data points, regardless of indexing. For example, you might filter an
employee database to display all employees who live in California and who have
worked for the company for five or more years. While filters make use of indexes if
they apply, filters are not dependent on them. Filters are applied record-by-record as
an application scrolls through a dataset.

In general, filters are more flexible than ranges. Ranges, however, can be more
efficient when datasets are very large and the records of interest to an application are
already blocked in contiguously indexed groups. For very large datasets, it may be
still more efficient to use a query component to select data for viewing and editing.
For more information about using filters, see Chapter 19, “Understanding datasets.”
For more information about using queries, see Chapter 22, “Working with queries.”

Creating and applying a new range

The process for creating and applying a range involves these general steps:

1 Putting the dataset into dsSetKey state and setting the starting index value for the
range.

2 Setting the ending index value for the range.

3 Applying the range to the dataset.

Setting the beginning of a range
Call the SetRangeStart procedure to put the dataset into dsSetKey state and begin
creating a list of starting values for the range. Once you call SetRangeStart,
subsequent assignments to the Fields property are treated as starting index values to
use when applying the range. Fields specified must be indexed fields when using
Paradox and dBASE.

For example, suppose your application uses a TTable component named Customers,
linked to the CUSTOMER table, and that you have created persistent field
components for each field in the Customers dataset. CUSTOMER is indexed on its first
column (CustNo). A form in the application has two edit components named StartVal
and EndVal, used to specify start and ending values for a range. If so, the following
code could be used to create and apply a range:

Customers->SetRangeStart();
Customers->FieldValues[“CustNo”] = StrToInt(StartVal->Text);
Customers->SetRangeEnd();
if (!EndVal->Text.IsEmpty())

Customers->FieldValues[“CustNo”] = StrToInt(EndVal->Text);
Customers->ApplyRange();

W o r k i n g w i t h t a b l e s 21-13

W o r k i n g w i t h a s u b s e t o f d a t a

This code checks that the text entered in EndVal is not null before assigning any
values to Fields. If the text entered for StartVal is null, then all records from the
beginning of the table will be included, since all values are greater than null.
However, if the text entered for EndVal is null, then no records will be included, since
none are less than null.

For a multi-column index, you can specify a starting value for all or some fields in the
index. If you do not supply a value for a field used in the index, a null value is
assumed when you apply the range. If you set more values than there are fields in the
index, the extra fields are ignored when computing the range.

To finish specifying the start of a range, call SetRangeEnd or ApplyRange. These
methods are discussed in the following sections.

Tip To start at the beginning of the dataset, omit the call to SetRangeStart.

You can also set the starting (and ending) values for a range with a call to the
SetRange procedure. For more information about SetRange, see “Setting start- and
end-range values” on page 21-14.

Setting the end of a range
Call the SetRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call SetRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range. Fields specified must be indexed fields for Paradox and dBASE
tables.

Note Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, C++Builder assumes
the ending value of the range is a null value. A range with null ending values is
always empty.

The easiest way to assign ending values is to call the FieldByName method. For
example,

Table1->SetRangeStart();
Table1->FieldByName(“LastName”)->Value = Edit1->Text;
Table1->SetRangeEnd();
Table1->FieldByName(“LastName”)->Value = Edit2->Text;
Table1->ApplyRange();

For a multi-column index, you can specify a starting value for all or some fields in the
index. If you do not supply a value for a field used in the index, a null value is
assumed when you apply the range. If you set more values than there are fields in the
index, an exception is raised.

To finish specifying the end of a range, call ApplyRange. For more information about
applying a range, see “Applying a range” on page 21-15.

Note You can also set the ending (and starting) values for a range with a call to the
SetRange procedure. SetRange is described in the next section.

21-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s u b s e t o f d a t a

Setting start- and end-range values
Instead of using separate calls to SetRangeStart and SetRangeEnd to specify range
boundaries, you can call the SetRange procedure to put the dataset into dsSetKey state
and set the starting and ending values for a range with a single call.

SetRange takes two constant array parameters: a set of starting values, and a set of
ending values. For example, the following statements establish a range based on a
two-column index:

TVarRec StartVals[2];
TVarRec EndVals[2];
StartVals[0] = Edit1->Text;
StartVals[1] = Edit2->Text;
EndVals[0] = Edit3->Text;
EndVals[1] = Edit4->Text;

Table1->SetRange(StartVals, 1, EndVals, 1);

For a multi-column index, you can specify starting and ending values for all or some
fields in the index. If you do not supply a value for a field used in the index, a null
value is assumed when you apply the range. To omit a value for the first field in an
index, and specify values for successive fields, pass a null value for the omitted field.
If you set more values than there are fields in the index, the extra fields are ignored
when computing the range.

Note Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, C++Builder assumes
the ending value of the range is a null value. A range with null ending values is
always empty because the starting range is greater than or equal to the ending range.

Specifying a range based on partial keys
If a key is composed of one or more string fields, the SetRange methods support
partial keys. For example, if an index is based on the LastName and FirstName
columns, the following range specifications are valid:

Table1->SetRangeStart();
Table1->FieldValues[“LastName”] = “Smith”;
Table1->SetRangeEnd();
Table1->FieldValues[“LastName”] = “Zzzzzz”;
Table1->ApplyRange();

This code includes all records in a range where LastName is greater than or equal to
“Smith.” The value specification could also be:

Table1->FieldValues[“LastName”] = “Sm”;

This statement includes records that have LastName greater than or equal to “Sm.”
The following statement includes records with a LastName greater than or equal to
“Smith” and a FirstName greater than or equal to “J”:

Table1->FieldValues[“LastName”] = “Smith”;
Table1->FieldValues[“FirstName”] = “J”;

W o r k i n g w i t h t a b l e s 21-15

W o r k i n g w i t h a s u b s e t o f d a t a

Including or excluding records that match boundary values
By default, a range includes all records that are greater than or equal to the specified
starting range, and less than or equal to the specified ending range. This behavior is
controlled by the KeyExclusive property. KeyExclusive is false by default.

If you prefer, you can set the KeyExclusive property for a table component to true to
exclude records equal to ending range. For example,

Table1->SetRangeStart();
Table1->KeyExclusive = true;
Table1->FieldValues[“LastName”] = “Smith”;
Table1->SetRangeEnd();
Table1->FieldValues[“LastName”] = “Tyler”;
Table1->ApplyRange();

This code includes all records in a range where LastName is greater than or equal to
“Smith” and less than “Tyler”.

Applying a range
The SetRange methods described in the preceding sections establish the boundary
conditions for a range, but do not put it into effect. To make a range take effect, call
the ApplyRange procedure. ApplyRange immediately restricts a user’s view of and
access to data in the specified subset of the dataset.

Canceling a range
The CancelRange method ends application of a range and restores access to the full
dataset. Even though canceling a range restores access to all records in the dataset, the
boundary conditions for that range are still available so that you can reapply the range
at a later time. Range boundaries are preserved until you provide new range boundaries
or modify the existing boundaries. For example, the following code is valid:

ƒ
Table1->CancelRange();
ƒ
// later on, use the same range again. No need to call SetRangeStart, etc.
Table1->ApplyRange();
ƒ

Modifying a range

Two functions enable you to modify the existing boundary conditions for a range:
EditRangeStart, for changing the starting values for a range; and EditRangeEnd, for
changing the ending values for the range.

The process for editing and applying a range involves these general steps:

1 Putting the dataset into dsSetKey state and modifying the starting index value for
the range.

2 Modifying the ending index value for the range.

3 Applying the range to the dataset.

21-16 D e v e l o p e r ’ s G u i d e

D e l e t i n g a l l r e c o r d s i n a t a b l e

You can modify either the starting or ending values of the range, or you can modify
both boundary conditions. If you modify the boundary conditions for a range that is
currently applied to the dataset, the changes you make are not applied until you call
ApplyRange again.

Editing the start of a range
Call the EditRangeStart procedure to put the dataset into dsSetKey state and begin
modifying the current list of starting values for the range. Once you call
EditRangeStart, subsequent assignments to the Fields property overwrite the current
index values to use when applying the range. Fields specified must be indexed fields
when using Paradox and dBASE.

Tip If you initially created a start range based on a partial key, you can use EditRangeStart
to extend the starting value for a range. For more information about ranges based on
partial keys, see “Specifying a range based on partial keys” on page 21-14.

Editing the end of a range
Call the EditRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call EditRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range. Fields must be indexed fields when using Paradox and dBASE.

Note Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, C++Builder assumes
the ending value of the range is a null value. A range with null ending values is
always empty.

Deleting all records in a table
To delete all rows of data in a table, call a table component’s EmptyTable method at
runtime. For SQL tables, this method only succeeds if you have DELETE privilege for
the table. For example, the following statement deletes all records in a dataset:

PhoneTable->EmptyTable();

Caution Data you delete with EmptyTable is gone forever.

Deleting a table
At design time, to delete a table from a database, right-click the table component and
select Delete Table from the context menu. The Delete Table menu pick will only be
present if the table component represents an existing database table (the
DatabaseName and TableName properties specify an existing table).

To delete a table at runtime, call the table component’s DeleteTable method. For
example, the following statement removes the table underlying a dataset:

CustomersTable->DeleteTable();

Caution When you delete a table with DeleteTable, the table and all its data are gone forever.

W o r k i n g w i t h t a b l e s 21-17

R e n a m i n g a t a b l e

Renaming a table
To rename a Paradox or dBASE table at design time, right-click the table component
and select Rename Table from the context menu. You can also rename a table by
typing over the name of an existing table next to the TableName property in the
Object Inspector. When you change the TableName property, a dialog appears asking
you if you want to rename the table. At this point, you can either choose to rename
the table, or you can cancel the operation, changing the TableName property (for
example, to create a new table) without changing the name of the table represented
by the old value of TableName.

To rename a Paradox or dBASE table at runtime, call the table component’s
RenameTable method. For example, the following statement renames the Customer
table to CustInfo:

Customer->RenameTable(“CustInfo”);

Creating a table
You can create new database tables at design time or at runtime. The Create Table
command (at design time) or the CreateTable method (at runtime) provides a way to
create tables without requiring SQL knowledge. They do, however, require you to be
intimately familiar with the properties, events, and methods common to dataset
components, TTable in particular. This is so that you can first define the table you
want to create by doing the following:

• Set the DatabaseName property to the database that will contain the new table.

• Set the TableType property to the desired type of table. For Paradox, dBASE, or
ASCII tables, set TableType to ttParadox, ttDBase, or ttASCII, respectively. For all
other table types, set TableType to ttDefault.

• Set the TableName property to the name of the new table. If the value of the
TableType property is ttParadox or ttDBase, you do not need to specify an extension.

• Add field definitions to describe the fields in the new table. At design time, you
can add the field definitions by double-clicking the FieldDefs property in the Object
Inspector to bring up the collection editor. Use the collection editor to add,
remove, or change the properties of the field definitions. At runtime, clear any
existing field definitions and then use the AddFieldDef method to add each new
field definition. For each new field definition, set the properties of the TFieldDef
object to specify the desired attributes of the field.

• Optionally, add index definitions that describe the desired indexes of the new
table. At design time, you can add index definitions by double-clicking the
IndexDefs property in the Object Inspector to bring up the collection editor. Use the
collection editor to add, remove, or change the properties of the index definitions.
At runtime, clear any existing index definitions, and then use the AddIndexDef
method to add each new index definition. For each new index definition, set the
properties of the TIndexDef object to specify the desired attributes of the index.

21-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g a t a b l e

Note At design time, you can preload the field definitions and index definitions of an
existing table into the FieldDefs and IndexDefs properties, respectively. Set the
DatabaseName and TableName properties to specify the existing table. Right click the
table component and choose Update Table Definition. This automatically sets the
values of the FieldDefs and IndexDefs properties to describe the fields and indexes of
the existing table. Next, reset the DatabaseName and TableName to specify the table
you want to create, canceling any prompts to rename the existing table. If you want
to store these definitions with the table component (for example, if your application
will be using them to create tables on user’s systems), set the StoreDefs property to
true.

Once the table is fully described, you are ready to create it. At design time, right-click
the table component and choose Create Table. At runtime, call the CreateTable
method to generate the specified table.

Warning If you create a table that duplicates the name of an existing table, the existing table
and all its data are overwritten by the newly created table. The old table and its data
cannot be recovered.

The following code creates a new table at runtime and associates it with the
BCDEMOS alias. Before it creates the new table, it verifies that the table name
provided does not match the name of an existing table:

TTable *NewTable = new TTable(Form1);
NewTable->Active = false;
NewTable->DatabaseName = “BCDEMOS”;
NewTable->TableName = Edit1->Text;
NewTable->TableType = ttDefault;
NewTable->FieldDefs->Clear();
TFieldDef *NewField = NewTable->FieldDefs->AddFieldDef(); // define first field
NewField->DataType = ftInteger;
NewField->Name = Edit2->Text;
NewField = NewTable->FieldDefs->AddFieldDef(); // define second field
NewField->DataType = ftString;
NewField->Size = StrToInt(Edit3->Text);
NewField->Name = Edit4->Text;
NewTable->IndexDefs->Clear();
TIndexDef *NewIndex = NewTable->IndexDefs->AddIndexDef(); // add an index
NewIndex->Name = “PrimaryIndex”;
NewIndex->Fields = Edit2->Text;
NewIndex->Options << ixPrimary << ixUnique;
// Now check for prior existence of this table
bool CreateIt = (!NewTable->Exists);
if (!CreateIt)

 if (Application->MessageBox((AnsiString(“Overwrite table “) + Edit1->Text +
AnsiString(“?”)).c_str(),
“Table Exists”, MB_YESNO) == IDYES)

CreateIt = true;
if (CreateIt)

NewTable->CreateTable(); // create the table

W o r k i n g w i t h t a b l e s 21-19

I m p o r t i n g d a t a f r o m a n o t h e r t a b l e

Importing data from another table
You can use a table component’s BatchMove method to import data from another
table. BatchMove can

• Copy records from another table into this table.

• Update records in this table that occur in another table.

• Append records from another table to the end of this table.

• Delete records in this table that occur in another table.

BatchMove takes two parameters: the name of the table from which to import data,
and a mode specification that determines which import operation to perform. Table
21.4 describes the possible settings for the mode specification:

For example, the following code updates records in the current table with records
from the Customer table:

Table1->BatchMove(“CUSTOMER.DB”, batUpdate);

BatchMove returns the number of records it imports successfully.

Caution Importing records using the batCopy mode overwrites existing records. To preserve
existing records use batAppend instead.

BatchMove performs only some of the functions available to your application directly
through the TBatchMove component. If you need to move a large amount of data
between or among tables, use the batch move component instead of calling a table’s
BatchMove function. For more information about using TBatchMove, see the following
topic, “Using TBatchMove.”

Using TBatchMove
TBatchMove encapsulates Borland Database Engine (BDE) features that enable you to
duplicate a dataset, append records from one dataset to another, update records in

Table 21.4 BatchMove import modes

Value Meaning

batAppend Append all records from the source table to the end of this table.

batAppendUpdate Append all records from the source table to the end of this table and
update existing records in this table with the same records from the
source table.

batCopy Copy all records from the source table into this table.

batDelete Delete all records in this table that also appear in the source table.

batUpdate Update existing records in this table with their counterparts in the source
table.

21-20 D e v e l o p e r ’ s G u i d e

U s i n g T B a t c h M o v e

one dataset with records from another dataset, and delete records from one dataset
that match records in another dataset. TBatchMove is most often used to:

• Download data from a server to a local data source for analysis or other
operations.

• Move a desktop database into tables on a remote server as part of an upsizing
operation.

A batch move component can create tables on the destination that correspond to the
source tables, automatically mapping the column names and data types as
appropriate.

Creating a batch move component

To create a batch move component:

1 Place the table or query component for the dataset from which you want to import
records (called the Source dataset) on a form or in a data module.

2 Place the dataset component to which to move records (called the Destination
dataset) on a form or in a data module.

3 Place a TBatchMove component from the Data Access page of the Component
palette in a data module or on a form, and set its Name property to a unique value
appropriate to your application.

4 Set the Source property of the batch move component to the name of the table to
copy, append, or update from. You can select tables from the drop-down list of
available dataset components.

5 Set the Destination property to the dataset to create, append to, or update. You can
select a destination table from the drop-down list of available dataset components,
or add a new table component for the destination.

If you are appending, updating, or deleting, Destination must be an existing table.

If you are copying a table and Destination is an existing table, then executing the
batch move overwrites all of the current data in the destination table.

If you are creating an entirely new table by copying an existing table, the resulting
table has the name specified in the Name property of the table component to which
you are copying. The resulting table type will be of a structure appropriate to the
server specified by the DatabaseName property.

6 Set the Mode property to indicate the type of operation to perform. Valid
operations are batAppend (the default), batUpdate, batAppendUpdate, batCopy, and
batDelete. For more information about these modes, see “Specifying a batch move
mode” on page 21-21.

7 Optionally set the Transliterate property. If Transliterate is true (the default),
character data is transliterated from the Source dataset’s character set to the
Destination dataset’s character set as necessary.

W o r k i n g w i t h t a b l e s 21-21

U s i n g T B a t c h M o v e

8 Optionally set column mappings using the Mappings property. You need not set
this property if you want batch move to match column based on their position in
the source and destination tables. For more information about mapping columns,
see “Mapping data types” on page 21-22.

9 Optionally specify the ChangedTableName, KeyViolTableName, and
ProblemTableName properties. Batch move stores problem records it encounters
during the batch move operation in the table specified by ProblemTableName. If you
are updating a Paradox table through a batch move, key violations can be reported
in the table you specify in KeyViolTableName. ChangedTableName lists all records
that changed in the destination table as a result of the batch move operation. If you
do not specify these properties, these error tables are not created or used. For more
information about handling batch move errors, see “Handling batch move errors”
on page 21-23.

Specifying a batch move mode

The Mode property specifies the operation a batch move component performs:

Appending records
To append data, the destination dataset must already exist. During the append
operation, the BDE converts data to appropriate data types and sizes for the
destination dataset if necessary. If a conversion is not possible, an exception is
thrown and the data is not appended.

Updating records
To update data, the destination dataset must already exist and must have an index
defined that enables records to be matched. If the primary index fields are used for
matching, records with index fields in the destination dataset that match index fields
records in the source dataset are overwritten with the source data. During the update
operation, the BDE converts data to appropriate data types and sizes for the
destination dataset if necessary.

Table 21.5 Batch move modes

Property Purpose

batAppend Append records to the destination table.

batUpdate Update records in the destination table with matching records from the
source table. Updating is based on the current index of the destination table.

batAppendUpdate If a matching record exists in the destination table, update it. Otherwise,
append records to the destination table.

batCopy Create the destination table based on the structure of the source table. If the
destination table already exists, it is dropped and recreated.

batDelete Delete records in the destination table that match records in the source table.

21-22 D e v e l o p e r ’ s G u i d e

U s i n g T B a t c h M o v e

Appending and updating records
To append and update data the destination dataset must already exist and must have
an index defined that enables records to be matched. If the primary index fields are
used for matching, records with index fields in the destination dataset that match
index fields records in the source dataset are overwritten with the source data.
Otherwise, data from the source dataset is appended to the destination dataset.
During append and update operations, the BDE converts data to appropriate data
types and sizes for the destination dataset, if necessary.

Copying datasets
To copy a source dataset, the destination dataset should not already exist. If it does,
the batch move operation overwrites the existing destination dataset with a copy of
the source dataset.

If the source and destination datasets are maintained by different types of database
engines, for example, Paradox and InterBase, the BDE creates a destination dataset
with a structure as close as possible to that of the source dataset and automatically
performs data type and size conversions as necessary.

Note TBatchMove does not copy metadata structures such as indexes, constraints, and
stored procedures. You must recreate these metadata objects on your database server
or through the SQL Explorer as appropriate.

Deleting records
To delete data in the destination dataset, it must already exist and must have an
index defined that enables records to be matched. If the primary index fields are used
for matching, records with index fields in the destination dataset that match index
fields records in the source dataset are deleted in the destination table.

Mapping data types

In batAppend mode, a batch move component creates the destination table based on
the column data types of the source table. Columns and types are matched based on
their position in the source and destination tables. That is, the first column in the
source is matched with the first column in the destination, and so on.

To override the default column mappings, use the Mappings property. Mappings is a
list of column mappings (one per line). This listing can take one of two forms. To map
a column in the source table to a column of the same name in the destination table,
you can use a simple listing that specifies the column name to match. For example,
the following mapping specifies that a column named ColName in the source table
should be mapped to a column of the same name in the destination table:

ColName

To map a column named SourceColName in the source table to a column named
DestColName in the destination table, the syntax is as follows:

DestColName = SourceColName

W o r k i n g w i t h t a b l e s 21-23

U s i n g T B a t c h M o v e

If source and destination column data types are not the same, a batch move operation
attempts a “best fit”. It trims character data types, if necessary, and attempts to
perform a limited amount of conversion, if possible. For example, mapping a
CHAR(10) column to a CHAR(5) column will result in trimming the last five
characters from the source column.

As an example of conversion, if a source column of character data type is mapped to
a destination of integer type, the batch move operation converts a character value of
‘5’ to the corresponding integer value. Values that cannot be converted generate
errors. For more information about errors, see “Handling batch move errors” on
page 21-23.

When moving data between different table types, a batch move component translates
data types as appropriate based on the dataset’s server types. See the BDE online
help file for the latest tables of mappings among server types.

Note To batch move data to an SQL server database, you must have that database server
and a version of C++Builder with the appropriate SQL Link installed, or you can use
ODBC if you have the proper third party ODBC drivers installed.

Executing a batch move

Use the Execute method to execute a previously prepared batch operation at runtime.
For example, if BatchMoveAdd is the name of a batch move component, the following
statement executes it:

BatchMoveAdd->Execute();

You can also execute a batch move at design time by right clicking the mouse on a
batch move component and choosing Execute from the context menu.

The MovedCount property keeps track of the number of records that are moved when
a batch move executes.

The RecordCount property specifies the maximum number of records to move. If
RecordCount is zero, all records are moved, beginning with the first record in the
source dataset. If RecordCount is a positive number, a maximum of RecordCount
records are moved, beginning with the current record in the source dataset. If
RecordCount is greater than the number of records between the current record in the
source dataset and its last record, the batch move terminates when the end of the
source dataset is reached. You can examine MoveCount to determine how many
records were actually transferred.

Handling batch move errors

There are two types of errors that can occur in a batch move operation: data type
conversion errors and integrity violations. TBatchMove has a number of properties
that report on and control error handling.

The AbortOnProblem property specifies whether to abort the operation when a data
type conversion error occurs. If AbortOnProblem is true, the batch move operation is
canceled when an error occurs. If false, the operation continues. You can examine the

21-24 D e v e l o p e r ’ s G u i d e

S y n c h r o n i z i n g t a b l e s l i n k e d t o t h e s a m e d a t a b a s e t a b l e

table you specify in the ProblemTableName to determine which records caused
problems.

The AbortOnKeyViol property indicates whether to abort the operation when a
Paradox key violation occurs.

The ProblemCount property indicates the number of records that could not be
handled in the destination table without a loss of data. If AbortOnProblem is true, this
number is one, since the operation is aborted when an error occurs.

The following properties enable a batch move component to create additional tables
that document the batch move operation:

• ChangedTableName, if specified, creates a local Paradox table containing all records
in the destination table that changed as a result of an update or delete operation.

• KeyViolTableName, if specified, creates a local Paradox table containing all records
from the source table that caused a key violation when working with a Paradox
table. If AbortOnKeyViol is true, this table will contain at most one entry since the
operation is aborted on the first problem encountered.

• ProblemTableName, if specified, creates a local Paradox table containing all records
that could not be posted in the destination table due to data type conversion
errors. For example, the table could contain records from the source table whose
data had to be trimmed to fit in the destination table. If AbortOnProblem is true,
there is at most one record in this table since the operation is aborted on the first
problem encountered.

Note If ProblemTableName is not specified, the data in the record is trimmed and placed in
the destination table.

Synchronizing tables linked to the same database table
If more than one table component is linked to the same database table through their
DatabaseName and TableName properties and the tables do not share a data source
component, then each table has its own view on the data and its own current record.
As users access records through each table component, the components’ current
records will differ.

You can force the current record for each of these table components to be the same
with the GotoCurrent method. GotoCurrent sets its own table’s current record to the
current record of another table component. For example, the following code sets the
current record of CustomerTableOne to be the same as the current record of
CustomerTableTwo:

CustomerTableOne->GotoCurrent(CustomerTableTwo);

Tip If your application needs to synchronize table components in this manner, put the
components in a data module and include the header for the data module in each
unit that accesses the tables.

W o r k i n g w i t h t a b l e s 21-25

C r e a t i n g m a s t e r / d e t a i l f o r m s

If you must synchronize table components on separate forms, you must include one
form’s header file in the source unit of the other form, and you must qualify at least
one of the table names with its form name.

For example:

CustomerTableOne->GotoCurrent(Form2->CustomerTableTwo);

Creating master/detail forms
A table component’s MasterSource and MasterFields properties can be used to
establish one-to-many relationships between two tables.

The MasterSource property is used to specify a data source from which the table will
get data for the master table. For instance, if you link two tables in a master/detail
relationship, then the detail table can track the events occurring in the master table by
specifying the master table’s data source component in this property.

The MasterFields property specifies the column(s) common to both tables used to
establish the link. To link tables based on multiple column names, use a semicolon
delimited list:

Table1->MasterFields = “OrderNo;ItemNo”;

To help create meaningful links between two tables, you can use the Field Link
designer. For more information about the Field Link designer, see the User’s Guide.

Building an example master/detail form

The following steps create a simple form in which a user can scroll through customer
records and display all orders for the current customer. The master table is the
CustomersTable table, and the detail table is OrdersTable.

1 Place two TTable and two TDataSource components in a data module.

2 Set the properties of the first TTable component as follows:

• DatabaseName: BCDEMOS
• TableName: CUSTOMER
• Name: CustomersTable

3 Set the properties of the second TTable component as follows:

• DatabaseName: BCDEMOS
• TableName: ORDERS
• Name: OrdersTable

4 Set the properties of the first TDataSource component as follows:

• Name: CustSource
• DataSet: CustomersTable

21-26 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h n e s t e d t a b l e s

5 Set the properties of the second TDataSource component as follows:

• Name: OrdersSource
• DataSet: OrdersTable

6 Place two TDBGrid components on a form.

7 Choose File|Include Unit Hdr to specify that the form should use the data
module.

8 Set the DataSource property of the first grid component to
“CustSource”, and set the DataSource property of the second grid to
“OrdersSource”.

9 Set the MasterSource property of OrdersTable to “CustSource”. This links the
CUSTOMER table (the master table) to the ORDERS table (the detail table).

10 Double-click the MasterFields property value box in the Object Inspector to invoke
the Field Link Designer to set the following properties:

• In the Available Indexes field, choose CustNo to link the two tables by the
CustNo field.

• Select CustNo in both the Detail Fields and Master Fields field lists.

• Click the Add button to add this join condition. In the Joined Fields list,
“CustNo -> CustNo” appears.

• Choose OK to commit your selections and exit the Field Link Designer.

11 Set the Active properties of CustomersTable and OrdersTable to true to display data
in the grids on the form.

12 Compile and run the application.

If you run the application now, you will see that the tables are linked together, and
that when you move to a new record in the CUSTOMER table, you see only those
records in the ORDERS table that belong to the current customer.

Working with nested tables
A nested table component provides access to data in a nested dataset of a table. The
NestedDataSet property of a persistent nested dataset field contains a reference to the
nested dataset. Since TNestedDataSet descends from TBDEDataSet, a nested table
inherits BDE functionality, and so uses the Borland Database Engine (BDE) to access
the nested table data. A nested table provides much of the functionality of a table
component, but the data it accesses is stored in a nested table.

Setting up a nested table component

The following steps are general instructions for setting up a nested table component
at design time. A table or live query component must be available that accesses a
dataset containing a dataset or reference field. A persistent field for the TDataSetField

W o r k i n g w i t h t a b l e s 21-27

W o r k i n g w i t h n e s t e d t a b l e s

or TReferenceField must also already exist. See “Working with dataset fields” on
page 20-26.

To use a nested table component,

1 Place a nested table component from the Data Access page of the Component
palette in a data module or on a form, and set its Name property to a unique value
appropriate to your application.

2 Set the DataSetField of the component to the name of the persistent dataset field or
reference field to access. You can select fields from the drop-down list.

3 Place a data source component in the data module or on the form, and set its
DataSet property to the name of the nested table component. The data source
component is used to pass a result set from the table to data-aware components for
display.

21-28 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h q u e r i e s 22-1

C h a p t e r

22
Chapter22Working with queries

This chapter describes the TQuery dataset component which enables you to use SQL
statements to access data. It assumes you are familiar with the general discussion of
datasets and data sources in Chapter 19, “Understanding datasets.”

A query component encapsulates an SQL statement that is used in a client
application to retrieve, insert, update, and delete data from one or more database
tables. SQL is an industry-standard relational database language that is used by most
remote, server-based databases, such as Sybase, Oracle, InterBase, and Microsoft SQL
Server. Query components can be used with remote database servers (if your version
of C++Builder includes SQL links), with Paradox, dBASE, FoxPro, and Access, and
with ODBC-compliant databases.

Using queries effectively
To use the query component effectively, you must be familiar with

• SQL and your server’s SQL implementation, including limitations and extensions
to the SQL-92 standard

• Borland Database Engine (BDE)

If you are an experienced desktop database developer moving to server-based
applications, see “Queries for desktop developers” on page 22-2 for an introduction
to queries before reading the remainder of this chapter. If you are new to SQL, you
may want to purchase one of the many fine third party books that cover SQL
in-depth. One of the best is Understanding the New SQL: A Complete Guide, by Jim
Melton and Alan R. Simpson, Morgan Kaufmann Publishers.

If you are an experienced database server developer, but are new to building
C++Builder clients, then you are already familiar with SQL and your server, but you
may be unfamiliar with the BDE. See “Queries for server developers” on page 22-3
for an introduction to queries and the BDE before reading the remainder of this
chapter.

22-2 D e v e l o p e r ’ s G u i d e

U s i n g q u e r i e s e f f e c t i v e l y

Queries for desktop developers

As a desktop developer you are already familiar with the basic table, record, and
field paradigm used by C++Builder and the BDE. You feel very comfortable using a
TTable component to gain access to every field in every data record in a dataset. You
know that when you set a table’s TableName property, you specify the database table
to access.

Chances are you have also used a TTable’s range methods and filter property to limit
the number of records available at any given time in your applications. Applying a
range temporarily limits data access to a block of contiguously indexed records that
fall within prescribed boundary conditions, such as returning all records for
employees whose last names are greater than or equal to “Jones” and less than or
equal to “Smith”. Setting a filter temporarily restricts data access to a set of records
that is usually noncontiguous and that meets filter criteria, such as returning only
those customer records that have a California mailing address.

A query behaves in many ways very much like a table filter, except that you use the
query component’s SQL property (and sometimes the Params property) to identify
the records in a dataset to retrieve, insert, delete, or update. In some ways a query is
even more powerful than a filter because it lets you access

• More than one table at a time (called a “join” in SQL).

• A specified subset of rows and columns in its underlying table(s), rather than
always returning all rows and columns. This improves both performance and
security. Memory is not wasted on unnecessary data, and you can prevent access
to fields a user should not view or modify.

Queries can be verbatim, or they can contain replaceable parameters. Queries that
use parameters are called parameterized queries. When you use parameterized queries,
the actual values assigned to the parameters are inserted into the query by the BDE
before you execute, or run, the query. Using parameterized queries is very flexible,
because you can change a user’s view of and access to data on the fly at runtime
without having to alter the SQL statement.

Most often you use queries to select the data that a user should see in your
application, just as you do when you use a table component. Queries, however, can
also perform update, insert, and delete operations instead of retrieving records for
display. When you use a query to perform insert, update, and delete operations, the
query ordinarily does not return records for viewing. In this way a query differs from
a table.

To learn more about using the SQL property to write an SQL statement, see
“Specifying the SQL statement to execute” on page 22-5. To learn more about using
parameters in your SQL statements, see “Setting parameters” on page 22-8. To learn
about executing a query, see “Executing a query” on page 22-12.

W o r k i n g w i t h q u e r i e s 22-3

U s i n g q u e r i e s e f f e c t i v e l y

Queries for server developers

As a server developer you are already familiar with SQL and with the capabilities of
your database server. To you a query is the SQL statement you use to access data.
You know how to use and manipulate this statement and how to use optional
parameters with it.

The SQL statement and its parameters are the most important parts of a query
component. The query component’s SQL property is used to provide the SQL
statement to use for data access, and the component’s Params property is an optional
array of parameters to bind into the query. However, a query component is much
more than an SQL statement and its parameters. A query component is also the
interface between your client application and the BDE.

A client application uses the properties and methods of a query component to
manipulate an SQL statement and its parameters, to specify the database to query, to
prepare and unprepare queries with parameters, and to execute the query. A query
component’s methods call the BDE, which, in turn, processes your query requests,
and communicates with the database server, usually through an SQL Links driver.
The server passes a result set, if appropriate, back to the BDE, and the BDE returns it
to your application through the query component.

When you work with a query component, you should be aware that some of the
terminology used to describe BDE features can be confusing at first because it has
very different meanings than what you are familiar with as an SQL database
programmer. For example, the BDE commonly uses the term “alias” to refer to a
shorthand name for the path to the database server. The BDE alias is stored in a
configuration file, and is set in the query component’s DatabaseName property. (You
can still use table aliases, or “table correlation names,” in your SQL statements.)

Similarly, the BDE help documentation, available online in \Program Files\Common
Files\Borland Shared\BDE\BDE32.HLP, often refers to queries that use parameters
as “parameterized queries” where you are more likely to think of SQL statements
that use bound variables or parameter bindings.

Note This chapter uses BDE terminology because you will encounter it throughout our
documentation. Whenever confusion may result from using BDE terms, explanations
are provided.

To learn more about using the SQL property to write an SQL statement, see
“Specifying the SQL statement to execute” on page 22-5. To learn more about using
parameters in your SQL statements, see “Setting parameters” on page 22-8. To learn
about preparing a query, see “Preparing a query” on page 22-13, and to learn more
about executing a query, see “Executing a query” on page 22-12.

22-4 D e v e l o p e r ’ s G u i d e

W h a t d a t a b a s e s c a n y o u a c c e s s w i t h a q u e r y c o m p o n e n t ?

What databases can you access with a query component?
A TQuery component can access data in:

• Paradox or dBASE tables, using Local SQL, which is part of the BDE. Local SQL is
a subset of the SQL-92 specification. Most DML is supported and enough DDL
syntax to work with these types of tables. See the local SQL help,
LOCALSQL.HLP, for details on supported SQL syntax.

• Local InterBase Server databases, using the InterBase engine. For information on
InterBase’s SQL-92 standard SQL syntax support and extended syntax support,
see the InterBase Language Reference.

• Databases on remote database servers such as Oracle, Sybase, MS-SQL Server,
Informix, DB2, and InterBase (depending on your version of C++Builder). You
must have installed the appropriate SQL Link driver and client software
(vendor-supplied) specific to the database server to access a remote server. Any
standard SQL syntax supported by these servers is allowed. For information on
SQL syntax, limitations, and extensions, see the documentation for your particular
server.

C++Builder also supports heterogeneous queries against more than one server or
table type (for example, data from an Oracle table and a Paradox table). When you
create a heterogeneous query, the BDE uses Local SQL to process the query. For more
information, see “Creating heterogeneous queries” on page 22-14.

Using a query component: an overview
To use a query component in an application, follow these steps at design time:

1 Place a query component from the Data Access tab of the Component palette in a
data module, and set its Name property appropriately for your application.

2 Set the DatabaseName property of the component to the name of the database to
query. DatabaseName can be a BDE alias, an explicit directory path (for local
tables), or the value from the DatabaseName property of a TDatabase component in
the application.

3 Specify an SQL statement in the SQL property of the component, and optionally
specify any parameters for the statement in the Params property. For more
information, see “Specifying the SQL property at design time” on page 22-6.

4 If the query data is to be used with visual data controls, place a data source
component from the Data Access tab of the Component palette in the data module,
and set its DataSet property to the name of the query component. The data source
component is used to return the results of the query (called a result set) from the
query to data-aware components for display. Connect data-aware components to
the data source using their DataSource and DataField properties.

5 Activate the query component. For queries that return a result set, use the Active
property or the Open method. For queries that only perform an action on a table
and return no result set, use the ExecSQL method.

W o r k i n g w i t h q u e r i e s 22-5

S p e c i f y i n g t h e S Q L s t a t e m e n t t o e x e c u t e

To execute a query for the first time at runtime, follow these steps:

1 Close the query component.

2 Provide an SQL statement in the SQL property if you did not set the SQL property
at design time, or if you want to change the SQL statement already provided. To
use the design-time statement as is, skip this step. For more information about
setting the SQL property, see “Specifying the SQL statement to execute” on
page 22-5.

3 Set parameters and parameter values in the Params property either directly or by
using the ParamByName method. If a query does not contain parameters, or the
parameters set at design time are unchanged, skip this step. For more information
about setting parameters, see “Setting parameters” on page 22-8.

4 Call Prepare to initialize the BDE and bind parameter values into the query. Calling
Prepare is optional, though highly recommended. For more information about
preparing a query, see “Preparing a query” on page 22-13.

5 Call Open for queries that return a result set, or call ExecSQL for queries that do not
return a result set. For more information about opening and executing a query see
“Executing a query” on page 22-12.

After you execute a query for the first time, then as long as you do not modify the
SQL statement, an application can repeatedly close and reopen or re-execute a query
without preparing it again. For more information about reusing a query, see
“Executing a query” on page 22-12.

Specifying the SQL statement to execute
Use the SQL property to specify the SQL query statement to execute. At design time a
query is prepared and executed automatically when you set the query component’s
Active property to true. At runtime, a query is prepared with a call to Prepare, and
executed when the application calls the component’s Open or ExecSQL methods.

The SQL property is a TStrings object, which is an array of text strings and a set of
properties, events, and methods that manipulate them. The strings in SQL are
automatically concatenated to produce the SQL statement to execute. You can
provide a statement in as few or as many separate strings as you desire. One
advantage to using a series of strings is that you can divide the SQL statement into
logical units (for example, putting the WHERE clause for a SELECT statement into its
own string), so that it is easier to modify and debug a query.

The SQL statement can be a query that contains hard-coded field names and values,
or it can be a parameterized query that contains replaceable parameters that
represent field values that must be bound into the statement before it is executed. For
example, this statement is hard-coded:

SELECT * FROM Customer WHERE CustNo = 1231

Hard-coded statements are useful when applications execute exact, known queries
each time they run. At design time or runtime you can easily replace one hard-code

22-6 D e v e l o p e r ’ s G u i d e

S p e c i f y i n g t h e S Q L s t a t e m e n t t o e x e c u t e

query with another hard-coded or parameterized query as needed. Whenever the
SQL property is changed the query is automatically closed and unprepared.

Note In queries made against the BDE engine using local SQL, when column names in a
query contain spaces or special characters, the column name must be enclosed in
quotes and must be preceded by a table reference and a period. For example,
BIOLIFE.”Species Name”. For information about valid column names, see your
server’s documentation.

A parameterized query contains one or more placeholder parameters, application
variables that stand in for comparison values such as those found in the WHERE
clause of a SELECT statement. Using parameterized queries enables you to change
the value without rewriting the application. Parameter values must be bound into the
SQL statement before it is executed for the first time. Query components do this
automatically for you even if you do not explicitly call the Prepare method before
executing a query.

This statement is a parameterized query:

SELECT * FROM Customer WHERE CustNo = :Number

The variable Number, indicated by the leading colon, is a parameter that fills in for a
comparison value that must be provided at runtime and that may vary each time the
statement is executed. The actual value for Number is provided in the query
component’s Params property.

Tip It is a good programming practice to provide variable names for parameters that
correspond to the actual name of the column with which it is associated. For
example, if a column name is “Number,” then its corresponding parameter would be
“:Number”. Using matching names ensures that if a query uses its DataSource
property to provide values for parameters, it can match the variable name to valid
field names.

Specifying the SQL property at design time

You can specify the SQL property at design time using the String List editor. To
invoke the String List editor for the SQL property:

• Double-click on the SQL property value column, or

• Click its ellipsis button.

You can enter an SQL statement in as many or as few lines as you want. Entering a
statement on multiple lines, however, makes it easier to read, change, and debug.
Choose OK to assign the text you enter to the SQL property.

Normally, the SQL property can contain only one complete SQL statement at a time,
although these statements can be as complex as necessary (for example, a SELECT
statement with a WHERE clause that uses several nested logical operators such as
AND and OR). Some servers also support “batch” syntax that permits multiple
statements; if your server supports such syntax, you can enter multiple statements in
the SQL property.

W o r k i n g w i t h q u e r i e s 22-7

S p e c i f y i n g t h e S Q L s t a t e m e n t t o e x e c u t e

Note With some versions of C++Builder, you can also use the SQL Builder to construct a
query based on a visible representation of tables and fields in a database. To use the
SQL Builder, select a query component, right-click it to invoke the context menu, and
choose Graphical Query Editor. To learn how to use the SQL Builder, open it and use
its online help.

Specifying an SQL statement at runtime

There are three ways to set the SQL property at runtime. An application can set the
SQL property directly, it can call the SQL property’s LoadFromFile method to read an
SQL statement from a file, or an SQL statement in a string list object can be assigned
to the SQL property.

Setting the SQL property directly
To directly set the SQL property at runtime,

1 Call Close to deactivate the query. Even though an attempt to modify the SQL
property automatically deactivates the query, it is a good safety measure to do so
explicitly.

2 If you are replacing the whole SQL statement, call the Clear method for the SQL
property to delete its current SQL statement.

3 If you are building the whole SQL statement from nothing or adding a line to an
existing statement, call the Add method for the SQL property to insert and append
one or more strings to the SQL property to create a new SQL statement. If you are
modifying an existing line use the SQL property with an index to indicate the line
affected, and assign the new value.

4 Call Open or ExecSQL to execute the query.

The following code illustrates building an entire SQL statement from nothing.

// Close the query if it's active
CustomerQuery->Close();
// Delete the current SQL statement, if any
CustomerQuery->SQL->Clear();
// Add the first line of SQL...
CustomerQuery->SQL->Add(“SELECT * FROM Customer”);
// ... and the second
CustomerQuery->SQL->Add(“WHERE Company = 'Sight Diver'”);
// Then activate the TQuery
CustomerQuery->Open();

The code below demonstrates modifying only a single line in an existing SQL
statement. In this case, the WHERE clause already exists on the second line of the
statement. It is referenced via the SQL property using an index of 1.

Note If a query uses parameters, you should also set their initial values and call the Prepare
method before opening or executing a query. Explicitly calling Prepare is most useful
if the same SQL statement is used repeatedly; otherwise it is called automatically by
the query component.

22-8 D e v e l o p e r ’ s G u i d e

S e t t i n g p a r a m e t e r s

Loading the SQL property from a file
You can also use the LoadFromFile method to assign an SQL statement in a text file to
the SQL property. The LoadFromFile method automatically clears the current contents
of the SQL property before loading the new statement from file. For example:

CustomerQuery->Close();
CustomerQuery->SQL->LoadFromFile(“C:\\ORDERS.TXT”);
CustomerQuery->Open();

Note If the SQL statement contained in the file is a parameterized query, set the initial
values for the parameters and call Prepare before opening or executing the query.
Explicitly calling Prepare is most useful if the same SQL statement is used repeatedly;
otherwise it is called automatically by the query component.

Loading the SQL property from string list object
You can also use the Assign method of the SQL property to copy the contents of a
string list object into the SQL property. The Assign method automatically clears the
current contents of the SQL property before copying the new statement. For example,
copying an SQL statement from a TMemo component:

CustomerQuery->Close();
// Need BCB example here
CustomerQuery->Open();

Note If the SQL statement is a parameterized query, set the initial values for the
parameters and call Prepare before opening or executing the query. Explicitly calling
Prepare is most useful if the same SQL statement is used repeatedly; otherwise it is
called automatically by the query component.

Setting parameters
A parameterized SQL statement contains parameters, or variables, the values of
which can be varied at design time or runtime. Parameters can replace data values,
such as those used in a WHERE clause for comparisons, that appear in an SQL
statement. Ordinarily, parameters stand in for data values passed to the statement.
For example, in the following INSERT statement, values to insert are passed as
parameters:

INSERT INTO Country (Name, Capital, Population)
VALUES (:Name, :Capital, :Population)

In this SQL statement, :name, :capital, and :population are placeholders for actual
values supplied to the statement at runtime by your application. Before a
parameterized query is executed for the first time, your application should call the
Prepare method to bind the current values for the parameters to the SQL statement.
Binding means that the BDE and the server allocate resources for the statement and
its parameters that improve the execution speed of the query.

W o r k i n g w i t h q u e r i e s 22-9

S e t t i n g p a r a m e t e r s

Query1->Close();
Query1->ParamByName("Name")->AsString = "Belize";
Query1->ParamByName("Capital")->AsString = "Belmopan";
Query1->ParamByName("Population")->AsFloat = 240000;
if (!Query1->Prepared)

Query1->Prepare();
Query1->ExecSQL();

Supplying parameters at design time

At design time, parameters in the SQL statement appear in the parameter collection
editor. To access the TParam objects for the parameters, invoke the parameter
collection editor, select a parameter, and access the TParam properties in the Object
Inspector. If the SQL statement does not contain any parameters, no TParam objects
are listed in the collection editor. You can only add parameters by writing them in the
SQL statement.

To access parameters,

1 Select the query component.
2 Click on the ellipsis button for the Params property in Object Inspector.
3 In the parameter collection editor, select a parameter.
4 The TParam object for the selected parameter appears in the Object Inspector.
5 Inspect and modify the properties for the TParam in the Object Inspector.

For queries that do not already contain parameters (the SQL property is empty or the
existing SQL statement has no parameters), the list of parameters in the collection
editor dialog is empty. If parameters are already defined for a query, then the
parameter editor lists all existing parameters.

Note The TQuery component shares the TParam object and its collection editor with a
number of different components. While the right-click context menu of the collection
editor always contains the Add and Delete options, they are never enabled for
TQuery parameters. The only way to add or delete TQuery parameters is in the SQL
statement itself.

As each parameter in the collection editor is selected, the Object Inspector displays
the properties and events for that parameter. Set the values for parameter properties
and methods in the Object Inspector.

The DataType property lists the BDE data type for the parameter selected in the
editing dialog. Initially the type will be ftUnknown. You must set a data type for each
parameter. In general, BDE data types conform to server data types. For specific
BDE-to-server data type mappings, see the BDE help in \Program Files\Common
Files\Borland Shared\BDE\BDE32.HLP.

The ParamType property lists the type of parameter selected in the editing dialog.
Initially the type will be ptUnknown. You must set a type for each parameter.

Use the Value property to specify a value for the selected parameter at design-time.
This is not mandatory when parameter values are supplied at runtime. In these cases,
lease Value blank.

22-10 D e v e l o p e r ’ s G u i d e

S e t t i n g p a r a m e t e r s

Supplying parameters at runtime

To create parameters at runtime, you can use the

• ParamByName method to assign values to a parameter based on its name.

• Params property to assign values to a parameter based on the parameter’s ordinal
position within the SQL statement.

• Params::ParamValues property to assign values to one or more parameters in a
single command line, based on the name of each parameter set. This method uses
variants and avoids the need to cast values.

For all of the examples below, assume the SQL property contains the SQL statement
below. All three parameters used are of data type ftString.

INSERT INTO "COUNTRY.DB"
(Name, Capital, Continent)
VALUES (:Name, :Capital, :Continent)

The following code uses ParamByName to assign the text of an edit box to the Capital
parameter:

Query1->ParamByName(“Capital”)->AsString = Edit1->Text;

The same code can be rewritten using the Params property, using an index of 1 (the
Capital parameter is the second parameter in the SQL statement):

Query1->Params->Items->[1]->AsString = Edit1->Text;

The command line below sets all three parameters at once, using the
Params::ParamValues property:

Query1->Params->ParamValues["Name;Capital;Continent"] =
 VarArrayOf(OPENARRAY(Variant, (Edit1->Text, Edit2->Text, Edit3->Text)));

Using a data source to bind parameters

If parameter values for a parameterized query are not bound at design time or
specified at runtime, the query component attempts to supply values for them based
on its DataSource property. DataSource specifies a different table or query component
that the query component can search for field names that match the names of
unbound parameters. This search dataset must be created and populated before you
create the query component that uses it. If matches are found in the search dataset,
the query component binds the parameter values to the values of the fields in the
current record pointed to by the data source.

You can create a simple application to understand how to use the DataSource
property to link a query in a master-detail form. Suppose the data module for this
application is called, LinkModule, and that it contains a query component called
OrdersQuery that has the following SQL property:

SELECT CustNo, OrderNo, SaleDate
FROM Orders
WHERE CustNo = :CustNo

W o r k i n g w i t h q u e r i e s 22-11

S e t t i n g p a r a m e t e r s

The LinkModule data module also contains:

• A TTable dataset component named CustomersTable linked to the CUSTOMER.DB
table.

• A TDataSource component named OrdersSource. The DataSet property of
OrdersSource points to OrdersQuery.

• A TDataSource named CustomersSource linked to CustomersTable. The DataSource
property of the OrdersQuery component is also set to CustomersSource. This is the
setting that makes OrdersQuery a linked query.

Suppose, too, that this application has a form, named LinkedQuery that contains two
data grids, a Customers Table grid linked to CustomersSource, and an Order Query grid
linked to OrdersSource.

The following figure illustrates how this application appears at design time.

Figure 22.1 Sample master/detail query form and data module at design time

Note If you build this application, create the table component and its data source before
creating the query component.

If you compile this application, at runtime the :CustNo parameter in the SQL
statement for OrdersQuery is not assigned a value, so OrdersQuery tries to match the
parameter by name against a column in the table pointed to by CustomersSource.
CustomersSource gets its data from CustomersTable, which, in turn, derives its data
from the CUSTOMER.DB table. Because CUSTOMER.DB contains a column called
“CustNo,” the value from the CustNo field in the current record of the CustomersTable
dataset is assigned to the :CustNo parameter for the OrdersQuery SQL statement. The
grids are linked in a master-detail relationship. At runtime, each time you select a
different record in the Customers Table grid, the OrdersQuery SELECT statement
executes to retrieve all orders based on the current customer number.

22-12 D e v e l o p e r ’ s G u i d e

E x e c u t i n g a q u e r y

Executing a query
After you specify an SQL statement in the SQL property and set any parameters for
the query, you can execute the query. When a query is executed, the BDE receives
and processes SQL statements from your application. If the query is against local
tables (dBASE and Paradox), the BDE SQL engine processes the SQL statement and,
for a SELECT query, returns data to the application. If the query is against an SQL
server table and the TQuery::RequestLive property is set to false, the SQL statement is
not processed or interpreted by the BDE, but is passed directly to the database
system. If the RequestLive property is set to true, the SQL statement will need to abide
by local SQL standards as the BDE will need to use it for conveying data changes to
the table.

Note Before you execute a query for the first time, you may want to call the Prepare method
to improve query performance. Prepare initializes the BDE and the database server,
each of which allocates system resources for the query. For more information about
preparing a query, see “Preparing a query” on page 22-13.

The following sections describe executing both static and dynamic SQL statements at
design time and at runtime.

Executing a query at design time

To execute a query at design time, set its Active property to true in the Object
Inspector.

The results of the query, if any, are displayed in any data-aware controls associated
with the query component.

Note The Active property can be used only with queries that returns a result set, such as by
the SELECT statement.

Executing a query at runtime

To execute a query at runtime, use one of the following methods:

• Open executes a query that returns a result set, such as with the SELECT statement.

• ExecSQL executes a query that does not return a result set, such as with the
INSERT, UPDATE, or DELETE statements.

Note If you do not know at design time whether a query will return a result set at runtime,
code both types of query execution statements in a try...catch block. Put a call to the
Open method in the try clause. This allows you to suppress the error message that
would occur due to using an activate method not applicable to the type of SQL
statement used. Check the type of exception that occurs. If it is other than an
ENoResult exception, the exception occurred for another reason and must be

W o r k i n g w i t h q u e r i e s 22-13

P r e p a r i n g a q u e r y

processed. This works because an action query will be executed when the query is
activated with the Open method, but an exception occurs in addition to that.

try
{

Query2->Open();
}
catch (Exception &E)
{

if (!dynamic_cast<ENoResultSet*>(&E))
throw;

}

Executing a query that returns a result set
To execute a query that returns a result set (a query that uses a SELECT statement),
follow these steps:

1 Call Close to ensure that the query is not already open. If a query is already open
you cannot open it again without first closing it. Closing a query and reopening it
fetches a new version of data from the server.

2 Call Open to execute the query.

For example:

CustomerQuery->Close();
CustomerQuery->Open(); // Returns a result set

For information on navigating within a result set, see “Disabling bi-directional
cursors” on page 22-15. For information on editing and updating a result set, see
“Working with result sets” on page 22-16.

Executing a query without a result set
To execute a query that does not return a result set (a query that has an SQL
statement such as INSERT, UPDATE, or DELETE), call ExecSQL to execute the query.

For example:

CustomerQuery->ExecSQL(); // Does not return a result set

Preparing a query
Preparing a query is an optional step that precedes query execution. Preparing a
query submits the SQL statement and its parameters, if any, to the BDE for parsing,
resource allocation, and optimization. The BDE, in turn, notifies the database server
to prepare for the query. The server, too, may allocate resources for the query. These
operations improve query performance, making your application faster, especially
when working with updatable queries.

An application can prepare a query by calling the Prepare method. If you do not
prepare a query before executing it, then C++Builder automatically prepares it for
you each time you call Open or ExecSQL. Even though C++Builder prepares queries

22-14 D e v e l o p e r ’ s G u i d e

U n p r e p a r i n g a q u e r y t o r e l e a s e r e s o u r c e s

for you, it is better programming practice to prepare a query explicitly. That way
your code is self-documenting, and your intentions are clear. For example:

CustomerQuery->Close();
if (!CustomerQuery->Prepared)

CustomerQuery->Prepare();
CustomerQuery->Open();

This example checks the query component’s Prepared property to determine if a
query is already prepared. Prepared is a Boolean value that is true if a query is already
prepared. If the query is not already prepared, the example calls the Prepare method
before calling Open.

Unpreparing a query to release resources
The UnPrepare method sets the Prepared property to false. UnPrepare

• Ensures that the SQL property is prepared prior to executing it again.

• Notifies the BDE to release the internal resources allocated for the statement.

• Notifies the server to release any resources it has allocated for the statement.

To unprepare a query, call

CustomerQuery->UnPrepare();

Note When you change the text of the SQL property for a query, the query component
automatically closes and unprepares the query.

Creating heterogeneous queries
C++Builder supports heterogeneous queries, that is, queries made against tables in
more than one database. A heterogeneous query may join tables on different servers,
and even different types of servers. For example, a heterogeneous query might
involve a table in a Oracle database, a table in a Sybase database, and a local dBASE
table. When you execute a heterogeneous query, the BDE parses and processes the
query using Local SQL. Because BDE uses Local SQL, extended, server-specific SQL
syntax is not supported.

To perform a heterogeneous query, follow these steps:

1 Define separate BDE aliases for each database accessed in the query. Leave the
DatabaseName property of the TQuery blank; the names of the two databases used
will be specified in the SQL statement.

2 Specify the SQL statement to execute in the SQL property. Precede each table
name in the SQL statement with the BDE alias for the database where that table
can be found. The table reference is preceded by the name of the BDE alias,
enclosed in colons. This whole reference is then enclosed in quotation marks.

3 Set any parameters for the query in the Params property.

W o r k i n g w i t h q u e r i e s 22-15

I m p r o v i n g q u e r y p e r f o r m a n c e

4 Call Prepare to prepare the query for execution prior to executing it for the first
time.

5 Call Open or ExecSQL depending on the type of query to execute.

For example, suppose you define an alias called Oracle1 for an Oracle database that
has a CUSTOMER table, and Sybase1 for a Sybase database that has an ORDERS
table. A simple query against these two tables would be:

SELECT Customer.CustNo, Orders.OrderNo
FROM ”:Oracle1:CUSTOMER”

JOIN ”:Sybase1:ORDERS”
ON (Customer.CustNo = Orders.CustNo)

WHERE (Customer.CustNo = 1503)

As an alternative to using a BDE alias to specify the database in a heterogeneous
query, you can use a TDatabase component. Configure the TDatabase as normal to
point to the database, set the TDatabase::DatabaseName to an arbitrary but unique
value, and then use that value in the SQL statement instead of a BDE alias name.

Improving query performance
Following are steps you can take to improve query execution speed:

• Set a query’s UniDirectional property to true if you do not need to navigate
backward through a result set (SQL-92 does not, itself, permit backward
navigation through a result set). By default, UniDirectional is false because the BDE
supports bi-directional cursors by default.

• Prepare the query before execution. This is especially helpful when you plan to
execute a single query several times. You need only prepare the query once, before
its first use. For more information about query preparation, see “Preparing a
query” on page 22-13.

Disabling bi-directional cursors

The UniDirectional property determines whether or not BDE bi-directional cursors
are enabled for a query. When a query returns a result set, it also receives a cursor, or
pointer to the first record in that result set. The record pointed to by the cursor is the
currently active record. The current record is the one whose field values are
displayed in data-aware components associated with the result set’s data source.

UniDirectional is false by default, meaning that the cursor for a result set can navigate
both forward and backward through its records. Bi-directional cursor support
requires some additional processing overhead, and can slow some queries. To
improve query performance, you may be able to set UniDirectional to true, restricting
a cursor to forward movement through a result set.

If you do not need to be able to navigate backward through a result set, you can set
UniDirectional to true for a query. Set UniDirectional before preparing and executing a

22-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h r e s u l t s e t s

query. The following code illustrates setting UniDirectional prior to preparing and
executing a query:

if (!CustomerQuery->Prepared)
{

CustomerQuery->UniDirectional = true;
 CustomerQuery->Prepare();
}
CustomerQuery->Open(); // Returns a result set with a one-way cursor

Working with result sets
By default, the result set returned by a query is read-only. Your application can
display field values from the result set in data-aware controls, but users cannot edit
those values. To enable editing of a result set, your application must request a “live”
result set.

Enabling editing of a result set

To request a result set that users can edit in data-aware controls, set a query
component’s RequestLive property to true. Setting RequestLive to true does not
guarantee a live result set, but the BDE attempts to honor the request whenever
possible. There are some restrictions on live result set requests, depending on
whether or not a query uses the local SQL parser or a server’s SQL parser.
Heterogeneous joins and queries executed against Paradox or dBASE are parsed by
the BDE using local SQL. Queries against a remote database server are parsed by the
server.

If an application requests and receives a live result set, the CanModify property of the
query component is set to true.

If an application requests a live result set, but the SELECT statement syntax does not
allow it, the BDE returns either

• A read-only result set for queries made against Paradox or dBASE.
• An error code for pass-through SQL queries made against a remote server.

Local SQL requirements for a live result set

For queries that use the local SQL parser, the BDE offers expanded support for
updatable, live result sets in both single table and multi-table queries. The local SQL
parser is used when a query is made against one or more dBASE or Paradox tables,
or one or more remote server tables when those table names in the query are
preceded by a BDE database alias. The following sections describe the restrictions
that must be met to return a live result set for local SQL.

W o r k i n g w i t h q u e r i e s 22-17

W o r k i n g w i t h r e s u l t s e t s

Restrictions on live queries
A live result set for a query against a single table or view is returned if the query does
not contain any of the following:

• DISTINCT in the SELECT clause
• Joins (inner, outer, or UNION)
• Aggregate functions with or without GROUP BY or HAVING clauses
• Base tables or views that are not updatable
• Subqueries
• ORDER BY clauses not based on an index

Remote server SQL requirements for a live result set

For queries that use passthrough SQL, which includes all queries made solely against
remote database servers, live result sets are restricted to the standards defined by
SQL-92 and any additional, server-imposed restrictions.

A live result set for a query against a single table or view is returned if the query does
not contain any of the following:

• A DISTINCT clause in the SELECT statement
• Aggregate functions, with or without GROUP BY or HAVING clauses
• References to more than one base table or updatable views (joins)
• Subqueries that reference the table in the FROM clause or other tables

Restrictions on updating a live result set

If a query returns a live result set, you may not be able to update the result set
directly if the result set contains linked fields or you switch indexes before
attempting an update. If these conditions exist, you may be able to treat the result set
as a read-only result set, and update it accordingly.

Updating a read-only result set

Applications can update data returned in a read-only result set if they are using
cached updates. To update a read-only result set associated with a query component:

1 Add a TUpdateSQL component to the data module in your application to
essentially give you the ability to post updates to a read-only dataset.

2 Enter the SQL update statement for the result set to the update component’s
ModifySQL, InsertSQL, or DeleteSQL properties.

3 Set the query component’s CachedUpdate property to true.

For more information about using cached updates, see Chapter 26, “Working with
cached updates.”

22-18 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t o r e d p r o c e d u r e s 23-1

C h a p t e r

23
Chapter23Working with stored procedures

This chapter describes how to use stored procedures in your database applications. A
stored procedure is a self-contained program written in the procedure and trigger
language specific to the database system used. There are two fundamental types of
stored procedures. The first type retrieves data (like with a SELECT query). The
retrieved data can be in the form of a dataset consisting of one or more rows of data,
divided into one or more columns. Or the retrieved data can be in the form of
individual pieces of information. The second type does not return data, but performs
an action on data stored in the database (like with a DELETE statement). Some
database servers support performing both types of operations in the same procedure.

Stored procedures that return data do so in different ways, depending on how the
stored procedure is composed and the database system used. Some, like InterBase,
return all data (datasets and individual pieces of information) exclusively with
output parameters. Others are capable of returning a cursor to data. And still others,
like Microsoft SQL Server and Sybase, can return a dataset and individual pieces of
information.

In C++Builder applications, access to stored procedures is provided by the
TStoredProc and TQuery components. The choice of which to use for the access is
predicated on how the stored procedure is coded, how data is returned (if any), and
the database system used. The TStoredProc and TQuery components are both
descendants of TDataSet, and inherit behaviors from TDataSet. For more information
about TDataSet, see Chapter 19, “Understanding datasets.”

A stored procedure component is used to execute stored procedures that do not
return any data, to retrieve individual pieces of information in the form of output
parameters, and to relay a returned dataset to an associated data source component
(this last being database-specific). The stored procedure component allows values to
be passed to and return from the stored procedure through parameters, each
parameter defined in the Params property. The stored procedure component also
provides a GetResults method to force the stored procedure to return a dataset (some
database servers require this before a result set is produced). The stored procedure

23-2 D e v e l o p e r ’ s G u i d e

W h e n s h o u l d y o u u s e s t o r e d p r o c e d u r e s ?

component is the preferred means for using stored procedures that either do not
return any data or only return data through output parameters.

A query component is primarily used to run stored procedures that return datasets.
This includes InterBase stored procedures that only return datasets via output
parameters. The query component can also be used to execute a stored procedure
that does not return a dataset or output parameter values.

Use parameters to pass distinct values to or return values from a stored procedure.
Input parameter values are used in such places as the WHERE clause of a SELECT
statement in a stored procedure. An output parameter allows a stored procedure to
pass a single value to the calling application. Some stored procedures return a result
parameter. See the documentation for the specific database server you are using for
details on the types of parameters that are supported and how they are used in the
server’s procedure language.

When should you use stored procedures?
If your server defines stored procedures, you should use them if they apply to the
needs of your application. A database server developer creates stored procedures to
handle frequently-repeated database-related tasks. Often, operations that act upon
large numbers of rows in database tables—or that use aggregate or mathematical
functions—are candidates for stored procedures. If stored procedures exist on the
remote database server your application uses, you should take advantage of them in
your application. Chances are you need some of the functionality they provide, and
you stand to improve the performance of your database application by:

• Taking advantage of the server’s usually greater processing power and speed.

• Reducing the amount of network traffic since the processing takes place on the
server where the data resides.

For example, consider an application that needs to compute a single value: the
standard deviation of values over a large number of records. To perform this
function in your application, all the values used in the computation must be fetched
from the server, resulting in increased network traffic. Then your application must
perform the computation. Because all you want in your application is the end
result—a single value representing the standard deviation—it would be far more
efficient for a stored procedure on the server to read the data stored there, perform
the calculation, and pass your application the single value it requires.

See your server’s database documentation for more information about its support for
stored procedures.

Using a stored procedure
How a stored procedure is used in a C++Builder application depends on how the
stored procedure was coded, whether and how it returns data, the specific database
server used, or a combination of these factors.

W o r k i n g w i t h s t o r e d p r o c e d u r e s 23-3

U s i n g a s t o r e d p r o c e d u r e

In general terms, to access a stored procedure on a server, an application must:

1 Instantiate a TStoredProc component and optionally associate it with a stored
procedure on the server. Or instantiate a TQuery component and compose the
contents of its SQL property to perform either a SELECT query against the stored
procedure or an EXECUTE command, depending on whether the stored
procedure returns a result set. For more information about creating a TStoredProc,
see “Creating a stored procedure component” on page 23-3. For more information
about creating a TQuery component, see Chapter 22, “Working with queries.”

2 Provide input parameter values to the stored procedure component, if necessary.
When a stored procedure component is not associated with stored procedure on a
server, you must provide additional input parameter information, such as
parameter names and data types. For more information about providing input
parameter information, see “Setting parameter information at design time” on
page 23-13.

3 Execute the stored procedure.

4 Process any result and output parameters. As with any other dataset component,
you can also examine the result dataset returned from the server. For more
information about output and result parameters, see “Using output parameters”
on page 23-11 and “Using the result parameter” on page 23-12. For information
about viewing records in a dataset, see “Using stored procedures that return result
sets” on page 23-5.

Creating a stored procedure component

To create a stored procedure component for a stored procedure on a database server:

1 Place a stored procedure component from the Data Access page of the Component
palette in a data module.

2 Optionally set the DatabaseName property of the stored procedure component to
the name of the database in which the stored procedure is defined. DatabaseName
must be a BDE alias or the same value as in the DatabaseName property of a
TDatabase that can connect to the server.

Normally you should specify the DatabaseName property, but if the server
database against which your application runs is currently unavailable, you can
still create and set up a stored procedure component by omitting the DatabaseName
and supplying a stored procedure name and input, output, and result parameters
at design time. For more information about input parameters, see “Using input
parameters” on page 23-10. For more information about output parameters, see
“Using output parameters” on page 23-11. For more information about the result
parameter, see “Using the result parameter” on page 23-12.

3 Optionally set the StoredProcName property to the name of the stored procedure to
use. If you provided a value for the DatabaseName property, then you can select a
stored procedure name from the drop-down list for the property. A single
TStoredProc component can be used to execute any number of stored procedures

23-4 D e v e l o p e r ’ s G u i d e

U s i n g a s t o r e d p r o c e d u r e

by setting the StoredProcName property to a valid name in the application. It may
not always be desirable to set the StoredProcName at design time.

4 Double-click the Params property value box to invoke the StoredProc Parameters
editor to examine input and output parameters for the stored procedure. If you
did not specify a name for the stored procedure in Step 3, or you specified a name
for the stored procedure that does not exist on the server specified in the
DatabaseName property in Step 2, then when you invoke the parameters editor, it is
empty.

Not all servers return parameters or parameter information. See your server’s
documentation to determine what information about its stored procedures it returns
to client applications.

Note If you do not specify the DatabaseName property in Step 2, then you must use the
StoredProc Parameters editor to set up parameters at design time. For information
about setting parameters at design time, see “Setting parameter information at
design time” on page 23-13.

Creating a stored procedure

Ordinarily, stored procedures are created when the application and its database is
created, using tools supplied by the database system vendor. However, it is possible
to create stored procedures at runtime. The specific SQL statement used will vary
from one database system to another because the procedure language varies so
greatly. Consult the documentation for the specific database system you are using for
the procedure language that is supported.

A stored procedure can be created by an application at runtime using an SQL
statement issued from a TQuery component, typically with a CREATE PROCEDURE
statement. If parameters are used in the stored procedure, set the ParamCheck
property of the TQuery to false. This prevents the TQuery from mistaking the
parameter in the new stored procedure from a parameter for the TQuery itself.

Note You can also use the SQL Explorer to examine, edit, and create stored procedures on
the server.

After the SQL property has been populated with the statement to create the stored
procedure, execute it by invoking the ExecSQL method.

Query1->ParamCheck = false;
Query1->SQL->Clear();
Query1->SQL->Add(”CREATE PROCEDURE GET_MAX_EMP_NAME”);
Query1->SQL->Add(”RETURNS (Max_Name CHAR(15))”);
Query1->SQL->Add(”AS”);
Query1->SQL->Add(”BEGIN”);
Query1->SQL->Add(” SELECT MAX(LAST_NAME)”);
Query1->SQL->Add(” FROM EMPLOYEE”);
Query1->SQL->Add(” INTO :Max_Name;”);
Query1->SQL->Add(” SUSPEND;”);
Query1->SQL->Add(”END”);
Query1->ExecSQL();

W o r k i n g w i t h s t o r e d p r o c e d u r e s 23-5

U s i n g a s t o r e d p r o c e d u r e

Preparing and executing a stored procedure
To use a stored procedure, you can optionally prepare it, and then execute it.

You can prepare a stored procedure at:

• Design time, by choosing OK in the Parameters editor.
• Runtime, by calling the Prepare method of the stored procedure component.

For example, the following code prepares a stored procedure for execution:
StoredProc1->Prepare();

Note If your application changes parameter information at runtime, such as when using
Oracle overloaded procedures, you should prepare the procedure again.

To execute a prepared stored procedure, call the ExecProc method for the stored
procedure component. The following code illustrates code that prepares and
executes a stored procedure:

StoredProc1->Params->Items[0]->AsString = Edit1->Text;
StoredProc1->Prepare();
StoredProc1->ExecProc();

Note If you attempt to execute a stored procedure before preparing it, the stored
procedure component automatically prepares it for you, and then unprepares it after
it executes. If you plan to execute a stored procedure a number of times, it is more
efficient to call Prepare yourself, and then only call UnPrepare once, when you no
longer need to execute the procedure.

When you execute a stored procedure, it can return all or some of these items:

• A dataset consisting of one or more records that can be viewed in data-aware
controls associated with the stored procedure through a data source component.

• Output parameters.
• A result parameter that contains status information about the stored procedure’s

execution.

To determine the return items to expect from a stored procedure on your server, see
your server’s documentation.

Using stored procedures that return result sets
Stored procedures that return data in datasets, rows and columns of data, should
most often be used with a query component. However, with database servers that
support returning a dataset by a stored procedure, a stored procedure component
can serve this purpose.

Retrieving a result set with a TQuery
To retrieve a dataset from a stored procedure using a TQuery component:

1 Instantiate a query component.

2 In the TQuery::SQL property, write a SELECT query that uses the name of the
stored procedure instead of a table name.

23-6 D e v e l o p e r ’ s G u i d e

U s i n g a s t o r e d p r o c e d u r e

3 If the stored procedure requires input parameters, express the parameter values as
a comma-separated list, enclosed in parentheses, following the procedure name.

4 Set the Active property to true or invoke the Open method.

For example, the InterBase stored procedure GET_EMP_PROJ, below, accepts a value
using the input parameter EMP_NO and returns a dataset through the output
parameter PROJ_ID.

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :EMP_NO
INTO :PROJ_ID
DO

SUSPEND;
END

The SQL statement issued from a TQuery to use this stored procedure would be:

SELECT *
FROM GET_EMP_PROJ(52)

Retrieving a result set with a TStoredProc
To retrieve a dataset from a stored procedure using a TStoredProc component:

1 Instantiate a stored procedure component.

2 In the StoredProcName property, specify the name of the stored procedure.

3 If the stored procedure requires input parameters, supply values for the
parameters using the Params property or ParamByName method.

4 Set the Active property to true or invoke the Open method.

For example, the Sybase stored procedure GET_EMPLOYEES, below, accepts an
input parameter named @EMP_NO and returns a result set based on that value.

CREATE PROCEDURE GET_EMPLOYEES @EMP_NO SMALLINT
AS SELECT EMP_NAME, EMPLOYEE_NO FROM EMPLOYEE_TABLE
WHERE (EMPLOYEE_NO = @EMP_NO)

The C++Builder code to fill the parameter with a value and activate the stored
procedure component is:

StoredProc1->Close();
StoredProc1->ParamByName("EMP_NO")->AsSmallInt = 52;
StoredProc1->Active = true;

W o r k i n g w i t h s t o r e d p r o c e d u r e s 23-7

U s i n g a s t o r e d p r o c e d u r e

Using stored procedures that return data using parameters

Stored procedures can be composed to retrieve individual pieces of information, as
opposed to whole rows of data, through parameters. For instance, a stored procedure
might retrieve the maximum value for a column, add one to that value, and then
return that value to the application. Such stored procedures can be used and the
values inspected using either a TQuery or a TStoredProc component. The preferred
method for retrieving parameter values is with a TStoredProc.

Retrieving individual values with a TQuery
Parameter values retrieved via a TQuery component take the form of a single-row
dataset, even if only one parameter is returned by the stored procedure. To retrieve
individual values from stored procedure parameters using a TQuery component:

1 Instantiate a query component.

2 In the TQuery::SQL property, write a SELECT query that uses the name of the
stored procedure instead of a table name. The SELECT clause of this query can
specify the parameter by its name, as if it were a column in a table, or it can simply
use the * operator to retrieve all parameter values.

3 If the stored procedure requires input parameters, express the parameter values as
a comma-separated list, enclosed in parentheses, following the procedure name.

4 Set the Active property to true or invoke the Open method.

For example, the InterBase stored procedure GET_HIGH_EMP_NAME, below,
retrieves the alphabetically last value in the LAST_NAME column of a table named
EMPLOYEE. The stored procedure returns this value in the output parameter
High_Last_Name.

CREATE PROCEDURE GET_HIGH_EMP_NAME
RETURNS (High_Last_Name CHAR(15))
AS
BEGIN

SELECT MAX(LAST_NAME)
FROM EMPLOYEE
INTO :High_Last_Name;
SUSPEND;

END

The SQL statement issued from a TQuery to use this stored procedure would be:

SELECT High_Last_Name
FROM GET_HIGH_EMP_NAME

Retrieving individual values with a TStoredProc
To retrieve individual values from stored procedure output parameters using a
TStoredProc component:

1 Instantiate a stored procedure component.

2 In the StoredProcName property, specify the name of the stored procedure.

23-8 D e v e l o p e r ’ s G u i d e

U s i n g a s t o r e d p r o c e d u r e

3 If the stored procedure requires input parameters, supply values for the
parameters using the Params property or ParamByName method.

4 Invoke the ExecProc method.

5 Inspect the values of individual output parameters using the Params property or
ParamByName method.

For example, the InterBase stored procedure GET_HIGH_EMP_NAME, below,
retrieves the alphabetically last value in the LAST_NAME column of a table named
EMPLOYEE. The stored procedure returns this value in the output parameter
High_Last_Name.

CREATE PROCEDURE GET_HIGH_EMP_NAME
RETURNS (High_Last_Name CHAR(15))
AS
BEGIN

SELECT MAX(LAST_NAME)
FROM EMPLOYEE
INTO :High_Last_Name;
SUSPEND;

END

The C++Builder code to get the value in the High_Last_Name output parameter and
store it to the Text property of a TEdit component is:

StoredProc1->StoredProcName = "GET_HIGH_EMP_NAME";
StoredProc1->ExecProc();
Edit1->Text = StoredProc1->ParamByName("High_Last_Name")->AsString;

Using stored procedures that perform actions on data

Stored procedures can be coded such that they do not return any data at all, and only
perform some action in the database. SQL operations involving the INSERT and
DELETE statements are good examples of this type of stored procedure. For instance,
instead of allowing a user to delete a row directly, a stored procedure might be used
to do so. This would allow the stored procedure to control what is deleted and also to
handle any referential integrity aspects, such as a cascading delete of rows in
dependent tables.

Executing an action stored procedure with a TQuery
To execute an action stored procedure using a TQuery component:

1 Instantiate a query component.

2 In the TQuery::SQL property, include the command necessary to execute the
stored procedure and the stored procedure name. (The command to execute a
stored procedure can vary from one database system to another. In InterBase, the
command is EXECUTE PROCEDURE.)

3 If the stored procedure requires input parameters, express the parameter values as
a comma-separated list, enclosed in parentheses, following the procedure name.

4 Invoke the TQuery::ExecSQL method.

W o r k i n g w i t h s t o r e d p r o c e d u r e s 23-9

U s i n g a s t o r e d p r o c e d u r e

For example, the InterBase stored procedure ADD_EMP_PROJ, below, adds a new
row to the table EMPLOYEE_PROJECT. No dataset is returned and no individual
values are returned in output parameters.

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS
BEGIN

BEGIN
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
VALUES (:EMP_NO, :PROJ_ID);
WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;

END
SUSPEND;

END

The SQL statement issued from a TQuery to execute this stored procedure would be:

EXECUTE PROCEDURE ADD_EMP_PROJ(20, "GUIDE")

Executing an action stored procedure with a TStoredProc
To retrieve individual values from stored procedure output parameters using a
TStoredProc component:

1 Instantiate a stored procedure component.

2 In the StoredProcName property, specify the name of the stored procedure.

3 If the stored procedure requires input parameters, supply values for the
parameters using the Params property or ParamByName method.

4 Invoke the ExecProc method.

For example, the InterBase stored procedure ADD_EMP_PROJ, below, adds a new
row to the table EMPLOYEE_PROJECT. No dataset is returned and no individual
values are returned in output parameters.

CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS
BEGIN

BEGIN
INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
VALUES (:EMP_NO, :PROJ_ID);
WHEN SQLCODE -530 DO
EXCEPTION UNKNOWN_EMP_ID;

END
SUSPEND;

END

The C++Builder code to execute the ADD_EMP_PROJ stored procedure is:

StoredProc1->StoredProcName = "ADD_EMP_PROJ";
StoredProc1->ExecProc();

23-10 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g s t o r e d p r o c e d u r e p a r a m e t e r s

Understanding stored procedure parameters
There are four types of parameters that can be associated with stored procedures:

• Input parameters, used to pass values to a stored procedure for processing.

• Output parameters, used by a stored procedure to pass return values to an
application.

• Input/output parameters, used to pass values to a stored procedure for processing,
and used by the stored procedure to pass return values to the application.

• A result parameter, used by some stored procedures to return an error or status
value to an application. A stored procedure can only return one result parameter.

Whether a stored procedure uses a particular type of parameter depends both on the
general language implementation of stored procedures on your database server and
on a specific instance of a stored procedure. For example, individual stored
procedures on any server may either be implemented using input parameters, or
may not be. On the other hand, some uses of parameters are server-specific. For
example, on MS-SQL Server and Sybase stored procedures always return a result
parameter, but the InterBase implementation of a stored procedure never returns a
result parameter.

Access to stored procedure parameters is provided by TParam objects in the
TStoredProc::Params property. If the name of the stored procedure is specified at
design time in the StoredProcName property, a TParam object is automatically created
for each parameter and added to the Params property. If the stored procedure name is
not specified until runtime, the TParam objects need to be programmatically created
at that time. Not specifying the stored procedure and manually creating the TParam
objects allows a single TStoredProc component to be used with any number of
available stored procedures.

Note Some stored procedures return a dataset in addition to output and result parameters.
Applications can display dataset records in data-aware controls, but must separately
process output and result parameters. For more information about displaying
records in data-aware controls, see “Using stored procedures that return result sets”
on page 23-5.

Using input parameters

Application use input parameters to pass singleton data values to a stored procedure.
Such values are then used in SQL statements within the stored procedure, such as a
comparison value for a WHERE clause. If a stored procedure requires an input
parameter, assign a value to the parameter prior to executing the stored procedure.

If a stored procedure returns a dataset and is used through a SELECT query in a
TQuery component, supply input parameter values as a comma-separated list,
enclosed in parentheses, following the stored procedure name. For example, the SQL

W o r k i n g w i t h s t o r e d p r o c e d u r e s 23-11

U n d e r s t a n d i n g s t o r e d p r o c e d u r e p a r a m e t e r s

statement below retrieves data from a stored procedure named GET_EMP_PROJ and
supplies an input parameter value of 52.

SELECT PROJ_ID
FROM GET_EMP_PROJ(52)

If a stored procedure is executed with a TStoredProc component, use the Params
property or the ParamByName method access to set each input parameter. Use the
TParam property appropriate for the data type of the parameter, such as the
TParam::AsString property for a CHAR type parameter. Set input parameter values
prior to executing or activating the TStoredProc component. In the example below, the
EMP_NO parameter (type SMALLINT) for the stored procedure GET_EMP_PROJ is
assigned the value 52.

StoredProc1->ParamByName("EMP_NO")->AsSmallInt = 52;
StoredProc1->ExecProc();

Using output parameters

Stored procedures use output parameters to pass singleton data values to an
application that calls the stored procedure. Output parameters are not assigned
values except by the stored procedure and then only after the stored procedure has
been executed. Inspect output parameters from an application to retrieve its value
after invoking the TStoredProc::ExecProc method.

Use the TStoredProc::Params property or TStoredProc::ParamByName method to
reference the TParam object that represents a parameter and inspect its value. For
example, to retrieve the value of a parameter and store it into the Text property of a
TEdit component:

StoredProc1->ExecProc();
Edit1->Text = StoredProc1->Params[0]->AsString;

Most stored procedures return one or more output parameters. Output parameters
may represent the sole return values for a stored procedure that does not also return
a dataset, they may represent one set of values returned by a procedure that also
returns a dataset, or they may represent values that have no direct correspondence to
an individual record in the dataset returned by the stored procedure. Each server’s
implementation of stored procedures differs in this regard.

Note The source code for an Informix stored procedure may indicate that it returns output
parameters even though you cannot not see output parameter information in the
StoredProc Parameters editor. Informix translates output parameters into a single
record dataset that you can view in your application’s data-aware controls.

Using input/output parameters

Input/output parameters serve both function that input and output parameters serve
individually. Applications use an input/output parameter to pass a singleton data
value to a stored procedure, which in turn reuses the input/output parameter to pass
a singleton data value to the calling application. As with input parameters, the input
value for an input/output parameter must be set before the using stored procedure

23-12 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g s t o r e d p r o c e d u r e p a r a m e t e r s

or query component is activated. Likewise, the output value in an input/output
parameter will not be available until after the stored procedure has been executed.

In the example Oracle stored procedure below, the parameter IN_OUTVAR is an
input/output parameter.

CREATE OR REPLACE PROCEDURE UPDATE_THE_TABLE (IN_OUTVAR IN OUT INTEGER)
AS
BEGIN

UPDATE ALLTYPETABLE
SET NUMBER82FLD = IN_OUTVAR
WHERE KEYFIELD = 0;
IN_OUTVAR = 1;

END UPDATE_THE_TABLE;

In the C++Builder program code below, IN_OUTVAR is assigned an input value, the
stored procedure executed, and then the output value in IN_OUTVAR is inspected
and stored to a memory variable.

StoredProc1->ParamByName("IN_OUTVAR")->AsInteger = 103;
StoredProc1->ExecProc();
IntegerVar = StoredProc1->ParamByName("IN_OUTVAR")->AsInteger;

Using the result parameter

In addition to returning output parameters and a dataset, some stored procedures
also return a single result parameter. The result parameter is usually used to indicate
an error status or the number of records processed base on stored procedure
execution. See your database server’s documentation to determine if and how your
server supports the result parameter. Result parameters are not assigned values
except by the stored procedure and then only after the stored procedure has been
executed. Inspect a result parameter from an application to retrieve its value after
invoking the TStoredProc::ExecProc method.

Use the TStoredProc::Params property or TStoredProc::ParamByName method to
reference the TParam object that represents the result parameter and inspect its value.

DateVar = StoredProc1->ParamByName(”MyOutputParam”)->AsDate;

Accessing parameters at design time

If you connect to a remote database server by setting the DatabaseName and
StoredProcName properties at design time, then you can use the StoredProc
Parameters editor to view the names and data types of each input parameter, and
you can set the values for the input parameters to pass to the server when you
execute the stored procedure.

Important Do not change the names or data types for input parameters reported by the server,
or when you execute the stored procedure an exception is raised.

Some servers—Informix, for example—do not report parameter names or data types.
In these cases, use the SQL Explorer or vendor-supplied server utilities to look at the

W o r k i n g w i t h s t o r e d p r o c e d u r e s 23-13

U n d e r s t a n d i n g s t o r e d p r o c e d u r e p a r a m e t e r s

source code of the stored procedure on the server to determine input parameters and
data types. See the SQL Explorer online help for more information.

At design time, if you do not receive a parameter list from a stored procedure on a
remote server (for example because you are not connected to a server), then you must
invoke the StoredProc Parameters editor, list each required input parameter, and
assign each a data type and a value. For more information about using the
StoredProc Parameters editor to create parameters, see “Setting parameter
information at design time” on page 23-13.

Setting parameter information at design time

You can invoke the StoredProc parameter collection editor at design time to set up
parameters and their values.

The parameter collection editor allows you to set up stored procedure parameters. If
you set the DatabaseName and StoredProcName properties of the TStoredProc
component at design time, all existing parameters are listed in the collection editor. If
you do not set both of these properties, no parameters are listed and you must add
them manually. Additionally, some database types do not return all parameter
information, like types. For these database systems, use the SQL Explorer utility to
inspect the stored procedures, determine types, and then configure parameters
through the collection editor and the Object Inspector. The steps to set up stored
procedure parameters at design time are:

1 Optionally set the DatabaseName and StoredProcName properties.

2 In the Object Inspector, invoke the parameter collection editor by clicking on the
ellipsis button in the Params field.

3 If the DatabaseName and StoredProcName properties are not set, no parameters
appear in the collection editor. Manually add parameter definitions by
right-clicking within the collection editor and selecting Add from the context
menu.

4 Select parameters individually in the collection editor to display their properties in
the Object Inspector.

5 If a type is not automatically specified for the ParamType property, select a
parameter type (Input, Output, Input/Output, or Result) from the property’s
drop-down list.

6 If a data type is not automatically specified for the DataType property, select a data
type from the property’s drop-down list. (To return a result set from an Oracle
stored procedure, set field type to Cursor.)

7 Use the Value property to optionally specify a starting value for an input or input/
output parameter.

Right-clicking in the parameter collection editor invokes a context menu for operating
on parameter definitions. Depending on whether any parameters are listed or selected,
enabled options include: adding new parameters, deleting existing parameters,
moving parameters up and down in the list, and selecting all listed parameters.

23-14 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g s t o r e d p r o c e d u r e p a r a m e t e r s

You can edit the definition for any TParam you add, but the attributes of the TParam
objects you add must match the attributes of the parameters for the stored procedure
on the server. To edit the TParam for a parameter, select it in the parameter collection
editor and edit its property values in the Object Inspector.

Note Sybase, MS-SQL, and Informix do not return parameter type information. Use the
SQL Explorer to determine this information.

Note Informix does not return data type information. Use the SQL Explorer to determine
this information.

Note You can never set values for output and result parameters. These types of parameters
have values set by the execution of the stored procedure.

Creating parameters at runtime

If the name of the stored procedure is not specified in StoredProcName until runtime,
no TParam objects will be automatically created for parameters and they must be
created programmatically. This can be done by instantiating a new TParam object or
the TParams::AddParam method.

For example, the InterBase stored procedure GET_EMP_PROJ, below, requires one
input parameter (EMP_NO) and one output parameter (PROJ_ID).

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :EMP_NO
INTO :PROJ_ID
DO

SUSPEND;
END

The C++Builder code to associate this stored procedure with a TStoredProc named
StoredProc1 and create TParam objects for the two parameters is:

{
TParam *P1, *P2;
ƒ
StoredProc1->StoredProcName = "GET_EMP_PROJ";
StoredProc1->Params->Clear();
P1 = new TParam(StoredProc1->Params, ptInput);
P2 = new TParam(StoredProc1->Params, ptOutput);
try
{

StoredProc1->Params[0]->Name = "EMP_NO";
StoredProc1->Params[1]->Name = "PROJ_ID";
StoredProc1->ParamByName("EMP_NO")->AsSmallInt = 52;
StoredProc1->ExecProc();
Edit1->Text = StoredProc1->ParamByName("PROJ_ID")->AsString;

}

W o r k i n g w i t h s t o r e d p r o c e d u r e s 23-15

V i e w i n g p a r a m e t e r i n f o r m a t i o n a t d e s i g n t i m e

__finally
{

delete P1;
delete P2;

}
}

Binding parameters

When you prepare and execute a stored procedure, its input parameters are
automatically bound to parameters on the server.

Use the ParamBindMode property to specify how parameters in your stored
procedure component should be bound to the parameters on the server. By default
ParamBindMode is set to pbByName, meaning that parameters from the stored
procedure component are matched to those on the server by name. This is the easiest
method of binding parameters.

Some servers also support binding parameters by ordinal value, the order in which
the parameters appear in the stored procedure. In this case the order in which you
specify parameters in the parameter collection editor is significant. The first
parameter you specify is matched to the first input parameter on the server, the
second parameter is matched to the second input parameter on the server, and so on.
If your server supports parameter binding by ordinal value, you can set
ParamBindMode to pbByNumber.

Tip If you want to set ParamBindMode to pbByNumber, you need to specify the correct
parameter types in the correct order. You can view a server’s stored procedure source
code in the SQL Explorer to determine the correct order and type of parameters to
specify.

Viewing parameter information at design time
If you have access to a database server at design time, there are two ways to view
information about the parameters used by a stored procedure:

• Invoke the SQL Explorer to view the source code for a stored procedure on a
remote server. The source code includes parameter declarations that identify the
data types and names for each parameter.

• Use the Object Inspector to view the property settings for individual TParam
objects.

You can use the SQL Explorer to examine stored procedures on your database
servers if you are using BDE native drivers. If you are using ODBC drivers you
cannot examine stored procedures with the SQL Explorer. While using the SQL
Explorer is not always an option, it can sometimes provide more information than
the Object Inspector viewing TParam objects. The amount of information returned
about a stored procedure in the Object Inspector depends on your database server.

23-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h O r a c l e o v e r l o a d e d s t o r e d p r o c e d u r e s

To view individual parameter definitions in the Object Inspector:

1 Select the stored procedure component.

2 Set the DatabaseName property of a stored procedure component to the BDE alias
for your database server (or the DatabaseName property of a TDatabase).

3 Set the StoredProcName property to the name of the stored procedure.

4 click the ellipsis button in for the TStoredProc::Params property in the Object
Inspector.

5 Select individual parameters in the collection editor to view their property settings
in the Object Inspector.

For some servers some or all parameter information may not be accessible.

In the Object Inspector, when viewing individual TParam objects, the ParamType
property indicates whether the selected parameter is an input, output, input/output,
or result parameter. The DataType property indicates the data type of the value the
parameter contains, such as string, integer, or date. The Value edit box enables you to
enter a value for a selected input parameter.

Note Sybase, MS-SQL, and Informix do not return parameter type information. Use the
SQL Explorer or vendor-supplied server utilities to determine this information.

Note Informix does not return data type information. Use the SQL Explorer
vendor-supplied server utilities to determine this information.

For more about setting parameter values, see “Setting parameter information at
design time” on page 23-13.

Note You can never set values for output and result parameters. These types of parameters
have values set by the execution of the stored procedure.

Working with Oracle overloaded stored procedures
Oracle servers allow overloading of stored procedures; overloaded procedures are
different procedures with the same name. The stored procedure component’s
Overload property enables an application to specify the procedure to execute.

If Overload is zero (the default), there is assumed to be no overloading. If Overload is
one (1), then the stored procedure component executes the first stored procedure it
finds on the Oracle server that has the overloaded name; if it is two (2), it executes the
second, and so on.

Note Overloaded stored procedures may take different input and output parameters. See
your Oracle server documentation for more information.

W o r k i n g w i t h A D O c o m p o n e n t s 24-1

C h a p t e r

24
Chapter24Working with ADO components

The ADOExpress components are a set of classes that provide data access through
the ADO framework, bypassing use of the Borland Database Engine (BDE). ADO, or
Microsoft ActiveX Data Objects, is a set of data objects that provide an application the
ability to access data through an OLE DB provider. The C++Builder ADOExpress
components encapsulate the functionality of these ADO objects and make their
functionality available in the C++Builder object-oriented paradigm.

The ADO objects that figure most prominently are the Connection, Command, and
Recordset objects. These ADO objects are directly represented in the
TADOConnection, TADOCommand, and ADO dataset components. There are other
“helper” objects in the ADO framework, like the Field and Properties objects, but
they are generally not used directly by the C++Builder programmer and not
represented by dedicated components.

Using ADO and the ADO components allows the C++Builder programmer to create
database applications that are not dependent on the Borland Database Engine (BDE),
using instead ADO for the data access.

This chapter presents each of the ADOExpress components and discusses how they
differ from their BDE-based counterparts. References are given to topics covering
aspects of the BDE-based connection and dataset components that are the same in the
ADO equivalents.

Overview of ADO components
In addition to the connection and dataset components based on the Borland Database
Engine (BDE), C++Builder provides a set of components for use with ADO. These
components allow the programmer to connect to an ADO data store and then to
execute commands and retrieve data from tables in databases.

These ADO-centric data access components connect to ADO data stores and operate
on data using only the ADO framework. The BDE is not employed at all in this

24-2 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

process. Use the ADO components when ADO is available and you do not want to
use the BDE. ADO 2.1 (or higher) must be installed on the host computer.
Additionally, client software for the target database system (such as Microsoft SQL
Server) must be installed as well as an OLE DB driver or ODBC driver specific to the
particular database system.

Most of the ADO connection and dataset components are analogous to one of the
BDE-based connection or dataset components. The TADOConnection component is
functionally analogous to the TDatabase component in BDE-based applications.
TADOTable is equivalent to TTable, TADOQuery to TQuery, and TADOStoredProc to
TStoredProc. Use these ADO components in the same manner and context as you
would the BDE-based data equivalents. TADODataSet has no direct BDE equivalent,
but provides many of the same functions as TTable and TQuery. Similarly, there is no
BDE component comparable to TADOCommand, which serves a specialized purpose
in the C++Builder/ADO environment.

The ADO components comprise the following classes.

Connecting to ADO data stores
Before commands can be executed or data retrieved, an application must establish a
connection to a data store. While each individual ADO command and dataset
component in an application can establish its own connection, a TADOConnection can
be used and its single connection shared by other ADO components.

Table 24.1 ADO components

Component Use

TADOConnection Used to establish a connection with an ADO data store; multiple ADO
dataset and command components can share this connection to execute
commands, retrieve data, and to operate on metadata.

TADODataSet The primary component used to retrieve and operate on its data; can
retrieve data from a single or multiple tables; can connect directly to a
data store or through a TADOConnection.

TADOTable Used to retrieve and operate on a dataset produced by a single table; can
connect directly to a data store or through a TADOConnection.

TADOQuery Used to retrieve and operate on a dataset produced by a valid SQL
statement; can also execute data definition language (DDL) SQL
statements, like CREATE TABLE; can connect directly to a data store or
through a TADOConnection.

TADOStoredProc Used to execute stored procedures; can execute stored procedures that
retrieve data or execute DDL statements; can connect directly to a data
store or through a TADOConnection.

TADOCommand Used primarily to execute commands (SQL statements that do not return
result sets); used with a supporting dataset component, can also retrieve
a dataset from a table; can connect directly to a data store or through a
TADOConnection.

W o r k i n g w i t h A D O c o m p o n e n t s 24-3

C o n n e c t i n g t o A D O d a t a s t o r e s

When connecting ADO command and dataset components to a data store, they can
all use a shared connection or the components can each establish their own
connections. Each approach has its own advantages and disadvantages.

This section covers the tasks involved in establishing and using a connection to an
ADO data store.

Connecting to a data store using TADOConnection

One or more ADO dataset and command components can share a single connection
to a data store. To do this, the application must have one TADOConnection
component to make each data store connection. Then, the dataset and command
components are associated with the connection component through their Connection
properties.

In addition to providing the means for dataset and command components to connect
to a data store, connection components provide properties and methods for
activating and deactivating the connection, accessing the ADO connection object
directly, and for determining what activity (if any) a connection component is
engaged in at any given time.

Using a TADOConnection versus a dataset’s ConnectionString
Each ADO command and dataset component in an application may be connected
directly to a data store. However, when numerous command and dataset
components are used, it is most often easier to maintain the connection using a single
TADOConnection to establish the connection and then sharing that connection
between the command and dataset components. See the section “Connecting to a
data store using ADO dataset components” on page 24-13 for more information on
connecting individual command and dataset directly to a data store.

Using a TADOConnection component to establish the connection offers more control
over the connection versus connecting each command or dataset component
individually. This greater control is provided by the properties, methods, and event
of the TADOConnection, the functionality of which is not available otherwise.

Specifying the connection
To use a TADOConnection component to supply a shared connection for ADO dataset
and command components, first establish the connection. Do this by supplying
specific connection information in the ConnectionString property of the connection
component. At design-time, invoke the connection string editor dialog by clicking the
ellipsis button for the ConnectionString property in the Object Inspector. This dialog,
supplied by the ADO system itself, allows you to interactively build a connection
string by selecting connection elements (like the provider and server) from lists. At
runtime, assign a AnsiString value to the ConnectionString property with the
connection information. Setting the Connected property of the connection component
to true would activate the connection. However, it is not essential to do so at this
point. At design-time this is a good test of the connection, though.

ADOConnection1->ConnectionString = ”Provider=ProviderName;Remote Server=ServerReference”;

24-4 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

The ConnectionString property can contain a number of connection parameters, each
separated by semi-colons. These parameters can include the name of a provider, a
user name and password (for login purposes), and a reference identifying a remote
server. The ConnectionString property can also contain the name of a file containing
the connection parameters. Such a file has the same contents as the ConnectionString
property: one or more parameters, each with a value assignment and separated from
other parameters by a semi-colon. See the VCL help topic for the ConnectionString
property for a list of ADO-supported parameters.

Once the connection information has been provided in the connection component,
associate dataset and command components with the connection component. Do this
by assigning a reference to the connection component to each dataset or command
component’s Connection property. At design-time, select the desired connection
component from the drop-down list for the Connection property in the Object
Inspector. At runtime, assign the reference to the Connection property. For example,
the command below associates a TADODataSet component with a TADOConnection
component.

ADODataSet1->Connection = ADOConnection1;

If you do not explicitly activate the connection by setting the connection component’s
Connected property to true, it will happen automatically when the first dataset
component is activated or the first time a command is executed with a command
component.

Accessing the connection object
Use the ConnectionObject property of TADOConnection to access the underlying ADO
connection object directly. Using this reference it is possible to access properties and
call methods of the underlying ADO Connection object from an application.

Use of ConnectionObject to directly access the underlying ADO Connection object
requires a good working knowledge of ADO objects in general and the ADO
Connection object in specific. It is not recommended that you use the Connection
object directly unless familiar with Connection object operations. Consult the
Microsoft Data Access SDK help for specific information on using ADO Connection
objects.

Activating and deactivating the connection
To activate an ADO connection component, set the TADOConnection::Connected
property to true or call the TADOConnection::Open method.

ADOConnection1->Connected = true;

For the connection to be successful, the connection information provided in the
TADOConnection::ConnectionString property must define a valid connection. For
more information on providing connection information, see “Specifying the
connection” on page 24-3.

Activating an ADO connection component will trigger the OnWillConnect and
OnConnectComplete events of the ADO connection component and execute handlers
for these events if they have been assigned.

W o r k i n g w i t h A D O c o m p o n e n t s 24-5

C o n n e c t i n g t o A D O d a t a s t o r e s

If a connection component has not already been activated, it will automatically be
activated if an associated dataset or command component is enabled. Dataset
components cause this when they are activated. Command components do this when
a command is executed. For information on associating dataset components with a
connection component, see “Connecting to a data store using TADOConnection” on
page 24-3.

To deactivate an ADO connection component, either set its Active property to false or
call its Close method.

ADOConnection1->Close();

Four things happen when a connection component is deactivated, using either the
Active property or the Close method:

1 The TADOConnection::OnDisconnect event fires.
2 The handler for the OnDisconnect event executes (if one is assigned).
3 The TADOConnection component is deactivated.
4 Any associated ADO command or dataset components are deactivated.

Determining what a connection component is doing
At any time during the existence of a TADOConnection component, query its State
property to determine what action, if any, in which the connection component is
currently engaged.

A TObjectStates value of stClosed in the TADOConnection::State property indicates that
the connection object is currently inactive. The TADOConnection::Connected property
contains a value of false and no associated command or dataset components are
active.

A value of stOpen indicates that the connection component is active. A connection
with an ADO data store has been successfully established, its Connected property
contains a value of true, and any one or more associated command or dataset
components might be active.

A value of stConnecting indicates the connection component is currently attempting
to establish a connection to the ADO data store specified in the
TADOConnection::ConnectionString property. While still in this state, the Cancel
method may be called to abort the connection attempt.

Fine-tuning a connection

When a TADOConnection component is used to make the connection to a data store
for an application’s ADO command and dataset components, you have a greater
degree of control over the conditions and attributes of the connection. These aspects
are implemented using properties and event handlers of TADOConnection to
fine-tune the connection.

Specifying connection attributes
Use the TADOConnection::ConnectOptions property to optionally force the connection
to be asynchronous. By default, ConnectionOptions is set to coConnectUnspecified

24-6 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

which allows the server to decide the best type of connection. To explicitly make the
connection asynchronous, set ConnectOptions to coAsyncConnect.

To set up a connection as asynchronous or to delegate the choice to the server, assign
one of the TConnectOption constants to the connection component’s ConnectOptions
property. Then activate the connection component by calling its Open method, setting
the Connected property to true, or by activating an associated command or dataset
component. The example routines below respectively enable and disable
asynchronous connections in the specified connection component.

void __fastcall TForm1::AsyncConnectButtonClick(TObject *Sender)
{

ADOConnection1->Close();
ADOConnection1->ConnectOptions = coAsyncConnect;
ADOConnection1->Open();

}

void __fastcall TForm1::ServerChoiceConnectButtonClick(TObject *Sender)
{

ADOConnection1->Close();
ADOConnection1->ConnectOptions = coConnectUnspecified;
ADOConnection1->Open();

}

Use the TADOConnection::Attributes property to control the connection component’s
use of retaining commits and retaining aborts. Attributes can contain one, both, or
neither of the constants xaCommitRetaining and xaAbortRetaining. This makes
controlling retaining commits and retaining aborts mutually exclusive using the
same property.

Check whether either retaining commits or retaining aborts is enabled using the in
operator with one of the constants. Enable one feature by adding the constant to the
attributes property; disable one by subtracting the constant. The example routines
below respectively enable and disable retaining commits in the specified connection
component.

void __fastcall TForm1::RetainingCommitsOnButtonClick(TObject *Sender)
{

ADOConnection1->Close()
if (!ADOConnection1->Attributes.Contains(xaCommitRetaining))

ADOConnection1->Attributes = TXactAttributes() << xaCommitRetaining;
ADOConnection1->Open()

}

void __fastcall TForm1::RetainingCommitsOffButtonClick(TObject *Sender)
{

ADOConnection1->Close()
if (ADOConnection1->Attributes.Contains(xaCommitRetaining))

ADOConnection1->Attributes = TXactAttributes() >> xaCommitRetaining;
ADOConnection1->Open()

}

W o r k i n g w i t h A D O c o m p o n e n t s 24-7

C o n n e c t i n g t o A D O d a t a s t o r e s

Controlling timeouts
Control the period of time before attempted commands and connections are
considered failed and are aborted using the TADOConnection::ConnectionTimeout
property and the TADOConnection::CommandTimeout property.

ConnectionTimeout establishes the amount of time before an attempt to connect to the
data store times-out. If the connection initiated by a call to the Open method has not
successfully completed prior to expiration of the time specified in ConnectionTimeout,
the connection attempt is canceled. Set ConnectionTimeout to the number of seconds
after which connection attempts time-out.

ADOConnection1->ConnectionTimeout = 10; // seconds
ADOConnection1->Open();

CommandTimeout establishes the amount of time before attempted commands
time-out. If the command initiated by a call to the Execute method has not
successfully completed prior to expiration of the time specified in CommandTimeout,
the command is canceled and ADO generates an exception. Set CommandTimeout to
the number of seconds after which commands time-out.

ADOConnection1->ConnectionTimeout = 10;
ADOConnection1->Execute(”DROP TABLE Employee1997”, []);

Controlling the connection login
An attempt to connect to a data store using a connection component triggers a
security login event, OnLogin. One manifestation of this event is the appearance of a
login dialog prompting for a user name and password. If desired, this dialog may be
suppressed and the user name and password information supplied
programmatically.

To suppress the default login dialog, first set the LoginPrompt property of the
connection component to false. Then, prior to activating the connection component,
supply all necessary login information via a vehicle such as the ConnectionString
property.

ADOConnection1->Close();
ADOConnection1->LoginPrompt = false;
ADOConnection1->ConnectionString = "Provider=NameOfYourProvider;";
ADOConnection1->ConnectionString += "Remote Server=NameOfYourServer;";
ADOConnection1->ConnectionString += "User Name=JaneDoe;Password=SecretWord";
ADOConnection1->Connected = true;

The login information can also be conveyed to the target data store as parameters for
the connection component’s Open method.

ADOConnection1->Close();
ADOConnection1->LoginPrompt = false;
ADOConnection1->ConnectionString = "Provider=NameOfYourProvider;" +
ADOConnection1->ConnectionString += "Remote Server=NameOfYourServer";
ADOConnection1->Open("JaneDoe", "SecretWord");

The second routine above is functionally equivalent to the first. The difference is that
in the second routine the user name and password are not expressed in the
ConnectionString property, but passed as parameters for the Open method. This is

24-8 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

useful in situations where the connection specifications (like provider and server) are
the same for all users and only the information particular to individual users
changes. The application might, for instance, obtain the user-specific information via
a custom login dialog, and the provider and server information form a static source
like Windows Registry entries.

If, after supplying the login information programmatically, the login attempt is
unsuccessful, an exception of type EOleException is thrown.

Listing tables and stored procedures

The TADOConnection component provides properties for retrieving lists of the tables
and stored procedures available through the connection. It also provides properties
for accessing the dataset and command components associated with the connection
component.

Accessing the connection’s datasets
The DataSets and DataSetCount properties of TADOConnection allow a program to
sequentially reference each dataset component associated with a connection
component. Dataset components operated on by the DataSets and DataSetCount
properties include TADODataSet, TADOQuery, and TADOStoredProc. For working
with a connection’s command components, use the Commands and CommandCount
properties.

DataSets is a zero-based array of references to ADO dataset components. Use an
index with DataSets representing the position within the array of a particular dataset.
For instance, use an index of 3 to reference the fourth dataset component in DataSets.

ShowMessage(ADOConnection1->DataSets[3]->Name);

As DataSets provides a reference of type TCustomADODataSet, typecast this reference
as a descendant class type to access a property or call a method only available in a
descendant class. For instance, TCustomADODataSet does not have an SQL property,
but the descendant class TADOQuery does. So, to access the SQL property of the
dataset referenced through the DataSets property, typecast it as a TADOQuery.

dynamic_cast<TADOQuery*>(ADOConnection1->DataSets[10])->SQL->Clear();
dynamic_cast<TADOQuery*>(ADOConnection1->DataSets[10])->SQL->Add("SELECT * FROM Species");
ADOConnection1->DataSets[10]->Open();

The DataSetCount property provides a total count of all of the datasets associated
with a connection component. You can use the DataSetCount property as the basis for
a loop with the DataSets property to sequentially visit all of the dataset components
associated with a connection.

for (int i = 0; i < ADOConnection4->DataSetCount; i++)
ADOConnection4->DataSets[i]->Open();

Accessing the connection’s commands
The Commands and CommandCount properties of TADOConnection act in much the
same manner as the DataSets and DataSetCount properties. The difference is that

W o r k i n g w i t h A D O c o m p o n e n t s 24-9

C o n n e c t i n g t o A D O d a t a s t o r e s

Commands and CommandCount provide references to all of the TADOCommand
components associated with the connection component. To work with all of the
connection’s dataset components, use the DataSets and DataSetCount properties.

Commands is a zero-based array of references to ADO command components. Use an
index with Commands representing the position within the array of a particular
command. For instance, use an index of 1 to reference the second command
component in Commands.

Memo1->Lines->Text = ADOConnection1->Commands[1]->CommandText;

The CommandCount property provides a total count of all of the commands
associated with a connection component. You can use the CommandCount property as
the basis for a loop with the Commands property to sequentially visit all of the
command components associated with a connection.

for (int i = 0; i < ADOConnection2->CommandCount; i++)
ADOConnection2->Commands[i]->Execute();

Listing available tables
To get a listing of all of the tables contained in the database accessed via the
connection object, use the GetTableNames method. This method copies a list of table
names to an already-existing string list object. Use individual elements from this list
for such things as the value for the TableName property of a TADOTable component or
the name of a table in an SQL statement executed by a TADOQuery.

ADOConnection1->GetTableNames(ListBox1->Items, false);

The example below traverse a list of table names created using the GetTableNames
method. For each table, the routine makes an entry in another table with the table’s
name and number of records.

TStrings *SL = new TStringList;
try

{
ADOConnection1->GetTableNames(SL, false);
for (int index = 0; index < SL->Count; index++)
{
Table1->Insert();
Table1->FieldByName("Name")->AsString = SL[index];
if ADOTable1->Active

ADOTable1->Close();
ADOTable1->TableName = SL[index];
ADOTable1->Open();
Table1->FieldByName("Records")->AsInteger = ADOTable1->RecordCount;
Table1->Post();

{
__finally

{
delete SL;

}

24-10 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

Listing available stored procedures
To get a listing of all of the stored procedures contained in the database accessed via
the connection object, use the GetProcedureNames method. This method copies a list of
stored procedure names to an already-existing string list object. One of the elements
in the resulting list can be used for such things as the value for the ProcedureName
property of a TADOStoredProc component.

ADOConnection1->GetProcedureNames(ListBox1->Items);

In the example below, a list of stored procedure names retrieved with
GetProcedureNames is used to execute all of the stored procedures from the associated
database.

TStrings *SL = new TStringList;
try

{
ADOConnection1->GetProcedureNames(SL);
for (int index = 0; index < SL->Count; index++)
{

ADOStoredProc1->ProcedureName = SL[index];
ADOStoredProc1->ExecProc();

{
__finally

{
delete SL;

}

Working with (connection) transactions

The TADOConnection component includes a number of methods and events for
working with transactions. These transaction capabilities are shared by all of the
ADO command and dataset components using the data store connection.

Using transaction methods
Use the methods BeginTrans, CommitTrans, and RollbackTrans to perform transaction
processing. BeginTrans starts a transaction in the data store associated with the ADO
connection component. CommitTrans commits a currently active transaction, saving
changes to the database and ending the transaction. RollbackTrans cancels a currently
active transaction, abandoning all changes made during the transaction and ending
the transaction. Read the InTransaction property to determine at any given point
whether the connection component has a transaction open.

A transaction started by the connection component is shared by all command and
dataset components that use the connection established by the TADOConnection
component.

Using transaction events
The ADO connection component provides a number of events for detecting when
transaction-related processes have been completed. These events indicate when a

W o r k i n g w i t h A D O c o m p o n e n t s 24-11

U s i n g A D O d a t a s e t s

transaction process initiated by a BeginTrans, CommitTrans, and RollbackTrans method
have been successfully completed at the data store.

The OnBeginTransComplete event is triggered when the data store has successfully
started a transaction after a call to the connection component’s BeginTrans method.
The OnCommitTransComplete event is triggered after a transaction is successfully
committed due to a call to CommitTrans. And OnRollbackTransComplete is triggered
after a transaction is successfully committed due to a call to RollbackTrans.

Using ADO datasets
The ADO dataset components provided in C++Builder are analogous to the
BDE-based dataset components. For instance, the TADOTable component is
functionally equivalent to the TTable component. The main difference is that the
ADO dataset components use underlying ADO objects for their data access and are
not dependent on the Borland Database Engine for this.

The ADO dataset and BDE-based components have the TDataSet class as a common
ancestor. Because of this, they share a common functionality in inherited or similar
properties, methods, and events. This section primarily discusses areas of the ADO
dataset components that differ from the corresponding generic dataset components.
For more information on functionality common between the two sets of dataset
components, see the descriptions for the generic and BDE-based dataset components:

• “Understanding datasets” on page 19-1
• “Working with tables” on page 21-1
• “Working with queries” on page 22-1
• “Working with stored procedures” on page 23-1

This section contains information pertaining to functionality that differs in the ADO
versions of the dataset components from their generic counterparts. This information
is divided into the areas:

• Features common to all ADO dataset components
• Using TADODataSet
• Using TADOTable
• Using TADOQuery
• Using TADOStoredProc

Features common to all ADO dataset components

Certain aspects of the ADO dataset components function exactly the same in all of
the different components. Except as cited, these functional areas are used in exactly
the same manner no matter which ADO dataset component is in use.

Modifying data
Accessing columns in ADO dataset components and modifying data is done in the
exact same manner as in the generic dataset components. Use dataset methods like

24-12 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

Edit and Insert to put the dataset in edit mode prior to changing data. Use the Post
method to finalize data changes.

Use the dynamic TField references provided by the Fields property and FieldByname
method of the dataset components. From there use the properties and methods of the
TField class and descendants to do such things as setting or getting a column’s value,
validating data, and determining a column’s data type.

For information on modifying data through dataset components, see “Modifying
data” on page 19-21. For information on using table columns and persistent field
objects, see “Working with field components” on page 20-1.

Navigating in a dataset
Navigating between rows in an ADO dataset is done in the same way as in generic
dataset components. Use methods like First, Next, Last, and Prior to move the record
pointer in the dataset component from one table row to another. Loops can be based
on the Eof and Bof properties so that they operate on all of the rows that make up a
dataset.

ADOTable1->First();
while (!ADOTable1->Eof)
(

// Process each record here
ƒ
ADOTable1->Next();

}

For information on navigating between table rows in dataset components, see
“Navigating datasets” on page 19-9.

Using visual data-aware controls
The dataset provided by an ADO dataset component can be made available in an
application using data-aware controls. Such datasets include the rows returned by a
TADOTable component, the result set returned by a SELECT statement in a
TADOQuery, and stored procedures that return a result set executed from a
TADOStoredProc component.

To make these datasets available in data-aware controls:

1 Use a standard TDataSource component.
2 Specify an active ADO dataset component in its DataSet property.
3 Use the standard data-aware controls, like TDBEdit and TDBGrid.
4 Specify the TDataSource in the DataSource property of the data-aware control.

For example, creating this relationship between ADO dataset component, datasource
component, and data-aware control programmatically:

DBGrid1->DataSource = DataSource1;
DataSource1->DataSet = ADOQuery1;
ADOQuery1->Open();

W o r k i n g w i t h A D O c o m p o n e n t s 24-13

U s i n g A D O d a t a s e t s

Connecting to a data store using ADO dataset components
ADO dataset components can connect to an ADO data store either collectively or
individually.

When connecting dataset components collectively, set the Connection property of
each dataset component to a TADOConnection component. Each dataset component
then uses the connection established by that connection component.

ADODataSet1->Connection = ADOConnection1;
ADODataSet2->Connection = ADOConnection1;
ƒ

Among the advantages of connecting dataset components collectively are:

• The dataset components share the connection object’s attributes.
• Only one connection need be set up: that of the TADOConnection.
• The dataset components can participate in transactions.

When connecting dataset components individually, set the ConnectionString property
of each dataset component. The information needed to connect to the data store must
be set for each dataset component. Each dataset component establishes its own
connection to the data store, totally independent of any other dataset connection in
the application.

ADODataSet1->ConnectionString = "Provider=YourProvider;Password=SecretWord;";
ADODataSet1->ConnectionString += "User ID=JaneDoe;SERVER=PURGATORY";
ADODataSet1->ConnectionString += "UID=JaneDoe;PWD=SecretWord;"
ADODataSet1->ConnectionString += "Initial Catalog=Employee";
ADODataSet2->ConnectionString = "Provider=YourProvider;Password=SecretWord;";
ADODataSet2->ConnectionString += "User ID=JaneDoe;SERVER=PURGATORY";
ADODataSet2->ConnectionString += "UID=JaneDoe;PWD=SecretWord;";
ADODataSet2->ConnectionString += "Initial Catalog=Employee";
ƒ

For more information on using a TADOConnection to connect to a data store see
“Connecting to a data store using TADOConnection” on page 24-3.

Working with record sets
In addition to the means for navigating between records and modifying data shared
by all ADO dataset components, there are a number of other properties and methods
for operating on record sets.

The RecordSet property provides direct access to the ADO recordset object underlying
the dataset component. Using this object, it is possible to access properties and call
methods of the recordset object from an application. Use of RecordSet to directly
access the underlying ADO recordset object requires a good working knowledge of
ADO objects in general and the ADO recordset object in specific. It is not
recommended that you use the recordset object directly unless familiar with
recordset object operations. Consult the Microsoft Data Access SDK help for specific
information on using ADO recordset objects.

Use the RecordSetState property to determine the current state of the dataset
component. RecordSetState implements the State property of the ADO recordset
object, and so reflects the current state of the underlying recordset object. When

24-14 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

working with recordsets, the RecordSetState property will contain one of the values:
stExecuting or stFetching. (The TObjectState type consists of more constants, but only
these two pertain to recordset operations.) A value of stExecuting indicates the
dataset component is currently in the process of executing a command. A value of
stFetching indicates the dataset component is in the process of fetching rows from the
associated table (or tables).

Use these values to perform actions dependent on the current state of the dataset. For
example, a routine that updates data might check the RecordSetState property to see
whether the dataset is active and not in the process of other activities such as
connecting or fetching data.

Using batch updates
ADO dataset components provide the ability to cache changes to the dataset and then
either apply all of the changes as a batch operation or to cancel one or all of the
changes. Batch updates can serve as a sort of transaction control, but at the dataset
component level. (Ordinarily, transactions are handled as methods of the ADO
connection component.)

Using the batch updates features of ADO dataset components is a matter of:

• Opening the dataset in batch update mode
• Inspecting the update status of individual rows
• Filtering multiple rows based on update status
• Applying the batch updates to base tables
• Canceling batch updates

Opening the dataset in batch update mode
To open an ADO dataset in batch update mode, it must meet these criteria:

1 The component’s CursorType property must be ctKeySet (the default property
value) or ctStatic.

2 The LockType property must be ltBatchOptimistic.

3 The command must be a SELECT query.

Before activating the dataset component, set the CursorType and LockType properties
to the values indicated above. Assign a SELECT statement to the component’s
CommandText property (for TADODataSet) or the SQL property (for TADOQuery).
For TADOStoredProc components, set the ProcedureName to the name of a stored
procedure that returns a result set. These properties can be set at design-time through
the Object Inspector or programmatically at runtime. The example below shows the
preparation of a TADODataSet component for batch update mode.

ADODataSet1->CursorLocation = clUseClient;
ADODataSet1->CursorType = ctStatic;
ADODataSet1->LockType = ltBatchOptimistic;
ADODataSet1->CommandType = cmdText;
ADODataSet1->CommandText = "SELECT * FROM Employee";

After a dataset has been opened in batch update mode, all changes to the data are
cached rather than applied directly to the base tables.

W o r k i n g w i t h A D O c o m p o n e n t s 24-15

U s i n g A D O d a t a s e t s

Inspecting the update status of individual rows
Determine the update status of a given row by making it current and then inspecting
the RecordStatus property of the ADO data component. RecordStatus reflects the
update status of the current row and only that row.

switch (ADOQuery->RecordStatus)
{

case rsUnmodified:
StatusBar1->Panels->Items[0]->Text = "Unchanged record";
break;

case rsModified:
StatusBar1->Panels->Items[0]->Text = "Changed record";
break;

case rsDeleted:
StatusBar1->Panels->Items[0]->Text = "Deleted record";
break;

case rsNew:
StatusBar1->Panels->Items[0]->Text = "New record";
break;

}

Filtering multiple rows based on update status
Filter a recordset to show only those rows that belong to a group of rows with the
same update status using the FilterGroup property. Set FilterGroup to the TFilterGroup
constant that represents the update status of rows to display. A value of fgNone (the
default value for this property) specifies that no filtering is applied and all rows are
visible regardless of update status (except rows marked for deletion). The example
below causes only pending batch update rows to be visible.

FilterGroup = fgPendingRecords;
Filtered = true;

For the FilterGroup property to have an effect, the ADO dataset component’s Filtered
property must be set to true.

Applying the batch updates to base tables
Apply pending data changes that have not yet been applied or canceled by calling
the UpdateBatch method. Rows that have been changed and are applied have their
changes put into the base tables on which the recordset is based. A cached row
marked for deletion causes the corresponding base table row to be deleted. A record
insertion (exists in the cache but not the base table) is added to the base table.
Modified rows cause the columns in the corresponding rows in the base tables to be
changed to the new column values in the cache.

Used alone with no parameter, UpdateBatch applies all pending updates. A
TUpdateBatchOptions value can optionally be passed as the parameter for
UpdateBatch. If any value except ubAffectAll is passed, only a subset of the pending
changes are applied. Passing ubAffectAll is the same as passing no parameter at all
and causes all pending updates to be applied. The example below applies only the
currently active row to be applied:

ADODataSet1->UpdateBatch(ubAffectCurrent);

24-16 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

Canceling batch updates
Cancel pending data changes that have not yet been canceled or applied by calling
the CancelBatch method. Rows that have been changed and are canceled have their
columns values reverted back to the values that existed prior to the last call to
CancelBatch or UpdateBatch, if either has been called, or prior to the current pending
batch of changes.

Used alone with no parameter, CancelBatch cancels all pending updates. A
TUpdateBatchOptions value can optionally be passed as the parameter for CancelBatch.
If any value except ubAffectAll is passed, only a subset of the pending changes are
canceled. Passing ubAffectAll is the same as passing no parameter at all and causes all
pending updates to be canceled. The example below cancels all pending changes:

ADODataSet1->Cancel();

Loading data from and saving data to files
The data retrieved via an ADO dataset component can be saved to a file for later
retrieval on the same or a different computer. Save the data to a file using the
SaveToFile method. Retrieve the data from file using the LoadFromFile method. The
data is saved in one of two proprietary formats: ADTG and XML. Indicate which of
these two formats to use for the save file with one of the TPersistFormat constants
pfADTG or pfXML in the Format parameter of the SaveToFile method.

In the example below, the first procedure saves the dataset retrieved by the
TADODataSet component ADODataSet1 to a file. The target file is an ADTG file
named SaveFile, saved to a local drive. The second procedure loads this saved file
into the TADODataSet component ADODataSet2.

void __fastcall TForm1::SaveBtnClick(TObject *Sender)
{

if (FileExists("c:\\SaveFile"))
{

DeleteFile("c:\\SaveFile");
Statusbar1->Panels->Items[0]->Text = "Save file deleted!";

}
ADODataSet1->SaveToFile("c:\\SaveFile");

}

void __fastcall TForm1::LoadBtnClick(TObject *Sender)
{

if (FileExists("c:\\SaveFile"))
ADODataSet1->SaveToFile("c:\\SaveFile");

else
Statusbar1->Panels->Items[0]->Text = "Save file does not exist!";

}

The saving and loading dataset components need not be on the same form as above,
in the same application, or even on the same computer. This allows for the
briefcase-style transfer of data from one computer to another.

On calling the LoadFromFile method, the dataset component is automatically
activated.

W o r k i n g w i t h A D O c o m p o n e n t s 24-17

U s i n g A D O d a t a s e t s

If the file specified in the FileName parameter of the SaveToFile method already exists,
an EOleException exception is thrown. Similarly, if the file specified in the FileName
parameter of LoadFromFile does not exist, an EOleException exception is thrown.

The two save file formats ADTG and XML are the only formats supported by ADO.
Even so, both formats are not necessarily supported in all versions of ADO. Consult
the ADO documentation for the actual version in use to determine what save file
formats are supported.

Using parameters in commands
Using parameters in commands and SQL statements executed as commands using
ADO dataset components requires that you:

1 Include parameters in the SQL statement (identified by the prefixing colon).
2 Set the property values for each TParameter component.

For each token in the SQL statement identified as a parameter, one TParameter
component is automatically created and added to the dataset component’s Parameters
property (a TParameters array of TParameter components). At design-time, access the
parameter components to set their values using the property editor for the Parameters
property. To invoke the property editor, click the ellipsis button for the Parameters
property in the Object Inspector.

At runtime, access parameter components to set or get their values using the
Parameters property of the dataset component. Specify an index number with
Parameters that is the ordinal position of a specific parameter in the SQL statement
(relative to other parameters). This index is zero based, so the first parameter is
referenced with an index of zero, the second with an index of one, and so on.
Alternately, use the TParameters reference provided by the Parameters property and
call its ParamByName method to refer to the parameter by its name.

// reference the first parameter with an index
ADOQuery1->Parameters[0]->Value = "telephone";

// reference a parameter by its name
ADOQuery1->Parameters->ParamByName("Amount")->Value = 123;

In the example below, the following SQL statement is used in a TADOQuery
component.

SELECT CustNo, Company, State
FROM CUSTOMER
WHERE (State = :StateParam)

This statement has one parameter: StateParam. The routine below closes the ADO
query component, sets the value of the StateParam parameter through the Parameters
property, and then reopens the ADO query component. The Parameters property
requires a parameter be identified by a number representing the parameter’s ordinal
position in the statement, relative to other parameters. Parameters is zero-based, so
the first parameter is identified with a Parameters property index of zero, the second

24-18 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

with a one, and so on. As StateParam is the first parameter in the statement, an index
of zero is used to identify it.

void __fastcall TForm1::GetCaliforniaBtnClick(TObject *Sender)
{

ADOQuery1->Close();
ADOQuery1->Parameters[0]->Value = "CA";
ADOQuery1->Open();

}

The procedure below performs essentially the same purpose, but uses the
TParameters::ParamByName method to set the parameter’s value. The ParamByName
method requires a parameter be identified by its name as used in the SQL statement
(sans the colon).

void __fastcall TForm1::GetFloridaBtnClick(TObject *Sender)
{

ADOQuery1->Close();
ADOQuery1->ParamByName("StateParam")->Value = "FL";
ADOQuery1->Open();

}

Using TADODataSet

The TADODataSet component provides C++Builder applications the ability to access
data from one or multiple tables in a database accessed via ADO. Tables accessed are
specified using the CommandText property of the ADO dataset component, either by
name or using an SQL statement.

The database is accessed using a data store connection established by the ADO
dataset component using its ConnectionString property or through a separate
TADOConnection component specified in the Connection property. See “Connecting to
a data store using ADO dataset components” on page 24-13 for more information on
this.

Using data provided by a TADODataSet component in visual controls, navigating
through the rows, and programmatically modifying the data is the same as for the
rest of the ADO dataset components. See “Features common to all ADO dataset
components” on page 24-11 for more information on features common to all dataset
components.

Retrieving a dataset using a command
The TADODataSet component is capable of retrieving data from a single table using
the name of a table. It can also retrieve data from one or multiple tables using a valid
SQL statement. In either case, the table name or SQL statement is executed as a
command.

Specify the name of a table or an SQL statement in the CommandText property and
activate the component. At design-time, you can use the Command Text Editor to
build the command. To invoke this editor, click the ellipsis button in the

W o r k i n g w i t h A D O c o m p o n e n t s 24-19

U s i n g A D O d a t a s e t s

CommandText property in the Object Inspector. At runtime, assign a command to
CommandText as a AnsiString.

ADODataSet1->CommandText = "SELECT * FROM Customer";

Use the CommandType property to indicate the type of command being executed:
cmdTable (or cmdTableDirect) if the command is a table name or cmdText for SQL
statements. You can also specify cmdUnknown if the command type is not known at
time or execution or you wish ADO to make a guess at the command type based on
the contents of CommandText. At design-time, select the desired value for
CommandType from the drop-down list in the Object Inspector. At runtime, assign a
value of type TCommandType.

ADODataSet1->CommandType = cmdText;

Activate the TADODataSet by calling its Open method or by assigning a value of true
to the Active property.

ADODataSet1->Connection = ADOConnection1;
ADODataSet1->CommandType = cmdText;
ADODataSet1->CommandText = "SELECT * FROM Customer";
ADODataSet1->DataSource = DataSource1;
ADODataSet1->Open();

Using TADOTable

The TADOTable component provides C++Builder applications the ability to access
data from a single table in a database accessed via ADO. The table accessed is
specified in the TableName property of the ADO table component.

The database is accessed using a data store connection established by the ADO table
component using its ConnectionString property or through a separate TADOConnection
component specified in the Connection property. See “Connecting to a data store using
ADO dataset components” on page 24-13 for more information on this.

Using data provided by a TADOTable component in visual controls, navigating
through the rows, and programmatically modifying the data is the same as for the
rest of the ADO dataset components. See “Features common to all ADO dataset
components” on page 24-11 for more information on features common to all dataset
components.

Specifying the table to use
Once a TADOTable component has a valid connection to a database, it can access
tables contained in that database. Specify a single table of the database in the
TableName property. When the ADO table component is activated, the table and its
data become accessible through the TADOTable.

At design-time, if the TADOTable component has a valid data store connection, the
property editor for the TableName property lists the names of available tables. Select
one table from this list. At runtime, assign a AnsiString value containing a table name
to the TableName property.

ADOTable1->TableName = "Orders";

24-20 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

If a TADOConnection component is used to connect to the data store, you can use its
GetTableNames method to retrieve a list of available tables. GetTableNames fills an
already-existing string list object with the names of the tables available through the
connection.

void __fastcall TForm1::ListBox1DblClick(TObject *Sender)
{

ADOConnection->GetTableNames(ListBox1->Items, false);
}

void __fastcall TForm1::Button1Click(TObject *Sender)
{

ADOTable1->Close();
Table1->TableName = ListBox1->Items->Strings[ListBox1->ItemIndex];
Table1->Open();

}

Using TADOQuery

The TADOQuery component provides C++Builder applications the ability to access
data from one or multiple tables from an ADO database using SQL. Specify the SQL
statement to use with the ADO query component in the SQL property. TADOQuery
can either retrieve data using data manipulation language (DML) or create and delete
metadata objects using data definition language (DDL). The SQL used in a
TADOQuery component must be acceptable to the ADO driver in use. C++Builder
performs no evaluation of the SQL and does not execute it. The SQL statement is
merely passed to the database back-end for execution. If the SQL statement produces
a result set, it is passed from the database back-end through C++Builder to the
TADOQuery for use by the application.

The database is accessed using a data store connection established by the ADO query
component using its ConnectionString property or through a separate
TADOConnection component specified in the Connection property. See “Connecting to
a data store using ADO dataset components” on page 24-13 for more information on
this.

Using data provided by a TADOQuery component in visual controls, navigating
through the rows, and programmatically modifying the data is the same as for the
rest of the ADO dataset components. See “Features common to all ADO dataset
components” on page 24-11 for more information on features common to all dataset
components.

Specifying SQL statements
At design-time, invoke the property editor for the SQL property by clicking the
ellipsis button in the Object Inspector. In the editor dialog, enter the SQL statement
for the TADOQuery.

At runtime, assign a value to the SQL property. As is the case with the standard
querying component, TQuery, the TADOQuery::SQL property is a string list object.
Use properties and methods of the string list class to assign values to the SQL
property.

W o r k i n g w i t h A D O c o m p o n e n t s 24-21

U s i n g A D O d a t a s e t s

In the example below, a SELECT statement is assigned to the SQL property of a
TADOQuery component named ADOQuery5.

ADOQuery5->Close();
ADOQuery5->SQL->Clear();
ADOQuery5->SQL->Add("SELECT Company, State");
ADOQuery5->SQL->Add("FROM CUSTOMER");
ADOQuery5->SQL->Add("WHERE State = " + QuotedStr("HI"));
ADOQuery5->SQL->Add("ORDER BY Company");
ADOQuery5->Open();

Executing SQL statements
A TADOQuery with a valid SQL statement in its SQL property can be executed in one
of two ways. Which way is you use is predicated on the type of SQL statement the
ADO query component is to execute.

If the SQL statement is one that returns a result set, the ADO query component
should be activated by calling its Open method or by settings its Active property to
true. Only SELECT statements return result sets, so a TADOQuery with a SELECT
statement in its SQL property will always be activated using this approach.

ADOQuery1->SQL->Text = "SELECT * FROM TrafficViolations";
ADOQuery1->Open();

Note that because methods cannot be called while designing an application in the
C++Builder IDE, only the Active property can be used to activate this kind of query at
design-time. This is functionally the same as calling the Open method (at runtime).

Execute an SQL statement that does not return a result set by calling the ExecSQL
method of the TADOQuery component. All SQL statements except SELECT fall into
this category: INSERT, DELETE, UPDATE, CREATE INDEX, ALTER TABLE, and so
on. A TADOQuery component with on of these SQL statements in its SQL property
will always be activated using this approach.

ADOQuery1->SQL->Text = "DELETE FROM TrafficViolations WHERE (TicketID = 1099)";
ADOQuery1->ExecSQL();

The TADOCommand component can be used to execute SQL statements like the one
above that do not return result sets.

Using TADOStoredProc

The TADOStoredProc component provides C++Builder applications the ability to
execute stored procedures in a database accessed through an ADO data store. The
stored procedure executed is specified in the ProcedureName property of the ADO
stored procedure component.

The database is accessed using a data store connection established by the stored
procedure component using its ConnectionString property or through a separate
TADOConnection component specified in the Connection property. See “Connecting to
a data store using ADO dataset components” on page 24-13 for more information on
this.

24-22 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

Result sets retrieved by a TADOStoredProc component are made available to an
application in the same manner as the standard, BDE-centric query component
TStoredProc. Use the ADO stored procedure component for the DataSet property of a
standard TDataSource component. The TDataSource then acts as the data conduit
between the ADO stored procedure component and data-aware controls. See “Using
visual data-aware controls” on page 24-12 for more information on this.

Using data provided by a TADOStoredProc component in visual controls, navigating
through the rows, and programmatically modifying the data is the same as for the
rest of the ADO dataset components. See “Features common to all ADO dataset
components” on page 24-11 for more information on features common to all dataset
components.

Specifying the stored procedure
Once a TADOStoredProc component has a valid connection to a database, it can
execute stored procedures contained in that database. Specify the name of a stored
procedure from the database in the ProcedureName property. Activate the ADO
stored procedure component using its Open method (if it returns a result set) or its
ExecProc method (if it does not).

At design-time, if the TADOStoredProc component has a valid data store connection,
the property editor for the ProcedureName property lists the names of available stored
procedures. Select a stored procedure from this list. At runtime, assign a AnsiString
value containing a stored procedure name to the ProcedureName property.

ADOStoredProc1->ProcedureName = "DeleteEmployee";

If a TADOConnection component is used to connect to the data store, you can use its
GetProcedureNames method to retrieve a list of available stored procedures.
GetProcedureNames fills an already-existing string list object with the names of the
stored procedures available through the connection.

For example, the first routine below fills a TListBox component named ListBox1 with
the names of stored procedures available through the TADOConnection component
ADOConnection1. The second routine is a handler for the OnDblClick event of
ListBox1. In this event handler, the currently selected table name in ListBox1 is
assigned to the ProcedureName property of the TADOStoredProc called
ADOStoredProc1. The ADO stored procedure component is then executed using the
ExecProc method.

void __fastcall TForm1::ListProceduresButtonClick(TObject *Sender)
{

ADOConnection->GetProcedureNames(ListBox1->Items);
}

void __fastcall TForm1::ListBox1DblClick(TObject *Sender)
{

ADOStoredProc1->ProcedureName = ListBox1->Items->Strings[ListBox1->ItemIndex];
ADOStoredProc1->ExecProc();

}

W o r k i n g w i t h A D O c o m p o n e n t s 24-23

U s i n g A D O d a t a s e t s

Executing the stored procedure
A TADOStoredProc with the name of an existing stored procedure in its
ProcedureName property can be executed in one of two ways. Which way is you use is
predicated on whether or not the stored procedure returns a result set.

If the stored procedure is one that returns a result set, the ADO stored procedure
component should be activated by calling its Open method or by settings its Active
property to true.

ADOStoredProc1->SQL->Text = "ShowPurebreds";
ADOStoredProc1->Open();

Note that as methods cannot be called while designing an application in the
C++Builder IDE, only the Active property can be used to activate this kind of stored
procedure at design-time.

Execute a stored procedure that does not return a result set by calling the ExecProc
method of the TADOStoredProc component. All SQL statements except SELECT fall
into this category: INSERT, DELETE, UPDATE, CREATE INDEX, ALTER TABLE,
and so on. A TADOQuery component with on of these SQL statements in its SQL
property will always be activated using this approach.

ADOStoredProc1->SQL->Text = "DeletePoodles";
ADOStoredProc1->ExecProc();

Using parameters with stored procedures
The TADOStoredProc component is capable of accommodating three types of
parameters (not all of which may be supported by all database types). A parameter
may be for input, for output, or for returning a result set. This section describes using
stored procedure parameters in these three roles. It is possible for a parameter to
serve two purposes, such as being both an input and an output parameter. This is
merely a variation on the three basic roles. Dual use of a parameter like this is a
matter of combining two of the functional approaches described here.

The direction or purpose of a parameter is defined in the stored procedure when it is
created. This direction cannot later be changed by a front-end application. For
instance, you cannot use C++Builder code to turn an input parameter into an output
parameter. The stored procedure would need to be dropped and recreated, giving
the parameter a new role in the process. The direction of a particular parameter is
indicated in the TParameter::Direction property, which can be read either at
design-time in the Object Inspector or programmatically at runtime.

Table 24.2 Parameter direction property

Parameter Direction Use

pdInput Parameter used to supply a value to the stored procedure before
execution.

pdOutput Parameter used to return a singleton value from a stored procedure after
execution.

pdInputOutput Parameter that can be used as both an input and an output parameter, per
the above definitions.

24-24 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

Using TADOStoredProc input parameters
Use an input parameter to supply a value to a stored procedure before executing that
stored procedure. Such values are typically used in the WHERE clause of a stored
procedure’s SQL statement to limit the number of table rows affected. Assign the
parameter a value before activating the TADOStoredProc by calling its Open method
or setting it Active property to true (for stored procedures that return a result set) or
before executing the TADOStoredProc with its ExecProc method.

At design-time, access parameters through the Object Inspector. With focus in the cell
for the Parameters property, click the ellipsis button. This invokes the parameters
editor dialog. Enter a value of the appropriate type in the Value property.

At runtime, assign a value to the Value property of the TParameter component for the
target parameter. Use the TParameter reference provided by the Parameters property
of the TADOStoredProc.

ADOStoredProc1->Close();
ADOStoredProc1->Parameters[1]->Value = 1;
ADOStoredProc1->Open()

Using TADOStoredProc output parameters
Use an input parameter to return a single value from a stored procedure. While a
result set might consist of multiple rows of multiple columns, this output parameter
must be the equivalent of one row containing one column. If the stored procedure
uses a SELECT statement to retrieve this value, an attempt to return multiple values
results in an exception.

An output parameter only contains a value after the stored procedure has been
activated or executed. Note that not all database systems support returning both a
result set and output parameters. Check the documentation for the particular
database system you are using to verify what it supports in this regard. If a database
system supports both returning a result set and output parameter values, the
TADOStoredProc can be activated using either its Open method (or Active property) or
its ExecProc. If the database system does not support both, you can only use output
parameters to retrieve values by calling the ExecProc method.

At design-time, access parameters through the Object Inspector. With focus in the cell
for the Parameters property, click the ellipsis button. This invokes the parameters
editor dialog. If the TADOStoredProc is activated using its Active property (the only
way to activate it at design-time), inspect the output parameter’s Value property to
see the value returned.

At runtime, assign a value to the Value property of the TParameter component for the
target parameter. Use the TParameter reference provided by the Parameters property

pdReturnValue Parameter that contains a result set after execution.

pdUnknown Parameter for which the direction could not be determined at the point of
evaluation.

Table 24.2 Parameter direction property (continued)

Parameter Direction Use

W o r k i n g w i t h A D O c o m p o n e n t s 24-25

E x e c u t i n g c o m m a n d s

of the TADOStoredProc. For example, the routine below returns a AnsiString value
through the output parameter named @OutParam1.

ADOStoredProc1->Close();
ADOStoredProc1->ExeProc();
ShowMessage(VarToStr(ADOStoredProc1->Parameters->ParamByName("@OutParam1")->Value));

Using TADOStoredProc return value parameters
Return value parameters need not be accessed directly. Instead, the result set
returned through a return value parameter should be accessed as you would any
dataset.

To make the result set available through visual data-aware controls, use a reference
to the TADOStoredProc component as the value for the DataSet property of a
TDataSource component. The TDataSource then acts as a conduit between the
TADOStoredProc component and the data-aware controls. At design-time, this is
done through the Object Inspector. In the DataSet property of the TDataSource, select
the TADOStoredProc component from the drop-down list. At runtime, assign a
reference to the TADOStoredProc to the DataSet property.

ADOStoredProc1->Close();
DataSource1->DataSet = ADOStoredProc1;
ADOStoredProc1->Open();

Alternately, the result set can be accessed and manipulated using navigation and
editing properties and methods inherited from TDataSet. For information on
modifying data through dataset components, see “Modifying data” on page 19-21.
For information on navigating between table rows in dataset components, see
“Navigating datasets” on page 19-9.

Executing commands
The set of ADO components provided in C++Builder allows an application to
execute commands. This section describes how to execute commands and what
components to use to do so.

In the ADO environment, commands are textual representations of provider-specific
action requests. Typically, they are Data Definition Language (DDL) and Data
Manipulation Language (DML) SQL statements. The language used in commands is
provider-specific, but usually compliant with the SQL-92 standard for the SQL
language.

Commands can be executed from more than one C++Builder component. Each
command-capable component executes commands in a slightly different way, with
varying strengths and weaknesses. Which component you should use for a particular
command is predicated on the type of command and whether it returns a result set.
In general, for commands that do not return a result set use the TADOCommand
component (though the TADOQuery component can also execute these commands).
For commands that do return a result set, either execute the command from a
TADODataSet or use the command’s statement in the SQL property of a TADOQuery.

24-26 D e v e l o p e r ’ s G u i d e

E x e c u t i n g c o m m a n d s

The TADOCommand component provides the ability to execute commands, one
command at a time. It is designed primarily for executing those commands that do
not return result sets, such as Data Definition Language (DDL) SQL statements.
Through an overloaded version of its Execute method, though, it is capable of
returning a result set that can be used through an ADO dataset component.

Specify commands in the CommandText property. A command can optionally be
described using the CommandType property. If no specific type is specified, the server
is left to decide as best it can based on the command in CommandText. Commands
used with an ADO command component can contain parameters for which values
are substituted before execution of the command. Before a command can be
executed, the ADO command component must have a valid connection to an ADO
data store.

Specifying the command

Specify the command to execute using the ADO command component in its
CommandText property. At design-time, enter the command (an SQL statement, a
table name, or the name of a procedure) in the CommandText property through the
Object Inspector. At runtime, assign a AnsiString value containing the command to
the CommandText property.

If desired, explicitly define the type of command being executed in the CommandType
property. Among the constants for CommandType are: cmdText (used if the command
is an SQL statement), cmdTable (if it is a table name), and cmdStoredProc (if the
command is the name of a stored procedure). At design-time, select the appropriate
command type from the list in the Object Inspector. At runtime, assign a value of
type TCommandType to the CommandType property.

ADOCommand1->CommandText = "AddEmployee";
ADOCommand1->CommandType = cmdStoredProc;
ƒ

Using the Execute method

Before the command can be executed using an ADO command component, the
TADOCommand must have a valid connection to a data store. See “Connecting to a
data store using ADO dataset components” on page 24-13 for more information this.

To execute the command call the Execute method of the ADO command component.
For commands that do not require any parameters or execution options, call the
simple overloaded version of Execute without any method parameters at all.

ADOCommand1->CommandText = "UpdateInventory";
ADOCommand1->CommandType = cmdStoredProc;
ADOCommand1->Execute();

For information on executing commands that return a result set, see “Retrieving
result sets with commands” on page 24-27.

W o r k i n g w i t h A D O c o m p o n e n t s 24-27

E x e c u t i n g c o m m a n d s

Canceling commands

After an attempt to execute a command has been initiated (with the Execute method
of a TADOCommand component), it can be aborted by calling the Cancel method.

void __fastcall TDataForm::ExecuteButtonClick(TObject *Sender)
{

ADOCommand1->Execute();
}

void __fastcall TDataForm::CancelButtonClick(TObject *Sender)
{

ADOCommand1->Cancel();
}

The Cancel method only has an effect if there is a command pending and the
command was executed asynchronously (eoAsynchExecute is in the ExecuteOptions
parameter of the Execute method). A command is said to be pending if the Execute
method has been called and the command has not yet been completed or timed out.
If a command has not been aborted or completed before the number of seconds
specified in the CommandTimeout property have expired, the command times out. If a
timeout period of other than the default 30 seconds is desired, set the
CommandTimeout property prior to calling the Execute method.

Retrieving result sets with commands

Executing a command that returns a result set is exactly the same as for those that do
not, except that a pre-existing ADO dataset component must represent the result set.
The Execute method of TADOCommand returns an ADO recordset object. Assign this
return value to the RecordSet property of an ADO dataset component such as a
TADODataSet.

In the example below, the ADO record set produced by a call to the Execute method
of a TADOCommand component (ADOCommand1) is assigned to the Recordset
property of a TADODataSet component (ADODataSet1).

ADOCommand1->CommandText = "SELECT Company, State ";
ADOCommand1->CommandText += "FROM customer ";
ADOCommand1->CommandText += "WHERE State = :StateParam";
ADOCommand1->CommandType = cmdText;
ADOCommand1->Parameters->ParamByName("StateParam")->Value = ;
ADOCommand1->Recordset = ADOCommand1->Execute();

As soon as this assignment is made to the ADO dataset component’s Recordset
property, the dataset component is activated (automatically) and the data is
available. Use methods and properties of the dataset component to access the data
programmatically. To make the data available using visual data-aware controls, use a
TDataSource component as a conduit between the ADO dataset and the data-aware
controls.

For information on executing commands that do not return a result set, see
“Executing commands” on page 24-25.

24-28 D e v e l o p e r ’ s G u i d e

E x e c u t i n g c o m m a n d s

Handling command parameters

Executing a command that has parameters is exactly the same as for those that do
not, except that values must be assigned to the parameters before the command is
executed.

For each parameter in the command, one TParameter object is automatically added to
the Parameters property of the TADOCommand component. At design-time, use the
Parameter Editor to access parameters, which is invoked by clicking the ellipsis
button for the Parameters property in the Object Inspector. At runtime, use properties
and methods of TParameter to set (or get) the values of each parameter.

ADOCommand1->CommandText = "INSERT INTO Talley ";
ADOCommand1->CommandText += "(Counter) ";
ADOCommand1->CommandText += "VALUES (:NewValueParam)";
ADOCommand1->CommandType = cmdText;
ADOCommand1->Parameters->ParamByName("NewValueParam")->Value = 57;
ADOCommand1->Execute()

Access single TParameter objects in Parameters by a number representing the relative
position (to each other) in the command using the Parameters property of the
TADOCommand component. Reference the TParameter objects by their names using
the TParameters::ParamByName method.

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-1

C h a p t e r

25
Chapter25Creating and using a client dataset

TClientDataSet is a dataset component designed to work without the connectivity
support of the Borland Database Engine (BDE) or ActiveX Data Objects (ADO).
Instead, it uses MIDAS.DLL, which is much smaller and simpler to install and
configure. You don’t use database or ADO connection components with client
datasets, because there is no database connection.

Client datasets provide all the data access, editing, navigation, data constraint, and
filtering support introduced by TDataset. However, the application that uses a client
dataset must provide the mechanism by which the client dataset reads data and
writes updates. Client datasets provide for this in one of the following ways:

• Reading from and writing to a flat file accessed directly from a client dataset
component. This is the mechanism used by flat-file database applications. For
more information about using a client dataset in flat-file applications, see “Flat-file
database applications” on page 14-13.

• Reading from another dataset. Client datasets provide a variety of mechanisms for
copying data from other datasets. These are described in “Copying data from
another dataset” on page 25-12.

• Using an IAppServer interface to obtain data from and post updates to a remote
application server. This is the mechanism used by clients in a multi-tiered
database application. For more information about building multi-tiered database
applications, see Chapter 15, “Creating multi-tiered applications.”

These mechanisms can be combined into a single application that employs the
“briefcase model”. Users take a snapshot of data, saving it to a flat-file so that they
can work on it off-line. Later, the client application applies the changes from the local
copy of data to the application server. The application server resolves them with the
actual database, and returns errors to the client dataset for handling. For information
building an application using the briefcase model, see “Using the briefcase model”
on page 14-16.

25-2 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Working with data using a client dataset
Like any dataset, you can use Client datasets to supply the data for data-aware
controls using a data source component. See Chapter 27, “Using data controls” for
information on how to display database information in data-aware controls.

Because TClientDataSet is a descendant of TDataSet, client datasets inherit the power
and usefulness of the properties, methods, and events defined for all dataset
components. For a complete introduction to this generic dataset behavior, see
Chapter 19, “Understanding datasets.”

Client datasets differ from other datasets in that they hold all their data in memory.
Because of this, their support for common database functions can involve additional
capabilities or considerations.

Navigating data in client datasets

If an application uses standard data-aware controls, then a user can navigate through
a client dataset’s records just as for any other dataset. You can also navigate
programmatically through records using standard dataset methods such as First,
GotoKey, Last, Next, and Prior. For more information about these methods, see
“Navigating datasets” on page 19-9.

Client datasets also support standard bookmark capabilities for marking and
navigating to specific records. For more information about bookmarking, see
“Marking and returning to records” on page 19-13.

Unlike most datasets, client datasets can also position the cursor at any specific
record in the dataset by using the RecNo property. Ordinarily an application uses
RecNo to determine the record number of the current record. Client datasets can,
however, set RecNo to a particular record number to make that record the current
one.

Limiting what records appear

To restrict users to a subset of available data on a temporary basis, applications can
use ranges and filters. When you apply a range or a filter, the client dataset does not
display all the data in its in-memory cache. Instead, it only displays the data that
meets the range or filter conditions. For more information about using filters, see
“Displaying and editing a subset of data using filters” on page 19-17. For more
information about ranges, see “Working with a subset of data” on page 21-11.

With most datasets, filter strings are parsed into SQL commands that are then
implemented on the database server. Because of this, the SQL dialect of the server
limits what operations are used in filter strings. Client datasets implement their own
filter support, which includes more operations than with other datasets. For example,
when using a client dataset, filter expressions can include string operators that return
substrings, operators that parse date/time values, and much more. Client datasets

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-3

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

also allow filters on BLOB fields or complex field types such as ADT fields and array
fields. See the online documentation for TClientSet::Filter for details.

When applying ranges or filters, the client dataset still stores all of its records in
memory. The range or filter merely determines which records are available to
controls that navigate or display data from the client dataset. In multi-tiered
applications, you can also limit the data that is stored in the client dataset to a subset
of records by supplying parameters to the application server. For more information
on this, see “Limiting records with parameters” on page 25-16.

Representing master/detail relationships

Like tables, client datasets support master/detail forms. When you set up a master/
detail relationship, you link two datasets so that all the records of one (the detail) always
correspond to the single current record in the other (the master). For more information
about master/detail forms, see “Creating master/detail forms” on page 21-25.

In addition, you can set up master/detail relationships in client datasets using nested
tables. You can do this in one of two ways:

• Obtain records that contain nested details from a provider component. When a
provider component represents the master table of a master/detail relationship, it
automatically creates a nested dataset field to represent the details for each record.

• Define nested details using the Fields Editor. At design time, right click the client
dataset and choose Fields Editor. Add a new persistent field to your client dataset
by right-clicking and choosing Add Fields. Define your new field with type
DataSet Field. In the Fields Editor, define the structure of your detail table.

When your client dataset contains nested detail datasets, TDBGrid provides support
for displaying the nested details in a popup window. Alternately, you can display
and edit these datasets in data-aware controls by using a separate client dataset for
the detail set. At design time, create persistent fields for the fields in your client
dataset, including a DataSet field for the nested detail set.

You can now create a client dataset to represent the nested detail set. Set this detail client
dataset’s DataSetField property to the persistent DataSet field in the master dataset.

In multi-tiered applications, using nested detail sets is necessary if you want to apply
updates from master and detail tables to the application server. In flat-file database
applications, using nested detail sets lets you save the details with the master records
in one flat-file, rather than requiring you load two datasets separately, and then
recreate the indexes to re-establish the master/detail relationship.

Note To use nested detail sets, the ObjectView property of the client dataset must be true.

Constraining data values

Client datasets provide support for data constraints. You can always supply custom
constraints. This lets you provide your own, application-defined limits on what
values users post to a client dataset. For more information about supplying custom
constraints, see “Adding custom constraints” on page 25-19.

25-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

In addition, if you are using a provider component to communicate with a remote
database server, the provider has the option of supplying server constraints to the
client dataset. For more information about controlling whether the application server
communicates data constraints to a client dataset, see “Handling server constraints”
on page 16-10.

In multi-tiered applications, there may be times when you want to turn off
enforcement of data constraints, especially when the client dataset does not contain
all of the records from the corresponding dataset on the application server. See
“Handling constraints” on page 25-18 for more information on how and why to do
this.

Making data read-only

TDataSet introduces the CanModify property so that applications can determine
whether the data in a dataset can be edited. Applications can’t change the CanModify
property, because for some TDataSet descendants, the underlying database, not the
application, controls whether data can be modified.

However, because client datasets represent in-memory data, your application can
always control whether users can edit that data. To prevent users from modifying
data, set the ReadOnly property of the client dataset to true. Setting ReadOnly to true
sets the CanModify property to false.

Unlike other kinds of datasets, you do not need to close a client dataset to change its
read-only status. An application can make a client dataset read-only or not on a
temporary basis at any time merely by changing the current setting of the ReadOnly
property.

Editing data

Client datasets represent their data as an in-memory data packet. This packet is the
value of the client dataset’s Data property. By default, however, edits are not stored
in the Data property. Instead the insertions, deletions, and modifications (made by
users or programmatically) are stored in an internal change log, represented by the
Delta property. Using a change log serves two purposes:

• When working with a provider, the change log is required by the mechanism for
applying updates to the application server.

• In any application, the change log provides sophisticated support for undoing
changes.

The LogChanges property enables you to disable logging temporarily. When
LogChanges is true, changes are recorded in the log. When LogChanges is false,
changes are made directly to the Data property. You can disable the change log in
single-tiered applications when you do not need the undo support.

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-5

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Edits in the change log remain there until they are removed by the application.
Applications remove edits when

• Undoing changes
• Saving changes

Note Saving the client dataset to a file does not remove edits from the change log. When
you reload the dataset, the Data and Delta properties are the same as they were when
the data was saved.

Undoing changes
Even though a record’s original version remains unchanged in Data, each time a user
edits a record, leaves it, and returns to it, the user sees the last changed version of the
record. If a user or application edits a record a number of times, each changed
version of the record is stored in the change log as a separate entry.

Storing each change to a record makes it possible to support multiple levels of undo
operations should it be necessary to restore a record’s previous state:

• To remove the last change to a record, call UndoLastChange. UndoLastChange takes
a boolean parameter, FollowChange, that indicates whether or not to reposition the
cursor on the restored record (true), or to leave the cursor on the current record
(false). If there are several changes to a single record, each call to UndoLastChange
removes another layer of edits. UndoLastChange returns a Boolean value indicating
success or failure to remove a change. If the removal occurs, UndoLastChange
returns false. Use the ChangeCount property to determine whether there are any
more changes to undo. ChangeCount indicates the number of changes stored in the
change log.

• Instead of removing each layer of changes to a single record, you can remove them
all at once. To remove all changes to a record, select the record, and call
RevertRecord. RevertRecord removes any changes to the current record from the
change log.

• At any point during edits, you can save the current state of the change log using
the SavePoint property. Reading SavePoint returns a marker into the current
position in the change log. Later, if you want to undo all changes that occurred
since you read the save point, set SavePoint to the value you read previously. Your
application can obtain values for multiple save points. However, once you back up
the change log to a save point, the values of all save points that your application
read after that one are invalid.

• You can abandon all changes recorded in the change log by calling CancelUpdates.
CancelUpdates clears the change log, effectively discarding all edits to all records.
Be careful when you call CancelUpdates. After you call CancelUpdates, you cannot
recover any changes that were in the log.

Saving changes
Client datasets use different mechanisms for incorporating changes from the change
log, depending on whether they are used in a stand-alone application or represent
data from a remote application server. Whichever mechanism is used, the change log
is automatically emptied when all updates have been incorporated.

25-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Stand-alone applications can simply merge the changes into the local cache
represented by the Data property. They do not need to worry about resolving local
edits with changes made by other users. To merge the change log into the Data
property, call the MergeChangeLog method. “Merging changes into data” on
page 25-25 describes this process.

You can’t use MergeChangeLog in multi-tiered applications. The application server
needs the information in the change log so that it can resolve updated records with
the data stored in the database. Instead, you call ApplyUpdates, which sends the
changes to the application server and updates the Data property only when the
modifications have been successfully posted to the database. See “Applying
updates” on page 25-20 for more information about this process.

Sorting and indexing

Using indexes provides several benefits to your applications:

• They allow client datasets to locate data quickly.

• They enable your application to set up relationships between client datasets such
as lookup tables or master/detail forms.

• They specify the order in which records appear.

If a client dataset is used in a multi-tiered application, it inherits a default index and
sort order based on the data it receives from the application server. The default index
is called DEFAULT_ORDER. You can use this ordering, but you cannot change or
delete the index.

In addition to the default index, the client dataset maintains a second index, called
CHANGEINDEX, on the changed records stored in the change log (Delta property).
CHANGEINDEX orders all records in the client dataset as they would appear if the
changes specified in Delta were applied. CHANGEINDEX is based on the ordering
inherited from DEFAULT_ORDER. As with DEFAULT_ORDER, you cannot change
or delete the CHANGEINDEX index.

You can use other existing indexes for a dataset, and you can create your own
indexes. The following sections describe how to create and use indexes with client
datasets.

Adding a new index
There are three ways to add indexes to a client dataset:

• To create a temporary index at runtime that sorts the records in the client dataset,
you can use the IndexFieldNames property. Specify field names, separated by
semicolons. Ordering of field names in the list determines their order in the index.

This is the least powerful method of adding indexes. You can’t specify a
descending or case-insensitive index, and the resulting indexes do not support
grouping. These indexes do not persist when you close the dataset, and are not
saved when you save the client dataset to a file.

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-7

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

• To create an index at runtime that can be used for grouping, call AddIndex.
AddIndex lets you specify the properties of the index, including

• The name of the index. This can be used for switching indexes at runtime.

• The fields that make up the index. The index uses these fields to sort records
and to locate records that have specific values on these fields.

• How the index sorts records. By default, indexes impose an ascending sort
order (based on the machine’s locale). This default sort order is case-sensitive.
You can specify options to make the entire index case insensitive or to sort in
descending order. Alternately, you can provide a list of fields that should be
sorted case-insensitively and a list of fields that should be sorted in descending
order.

• The default level of grouping support for the index.

Indexes created with AddIndex do not persist when the client dataset is closed.
(That is, they are lost when you reopen the client dataset). You can’t call AddIndex
when the dataset is closed. Indexes you add using AddIndex are not saved when
you save the client dataset to a file.

• The third way to create an index is at the time the client dataset is created. Before
creating the client dataset, specify the desired indexes using the IndexDefs
property. The indexes are then created along with the underlying dataset when
you call CreateDataSet. See “Creating a dataset using field and index definitions”
on page 14-14 for details.

As with AddIndex, indexes you create with the dataset support grouping, can sort
in ascending order on some fields and descending order on others, and can be case
insensitive on some fields and case sensitive on others. Indexes created this way
always persist and are saved when you save the client dataset to a file.

Tip You can index and sort on internally calculated fields with client datasets.

Deleting and switching indexes
To remove an index you created for a client dataset, call DeleteIndex and specify the
name of the index to remove. You cannot remove the DEFAULT_ORDER and
CHANGEINDEX indexes.

To use a different index with a client dataset when more than one index is available,
use the IndexName property to select the index to use. At design time, you can select
from available indexes in IndexName property drop-down box in the Object
Inspector.

Using indexes to group data
When you use an index in your client dataset, it automatically imposes a sort order
on the records. Because of this order, adjacent records usually contain duplicate

25-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

values on the fields that make up the index. For example, consider the following
fragment from an orders table that is indexed on the SalesRep and Customer fields:

Because of the sort order, adjacent values in the SalesRep column are duplicated.
Within the records for SalesRep 1, adjacent values in the Customer column are
duplicated. That is, the data is grouped by SalesRep, and within the SalesRep group
it is grouped by Customer. Each grouping has an associated level. In this case, the
SalesRep group has level 1 (because it is not nested in any other groups) and the
Customer group has level 2 (because it is nested in the group with level 1). Grouping
level corresponds to the order of fields in the index. When you create an index, you
can specify the level of grouping it supports (up to the number of fields in the index).

Client datasets allow you to determine where the current record lies within any given
grouping level. This allows your application to display records differently,
depending on whether they are the first record in the group, in the middle of a group,
or the last record in a group. For example, you might want to only display a field
value if it is on the first record of the group, eliminating the duplicate values. To do
this with the previous table results in the following:

To determine where the current record falls within any group, use the GetGroupState
method. GetGroupState takes an integer giving the level of the group and returns a
value indicating where the current record falls the group (first record, last record, or
neither).

Representing calculated values

As with any dataset, you can add calculated fields to your client dataset. These are
fields whose values you calculate dynamically, usually based on the values of other
fields in the same record. For more information about using calculated fields, see
“Defining a calculated field” on page 20-8.

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

SalesRep Customer OrderNo Amount

1 1 5 100

2 50

2 3 200

6 75

2 1 1 10

3 4 200

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-9

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Client datasets, however, let you optimize when fields are calculated by using
internally calculated fields. For more information on internally calculated fields, see
“Using internally calculated fields in client datasets” below.

You can also tell client datasets to create calculated values that summarize the data in
several records using maintained aggregates. For more information on maintained
aggregates, see “Using maintained aggregates” on page 25-9.

Using internally calculated fields in client datasets
In other datasets, your application must compute the value of calculated fields every
time the record changes or the user edits any fields in the current record. It does this
in an OnCalcFields event handler.

While you can still do this, client datasets let you minimize the number of times
calculated fields must be recomputed by saving calculated values in the client
dataset’s data. When calculated values are saved with the client dataset, they must
still be recomputed when the user edits the current record, but your application need
not recompute values every time the current record changes. To save calculated
values in the client dataset’s data, use internally calculated fields instead of
calculated fields.

Internally calculated fields, just like calculated fields, are calculated in an
OnCalcFields event handler. However, you can optimize your event handler by
checking the State property of your client dataset. When State is dsInternalCalc, you
must recompute internally calculated fields. When State is dsCalcFields, you need only
recompute regular calculated fields.

To use internally calculated fields, you must define the fields as internally calculated
before you create the client dataset. If you are creating the client dataset using
persistent fields, define fields as internally calculated by selecting InternalCalc in the
Fields editor. If you are creating the client dataset using field definitions, set the
InternalCalcField property of the relevant field definition to true.

Note Other types of datasets use internally calculated fields. However, with other datasets,
you do not calculate these values in an OnCalcFields event handler. Instead, they are
computed automatically by the BDE or remote database server.

Using maintained aggregates

Client datasets provide support for summarizing data over groups of records.
Because these summaries are automatically updated as you edit the data in the
dataset, this summarized data is called a “maintained aggregate.”

In their simplest form, maintained aggregates let you obtain information such as the
sum of all values in a column of the client dataset. They are flexible enough, however,
to support a variety of summary calculations and to provide subtotals over groups of
records defined by a field in an index that supports grouping.

25-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

 Specifying aggregates
To specify that you want to calculate summaries over the records in a client dataset,
use the Aggregates property. Aggregates is a collection of aggregate specifications
(TAggregate). You can add aggregate specifications to your client dataset using the
Collection Editor at design time, or using the Add method of Aggregates at runtime. If
you want to create field components for the aggregates, create persistent fields for the
aggregated values in the Fields Editor.

Note When you create aggregated fields, the appropriate aggregate objects are added to
the client dataset’s Aggregates property automatically. Do not add them explicitly
when creating aggregated persistent fields. For details on creating aggregated
persistent fields, see “Defining an aggregate field” on page 20-11.

For each aggregate, the Expression property indicates the summary calculation it
represents. Expression can contain a simple summary expression such as

Sum(Field1)

or a complex expression that combines information from several fields, such as

Sum(Qty * Price) - Sum(AmountPaid)

Aggregate expressions include one or more of the summary operators in Table 25.1.

The summary operators act on field values or on expressions built from field values
using the same operators you use to create filters. (You can’t nest summary
operators, however.) You can create expressions by using operators on summarized
values with other summarized values, or on summarized values and constants.
However, you can’t combine summarized values with field values, because such
expressions are ambiguous (there is no indication of which record should supply the
field value.) These rules are illustrated in the following expressions:

Table 25.1 Summary operators for maintained aggregates

Operator Use

Sum Totals the values for a numeric field or expression

Avg Computes the average value for a numeric or date-time field or expression

Count Specifies the number of non-blank values for a field or expression

Min Indicates the minimum value for a string, numeric, or date-time field or expression

Max Indicates the maximum value for a string, numeric, or date-time field or expression

Sum(Qty * Price) {legal -- summary of an expression on fields }

Max(Field1) - Max(Field2) {legal -- expression on summaries }

Avg(DiscountRate) * 100 {legal -- expression of summary and constant }

Min(Sum(Field1)) {illegal -- nested summaries }

Count(Field1) - Field2 {illegal -- expression of summary and field }

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-11

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Aggregating over groups of records
By default, maintained aggregates are calculated so that they summarize all the
records in a client dataset. However, you can specify that you want to summarize
over the records in a group instead. This allows you to provide intermediate
summaries such as subtotals for groups of records that share a common field value.

Before you can specify a maintained aggregate over a group of records, you must use
an index that supports the appropriate grouping. See “Using indexes to group data”
on page 25-7 for information on grouping support.

Once you have an index that groups the data in the way you want it summarized,
specify the IndexName and GroupingLevel properties of the aggregate to indicate what
index it uses, and which group or subgroup on that index defines the records it
summarizes.

For example, consider the following fragment from an orders table that is grouped by
SalesRep and, within SalesRep, by Customer:

The following code sets up a maintained aggregate that indicates the total amount for
each sales representative:

Agg->Expression = "Sum(Amount)";
Agg->IndexName = "SalesCust";
Agg->GroupingLevel = 1;
Agg->AggregateName = "Total for Rep";

To add an aggregate that summarizes for each customer within a given sales
representative, create a maintained aggregate with level 2.

Maintained aggregates that summarize over a group of records are associated with a
specific index. The Aggregates property can include aggregates that use different
indexes. However, only the aggregates that summarize over the entire dataset and
those that use the current index are valid. Changing the current index changes which
aggregates are valid. To determine which aggregates are valid at any time, use the
ActiveAggs property.

Obtaining aggregate values
To get the value of a maintained aggregate, call the Value method of the TAggregate
object that represents the aggregate. Value returns the maintained aggregate for the
group that contains the current record of the client dataset.

When you are summarizing over the entire client dataset, you can call Value at any
time to obtain the maintained aggregate. However, when you are summarizing over

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

25-12 D e v e l o p e r ’ s G u i d e

C o p y i n g d a t a f r o m a n o t h e r d a t a s e t

grouped information, you must be careful to ensure that the current record is in the
group whose summary you want. Because of this, it is a good idea to obtain
aggregate values at clearly specified times, such as when you move to the first record
of a group or when you move to the last record of a group. Use the GetGroupState
method to determine where the current record falls within a group.

To display maintained aggregates in data-aware controls, use the Fields editor to
create a persistent aggregate field component. When you specify an aggregate field
in the Fields editor, the client dataset’s Aggregates is automatically updated to include
the appropriate aggregate specification. The AggFields property contains the new
aggregated field component, and the FindField method returns it.

Adding application-specific information to the data

Application developers can add custom information to the client dataset’s Data
property. Because this information is bundled with the data packet, it is included
when you save the data to a file or stream. It is copied when you copy the data to
another dataset. Optionally, it can be included with the Delta property so that an
application server can read this information when it receives updates from the client
dataset.

To save application-specific information with the Data property, use the
SetOptionalParam method. This method lets you store an OleVariant that contains the
data under a specific name.

To retrieve this application-specific information, use the GetOptionalParam method,
passing in the name that was used when the information was stored.

Copying data from another dataset
To copy the data from another dataset at design time, right click the dataset and
choose Assign Local Data. A dialog appears listing all the datasets available in your
project. Select the one you want to copy from and choose OK. When you copy the
source dataset, your client dataset is automatically activated.

To copy from another dataset at runtime, you can assign its data directly or, if the
source is another client dataset, you can clone the cursor.

Assigning data directly

You can use the client dataset’s Data property to assign data to a client dataset from
another dataset. Data is an OleVariant in the form of a data packet. A data packet can
come from another client dataset, or from any other dataset by using a provider.
Once a data packet is assigned to Data, its contents are displayed automatically in
data-aware controls connected to the client dataset by a data source component.

When you open a client dataset that uses a provider component, data packets are
automatically assigned to Data. See “Using a client dataset with a data provider” on
page 25-14 for more information on using providers with client datasets.

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-13

C o p y i n g d a t a f r o m a n o t h e r d a t a s e t

When your client dataset does not use a provider, you can copy the data from
another client dataset as follows:

ClientDataSet1->Data = ClientDataSet2->Data;

Note When you copy the Data property of another client dataset, you copy the change log
as well, but the copy does not reflect any filters or ranges that have been applied. To
include filters or ranges, you must clone the source dataset’s cursor instead.

If you are copying from a dataset other than a client dataset, you can create a dataset
provider component, link it to the source dataset, and then copy its data:

TempProvider = new TDataSetProvider(Form1);
TempProvider->DataSet = SourceDataSet;
ClientDataSet1->Data = TempProvider->Data;
delete TempProvider;

Note When you assign directly to the Data property, the new data packet is not merged
into the existing data. Instead, all previous data is replaced.

If you want to merge changes from another dataset, rather than copying its data, you
must use a provider component. Create a dataset provider as in the previous
example, but attach it to the destination dataset and instead of copying the data
property, use the ApplyUpdates method:

TempProvider = new TDataSetProvider(Form1);
TempProvider->DataSet = ClientDataSet1;
TempProvider->ApplyUpdates(SourceDataSet->Delta, -1, ErrCount);
delete TempProvider;

Cloning a client dataset cursor

TClientDataSet provides the CloneCursor procedure to enable you to work with a
second view of a specified client dataset at runtime. CloneCursor lets a second client
dataset share the original client dataset’s data. This is less expensive than copying all
the original data, but, because the data is shared, the second client dataset can’t
modify the data without affecting the original client dataset.

CloneCursor takes three parameters: Source specifies the client dataset to clone. The
last two parameters (Reset and KeepSettings) indicate whether to copy information
other than the data. This information includes any filters, the current index, links to a
master table (when the source dataset is a detail set), the ReadOnly property, and any
links to a connection component or provider interface.

When Reset and KeepSettings are false, a cloned client dataset is opened, and the
settings of the source client dataset are used to set the properties of the destination.
When Reset is true, the destination dataset’s properties are given the default values
(no index or filters, no master table, ReadOnly is false, and no connection component
or provider is specified). When KeepSettings is true, the destination dataset’s
properties are not changed.

25-14 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

Using a client dataset with a data provider
When using a client dataset in a multi-tiered application, the client dataset obtains
data from a provider on the application server and, after editing that data locally,
applies updates to the remote database. It is also possible to use a client dataset with
a provider that resides in the same application.

The following steps describe how to use a client dataset with a provider:

1 Specifying a data provider.

2 Optionally, getting parameters from the application server or passing parameters
to the application server.

3 Optionally, Overriding the dataset on the application server.

4 Requesting data from an application server.

5 Handling constraints received from the application server.

6 Updating records.

7 Refreshing records.

In addition, client datasets allow you to communicate with the provider using a
custom event.

Specifying a data provider

Before a client dataset can receive data from and apply updates to an application
server, it must be associated with a dataset provider. To associate a client dataset
with a provider in a multi-tiered application, use the RemoteServer and ProviderName
properties. In single-tiered applications and in client applications used in briefcase
mode as temporary single-tiered applications, these properties are not used. When
using a client dataset with a provider that is instantiated in the same application, you
do not need to use the RemoteServer property, but you can still use the ProviderName
property, as long as the provider component has the same Owner as the client
dataset.

RemoteServer specifies the name of a connection component from which to get a list of
providers. The connection component resides in the same data module as the client
dataset. It establishes and maintains a connection to an application server, sometimes
called a “data broker”. For more information, see “The structure of the client
application” on page 15-4.

At design time, after you specify RemoteServer, you can select a provider from the
drop-down list for the ProviderName property in the Object Inspector. This list also
includes any local providers that belong to the same data module. At runtime, you
can switch among available providers by setting ProviderName in code.

To use a local provider that has a different Owner, you must form the association at
runtime using the client dataset’s SetProvider method.

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-15

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

Getting parameters from the application server

There are two circumstances when the client application needs to obtain parameter
values from the application server:

• The client needs to know the value of output parameters on a stored procedure.

• The client wants to initialize the input parameters of a query or stored procedure
to the current values of a query or stored procedure on the application server.

A client dataset stores parameter values in its Params property. These values are
refreshed with any output parameters whenever the client dataset fetches data from
the application server. However, there are times a client application needs output
parameters when it is not fetching data.

To fetch output parameters when not fetching records, or to initialize input
parameters, the client dataset can request parameter values from the application
server by calling the FetchParams method. The parameters are returned in a data
packet from the application server and assigned to the client dataset’s Params
property.

At design time, the Params property can be initialized by right-clicking the client
dataset and choosing Fetch Params.

Note The FetchParams method (or the Fetch Params command) will only work if the client
dataset is connected to a provider whose associated dataset can supply parameters.
TDataSetProvider can supply parameter values if it represents a query or stored
procedure.

When working with a stateless application server, you can’t use FetchParams to
retrieve output parameters. In a stateless application server, other clients can change
and rerun the query or stored procedure, changing output parameters before the call
to FetchParams. To retrieve output parameters from a stateless application server, use
the Execute method. If the provider is associated with a query or stored procedure,
Execute tells the provider to execute the query or stored procedure and return any
output parameters. These returned parameters are then used to automatically update
the Params property.

Passing parameters to the application server

Client datasets can pass parameters to the application server to specify what data
they want provided in the data packets it sends. These parameters can specify

• Parameter values for a query or stored procedure that is run on the application
server

• Field values that limit the records sent in data packets

You can specify parameter values that your client dataset sends to the application
server at design time or at runtime. At design time, select the client dataset, and then
double-click the Params property in the Object Inspector. This brings up the collection
editor, where you can add, delete, or rearrange parameters. By selecting a parameter

25-16 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

in the collection editor, you can use the Object Inspector to edit the properties of that
parameter.

At runtime, use the CreateParam method of the Params property to add parameters to
your client dataset. CreateParam returns a parameter object, given a specified name,
parameter type, and datatype. You can then use the properties of that parameter
object to assign a value to the parameter.

For example, the following code sets the value of a parameter named CustNo to 605:

TParam *pParam = ClientDataSet1->Params->CreateParam(ftInteger, "CustNo", ptInput);
pParam->AsInteger = 605;

If the client dataset is not active, you can send the parameters to the application
server and retrieve a data packet that reflects those parameter values simply by
setting the Active property to true.

Sending query or stored procedure parameters
When the provider on the application server represents the results of a query or
stored procedure, you can use the Params property to specify parameter values.
When the client dataset requests data from the application server or uses its Execute
method to run a query or stored procedure that does not return a dataset, it passes
these parameter values along with the request for data or the execute command.
When the provider receives these parameter values, it assigns them to its associated
query or stored procedure. The application server then runs the query or stored
procedure using these parameter values, and, if the client dataset requested data,
begins providing data, starting with the first record in the result set.

Note Parameter names should match the names of the corresponding parameters on the
query or stored procedure component in the application server.

Limiting records with parameters
When the provider on the application server represents the results of a table
component, you can use Params property to limit the records that are provided to the
Data property.

Each parameter name must match the name of a field in the TTable component on the
application server. The provider component on the application server sends only
those records whose values on the corresponding fields match the values assigned to
the parameters.

For example, consider a client application that displays the orders for a single
customer. When the user identifies the customer, the client dataset sets its Params
property to include a single parameter named CustID (or whatever field in the server
table is called) whose value identifies the customer whose orders it will display.
When the client dataset requests data from the application server, it passes this
parameter value. The application server then sends only the records for the identified
customer. This is more efficient than letting the application server send all the orders
records to the client application and then filtering the records on the client side.

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-17

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

Overriding the dataset on the application server

Usually, the provider on the application server is associated with a dataset that
determines what data is supplied to clients. This dataset may have a property that
specifies an SQL statement to generate the data, or it may represent a specific
database table or stored procedure.

If the provider allows, the client dataset can override the property that indicates what
data the dataset represents. To do so, you can set the client dataset’s CommandText
property. CommandText contains an SQL statement that replaces the SQL on the
provider’s dataset, or it contains the name of a table or stored procedure that replaces
the table or stored procedure that the dataset currently represents. This allows the client
dataset to specify dynamically what data it wants to see.

By default, provider’s do not allow client datasets to specify a CommandText value in
this way. To allow the client dataset to use its CommandText property, you must add
poAllowCommandText to the Options property of the provider on the application server.
Otherwise, the value of CommandText is ignored.

The client dataset sends its CommandText string to the provider at two times:

• When the client dataset first opens. After it has retrieved the first data packet from
the application server, the client dataset does not send CommandText when
fetching subsequent data packets.

• When the client dataset sends an Execute command to the application server.

To send an SQL command or to change a table or stored procedure name at any other
time, you must explicitly use the IAppServer interface that is available as the
AppServer property.

Requesting data from an application server

The following table lists the properties and methods of TClientDataSet that determine
how data is fetched from an application server in a multi-tiered application:

Table 25.2 Client datasets properties and method for handling data requests

Property or method Purpose

FetchOnDemand property Determines whether or not a client dataset automatically fetches
data as needed, or relies on the application to call the client
dataset’s GetNextPacket, FetchBlobs, and FetchDetails functions to
retrieve additional data.

PacketRecords property Specifies the type or number of records to return in each data
packet.

GetNextPacket method Fetches the next data packet from the application server.

FetchBlobs method Fetches any BLOB fields for the current record when the
application server does not include BLOB data automatically.

FetchDetails method Fetches nested detail datasets for the current record when the
application server does not include these in data packets
automatically.

25-18 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

By default, a client dataset retrieves all records from the application server. You can
control how data is retrieved using PacketRecords and FetchOnDemand.

PacketRecords specifies either how many records to fetch at a time, or the type of
records to return. By default, PacketRecords is set to -1, which means that all available
records are fetched at once, either when the application is first opened, or the
application explicitly calls GetNextPacket. When PacketRecords is -1, then after it first
fetches data, a client dataset never needs to fetch more data because it already has all
available records.

To fetch records in small batches, set PacketRecords to the number of records to fetch.
For example, the following statement sets the size of each data packet to ten records:

ClientDataSet1->PacketRecords = 10;

This process of fetching records in batches is called “incremental fetching”. Client
datasets use incremental fetching when PacketRecords is greater than zero. By default,
the client dataset calls GetNextPacket to fetch data as needed. Newly fetched packets
are appended to the end of the data already in the client dataset.

GetNextPacket returns the number of records it fetches. If the return value is the same
as PacketRecords, the end of available records was not encountered. If the return value
is greater than 0 but less than PacketRecords, the last record was reached during the
fetch operation. If GetNextPacket returns 0, then there are no more records to fetch.

Warning Incremental fetching only works if the remote data module preserves state
information. That is, you must not be using MTS, and the remote data module must
be configured so that each client application has its own data module instance. See
“Supporting state information in remote data modules” on page 15-23 for
information on how to use incremental fetching in stateless remote data modules.

You can also use PacketRecords to fetch metadata information about a database from
the application server. To retrieve metadata information, set PacketRecords to 0.

Automatic fetching of records is controlled by the FetchOnDemand property. When
FetchOnDemand is true (the default), automatic fetching is enabled. To prevent
automatic fetching of records as needed, set FetchOnDemand to false. When
FetchOnDemand is false, the application must explicitly call GetNextPacket to fetch
records.

Applications that need to represent extremely large read-only datasets can turn off
FetchOnDemand to ensure that the client datasets do not try to load more data than
can fit into memory. Between fetches, the client dataset frees its cache using the
EmptyDataSet method. This approach, however, does not work well when the client
must post updates to the application server.

Handling constraints

Client datasets support two types of constraints. These are

• constraints that are sent from the application server in data packets.

• custom constraints provided by the client application.

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-19

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

Handling constraints from the server
By default, server constraints and default expressions are passed to client datasets by
the application server, where they can be imposed on user data editing. When
constraints are in effect, user edits to data in a client application that would violate
server constraints are enforced on the client side, and are never passed to the
application server for eventual rejection by the database server. This means that
fewer updates generate error conditions during the updating process.

While importing of server constraints and expressions is an extremely valuable
feature that enables a developer to preserve data integrity across platforms and
applications, there may be times when an application needs to disable constraints on
a temporary basis. For example, if a server constraint is based on the current
maximum value in a field, but the client dataset fetches multiple packets of records,
the current maximum value in a field on the client may differ from the maximum
value on the database server, and constraints may be invoked differently. In another
case, if a client application applies a filter to records when constraints are enabled,
the filter may interfere in unintended ways with constraint conditions. In each of
these cases, an application may disable constraint-checking.

To disable constraints temporarily, call a client dataset’s DisableConstraints method.
Each time DisableConstraints is called, a reference count is incremented. While the
reference count is greater than zero, constraints are not enforced on the client dataset.

To reenable constraints for the client dataset, call the dataset’s EnableConstraints
method. Each call to EnableConstraints decrements the reference count. When the
reference count is zero, constraints are enabled again.

Tip Always call DisableConstraints and EnableConstraints in paired blocks to ensure that
constraints are enabled when you intend them to be.

Note DisableConstraints and EnableConstraints control whether the client dataset applies
constraints to its data. However, they have no effect on whether the application
server includes constraint information in data packets. You can prevent the server
from sending constraints in the first place using the provider’s Constraints property.
For more information on handling constraints from the server side, see “Handling
server constraints” on page 16-10. For more information on working with the
constraints once they have been imported, see “Using server constraints” on
page 20-22.

Adding custom constraints
You can use the properties of the client dataset’s field components to constrain the
available values beyond those constraints that are supplied in data packets from the
server. Each field component has two properties that you can use to specify
constraints:

• The DefaultExpression property defines a default value that is assigned to the field if
the user does not enter a value. Note that if the application server also assigns a
default expression for the field, the client dataset’s version takes precedence because
it is assigned before the update is returned to the application server.

• The CustomConstraint property lets you assign a constraint condition that must be
met before a field value can be posted. Custom constraints defined this way are

25-20 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

applied in addition to any constraints imported from the server. For more
information about working with custom constraints on field components, see
“Creating a custom constraint” on page 20-22.

In addition, you can create record-level constraints using the client dataset’s
Constraints property. Constraints is a collection of TCheckConstraint objects, where each
object represents a separate condition. Use the of CustomConstraint property to add
your own constraints that are checked when you post records.

Updating records

When a client application is connected to an application server, client datasets work
with a local copy of data passed to them by the application server. The user sees and
edits these copies in the client application’s data-aware controls. If server constraints
are enabled on the client dataset, a user’s edits are constrained accordingly. User
changes are temporarily stored by the client dataset in an internally maintained
change log. The contents of the change log are stored as a data packet in the Delta
property. To make the changes in Delta permanent, the client dataset must apply
them to the database.

When a client applies updates to the server, the following steps occur:

1 The client application calls the ApplyUpdates method of a client dataset object. This
method passes the contents of the client dataset’s Delta property to the application
server. Delta is a data packet that contains a client dataset’s updated, inserted, and
deleted records.

2 The application server’s provider component applies the updates to the database,
caching any problem records that it can’t resolve at the server level. See
“Responding to client update requests” on page 16-6 for details on how the server
applies updates.

3 The application server’s provider component returns all unresolved records to the
client in a Result data packet. The Result data packet contains all records that were
not updated. It also contains error information, such as error messages and error
codes.

4 The client application attempts to reconcile update errors returned in the Result
data packet on a record-by-record basis.

Applying updates
Changes made to the client dataset’s local copy of data are not sent to the application
server until the client application calls the ApplyUpdates method for the dataset.
ApplyUpdates takes the changes in the change log, and sends them as a data packet
(called Delta) to the application server.

ApplyUpdates takes a single parameter, MaxErrors, which indicates the maximum
number of errors that the application server should tolerate before aborting the
update process. If MaxErrors is 0, then as soon as an update error occurs on the
application server, the entire update process is terminated. No changes are written to
the database, and the client dataset’s change log remains intact. If MaxErrors is -1, any

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-21

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

number of errors is tolerated, and the change log contains all records that could not
be successfully applied. If MaxErrors is a positive value, and more errors occur than
are permitted by MaxErrors, all updates are aborted. If fewer errors occur than
specified by MaxErrors, all records successfully applied are automatically cleared
from the client dataset’s change log.

ApplyUpdates returns the number of actual errors encountered, which is always less
than or equal to MaxErrors plus one. This value is set to indicate the number of
records it could not write to the database. The application server also returns those
records to the client dataset in the dataset.

The client dataset is responsible for reconciling records that generate errors.
ApplyUpdates calls the Reconcile method to write updates to the database. Reconcile is
an error-handling routine that indirectly calls the ApplyUpdates function of a provider
component on the application server. The provider component’s ApplyUpdates
function writes the updates to the database and attempts to correct any errors it
encounters. Records that it cannot apply because of error conditions are sent back to
the client dataset’s Reconcile method. Reconcile then attempts to correct any remaining
errors by calling the OnReconcileError event handler. You must code the
OnReconcileError event handler to correct errors. For more information about creating
and using OnReconcileError, see “Reconciling update errors” on page 25-21.

Finally, Reconcile removes successfully applied changes from the change log and
updates Data to reflect the newly updated records. When Reconcile completes,
ApplyUpdates reports the number of errors that occurred.

Note If you are using MTS transactions or sharing an application server instance with
other clients, you may want to communicate with the provider on the application
server about persistent state information before or after you apply updates. The client
dataset receives a BeforeApplyUpdates event before the updates are sent which lets
you send persistent state information to the server. After the updates are applied (but
before the reconcile process), the client dataset receives an AfterApplyUpdates event
where you can respond to any persistent state information returned by the
application server.

Reconciling update errors
The provider on the application server returns error records and error information to
the client dataset in a result data packet. If the application server returns an error
count greater than zero, then for each record in the result data packet, the client
dataset’s OnReconcileError event occurs.

You should always code the OnReconcileError event handler, even if only to discard
the records returned by the application server. The OnReconcileError event handler is
passed four parameters:

• DataSet: The client dataset to which updates are applied. You can use client dataset
methods to obtain information about problem records and to make changes to the
record in order to correct any problems. In particular, you will want to use the
CurValue, OldValue, and NewValue properties of the fields in the current record to
determine the cause of the update problem. However, you must not call any client
dataset methods that change the current record in an OnReconcileError event
handler.

25-22 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

• E: An EReconcileError object that represents the problem that occurred. You can
use this exception to extract an error message or to determine the cause of the
update error.

• UpdateKind: The type of update that generated the error. UpdateKind can be
ukModify (the problem occurred updating an existing record that was modified),
ukInsert (the problem occurred inserting a new record), or ukDelete (the problem
occurred deleting an existing record).

• Action: A reference parameter that lets you indicate what action to take when the
OnReconcileError handler exits. On entry into the handler, Action is set to the action
taken by the resolution process on the server. In your event handler, you set this
parameter to

• Skip this record, leaving it in the change log. (raSkip)

• Stop the entire reconcile operation. (raAbort)

• Merge the modification that failed into the corresponding record from the
server. (raMerge) This only works if the server did not change any of the fields
modified by the user.

• Replace the current update in the change log with the value of the record in the
event handler (which has presumably been corrected). (raCorrect)

• Back out the changes for this record on the client dataset, reverting to the
originally provided values. (raCancel)

• Update the current record value to match the record on the server. (raRefresh)

The following code shows an OnReconcileError event handler that uses the reconcile
error dialog from the RecError unit which ships in the object repository directory. (To
use this dialog, include RecError.hpp in your source unit.)

void __fastcall TForm1::ClientDataSetReconcileError(TClientDataSet *DataSet,
EReconcileError *E, TUpdateKind UpdateKind, TReconcileAction &Action)

{
Action = HandleReconcileError(DataSet, UpdateKind, E);

}

Refreshing records

Client applications work with an in-memory snapshot of the data on the application
server. As time elapses, other users may modify that data, so that the data in the
client application becomes a less and less accurate picture of the underlying data.

Like any other dataset, client datasets have a Refresh method that updates its records
to match the current values on the server. However, calling Refresh only works if
there are no edits in the change log. Calling Refresh when there are unapplied edits
results in an exception.

Client applications can also update the data while leaving the change log intact. To
do this, call the client dataset’s RefreshRecord method. Unlike the Refresh method,
RefreshRecord updates only the current record in the client dataset. RefreshRecord

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-23

U s i n g a c l i e n t d a t a s e t w i t h a d a t a p r o v i d e r

changes the record value originally obtained from the application server but leaves
any changes in the change log.

Warning It may not always be appropriate to call RefreshRecord. If the user’s edits conflict with
changes to the underlying dataset made by other users, calling RefreshRecord will
mask this conflict. When the client application applies its updates, no reconcile error
will occur and the application can’t resolve the conflict.

In order to avoid masking update errors, client applications may want to check that
there are no pending updates before calling RefreshRecord. For example, the following
code throws an exception if an attempt is made to refresh a modified record:

if (ClientDataSet1->UpdateStatus != usUnModified)
 throw Exception("You must apply updates before refreshing the current record.");
ClientDataSet1->RefreshRecord;

Communicating with providers using custom events

Client datasets provide many opportunities for customizing the communication
between the client application and the application server. Before and after every
IAppServer method call that is directed at the client dataset’s provider, the client
dataset receives special events that are designed to allow the client dataset to
communicate arbitrary information with its provider. These events are matched with
similar events on the provider. Thus for example, when the client dataset calls its
ApplyUpdates method, the following events occur:

1 The client dataset receives a BeforeApplyUpdates event, where it specifies arbitrary
custom information in an OleVariant called OwnerData.

2 The provider receives a BeforeApplyUpdates event, where it can respond to the
OwnerData from the client dataset and update the value of OwnerData to new
information.

3 The provider goes through its normal process of assembling a data packet
(including all the accompanying events).

4 The provider receives an AfterApplyUpdates event, where it can respond to the
current value of OwnerData and update it to a value for the client.

5 The client dataset receives an AfterApplyUpdates event, where it can respond to the
returned value of OwnerData.

Every other IAppServer method call is accompanied by a similar set of BeforeXXX and
AfterXXX events that allow you to customize the communication between client and
server.

In addition, the client dataset has a special method, DataRequest, whose only purpose
is to allow application-specific communication with the provider. When the client
dataset calls DataRequest, it passes an OleVariant as a parameter that can contain any
information you want. This, in turn, generates an is the OnDataRequest event on the
provider, where you can respond in any application-defined way and return a value
to the client dataset.

25-24 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h f l a t - f i l e d a t a

Using a client dataset with flat-file data
Client datasets can function independently of a provider, such as in flat-file data base
applications and “briefcase model” applications. When there is no provider,
however, the client application cannot get table definitions and data from the server,
and there is no server to which it can apply updates. Instead, the client dataset must
independently

• Define and create tables
• Load saved data
• Merge edits into its data
• Save data

Creating a new dataset

There are three ways to define and create client datasets that do not get their data
from a provider component:

• You can copy an existing dataset (at design or runtime). See “Copying data from
another dataset” on page 25-12 for more information about copying existing
datasets.

• You can define and create a new client dataset by creating persistent fields for the
dataset and then choosing Create Dataset from its context menu. See “Creating a
new dataset using persistent fields” on page 14-14 for details.

• You can define and create a new client dataset based on field definitions and index
definitions. See “Creating a dataset using field and index definitions” on
page 14-14 for details.

Loading data from a file or stream

To load data from a file, call a client dataset’s LoadFromFile method. LoadFromFile
takes one parameter, a string that specifies the file from which to read data. The file
name can be a fully qualified path name, if appropriate. If you always load the client
dataset’s data from the same file, you can use the FileName property instead. If
FileName names an existing file, the data is automatically loaded when the client
dataset is opened.

To load data from a stream, call the client dataset’s LoadFromStream method.
LoadFromStream takes one parameter, a stream object that supplies the data.

The data loaded by LoadFromFile (LoadFromStream) must have previously been saved
in a client dataset’s data format by this or another client dataset using the SaveToFile
(SaveToStream) method. For more information about saving data to a file or stream,
see “Saving data to a file or stream” on page 25-25.

When you call LoadFromFile or LoadFromStream, all data in the file is read into the
Data property. Any edits that were in the change log when the data was saved are
read into the Delta property.

C r e a t i n g a n d u s i n g a c l i e n t d a t a s e t 25-25

U s i n g a c l i e n t d a t a s e t w i t h f l a t - f i l e d a t a

Merging changes into data

When you edit the data in a client dataset, the changes you make are recorded in the
change log, but the changes do not affect the original version of the data.

To make your changes permanent, call MergeChangeLog. MergeChangeLog overwrites
records in Data with any changed field values in the change log.

After MergeChangeLog executes, Data contains a mix of existing data and any changes
that were in the change log. This mix becomes the new Data baseline against which
further changes can be made. MergeChangeLog clears the change log of all records and
resets the ChangeCount property to 0.

Warning Do not call MergeChangeLog for client applications that are connected to an
application server. In this case, call ApplyUpdates to write changes to the database.
For more information, see “Applying updates” on page 25-20.

Note It is also possible to merge changes into the data of a separate client dataset if that
dataset originally provided the data in the Data property. To do this, you must use a
dataset provider and resolver. For an example of how to do this, see “Assigning data
directly” on page 25-12.

Saving data to a file or stream

If you use a client dataset in a single-tiered application, then when you edit data and
merge it, the changes you make exist only in memory. To make a permanent record
of your changes, you must write them to disk. You can save the data to disk using the
SaveToFile method.

SaveToFile takes one parameter, a string that specifies the file into which to write data.
The file name can be a fully qualified path name, if appropriate. If the file already
exists, its current contents are completely overwritten.

If you always save the data to the same file, you can use the FileName property
instead. If FileName is set, the data is automatically saved to the named file when the
client dataset is closed.

You can also save data to a stream, using the SaveToStream method. SaveToStream
takes one parameter, a stream object that receives the data.

Note If you save a client dataset while there are still edits in the change log, these are not
merged with the data. When you reload the data, using the LoadFromFile or
LoadFromStream method, the change log will still contain the unmerged edits. This is
important for applications that support the briefcase model, where those changes
will eventually have to be applied to a provider component on the application server.

Note SaveToFile does not preserve any indexes you added to the client dataset.

25-26 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h c a c h e d u p d a t e s 26-1

C h a p t e r

26
Chapter26Working with cached updates

Cached updates enable you to retrieve data from a database, cache and edit it locally,
and then apply the cached updates to the database as a unit. When cached updates
are enabled, updates to a dataset (such as posting changes or deleting records) are
stored in an internal cache instead of being written directly to the dataset’s
underlying table. When changes are complete, your application calls a method that
writes the cached changes to the database and clears the cache.

This chapter describes when and how to use cached updates. It also describes the
TUpdateSQL component that can be used in conjunction with cached updates to
update virtually any dataset, particularly datasets that are not normally updatable.

Note When cached updates are enabled, as described in this chapter, data changes are
stored in local memory. The storage medium is a Paradox format in-memory table.
This has implications for applications run in a network environment in that the NET
DIR parameter for the Borland Database Engine (BDE) driver for Paradox needs to be
set -- even though the application may be designed to only us other database types.
Failure to properly set this parameter can result in an EDBEngineError exception.
There are two ways to set NET DIR. One is through the BDE configuration utility
BDE Administrator (described in the BDE Administrator online help). The other way
is through the TSession::NetFileDir property.

Deciding when to use cached updates
Cached updates are primarily intended to reduce data access contention on remote
database servers by

• Minimizing transaction times.
• Minimizing network traffic.

While cached updates can minimize transaction times and drastically reduce
network traffic, they may not be appropriate for all database client applications that

26-2 D e v e l o p e r ’ s G u i d e

U s i n g c a c h e d u p d a t e s

work with remote servers. There are three areas of consideration when deciding to
use cached updates:

• Cached data is local to your application, and is not under transaction control. In
a busy client/server environment this has two implications for your application:

• Other applications can access and change the actual data on the server while
your users edit their local copies of the data.

• Other applications cannot see any data changes made by your application until
it applies all its changes.

• In master/detail relationships managing the order of applying cached updates
can be tricky. This is particularly true when there are nested master/detail
relationships where one detail table is the master table for yet another detail table
and so on.

• Applying cached updates to read-only query-based datasets requires use of
update objects.

The data access components provide cached update methods and transaction control
methods you can use in your application code to handle these situations, but you
must take care that you cover all possible scenarios your application is likely to
encounter in your working environment.

Using cached updates
This section provides a basic overview of how cached updates work in an
application. If you have not used cached updates before, this process description
serves as a guideline for implementing cached updates in your applications.

To use cached updates, the following order of processes must occur in an application:

1 Enable cached updates. Enabling cached updates causes a read-only transaction
that fetches as much data from the server as is necessary for display purposes and
then terminates. Local copies of the data are stored in memory for display and
editing. For more information about enabling and disabling cached updates, see
“Enabling and disabling cached updates” on page 26-3.

2 Display and edit the local copies of records, permit insertion of new records, and
support deletions of existing records. Both the original copy of each record and
any edits to it are stored in memory. For more information about displaying and
editing when cached updates are enabled, see “Applying cached updates” on
page 26-4.

3 Fetch additional records as necessary. As a user scrolls through records,
additional records are fetched as needed. Each fetch occurs within the context of
another short duration, read-only transaction. (An application can optionally fetch
all records at once instead of fetching many small batches of records.) For more
information about fetching all records, see “Fetching records” on page 26-4.

4 Continue to display and edit local copies of records until all desired changes are
complete.

W o r k i n g w i t h c a c h e d u p d a t e s 26-3

U s i n g c a c h e d u p d a t e s

5 Apply the locally cached records to the database or cancel the updates. For each
record written to the database, an OnUpdateRecord event is triggered. If an error
occurs when writing an individual record to the database, an OnUpdateError event
is triggered which enables the application to correct the error, if possible, and
continue updating. When updates are complete, all successfully applied updates
are cleared from the local cache. For more information about applying updates to
the database, see “Applying cached updates” on page 26-4.

If instead of applying updates, an application cancels updates, the locally cached
copy of the records and all changes to them are freed without writing the changes
to the database. For more information about canceling updates, see “Canceling
pending cached updates” on page 26-7.

Enabling and disabling cached updates

Cached updates are enabled and disabled through the CachedUpdates properties of
TTable, TQuery, and TStoredProc. CachedUpdates is false by default, meaning that
cached updates are not enabled for a dataset.

Note Client datasets always cache updates. They have no CachedUpdates property because
you cannot disable cached updates on a client dataset.

To use cached updates, set CachedUpdates to true, either at design time (through the
Object Inspector), or at runtime. For example, the following code enables cached
updates for a dataset at runtime:

CustomersTable->CachedUpdates = true;

When you enable cached updates, a copy of all records necessary for display and
editing purposes is cached in local memory. Users view and edit this local copy of
data. Changes, insertions, and deletions are also cached in memory. They accumulate
in memory until the current cache of local changes is applied to the database. If
changed records are successfully applied to the database, the record of those changes
are freed in the cache.

Note Applying cached updates does not disable further cached updates; it only writes the
current set of changes to the database and clears them from memory.

To disable cached updates for a dataset, set CachedUpdates to false. If you disable
cached updates when there are pending changes that you have not yet applied, those
changes are discarded without notification. Your application can test the
UpdatesPending property for this condition before disabling cached updates. For
example, the following code prompts for confirmation before disabling cached
updates for a dataset:

if (CustomersTable->UpdatesPending)
if (Application->MessageBox("Discard pending updates?",

"Unposted changes",
MB_YES | MB_NO) == IDYES)

CustomersTable->CachedUpdates = false;

26-4 D e v e l o p e r ’ s G u i d e

U s i n g c a c h e d u p d a t e s

Fetching records
By default, when you enable cached updates, BDE datasets automatically handle
fetching of data from the database when necessary. Datasets fetch enough records for
display. During the course of processing, many such record fetches may occur. If
your application has specific needs, it can fetch all records at one time. You can fetch
all records by calling the dataset’s FetchAll method. FetchAll creates an in-memory,
local copy of all records from the dataset. If a dataset contains many records or
records with large BLOB fields, you may not want to use FetchAll.

Client datasets use the PacketRecords property to indicate the number of records that
should be fetched at any time. If you set the FetchOnDemand property to true, the
client dataset automatically handles fetching of data when necessary. Otherwise, you
can use the GetNextPacket method to fetch records from the data server. For more
information about fetching records using a client dataset, see “Requesting data from
an application server” on page 25-17.

Applying cached updates
When a dataset is in cached update mode, changes to data are not actually written to
the database until your application explicitly calls methods that apply those changes.
Normally an application applies updates in response to user input, such as through a
button or menu item.

Important To apply updates to a set of records retrieved by an SQL query that does not return a
live result set, you must use a TUpdateSQL object to specify how to perform the
updates. For updates to joins (queries involving two or more tables), you must
provide one TUpdateSQL object for each table involved, and you must use the
OnUpdateRecord event handler to invoke these objects to perform the updates. For
more information, see “Updating a read-only result set” on page 26-21. For more
information about creating and using an OnUpdateRecord event handler, see
“Creating an OnUpdateRecord event handler” on page 26-22.

Applying updates is a two-phase process that should occur in the context of a
database component’s transaction control to enable your application to recover
gracefully from errors. For more information about transaction handling with
database components, see “Understanding database and session component
interactions” on page 18-9.

When applying updates under database transaction control, the following events
take place:

1 A database transaction starts.

2 Cached updates are written to the database (phase 1). If you provide it, an
OnUpdateRecord event is triggered once for each record written to the database. If
an error occurs when a record is applied to the database, the OnUpdateError event
is triggered if you provide one.
If the database write is unsuccessful:
• Database changes are rolled back, ending the database transaction.
• Cached updates are not committed, leaving them intact in the internal cache buffer.

W o r k i n g w i t h c a c h e d u p d a t e s 26-5

U s i n g c a c h e d u p d a t e s

If the database write is successful:

• Database changes are committed, ending the database transaction.

• Cached updates are committed, clearing the internal cache buffer (phase 2).

The two-phased approach to applying cached updates allows for effective error
recovery, especially when updating multiple datasets (for example, the datasets
associated with a master/detail form). For more information about handling update
errors that occur when applying cached updates, see “Handling cached update
errors” on page 26-23.

There are actually two ways to apply updates. To apply updates for a specified set of
datasets associated with a database component, call the database component’s
ApplyUpdates method. To apply updates for a single dataset, call the dataset’s
ApplyUpdates and Commit methods. These choices, and their strengths, are described
in the following sections.

Applying cached updates with a database component method
Ordinarily, applications cache updates at the dataset level. However, there are times
when it is important to apply the updates to multiple interrelated datasets in the
context of a single transaction. For example, when working with master/detail
forms, you will likely want to commit changes to master and detail tables together.

To apply cached updates to one or more datasets in the context of a database
connection, call the database component’s ApplyUpdates method. The following code
applies updates to the CustomersQuery dataset in response to a button click event:

void __fastcall TForm1::ApplyButtonClick(TObject *Sender)
{

// for local databases such as Paradox, dBASe, and FoxProc
// set TransIsolation to DirtyRead
if (!Database1->IsSQLBased && Database1->TransIsolation != tiDirtyRead)

Database1->TransIsolation = tiDirtyRead;
Database1->ApplyUpdates(&CustomersQuery,0);

}

The above sequence starts a transaction, and writes cached updates to the database. If
successful, it also commits the transaction, and then commits the cached updates. If
unsuccessful, this method rolls back the transaction, and does not change the status
of the cached updates. In this latter case, your application should handle cached
update errors through a dataset’s OnUpdateError event. For more information about
handling update errors, see “Handling cached update errors” on page 26-23.

The main advantage to calling a database component’s ApplyUpdates method is that
you can update any number of dataset components that are associated with the
database. The two arguments to the ApplyUpdates method for a database are an array
of TDBDataSet, and the index of the last dataset in the array. To apply updates for
more than one dataset, create a local array of pointers to the datasets. For example,
the following code applies updates for two queries used in a master/detail form:

TDBDataSet* ds[] = {MasterTable, DetailTable};
if (!Database1->IsSQLBased && Database1->TransIsolation != tiDirtyRead)

Database1->TransIsolation = tiDirtyRead;
Database1->ApplyUpdates(ds,1);

26-6 D e v e l o p e r ’ s G u i d e

U s i n g c a c h e d u p d a t e s

For more information about updating master/detail tables, see “Applying updates
for master/detail tables” on page 26-6.

Applying cached updates with dataset component methods
You can apply updates for individual datasets directly using the dataset’s
ApplyUpdates and CommitUpdates methods. Each of these methods encapsulate one
phase of the update process:

1 ApplyUpdates writes cached changes to a database (phase 1).

2 CommitUpdates clears the internal cache when the database write is successful
(phase 2).

Applying updates at the dataset level gives you control over the order in which
updates are applied to individual datasets. Order of update application is especially
critical for handling master/detail relationships. To ensure the correct ordering of
updates for master/detail tables, you should always apply updates at the dataset
level. For more information see “Applying updates for master/detail tables” on
page 26-6.

The following code illustrates how you apply updates within a transaction for the
CustomerQuery dataset previously used to illustrate updates through a database
method:

void __fastcall TForm1::ApplyButtonClick(TObject *Sender)
{

Database1->StartTransaction();
try
{

if (!Database1->IsSQLBased && Database1->TransIsolation != tiDirtyRead)
Database1->TransIsolation = tiDirtyRead;

CustomerQuery->ApplyUpdates(); // try to write the updates to the database
Database1->Commit(); // on success, commit the changes

}
catch (...)
{

Database1->Rollback(); // on failure, undo any changes
throw; // throw the exception again to prevent a call to CommitUpdates

}
CustomerQuery->CommitUpdates(); // on success, clear the internal cache

}

If an exception is raised during the ApplyUpdates call, the database transaction is
rolled back. Rolling back the transaction ensures that the underlying database table is
not changed. The throw statement inside the try...catch block re-throws the exception,
thereby preventing the call to CommitUpdates. Because CommitUpdates is not called,
the internal cache of updates is not cleared so that you can handle error conditions
and possibly retry the update.

Applying updates for master/detail tables
When you apply updates for master/detail tables, the order in which you list
datasets to update is significant. Generally you should always update master tables
before detail tables, except when handling deleted records. In complex master/detail

W o r k i n g w i t h c a c h e d u p d a t e s 26-7

U s i n g c a c h e d u p d a t e s

relationships where the detail table for one relationship is the master table for
another detail table, the same rule applies.

You can update master/detail tables at the database or dataset component levels. For
purposes of control (and of creating explicitly self-documented code), you should
apply updates at the dataset level. The following example illustrates how you should
code cached updates to two tables, Master and Detail, involved in a master/detail
relationship:

Database1->StartTransaction();
try
{

Master->ApplyUpdates();
Detail->ApplyUpdates();
Database1->Commit();

}
catch (...)
{

Database1->Rollback();
throw;

}
Master->CommitUpdates();
Detail->CommitUpdates();

If an error occurs during the application of updates, this code also leaves both the
cache and the underlying data in the database tables in the same state they were in
before the calls to ApplyUpdates.

If an exception is thrown during the call to Master->ApplyUpdates, it is handled like
the single dataset case previously described. Suppose, however, that the call to
Master->ApplyUpdates succeeds, and the subsequent call to Detail->ApplyUpdates fails.
In this case, the changes are already applied to the master table. Because all data is
updated inside a database transaction, however, even the changes to the master table
are rolled back when Database1->Rollback is called in the catch block. Furthermore,
Master->CommitUpdates is not called because the exception which is re-thrown causes
that code to be skipped, so the cache is also left in the state it was before the attempt
to update.

To appreciate the value of the two-phase update process, assume for a moment that
ApplyUpdates is a single-phase process which updates the data and the cache. If this
were the case, and if there were an error while applying the updates to the Detail
table, then there would be no way to restore both the data and the cache to their
original states. Even though the call to Database1->Rollback would restore the
database, there would be no way to restore the cache.

Canceling pending cached updates

Pending cached updates are updated records that are posted to the cache but not yet
applied to the database. There are three ways to cancel pending cached updates:

• To cancel all pending updates and disable further cached updates, set the
CachedUpdates property to false.

26-8 D e v e l o p e r ’ s G u i d e

U s i n g c a c h e d u p d a t e s

• To discard all pending updates without disabling further cached updates, call the
CancelUpdates method.

• To cancel updates made to the current record call RevertRecord.

The following sections discuss these options in more detail.

Canceling pending updates and disabling further cached updates
To cancel further caching of updates and delete all pending cached updates without
applying them, set the CachedUpdates property to false. When CachedUpdates is set to
false, the CancelUpdates method is automatically invoked.

From the update cache, deleted records are undeleted, modified records revert to
original values, and newly inserted record simply disappear.

Note This option is not available for client datasets.

Canceling pending cached updates
CancelUpdates clears the cache of all pending updates, and restores the dataset to the
state it was in when the table was opened, cached updates were last enabled, or
updates were last successfully applied. For example, the following statement cancels
updates for the CustomersTable:

CustomersTable->CancelUpdates();

From the update cache, deleted records are undeleted, modified records revert to
original values, and newly inserted records simply disappear.

Note Calling CancelUpdates does not disable cached updating. It only cancels currently
pending updates. To disable further cached updates, set the CachedUpdates property
to false.

Canceling updates to the current record
RevertRecord restores the current record in the dataset to the state it was in when the
table was opened, cached updates were last enabled, or updates were last
successfully applied. It is most frequently used in an OnUpdateError event handler to
correct error situations. For example,

CustomersTable->RevertRecord();

Undoing cached changes to one record does not affect any other records. If only one
record is in the cache of updates and the change is undone using RevertRecord, the
UpdatesPending property for the dataset component is automatically changed from
true to false.

If the record is not modified, this call has no effect. For more information about
creating an OnUpdateError handler, see “Creating an OnUpdateRecord event
handler” on page 26-22.

W o r k i n g w i t h c a c h e d u p d a t e s 26-9

U s i n g c a c h e d u p d a t e s

Undeleting cached records

To undelete a cached record requires some coding because once the deleted record is
posted to the cache, it is no longer the current record and no longer even appears in
the dataset. In some instances, however, you may want to undelete such records. The
process involves using the UpdateRecordTypes property to make the deleted records
“visible,” and then calling RevertRecord. Here is a code example that undeletes all
deleted records in a table:

void __fastcall UndeleteAll(TBDEDataSet *DataSet)
{

DataSet->UpdateRecordTypes.Clear();
DataSet->UpdateRecordTypes << rtDeleted; // recognize only deleted records
try
{

DataSet->First(); //Go to the first previously deleted record
while (!DataSet->Eof)

 DataSet->RevertRecord(); //Undelete until we reach the last record
}
catch(...)
{ //Restore updates types to recognize only modified, inserted, and unchanged

DataSet->UpdateRecordTypes.Clear();
DataSet->UpdateRecordTypes << rtModified << rtInserted << rtUnmodified;
throw;

}
DataSet->UpdateRecordTypes.Clear();
DataSet->UpdateRecordTypes << rtModified << rtInserted << rtUnmodified;

}

Specifying visible records in the cache

The UpdateRecordTypes property controls what type of records are visible in the cache
when cached updates are enabled. UpdateRecordTypes works on cached records in
much the same way as filters work on tables. UpdateRecordTypes is a set, so it can
contain any combination of the following values:

The default value for UpdateRecordTypes includes only rtModified, rtInserted, and
rtUnmodified, with deleted records (rtDeleted) not displayed.

The UpdateRecordTypes property is primarily useful in an OnUpdateError event
handler for accessing deleted records so they can be undeleted through a call to
RevertRecord. This property is also useful if you wanted to provide a way in your

Table 26.1 TUpdateRecordType values

Value Meaning

rtModified Modified records

rtInserted Inserted records

rtDeleted Deleted records
rtUnmodified Unmodified records

26-10 D e v e l o p e r ’ s G u i d e

U s i n g c a c h e d u p d a t e s

application for users to view only a subset of cached records, for example, all newly
inserted (rtInserted) records.

For example, you could have a set of four radio buttons (RadioButton1 through
RadioButton4) with the captions All, Modified, Inserted, and Deleted. With all four
radio buttons assigned to the same OnClick event handler, you could conditionally
display all records (except deleted, the default), only modified records, only newly
inserted records, or only deleted records by appropriately setting the
UpdateRecordTypes property.

void __fastcall TForm1::Button3Click(TObject *Sender)
{

if RadioButton1->Checked
CustomerQuery-UpdateRecordTypes << rtUnmodified << rtModified << rtInserted;

if RadioButton2->Checked
CustomerQuery-UpdateRecordTypes << rtModified;

if RadioButton3->Checked
CustomerQuery-UpdateRecordTypes <<rtInserted;

if RadioButton4->Checked
CustomerQuery-UpdateRecordTypes << rtDeleted;

}

For more information about creating an OnUpdateError handler, see “Creating an
OnUpdateRecord event handler” on page 26-22.

Checking update status

When cached updates are enabled for your application, you can keep track of each
pending update record in the cache by examining the UpdateStatus property for the
record. Checking update status is most frequently used in OnUpdateRecord and
OnUpdateError event handlers. For more information about creating and using an
OnUpdateRecord event, see “Creating an OnUpdateRecord event handler” on
page 26-22. For more information about creating and using an OnUpdateError event,
see “Handling cached update errors” on page 26-23.

As you iterate through a set of pending changes, UpdateStatus changes to reflect the
update status of the current record. UpdateStatus returns one of the following values
for the current record:

When a dataset is first opened all records will have an update status of usUnmodified.
As records are inserted, deleted, and so on, the status values change. Here is an

Table 26.2 Return values for UpdateStatus

Value Meaning

usUnmodified Record is unchanged
usModified Record is changed

usInserted Record is a new record

usDeleted Record is deleted

W o r k i n g w i t h c a c h e d u p d a t e s 26-11

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

example of UpdateStatus property used in a handler for a dataset’s OnScroll event.
The event handler displays the update status of each record in a status bar.

void __fastcall TForm::CalcFields(TDataSet *DataSet)
{

if (DataSet->UpdateStatus != usUnmodified)
Table1ModifiedRow->Value = "*";

else
Table1ModifiedRow->Value = NULL;

}

Note If a record’s UpdateStatus is usModified, you can examine the OldValue property for
each field in the dataset to determine its previous value. OldValue is meaningless for
records with UpdateStatus values other than usModified. For more information about
examining and using OldValue, see “Accessing a field’s OldValue, NewValue, and
CurValue properties” on page 26-26.

Using update objects to update a dataset
TUpdateSQL is an update component that uses SQL statements to update a dataset.
You must provide one TUpdateSQL component for each underlying table accessed by
the original query that you want to update.

Note If you use more than one update component to perform an update operation, you
must create an OnUpdateRecord event to execute each update component.

An update component actually encapsulates three TQuery components. Each of these
query components perform a single update task. One query component provides an
SQL UPDATE statement for modifying existing records; a second query component
provides an INSERT statement to add new records to a table; and a third component
provides a DELETE statement to remove records from a table.

When you place an update component in a data module, you do not see the query
components it encapsulates. They are created by the update component at runtime
based on three update properties for which you supply SQL statements:

• ModifySQL specifies the UPDATE statement.
• InsertSQL specifies the INSERT statement.
• DeleteSQL specifies the DELETE statement.

At runtime, when the update component is used to apply updates, it:

1 Selects an SQL statement to execute based on the UpdateKind parameter
automatically generated on a record update event. UpdateKind specifies whether
the current record is modified, inserted, or deleted.

2 Provides parameter values to the SQL statement.

3 Prepares and executes the SQL statement to perform the specified update.

26-12 D e v e l o p e r ’ s G u i d e

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

Specifying the UpdateObject property for a dataset

One or more update objects can be associated with a dataset to be updated. Associate
update objects with the update dataset either by setting the dataset component’s
UpdateObject property to the update object or by setting the update object’s DataSet
property to the update dataset. Which method is used depends on whether only one
base table in the update dataset is to be updated or multiple tables.

You must use one of these two means of associating update datasets with update
objects. Without proper association, the dynamic filling of parameters in the update
object’s SQL statements cannot occur. Use one association method or the other, but
never both.

How an update object is associated with a dataset also determines how the update
object is executed. An update object might be executed automatically, without
explicit intervention by the application, or it might need to be explicitly executed. If
the association is made using the dataset component’s UpdateObject property, the
update object will automatically be executed. If the association is made with the
update object’s DataSet property, you must programmatically execute the update
object.

The sections that follow explain the process of associating update objects with update
dataset components in greater detail, along with suggestions about when each
method should be used and effects on update execution.

Using a single update object
When only one of the base tables referenced in the update dataset needs to be
updated, associate an update object with the dataset by setting the dataset
component’s UpdateObject property to the name of the update object.

Query1->UpdateObject = UpdateSQL1;

The update SQL statements in the update object are automatically executed when the
update dataset’s ApplyUpdates method is called. The update object is invoked for
each record that requires updating. Do not call the update object’s ExecSQL method
in a handler for the OnUpdateRecord event as this will result in a second attempt to
apply each record’s update.

If you supply a handler for the dataset’s OnUpdateRecord event, the minimum action
that you need to take in that handler is setting the event handler’s UpdateAction
parameter to uaApplied. You may optionally perform data validation, data
modification, or other operations like setting parameter values.

Using multiple update objects
When more than one base table referenced in the update dataset needs to be updated,
you need to use multiple update objects: one for each base table updated. Because the
dataset component’s UpdateObject only allows one update object to be associated
with the dataset, you must associate each update object with the dataset by setting its
DataSet property to the name of the dataset. The DataSet property for update objects

W o r k i n g w i t h c a c h e d u p d a t e s 26-13

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

is not available at design time in the Object Inspector. You can only set this property
at runtime.

UpdateSQL1->DataSet = Query1;

The update SQL statements in the update object are not automatically executed when
the update dataset’s ApplyUpdates method is called. To update records, you must
supply a handler for the dataset component’s OnUpdateRecord event and call the
update object’s ExecSQL or Apply method. This invokes the update object for each
record that requires updating.

In the handler for the dataset’s OnUpdateRecord event, the minimum actions that you
need to take in that handler are:

• Calling the update object’s SetParams method (if you later call ExecSQL).
• Executing the update object for the current record with ExecSQL or Apply.
• Setting the event handler’s UpdateAction parameter to uaApplied.

You may optionally perform data validation, data modification, or other operations
that depend on each record’s update.

Note It is also possible to have one update object associated with the dataset using the
dataset component’s UpdateObject property, and the second and subsequent update
objects associated using their DataSet properties. The first update object is executed
automatically on calling the dataset component’s ApplyUpdates method. The rest
need to be manually executed.

Creating SQL statements for update components

To update a record in an associated dataset, an update object uses one of three SQL
statements. The three SQL statements delete, insert, and modify records cached for
update. The statements are contained in the update object’s string list properties
DeleteSQL, InsertSQL, and ModifySQL. As each update object is used to update a
single table, the object’s update statements each reference the same base table.

As the update for each record is applied, one of the three SQL statements is executed
against the base table updated. Which SQL statement is executed depends on the
UpdateKind parameter automatically generated for each record’s update.

Creating the SQL statements for update objects can be done at design time or at
runtime. The sections that follow describe the process of creating update SQL
statements in greater detail.

Creating SQL statements at design time
To create the SQL statements for an update component,

1 Set focus to the dataset component on the form.

2 Select the name of the update component from the drop-down list for the dataset
component’s UpdateObject property in the Object Inspector. This step ensures that
the Update SQL editor you invoke in the next step can determine suitable default
values to use for SQL generation options.

26-14 D e v e l o p e r ’ s G u i d e

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

3 Right-click the update component and select UpdateSQL Editor from the context
menu to invoke the Update SQL editor. The editor creates SQL statements for the
update component’s ModifySQL, InsertSQL, and DeleteSQL properties based on the
underlying data set and on the values you supply to it.

The Update SQL editor has two pages. The Options page is visible when you first
invoke the editor. Use the Table Name combo box to select the table to update. When
you specify a table name, the Key Fields and Update Fields list boxes are populated
with available columns.

The Update Fields list box indicates which columns should be updated. When you
first specify a table, all columns in the Update Fields list box are selected for
inclusion. You can multi-select fields as desired.

The Key Fields list box is used to specify the columns to use as keys during the
update. For Paradox, dBASE, and FoxPro the columns you specify here must
correspond to an existing index, but this is not a requirement for remote SQL
databases. Instead of setting Key Fields you can click the Primary Keys button to
choose key fields for the update based on the table’s primary index. Click Dataset
Defaults to return the selection lists to the original state: all fields selected as keys and
all selected for update.

Check the Quote Field Names check box if your server requires quotation marks
around field names.

After you specify a table, select key columns, and select update columns, click
Generate SQL to generate the preliminary SQL statements to associate with the
update component’s ModifySQL, InsertSQL, and DeleteSQL properties. In most cases
you may want or need to fine tune the automatically generated SQL statements.

To view and modify the generated SQL statements, select the SQL page. If you have
generated SQL statements, then when you select this page, the statement for the
ModifySQL property is already displayed in the SQL Text memo box. You can edit the
statement in the box as desired.

Important Keep in mind that generated SQL statements are starting points for creating update
statements. You may need to modify these statements to make them execute
correctly. For example, when working with data that contains NULL values, you
need to modify the WHERE clause to read

WHERE field IS NULL

rather then using the generated field variable. Test each of the statements directly
yourself before accepting them.

Use the Statement Type radio buttons to switch among generated SQL statements
and edit them as desired.

To accept the statements and associate them with the update component’s SQL
properties, click OK.

Understanding parameter substitution in update SQL statements
Update SQL statements use a special form of parameter substitution that enables you
to substitute old or new field values in record updates. When the Update SQL editor

W o r k i n g w i t h c a c h e d u p d a t e s 26-15

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

generates its statements, it determines which field values to use. When you write the
update SQL, you specify the field values to use.

When the parameter name matches a column name in the table, the new value in the
field in the cached update for the record is automatically used as the value for the
parameter. When the parameter name matches a column name prefixed by the string
“OLD_”, then the old value for the field will be used. For example, in the update SQL
statement below, the parameter :LastName is automatically filled with the new field
value in the cached update for the inserted record.

INSERT INTO Names
(LastName, FirstName, Address, City, State, Zip)
VALUES (:LastName, :FirstName, :Address, :City, :State, :Zip)

New field values are typically used in the InsertSQL and ModifySQL statements. In an
update for a modified record, the new field value from the update cache is used by
the UPDATE statement to replace the old field value in the base table updated.

In the case of a deleted record, there are no new values, so the DeleteSQL property
uses the “:OLD_FieldName” syntax. Old field values are also normally used in the
WHERE clause of the SQL statement for a modified or deletion update to determine
which record to update or delete.

In the WHERE clause of an UPDATE or DELETE update SQL statement, supply at
least the minimal number of parameters to uniquely identify the record in the base
table that is updated with the cached data. For instance, in a list of customers, using
just a customer’s last name may not be sufficient to uniquely identify the correct
record in the base table; there may be a number of records with “Smith” as the last
name. But by using parameters for last name, first name, and phone number could be
a distinctive enough combination. Even better would be a unique field value like a
customer number.

For more information about old and new value parameter substitution, see
“Accessing a field’s OldValue, NewValue, and CurValue properties” on page 26-26.

Composing update SQL statements
The TUpdateSQL component has three properties for updating SQL statements:
DeleteSQL, InsertSQL, and ModifySQL. As the names of the properties imply, these
SQL statements delete, insert, and modify records in the base table.

The DeleteSQL property should contain only an SQL statement with the DELETE
command. The base table to be updated must be named in the FROM clause. So that
the SQL statement only deletes the record in the base table that corresponds to the
record deleted in the update cache, use a WHERE clause. In the WHERE clause, use a
parameter for one or more fields to uniquely identify the record in the base table that
corresponds to the cached update record. If the parameters are named the same as
the field and prefixed with “OLD_”, the parameters are automatically given the
values from the corresponding field from the cached update record. If the parameter
are named in any other manner, you must supply the parameter values.

DELETE FROM Inventory I
WHERE (I.ItemNo = :OLD_ItemNo)

26-16 D e v e l o p e r ’ s G u i d e

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

Some tables types might not be able to find the record in the base table when fields
used to identify the record contain NULL values. In these cases, the delete update
fails for those records. To accommodate this, add a condition for those fields that
might contain NULLs using the IS NULL predicate (in addition to a condition for a
non-NULL value). For example, when a FirstName field may contain a NULL value:

DELETE FROM Names
WHERE (LastName = :OLD_LastName) AND

((FirstName = :OLD_FirstName) OR (FirstName IS NULL))

The InsertSQL statement should contain only an SQL statement with the INSERT
command. The base table to be updated must be named in the INTO clause. In the
VALUES clause, supply a comma-separated list of parameters. If the parameters are
named the same as the field, the parameters are automatically given the value from
the cached update record. If the parameter are named in any other manner, you must
supply the parameter values. The list of parameters supplies the values for fields in
the newly inserted record. There must be as many value parameters as there are
fields listed in the statement.

INSERT INTO Inventory
(ItemNo, Amount)
VALUES (:ItemNo, 0)

The ModifySQL statement should contain only an SQL statement with the UPDATE
command. The base table to be updated must be named in the FROM clause. Include
one or more value assignments in the SET clause. If values in the SET clause
assignments are parameters named the same as fields, the parameters are
automatically given values from the fields of the same name in the updated record in
the cache. You can assign additional field values using other parameters, as long as
the parameters are not named the same as any fields and you manually supply the
values. As with the DeleteSQL statement, supply a WHERE clause to uniquely
identify the record in the base table to be updated using parameters named the same
as the fields and prefixed with “OLD_”. In the update statement below, the
parameter :ItemNo is automatically given a value and :Price is not.

UPDATE Inventory I
SET I.ItemNo = :ItemNo, Amount = :Price
WHERE (I.ItemNo = :OLD_ItemNo)

Considering the above update SQL, take an example case where the application
end-user modifies an existing record. The original value for the ItemNo field is 999.
In a grid connected to the cached dataset, the end-user changes the ItemNo field
value to 123 and Amount to 20. When the ApplyUpdates method is invoked, this
SQL statement affects all records in the base table where the ItemNo field is 999,
using the old field value in the parameter :OLD_ItemNo. In those records, it changes
the ItemNo field value to 123 (using the parameter :ItemNo, the value coming from
the grid) and Amount to 20.

Using an update component’s Query property
Use the Query property of an update component to access one of the update SQL
properties DeleteSQL, InsertSQL, or ModifySQL, such as to set or alter the SQL
statement. Use UpdateKind constant values as an index into the array of query
components. The Query property is only accessible at runtime.

W o r k i n g w i t h c a c h e d u p d a t e s 26-17

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

The statement below uses the UpdateKind constant ukDelete with the Query property
to access the DeleteSQL property.

UpdateSQL1->Query[ukDelete]->SQL->Clear();
UpdateSQL1->Query[ukDelete]->SQL->Add(”DELETE FROM Inventory I”);
UpdateSQL1->Query[ukDelete]->SQL->Add(”WHERE (I.ItemNo = :OLD_ItemNo)”);

Normally, the properties indexed by the Query property are set at design time using
the Update SQL editor. You might, however, need to access these values at runtime if
you are generating a unique update SQL statement for each record and not using
parameter binding. The following example generates a unique Query property value
for each row updated:

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet,
TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
TUpdateSQL *pUpdate = (TUpdateSQL *)((TBDEDataSet *)DataSet)->UpdateObject;
switch (UpdateKind)
{

case ukModify:
pUpdate->SQL[UpdateKind]->Text =

Format("UPDATE EMPTAB SET SALARY = %d WHERE EMPNO = %d",
ARRAYOFCONST((EmpAuditSalary->NewValue->AsInteger,

EmpAuditEmpNo->OldValue->AsInteger)));
break;

case ukInsert:
ƒ
break;

case ukDelete:
ƒ
break;

}
pUpdate->ExecSQL(UpdateKind);
UpdateAction = uaApplied;

}

Note Query returns a value of type TDataSetUpdateObject. To treat this return value as a
TUpdateSQL component, to use properties and methods specific to TUpdateSQL,
typecast the UpdateObject property. For example:

((TUpdateSQL *)Query1->UpdateObject)->Query[UpdateKind];

For an example of using this property, see “Calling the SetParams method” on
page 26-19.

Using the DeleteSQL, InsertSQL, and ModifySQL properties
Use the DeleteSQL, InsertSQL, and ModifySQL properties to set the update SQL
statements for each. These properties are all string list containers. Use the methods of
string lists to enter SQL statement lines as items in these properties. Use an integer
value as an index to reference a specific line within the property. The DeleteSQL,
InsertSQL, and ModifySQL properties are accessible both at design time and at runtime.

UpdateSQL->DeleteSQL->Clear();
UpdateSQL->DeleteSQL->Add(”DELETE FROM Inventory I”);
UpdateSQL->DeleteSQL->Add(”WHERE (I.ItemNo = :OLD_ItemNo)”);

26-18 D e v e l o p e r ’ s G u i d e

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

Below, the third line of an SQL statement is altered using an index of 2 with the
ModifySQL property.

UpdateSQL1.ModifySQL->Strings[2] = ‘WHERE ItemNo = :ItemNo’;

Executing update statements

There are a number of methods involved in executing the update SQL for an
individual record update. These method calls are typically used within a handler for
the OnUpdateRecord event of the update object to execute the update SQL to apply the
current cached update record. The various methods are applicable under different
circumstances. The sections that follow discuss each of the methods in detail.

Calling the Apply method
The Apply method for an update component manually applies updates for the
current record. There are two steps involved in this process:

1 Values for the record are bound to the parameters in the appropriate update SQL
statement.

2 The SQL statement is executed.

Call the Apply method to apply the update for the current record in the update cache.
Only use Apply when the update object is not associated with the dataset using the
dataset component’s UpdateObject property, in which case the update object is not
automatically executed. Apply automatically calls the SetParams method to bind old
and new field values to specially named parameters in the update SQL statement. Do
not call SetParams yourself when using Apply. The Apply method is most often called
from within a handler for the dataset’s OnUpdateRecord event.

If you use the dataset component’s UpdateObject property to associate dataset and
update object, this method is called automatically. Do not call Apply in a handler for
the dataset component’s OnUpdateRecord event as this will result in a second attempt
to apply the current record’s update.

In a handler for the OnUpdateRecord event, the UpdateKind parameter is used to
determine which update SQL statement to use. If invoked by the associated dataset,
the UpdateKind is set automatically. If you invoke the method in an OnUpdateRecord
event, pass an UpdateKind constant as the parameter of Apply.

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet,
TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
UpdateSQL1->Apply(UpdateKind);
UpdateAction = uaApplied;

}

If an exception is raised during the execution of the update program, execution
continues in the OnUpdateError event, if it is defined.

Note The operations performed by Apply are analogous to the SetParams and ExecSQL
methods described in the following sections.

W o r k i n g w i t h c a c h e d u p d a t e s 26-19

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

Calling the SetParams method
The SetParams method for an update component uses special parameter substitution
rules to substitute old and new field values into the update SQL statement.
Ordinarily, SetParams is called automatically by the update component’s Apply
method. If you call Apply directly in an OnUpdateRecord event, do not call SetParams
yourself. If you execute an update object using its ExecSQL method, call SetParams to
bind values to the update statement’s parameters.

SetParams sets the parameters of the SQL statement indicated by the UpdateKind
parameter. Only those parameters that use a special naming convention
automatically have a value assigned. If the parameter has the same name as a field or
the same name as a field prefixed with “OLD_” the parameter is automatically a
value. Parameters named in other ways must be manually assigned values. For more
information see the section “Understanding parameter substitution in update SQL
statements” on page 26-14.

The following example illustrates one such use of SetParams:

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet,
TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
TUpdateSQL *pUpdate = (TUpdateSQL *)((TBDEDataSet *)DataSet)->UpdateObject;
pUpdate->SetParams(UpdateKind);
if (UpdateKind == ukModified)

pUpdate->Query[UpdateKind]->ParamByName("DateChanged")->Value = Now();
pUpdate->ExecSQL(UpdateKind);
UpdateAction = uaApplied;

}

Note This example assumes that the ModifySQL property for the update component is as
follows:

UPDATE EmpAudit
SET EmpNo = :EmpNo, Salary = :Salary, Changed = :DateChanged
WHERE EmpNo = :OLD_EmpNo

In this example, the call to SetParams supplies values to the EmpNo and Salary
parameters. The DateChanged parameter is not set because the name does not match
the name of a field in the dataset, so the next line of code sets this value explicitly.

Calling the ExecSQL method
The ExecSQL method for an update component manually applies updates for the
current record. There are two steps involved in this process:

1 Values for the record are bound to the parameters in the appropriate update SQL
statement.

2 The SQL statement is executed.

Call the ExecSQL method to apply the update for the current record in the update
cache. Only use ExecSQL when the update object is not associated with the dataset
using the dataset component’s UpdateObject property, in which case the update object
is not automatically executed. ExecSQL does not automatically call the SetParams
method to bind update SQL statement parameter values; call SetParams yourself

26-20 D e v e l o p e r ’ s G u i d e

U s i n g u p d a t e o b j e c t s t o u p d a t e a d a t a s e t

before invoking ExecSQL. The ExecSQL method is most often called from within a
handler for the dataset’s OnUpdateRecord event.

If you use the dataset component’s UpdateObject property to associate dataset and
update object, this method is called automatically. Do not call ExecSQL in a handler
for the dataset component’s OnUpdateRecord event as this will result in a second
attempt to apply the current record’s update.

In a handler for the OnUpdateRecord event, the UpdateKind parameter is used to
determine which update SQL statement to use. If invoked by the associated dataset,
the UpdateKind is set automatically. If you invoke the method in an OnUpdateRecord
event, pass an UpdateKind constant as the parameter of ExecSQL.

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet,
 TUpdateKind UpdateKind, TUpdateAction &UpdateAction)
{

UpdateSQL1->SetParams(UpdateKind);
UpdateSQL1->ExecSQL(UpdateKind);
Applied = uaApplied;

}

If an exception is raised during the execution of the update program, execution
continues in the OnUpdateError event, if it is defined.

Note The operations performed by ExecSQL and SetParams are analogous to the Apply
method described previously.

Using dataset components to update a dataset

Applying cached updates usually involves use of one or more update objects. The
update SQL statements for these objects apply the data changes to the base table.
Using update components is the easiest way to update a dataset, but it is not a
requirement. You can alternately use dataset components like TTable and TQuery to
apply the cached updates.

In a handler for the dataset component’s OnUpdateRecord event, use the properties
and methods of another dataset component to apply the cached updates for each
record.

For example, the following code uses a table component to perform updates:

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet,
TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
if (UpdateKind == ukInsert)
{

TVarRec values[2];
for (int i = 0; i < 2; i++)
values[i] = DataSet->Fields[i]->NewValue;

UpdateTable->AppendRecord(values, 1)
}

W o r k i n g w i t h c a c h e d u p d a t e s 26-21

U p d a t i n g a r e a d - o n l y r e s u l t s e t

else
{

TLocateOptions lo;
lo.Clear();
if (UpdateTable->Locate("KeyField", DataSet->Fields[0]->OldValue, lo))
switch UpdateKind
{

case ukModify:
UpdateTable->Edit();
UpdateTable->Fields[1]->Value = DataSet->Fields[1]->Value;
UpdateTable->Post();
break;

case ukDelete:
UpdateTable->Delete();
break;

}
}
UpdateAction = uaApplied;

}

Updating a read-only result set
Although the Borland Database Engine (BDE) attempts to provide an updatable, or
“live” query result when the RequestLive property for a TQuery component is true,
there are some situations where it cannot do so. (For more information see the section
“Deciding when to use cached updates” on page 26-1.)

In these situations, you can manually update a dataset as follows:

1 Add a TUpdateSQL component to the data module in your application.

2 Set the dataset component’s UpdateObject property to the name of the TUpdateSQL
component in the data module.

3 Enter the SQL update statement for the result set to the update component’s
ModifySQL, InsertSQL, or DeleteSQL properties, or use the Update SQL editor.

4 Close the dataset.

5 Set the dataset component’s CachedUpdates property to true.

6 Reopen the dataset.

Note In many circumstances, you may also want to write an OnUpdateRecord event handler
for the dataset.

Controlling the update process
When a dataset component’s ApplyUpdates method is called, an attempt is made to
apply the updates for all records in the update cache to the corresponding records in
the base table. As the update for each changed, deleted, or newly inserted record is
about to be applied, the dataset component’s OnUpdateRecord event fires.

26-22 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g t h e u p d a t e p r o c e s s

Providing a handler for the OnUpdateRecord event allows you to perform actions just
before the current record’s update is actually applied. Such actions can include special
data validation, updating other tables, or executing multiple update objects. A handler
for the OnUpdateRecord event affords you greater control over the update process.

The sections that follow describe when you might need to provide a handler for the
OnUpdateRecord event and how to create a handler for this event.

Determining if you need to control the updating process

Some of the time when you use cached updates, all you need to do is call
ApplyUpdates to apply cached changes to the base tables in the database (for example,
when you have exclusive access to a local Paradox or dBASE table through a TTable
component). In most other cases, however, you either might want to or must provide
additional processing to ensure that updates can be properly applied. Use a handler
for the updated dataset component’s OnUpdateRecord event to provide this
additional processing.

For example, you might want to use the OnUpdateRecord event to provide validation
routines that adjust data before it is applied to the table, or you might want to use the
OnUpdateRecord event to provide additional processing for records in master and
detail tables before writing them to the base tables.

In many cases you must provide additional processing. For example, if you access
multiple tables using a joined query, then you must provide one TUpdateSQL object
for each table in the query, and you must use the OnUpdateRecord event to make sure
each update object is executed to write changes to the tables.

The following sections describe how to create and use an TUpdateSQL object and how
to create and use an OnUpdateRecord event.

Creating an OnUpdateRecord event handler

The OnUpdateRecord event handles cases where a single update component cannot be
used to perform the required updates, or when your application needs more control
over special parameter substitution. The OnUpdateRecord event fires once for the
attempt to apply the changes for each modified record in the update cache.

To create an OnUpdateRecord event handler for a dataset:

1 Select the dataset component.

2 Choose the Events page in the Object Inspector.

3 Double-click the OnUpdateRecord property value to invoke the code editor.

Here is the skeleton code for an OnUpdateRecord event handler:

void __fastcall TForm1::DataSetUpdateRecord(TDataSet *DataSet,
TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
// Perform updates here...

}

W o r k i n g w i t h c a c h e d u p d a t e s 26-23

H a n d l i n g c a c h e d u p d a t e e r r o r s

The DataSet parameter specifies the cached dataset with updates.

The UpdateKind parameter indicates the type of update to perform. Values for
UpdateKind are ukModify, ukInsert, and ukDelete. When using an update component,
you need to pass this parameter to its execution and parameter binding methods. For
example using ukModify with the Apply method executes the update object’s
ModifySQL statement. You may also need to inspect this parameter if your handler
performs any special processing based on the kind of update to perform.

The UpdateAction parameter indicates if you applied an update or not. Values for
UpdateAction are uaFail (the default), uaAbort, uaSkip, uaRetry, uaApplied. Unless you
encounter a problem during updating, your event handler should set this parameter
to uaApplied before exiting. If you decide not to update a particular record, set the
value to uaSkip to preserve unapplied changes in the cache.

If you do not change the value for UpdateAction, the entire update operation for the
dataset is aborted. For more information about UpdateAction, see “Specifying the
action to take” on page 26-25.

In addition to these parameters, you will typically want to make use of the OldValue
and NewValue properties for the field component associated with the current record.
For more information about OldValue and NewValue, see “Accessing a field’s
OldValue, NewValue, and CurValue properties” on page 26-26.

Important The OnUpdateRecord event, like the OnUpdateError and OnCalcFields event handlers,
should never call any methods that change which record in a dataset is the current
record.

Here is an OnUpdateRecord event handler that executes two update components
using their Apply methods. The UpdateKind parameter is passed to the Apply method
to determine which update SQL statement in each update object to execute.

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet,
TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
EmployeeUpdateSQL->Apply(UpdateKind);
JobUpdateSQL->Appply(UpdateKind);
UpdateAction = uaApplied;

}

In this example the DataSet parameter is not used. This is because the update
components are not associated with the dataset component using its UpdateObject
property.

Handling cached update errors
Because there is a delay between the time a record is first cached and the time cached
updates are applied, there is a possibility that another application may change the
record in a database before your application applies its updates. Even if there is no
conflict between user updates, errors can occur when a record’s update is applied.
The Borland Database Engine (BDE) specifically checks for user update conflicts and
other conditions when attempting to apply updates, and reports an error.

26-24 D e v e l o p e r ’ s G u i d e

H a n d l i n g c a c h e d u p d a t e e r r o r s

A dataset component’s OnUpdateError event enables you to catch and respond to
errors. You should create a handler for this event if you use cached updates. If you do
not, and an error occurs, the entire update operation fails.

Caution Do not call any dataset methods that change the current record (such as Next and
Prior) in an OnUpdateError event handler. Doing so causes the event handler to enter
an endless loop.

Here is the skeleton code for an OnUpdateError event handler:

void __fastcall TForm1::DataSetUpdateError(TDataSet *DataSet,
EDatabaseError *E, TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
// Respond to errors here...

}

The following sections describe specific aspects of error handling using an
OnUpdateError handler, and how the event’s parameters are used.

Referencing the dataset to which to apply updates

DataSet references the dataset to which updates are applied. To process new and old
record values during error handling you must supply this reference.

Indicating the type of update that generated an error

The OnUpdateRecord event receives the parameter UpdateKind, which of type
TUpdateKind. It describes the type of update that generated the error. Unless your
error handler takes special actions based on the type of update being carried out,
your code probably will not make use of this parameter.

The following table lists possible values for UpdateKind:

The example below shows the decision construct to perform different operations
based on the value of the UpdateKind parameter.

void __fastcall TForm1::Query1UpdateError(TDataSet *DataSet,
EDatabaseError *E, TUpdateKind UpdateKind,
TUpdateAction &UpdateAction)

{
switch (UpdateKind)
{

case ukModify:
// handle error due to applying record modification update
break;

Table 26.3 UpdateKind values

Value Meaning

ukModify Editing an existing record caused an error.

ukInsert Inserting a new record caused an error.

ukDelete Deleting an existing record caused an error.

W o r k i n g w i t h c a c h e d u p d a t e s 26-25

H a n d l i n g c a c h e d u p d a t e e r r o r s

case ukInsert:
// handle error due to applying record insertion update
break;

case ukDelete:
// handle error due to applying record deletion update
break;

}
}

Specifying the action to take

UpdateAction is a parameter of type TUpdateAction. When your update error handler
is first called, the value for this parameter is always set to uaFail. Based on the error
condition for the record that caused the error and what you do to correct it, you
typically set UpdateAction to a different value before exiting the handler. UpdateAction
can be set to one of the following values:

If your error handler can correct the error condition that caused the handler to be
invoked, set UpdateAction to the appropriate action to take on exit. For error
conditions you correct, set UpdateAction to uaRetry to apply the update for the record
again.

When set to uaSkip, the update for the row that caused the error is skipped, and the
update for the record remains in the cache after all other updates are completed.

Both uaFail and uaAbort cause the entire update operation to end. uaFail raises an
exception and displays an error message. uaAbort raises a silent exception (does not
display an error message).

Note If an error occurs during the application of cached updates, an exception is thrown
and an error message displayed. Unless the ApplyUpdates is called from within a
try...catch construct, an error message to the user displayed from inside your
OnUpdateError event handler may cause your application to display the same error
message twice. To prevent error message duplication, set UpdateAction to uaAbort to
turn off the system-generated error message display.

Table 26.4 UpdateAction values

Value Meaning

uaAbort Aborts the update operation without displaying an error message.

uaFail Aborts the update operation, and displays an error message. This is the default
value for UpdateAction when you enter an update error handler.

uaSkip Skips updating the row, but leaves the update for the record in the cache.

uaRetry Repeats the update operation. Correct the error condition before setting
UpdateAction to this value.

uaApplied Not used in error handling routines.

26-26 D e v e l o p e r ’ s G u i d e

H a n d l i n g c a c h e d u p d a t e e r r o r s

The uaApplied value should only be used inside an OnUpdateRecord event. Do not set
this value in an update error handler. For more information about update record
events, see “Creating an OnUpdateRecord event handler” on page 26-22.

Working with error message text

The E parameter is usually of type EDBEngineError. From this exception type, you
can extract an error message that you can display to users in your error handler. For
example, the following code could be used to display the error message in the
caption of a dialog box:

ErrorLabel->Caption = E->Message;

This parameter is also useful for determining the actual cause of the update error.
You can extract specific error codes from EDBEngineError, and take appropriate
action based on it. For example, the following code checks to see if the update error is
related to a key violation, and if it is, it sets the UpdateAction parameter to uaSkip:

// include BDE.hpp in your unit file for this example

void __fastcall TForm1::DataSetUpdateError(TDataSet *DataSet,
EDatabaseError *E, TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
UpdateAction = uaFail // initialize to fail the update
if (E->ClassNameIs("EDBEngineError"))
{

EDBEngineError *pDBE = (EDBEngineError *)E;
if (pDBE->Errors[pDBE->ErrorCount - 1]->ErrorCode == DBIERR_KEYVIOL)
UpdateAction = uaSkip; // Key violation, just skip this record

}
}

Accessing a field’s OldValue, NewValue, and CurValue properties

When cached updates are enabled for records, the original values for fields in each
record are stored in a read-only TField property called OldValue. Changed values are
stored in the analogous TField property NewValue. In client datasets, an additional
TField property, CurValue, stores the field values that currently appear in the dataset.
CurValue will be the same as OldValue unless another user has edited the record. If
another user has edited the record, CurValue will give the current value of the field
which was posted by that user.

These values provide the only way to inspect and change update values in
OnUpdateError and OnUpdateRecord event handlers. For more information about
OnUpdateRecord, see “Creating an OnUpdateRecord event handler” on page 26-22.

In some cases, you may be able to use the OldValue, NewValue, and CurValue
properties to determine the cause of an error and correct it. For example, the

W o r k i n g w i t h c a c h e d u p d a t e s 26-27

H a n d l i n g c a c h e d u p d a t e e r r o r s

following code handles corrections to a salary field which can only be increased by 25
percent at a time (enforced by a constraint on the server):

void __fastcall TForm1::DataSetUpdateError(TDataSet *DataSet,
EDatabaseError *E, TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{

int OldSalary = EmpTabSalary->OldValue;
int SalaryDif = EmpTabSalary->NewValue - OldSalary;
if (SalaryDif > OldSalary / 4) // Increase too large, drop it back to 25%
{

EmpTabSalary->NewValue = OldSalary + OldSalary/4;
UpdateAction = uaRetry;

}
else

UpdateAction = uaSkip;
}

NewValue is decreased to a 25 percent increase in the case where the cached update
would have increased salary by a larger percentage. Then the update operation is
retried. To improve the efficiency of this routine, the OldValue parameter is stored in
a local variable.

26-28 D e v e l o p e r ’ s G u i d e

U s i n g d a t a c o n t r o l s 27-1

C h a p t e r

27
Chapter27Using data controls

This chapter describes how to use data-aware visual controls to display and edit data
associated with the tables and queries in your database application. A data-aware
control derives display data from a database source outside the application, and can
optionally post (or return) data changes to a data source.

This chapter describes basic features common to all data control components,
including how and when to use individual components.

Most data-aware components represent information stored in a dataset. These can be
grouped into controls that represent a single field and controls that represent sets of
records, such as DBGrids and control grids. In addition, the navigator control,
TDBNavigator, is a visual tool that lets your users navigate and manipulate records.

More complex data-aware controls for decision support are discussed in Chapter 28,
“Using decision support components.”

Using common data control features
The following tasks are common to most data controls:

• Associating a data control with a dataset
• Editing and updating data
• Disabling and enabling data display
• Refreshing data display
• Enabling mouse, keyboard, and timer events

You place data controls from the Data Controls page of the Component palette onto
the forms in your database application. Data controls generally enable you to display
and edit fields of data associated with the current record in a dataset. Table 27.1
summarizes the data controls that appear on the Data Controls page of the
Component palette.

27-2 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Data controls are data-aware at design time. When you set a control’s DataSource
property to an active data source while building an application, you can immediately
see live data in the controls. You can use the Fields editor to scroll through a dataset
at design time to verify that your application displays data correctly without having
to compile and run the application. For more information about the Fields editor, see
“Creating persistent fields” on page 20-5 in Chapter 20, “Working with field
components.”

At runtime, data controls display data and, if your application, the control, and the
database all permit it, a user can edit data through the control.

Associating a data control with a dataset

Data controls connect to datasets by using a data source. A data source component
acts as a conduit between the control and a dataset containing data. It is described in
more detail in “Using data sources” on page 27-5.

Table 27.1 Data controls

Data control Description

TDBGrid Displays information from a data source in a tabular format. Columns in
the grid correspond to columns in the underlying table or query’s
dataset. Rows in the grid correspond to records.

TDBNavigator Navigates through data records in a dataset. updating records, posting
records, deleting records, canceling edits to records, and refreshing data
display.

TDBText Displays data from a field as a label.

TDBEdit Displays data from a field in an edit box.
TDBMemo Displays data from a memo or BLOB field in a scrollable, multi-line edit

box.

TDBImage Displays graphics from a data field in a graphics box.

TDBListBox Displays a list of items from which to update a field in the current data
record.

TDBComboBox Displays a list of items from which to update a field, and also permits
direct text entry like a standard data-aware edit box.

TDBCheckBox Displays a check box that indicates the value of a Boolean field.

TDBRadioGroup Displays a set of mutually exclusive options for a field.

TDBLookupListBox Displays a list of items looked up from another dataset based on the
value of a field.

TDBLookupComboBox Displays a list of items looked up from another dataset based on the
value of a field, and also permits direct text entry like a standard
data-aware edit box.

TDBCtrlGrid Displays a configurable, repeating set of data-aware controls within a
grid.

TDBRichEdit Displays formatted data from a field in an edit box.

U s i n g d a t a c o n t r o l s 27-3

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

To associate a data control with a dataset,

1 Place a dataset and a data source in a data module (or on a form), and set their
properties as appropriate.

2 Place a data control from the Data Access page of the Component palette onto a
form.

3 Set the DataSource property of the control to the name of a data source component
from which to get data.

4 Set the DataField property of the control to the name of a field to display, or select a
field name from the drop-down list for the property. This step does not apply to
TDBGrid, TDBCtrlGrid, and TDBNavigator because they access all available fields
within a dataset.

5 Set the Active property of the dataset to true to display data in the control.

Editing and updating data

All data controls except the navigator display data from a database field. In addition,
you can use them to edit and update data as long as the underlying dataset
permits it.

Enabling editing in controls on user entry
A dataset must be in dsEdit state to permit editing to its data. The AutoEdit property
of the data source to which a control is attached determines if the underlying dataset
enters dsEdit mode when data in a control is modified in response to keyboard or
mouse events. When AutoEdit is true (the default), dsEdit mode is set as soon as
editing commences. If AutoEdit is false, you must provide a TDBNavigator control
with an Edit button (or some other method) to permit users to set dsEdit state at
runtime. For more information about TDBNavigator, see “Navigating and
manipulating records” on page 27-29.

Editing data in a control
The ReadOnly property of a data control determines if a user can edit the data
displayed by the control. If false (the default), users can edit data. To prevent users
from editing data in a control, set ReadOnly to true.

Properties of the data source and dataset underlying a control also determine if the
user can successfully edit data with a control and can post changes to the dataset.

The Enabled property of a data source determines if controls attached to a data source
are able to display fields values from the dataset, and therefore also determine if a
user can edit and post values. If Enabled is true (the default), controls can display field
values.

The ReadOnly property of the dataset determines if user edits can be posted to the
dataset. If false (the default), changes are posted to the dataset. If true, the dataset is
read-only.

27-4 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Note An additional read-only, runtime property CanModify determines if a dataset can be
modified. CanModify is set to true if a database permits write access. If CanModify is
false, a dataset is read-only. Query components that perform inserts and updates are,
by definition, able to write to an underlying database, provided that your application
and user have sufficient write privileges to the database itself.

The following table summarizes the factors that determine if a user can edit data in a
control and post changes to the database.

In all data controls except TDBGrid, when you modify a field, the modification is
copied to the underlying field component in a dataset when you Tab from the control.
If you press Esc before you Tab from a field, the data control abandons the
modifications, and the value of the field reverts to the value it held before any
modifications were made.

In TDBGrid, modifications are copied only when you move to a different record; you
can press Esc in any record of a field before moving to another record to cancel all
changes to the record.

When a record is posted, C++Builder checks all data-aware components associated
with the dataset for a change in status. If there is a problem updating any fields that
contain modified data, C++Builder raises an exception, and no modifications are
made to the record.

Disabling and enabling data display

When your application iterates through a dataset or performs a search, you should
temporarily prevent refreshing of the values displayed in data-aware controls each
time the current record changes. Preventing refreshing of values speeds the iteration
or search and prevents annoying screen-flicker.

DisableControls is a dataset method that disables display for all data-aware controls
linked to a dataset. As soon as the iteration or search is over, your application should
immediately call the dataset’s EnableControls method to re-enable display for the
controls.

Usually you disable controls before entering an iterative process. The iterative
process itself should take place inside a try...catch statement so that you can re-enable
controls even if an exception occurs during processing. The catch clause should call
EnableControls in addition to the call to EnableControls outside the try...catch block.

Table 27.2 Properties affecting editing in data controls

Component Property

Data control ReadOnly false false false true

Data Source Enabled true true false —

Dataset ReadOnly false false — —

Dataset CanModify true false — —

(database) write access Read/Write Read-only — —

Can write to database? Yes No No No

U s i n g d a t a c o n t r o l s 27-5

U s i n g d a t a s o u r c e s

The following code illustrates how you might use DisableControls and EnableControls
in this manner:

CustTable->DisableControls();
try
{

// cycle through all records of the dataset
for (CustTable->First(); !CustTable->EOF; CustTable->Next())
CustTable->First(); // Go to first record, which sets EOF false
{
// Process each record here
ƒ
}

}
catch (...)
{

CustTable->EnableControls();
throw; // re-throw the exception

}
CustTable->EnableControls();

Refreshing data display

The Refresh method for a dataset flushes local buffers and refetches data for an open
dataset. You can use this method to update the display in data-aware controls if you
think that the underlying data has changed because other applications have
simultaneous access to the data used in your application.

Important Refreshing can sometimes lead to unexpected results. For example, if a user is
viewing a record deleted by another application, then the record disappears the
moment your application calls Refresh. Data can also appear to change if another user
changes a record after you originally fetched the data and before you call Refresh.

Enabling mouse, keyboard, and timer events

The Enabled property of a data control determines whether it responds to mouse,
keyboard, or timer events, and passes information to its data source. The default
setting for this property is true.

To prevent mouse, keyboard, or timer events from accessing a data control, set its
Enabled property to false. When Enabled is false, a data source does not receive
information from the data control. The data control continues to display data, but the
text displayed in the control is dimmed.

Using data sources
A TDataSource component is a nonvisual database component that acts as a conduit
between a dataset and data-aware components on a form that enable the display,
navigation, and editing of the data underlying the dataset. Each data-aware control

27-6 D e v e l o p e r ’ s G u i d e

U s i n g d a t a s o u r c e s

needs to be associated with a data source component to have data to display and
manipulate. Similarly, all datasets must be associated with a data source component
in order for their data to be displayed and manipulated in data-aware controls on a
form.

Note You can also use data source components to link datasets in master-detail
relationships.

Place a data source component in a data module or form just as you place other
nonvisual database components. You should place at least one data source
component for each dataset component in a data module or form.

Using TDataSource properties

TDataSource has only a few published properties. The following sections discuss
these key properties and how to set them at design time and runtime.

Setting the DataSet property
The DataSet property specifies the dataset from which a data source component gets
its data. At design time, you can select a dataset from the drop-down list in the Object
Inspector. At runtime, you can switch the dataset for a data source component as
needed. For example, the following code swaps the dataset for the CustSource data
source component between the dataset components named Customers and Orders:

if (CustSource->DataSet == Customers)
CustSource->DataSet = Orders;

else
CustSource->DataSet = Customers;

You can also set the DataSet property to a dataset on another form to synchronize the
data controls on the two forms. For example:

void __fastcall TForm2::FormCreate(TObject *Sender)
{

DataSource1->DataSet = Form1->Table1;
}

Setting the Name property
Name enables you to specify a meaningful name for a data source component that
distinguishes it from all other data sources in your application. The name you supply
for a data source component is displayed below the component’s icon in a data
module.

Generally, you should provide a name for a data source component that indicates the
dataset with which it is associated. For example, suppose you have a dataset called
Customers, and that you link a data source component to it by setting the data source
component’s DataSet property to “Customers.” To make the connection between the
dataset and data source obvious in a data module, you should set the Name property
for the data source component to something like “CustomersSource.”

U s i n g d a t a c o n t r o l s 27-7

U s i n g d a t a s o u r c e s

Setting the Enabled property
The Enabled property determines if a data source component is connected to its
dataset. When Enabled is true, the data source is connected to a dataset.

You can temporarily disconnect a single data source from its dataset by setting
Enabled to false. When Enabled is false, all data controls attached to the data source
component go blank and become inactive until Enabled is set to true. It is
recommended, however, to control access to a dataset through a dataset component’s
DisableControls and EnableControls methods because they affect all attached data
sources.

Setting the AutoEdit property
The AutoEdit property of TDataSource specifies whether datasets connected to the
data source automatically enter Edit state when the user starts typing in data-aware
controls linked to the dataset. If AutoEdit is true (the default), the dataset
automatically enters Edit state when a user types in a linked data-aware control.
Otherwise, a dataset enters Edit state only when the application explicitly calls its
Edit method. For more information about dataset states, see “Determining and
setting dataset states” in Chapter 19, “Understanding datasets.”

Using TDataSource events

TDataSource has three event handlers associated with it:

• OnDataChange
• OnUpdateData
• OnStateChange

Using the OnDataChange event
An OnDataChange event occurs whenever the cursor moves to a new record. When
an application calls Next, Previous, Insert, or any method that leads to a change in the
cursor position, an OnDataChange is triggered.

This event is useful if an application is keeping components synchronized manually.

Using the OnUpdateData event
An OnUpdateData event occurs whenever the data in the current record is about to be
updated. For instance, an OnUpdateData event occurs after Post is called, but before
the data is actually posted to the database.

This event is useful if an application uses a standard (non-data aware) control and
needs to keep it synchronized with a dataset.

Using the OnStateChange event
An OnStateChange event occurs whenever the state for a data source’s dataset
changes. A dataset’s State property records its current state. OnStateChange is useful
for performing actions as a TDataSource’s state changes.

27-8 D e v e l o p e r ’ s G u i d e

C o n t r o l s t h a t r e p r e s e n t a s i n g l e f i e l d

For example, during the course of a normal database session, a dataset’s state
changes frequently. To track these changes, you could write an OnStateChange event
handler that displays the current dataset state in a label on a form. The following
code illustrates one way you might code such a routine. At runtime, this code
displays the current setting of the dataset’s State property and updates it every time it
changes:

void __fastcall TForm1::DataSource1StateChange(TObject *Sender)
{

AnsiString S;

switch (CustTable->State)
{

case dsInactive: S = "Inactive"; break;
case dsBrowse: S = "Browse"; break;
case dsEdit: S = "Edit"; break;
case dsInsert: S = "Insert"; break;
case dsSetKey: S = "SetKey"; break;

}
CustTableStateLabel->Caption = S;

}

Similarly, OnStateChange can be used to enable or disable buttons or menu items
based on the current state:

void __fastcall TForm1::DataSource1StateChange(TObject *Sender)
{

CustTableEditBtn->Enabled = (CustTable->State == dsBrowse);
CustTableCancelBtn->Enabled = (CustTable->State == dsInsert ||

CustTable->State == dsEdit ||
CustTable->State == dsSetKey);

ƒ
}

Controls that represent a single field
Many of the controls on the data controls page of the component palette represent a
single field in a database table. Most of these controls are similar in appearance and
function to standard Windows controls that you place on forms. For example, the
TDBEdit control is a data-aware version of the standard TEdit control which enables
users to see and edit a text string.

Which control you use depends on the type of data (text, formatted text, graphics,
boolean information, and so on) contained in the field.

Displaying data as labels

TDBText is a read-only control similar to the TLabelcomponent on the Standard page
of the Component palette and the TStaticText component on the Additional page. A
TDBText control is useful when you want to provide display-only data on a form that
allows user input in other controls. For example, suppose a form is created around

U s i n g d a t a c o n t r o l s 27-9

C o n t r o l s t h a t r e p r e s e n t a s i n g l e f i e l d

the fields in a customer list table, and that once the user enters a street address, city,
and state or province information in the form, you use a dynamic lookup to
automatically determine the zip code field from a separate table. A TDBText
component tied to the zip code table could be used to display the zip code field that
matches the address entered by the user.

TDBText gets the text it displays from a specified field in the current record of a
dataset. Because TDBText gets its text from a dataset, the text it displays is dynamic—
the text changes as the user navigates the database table. Therefore you cannot
specify the display text of TDBText at design time as you can with TLabel and
TStaticText.

Note When you place a TDBText component on a form, make sure its AutoSize property is
true (the default) to ensure that the control resizes itself as necessary to display data
of varying widths. If AutoSize is set to false, and the control is too small, data display
is truncated.

Displaying and editing fields in an edit box

TDBEdit is a data-aware version of an edit box component. TDBEdit displays the
current value of a data field to which it is linked and permits it to be edited using
standard edit box techniques.

For example, suppose CustomersSource is a TDataSource component that is active and
linked to an open TTable called CustomersTable. You can then place a TDBEdit
component on a form and set its properties as follows:

• DataSource: CustomersSource
• DataField: CustNo

The data-aware edit box component immediately displays the value of the current
row of the CustNo column of the CustomersTable dataset, both at design time and at
runtime.

Displaying and editing text in a memo control

TDBMemo is a data-aware component—similar to the standard TMemo component—
that can display binary large object (BLOB) data. TDBMemo displays multi-line text,
and permits a user to enter multi-line text as well. You can use TDBMemo controls to
display memo fields from dBASE and Paradox tables and text data contained in
BLOB fields.

By default, TDBMemo permits a user to edit memo text. To prevent editing, set the
ReadOnly property of the memo control to true. To display tabs and permit users to
enter them in a memo, set the WantTabs property to true. To limit the number of
characters users can enter into the database memo, use the MaxLength property. The
default value for MaxLength is 0, meaning that there is no character limit other than
that imposed by the operating system.

Several properties affect how the database memo appears and how text is entered.
You can supply scroll bars in the memo with the ScrollBars property. To prevent

27-10 D e v e l o p e r ’ s G u i d e

C o n t r o l s t h a t r e p r e s e n t a s i n g l e f i e l d

word wrap, set the WordWrap property to false. The Alignment property determines
how the text is aligned within the control. Possible choices are taLeftJustify (the
default), taCenter, and taRightJustify. To change the font of the text, use the Font
property.

At runtime, users can cut, copy, and paste text to and from a database memo control.
You can accomplish the same task programmatically by using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

Because the TDBMemo can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes to scroll through data records,
TDBMemo has an AutoDisplay property that controls whether the accessed data
should be displayed automatically. If you set AutoDisplay to false, TDBMemo displays
the field name rather than actual data. Double-click inside the control to view the
actual data.

Displaying and editing text in a rich edit memo control

TDBRichEdit is a data-aware component—similar to the standard TRichEdit
component—that can display formatted text stored in a binary large object (BLOB)
field. TDBRichEdit displays formatted, multi-line text, and permits a user to enter
formatted multi-line text as well. You can use TDBRichEdit controls to display memo
fields from dBASE and Paradox tables and text data contained in BLOB fields.

Note While TDBRichEdit provides properties and methods to enter and work with rich
text, it does not provide any user interface components to make these formatting
options available to the user. Your application must implement the user interface to
surface rich text capabilities.

By default, TDBRichEdit permits a user to edit memo text. To prevent editing, set the
ReadOnly property of the rich edit control to true. To display tabs and permit users to
enter them in a memo, set the WantTabs property to true. To limit the number of
characters users can enter into the database memo, use the MaxLength property. The
default value for MaxLength is 0, meaning that there is no character limit other than
that imposed by the operating system.

Because the TDBRichEdit can display large amounts of data, it can take time to
populate the display at runtime. To reduce the time it takes to scroll through data
records, TDBRichEdit has an AutoDisplay property that controls whether the accessed
data should be displayed automatically. If you set AutoDisplay to false, TDBRichEdit
displays the field name rather than actual data. Double-click inside the control to
view the actual data.

Displaying and editing graphics fields in an image control

TDBImage is a data-aware component that displays bitmapped graphics contained in
BLOB data fields. It captures BLOB graphics images from a dataset, and stores them
internally in the Windows.DIB format.

By default, TDBImage permits a user to edit a graphics image by cutting and pasting
to and from the Clipboard using the CutToClipboard, CopyToClipboard, and

U s i n g d a t a c o n t r o l s 27-11

C o n t r o l s t h a t r e p r e s e n t a s i n g l e f i e l d

PasteFromClipboard methods. You can, instead, supply your own editing methods
attached to the event handlers for the control.

By default, an image control displays as much of a graphic as fits in the control. You
can set the Stretch property to true to resize the graphic to fit within an image control
as it is resized.

Because the TDBImage can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes scroll through data records,
TDBImage has an AutoDisplay property that controls whether the accessed data
should automatically displayed. If you set AutoDisplay to false, TDBImage displays the
field name rather than actual data. Double-click inside the control to view the actual
data.

Displaying and editing data in list and combo boxes

There are four data controls that provide data-aware versions of standard list box
and combo box controls. These useful controls provide the user with a set of default
data values to choose from at runtime.

Note Data-aware list and combo box can be linked only to data sources for table
components. They do not work with query components.

The following table describes these controls.

Displaying and editing data in a list box
TDBListBox displays a scrollable list of items from which a user can choose to enter in
a data field. A data-aware list box displays a default value for a field in the current
record and highlights its corresponding entry in the list. If the current row’s field
value is not in the list, no value is highlighted in the list box. When a user selects a list
item, the corresponding field value is changed in the underlying dataset.

Use the String List editor at design time to create the list of items to display in the
Items property. The Height property determines how many items are visible in the list
box at one time. The IntegralHeight property controls the way the list box is displayed.
If IntegralHeight is false (the default), the bottom of the list box is determined by the

Table 27.3 Data-aware list box and combo box controls

Data control Description

TDBListBox Displays a list of items from which a user can update a field in the
current record. The list of display items is a property of the control.

TDBComboBox Combines an edit box with a list box. A user can update a field in the
current record by choosing a value from the drop-down list or by
entering a value. The list of display items is a property of the control.

TDBLookupListBox Displays a list of items from which a user can update a column in the
current record. The list of display items is looked up in another dataset.

TDBLookupComboBox Combines an edit box with a list box. A user can update a field in the
current record by choosing a value from the drop-down list or by
entering a value. The list of display items is looked up in another
dataset.

27-12 D e v e l o p e r ’ s G u i d e

C o n t r o l s t h a t r e p r e s e n t a s i n g l e f i e l d

ItemHeight property, and the bottom item might not be completely displayed. If
IntegralHeight is true the visible bottom item in the list box is fully displayed.

Displaying and editing data in a combo box
The TDBComboBox control combines the functionality of a data-aware edit control
and a drop-down list. At runtime it can display a drop-down list from which a user
can pick from a predefined set of values, and it can permit a user to enter an entirely
different value.

The Items property of the component specifies the items contained in the drop-down
list. At design time, use the String List Editor to populate the Items list. At runtime,
use the methods of the Items property to manipulate its string list.

When a control is linked to a field through its DataField property, it displays the value
for the field in the current row, regardless of whether it appears in the Items list. The
Style property determines user interaction with the control. By default, Style is
csDropDown, meaning a user can enter values from the keyboard, or choose an item
from the drop-down list. The following properties determine how the Items list is
displayed at runtime:

• Style determines the display style of the component:

• csDropDown (default): Displays a drop-down list with an edit box in which the
user can enter text. All items are strings and have the same height.

• csSimple: Combines an edit control with a fixed size list of items that is always
displayed. When setting Style to csSimple, be sure to increase the Height
property so that the list is displayed.

• csDropDownList: Displays a drop-down list and edit box, but the user cannot
enter or change values that are not in the drop-down list at runtime.

• csOwnerDrawFixed and csOwnerDrawVariable: Allows the items list to display
values other than strings (for example, bitmaps) or to use different fonts for
individual items in the list.

• DropDownCount: the maximum number of items displayed in the list. If the
number of Items is greater than DropDownCount, the user can scroll the list. If the
number of Items is less than DropDownCount, the list will be just large enough to
display all the Items.

• ItemHeight: The height of each item when style is csOwnerDrawFixed.

• Sorted: If true, then the Items list is displayed in alphabetical order.

Displaying and editing data in lookup list and combo boxes

TDBLookupListBox and TDBLookupComboBox are data-aware controls that derive a list
of display items from one of two sources:

• Lookup field defined for a dataset.
• Secondary data source, data field, and key.

U s i n g d a t a c o n t r o l s 27-13

C o n t r o l s t h a t r e p r e s e n t a s i n g l e f i e l d

In either case, a user is presented with a restricted list of choices from which to set a
valid field value. When a user selects a list item, the corresponding field value is
changed in the underlying dataset.

For example, consider an order form whose fields are tied to the OrdersTable.
OrdersTable contains a CustNo field corresponding to a customer ID, but OrdersTable
does not have any other customer information. The CustomersTable, on the other
hand, contains a CustNo field corresponding to a customer ID, and also contains
additional information, such as the customer’s company and mailing address. It
would be convenient if the order form enabled a clerk to select a customer by
company name instead of customer ID when creating an invoice. A
TDBLookupListBox that displays all company names in CustomersTable enables a user
to select the company name from the list, and set the CustNo on the order form
appropriately.

Note You can also set up a column in a data grid to act as a lookup combo box. For
information on how to do this, see “Defining a lookup list column” on page 27-20.

Specifying a list based on a lookup field
To specify list box items using a lookup field, the dataset to which you link the
control must already define a lookup field. For more information about defining a
lookup field for a dataset, see “Defining a lookup field” on page 20-9 in Chapter 20,
“Working with field components.”

To specify a lookup field for the list box items,

1 Set the DataSource property of the list box to the data source for the dataset
containing the lookup field to use.

2 Choose the lookup field to use from the drop-down list for the DataField property.

When you activate a table associated with a lookup list box control, the control
recognizes that its data field is a lookup field, and displays the appropriate values
from the lookup.

Specifying a list based on a secondary data source
If you have not defined a lookup field for a dataset, you can establish a similar
relationship using a secondary data source, a field value to search on in the
secondary data source, and a field value to return as a list item.

To specify a secondary data source for list box items,

1 Set the DataSource property of the list box to the data source for the control.

2 Choose a field into which to insert looked-up values from the drop-down list for
the DataField property. The field you choose cannot be a lookup field.

3 Set the ListSource property of the list box to the data source for the dataset that
contain the field whose values you want to look up.

4 Choose a field to use as a lookup key from the drop-down list for the KeyField
property. The drop-down list displays fields for the dataset associated with data
source you specified in Step 3. The field you choose need not be part of an index,
but if it is, lookup performance is even faster.

27-14 D e v e l o p e r ’ s G u i d e

C o n t r o l s t h a t r e p r e s e n t a s i n g l e f i e l d

5 Choose a field whose values to return from the drop-down list for the ListField
property. The drop-down list displays fields for the dataset associated with the
data source you specified in Step 3.

When you activate a table associated with a lookup list box control, the control
recognizes that its list items are derived from a secondary source, and displays the
appropriate values from that source.

Setting lookup list and combo box properties
The following table lists important properties for lookup list and combo boxes.

Searching incrementally for list item values
At runtime, users can use an incremental search to find list box items. When the
control has focus, for example, typing ‘ROB’ selects the first item in the list box
beginning with the letters ‘ROB’. Typing an additional ‘E’ selects the first item
starting with ‘ROBE’, such as ‘Robert Johnson’. The search is case-insensitive.
Backspace and Esc cancel the current search string (but leave the selection intact), as
does a two second pause between keystrokes.

Handling Boolean field values with check boxes

TDBCheckBox is a data-aware check box control. It can be used to set the values of
Boolean fields in a dataset. For example, a customer invoice form might have a check
box control that when checked indicates the customer is tax-exempt, and when
unchecked indicates that the customer is not tax-exempt.

Table 27.4 TDBLookupListBox and TDBLookupComboBox properties

Property Purpose

DataField Specifies the field in the master dataset which provides the key value to be
looked up in the lookup dataset. This field is modified when a user selects a
list box or combo box item. If DataField is set to a lookup field, the KeyField,
ListField, and ListSource properties are not used.

DataSource Specifies a data source for the control. If the selection in the control is changed,
this dataset is placed in dsEdit mode.

KeyField Specifies the field in the lookup dataset corresponding to DataField. The
control searches for the DataField value in the KeyField of the lookup dataset.
The lookup dataset should have an index on this field to facilitate lookups.

ListField Specifies the field of the lookup dataset to display in the control.

ListSource Specifies a data source for the secondary (lookup) dataset. The sort order of
items displayed in the list box or combo box is determined by the index
specified by the IndexName property of the lookup dataset. That index need
not be the same one used by the KeyField property.

RowCount TDBLookupListBox only. Specifies the number of lines of text to display in
the list box. The height of the list box is adjusted to fit this row count exactly.

DropDownRows TDBLookupComboBox only. Specifies the number of lines of text to display
in the drop-down list.

U s i n g d a t a c o n t r o l s 27-15

C o n t r o l s t h a t r e p r e s e n t a s i n g l e f i e l d

The data-aware check box control manages its checked or unchecked state by
comparing the value of the current field to the contents of ValueChecked and
ValueUnchecked properties. If the field value matches the ValueChecked property, the
control is checked. Otherwise, if the field matches the ValueUnchecked property, the
control is unchecked.

Note The values in ValueChecked and ValueUnchecked cannot be identical.

Set the ValueChecked property to a value the control should post to the database if the
control is checked when the user moves to another record. By default, this value is set
to “true,” but you can make it any alphanumeric value appropriate to your needs.
You can also enter a semicolon-delimited list of items as the value of ValueChecked. If
any of the items matches the contents of that field in the current record, the check box
is checked. For example, you can specify a ValueChecked string like:

DBCheckBox1->ValueChecked = “true;Yes;On”;

If the field for the current record contains values of “true,” “Yes,” or “On,” then the
check box is checked. Comparison of the field to ValueChecked strings is
case-insensitive. If a user checks a box for which there are multiple ValueChecked
strings, the first string is the value that is posted to the database.

Set the ValueUnchecked property to a value the control should post to the database if
the control is not checked when the user moves to another record. By default, this
value is set to “false,” but you can make it any alphanumeric value appropriate to
your needs. You can also enter a semicolon-delimited list of items as the value of
ValueUnchecked. If any of the items matches the contents of that field in the current
record, the check box is unchecked.

A data-aware check box is disabled whenever the field for the current record does
not contain one of the values listed in the ValueChecked or ValueUnchecked properties.

If the field with which a check box is associated is a logical field, the check box is
always checked if the contents of the field is true, and it is unchecked if the contents
of the field is false. In this case, strings entered in the ValueChecked and
ValueUnchecked properties have no effect on logical fields.

Restricting field values with radio controls

TDBRadioGroup is a data-aware version of a radio group control. It enables you to set
the value of a data field with a radio button control where there is a limited number
of possible values for the field. The radio group consists of one button for each value
a field can accept. Users can set the value for a data field by selecting the desired
radio button.

The Items property determines the number of radio buttons that appear in the group.
Items is a string list. One radio button is displayed for each string in Items, and each
string appears to the right of a radio button as the button’s label.

If the current value of a field associated with a radio group matches one of the strings
in the Items property, that radio button is selected. For example, if three strings,
“Red,” “Yellow,” and “Blue,” are listed for Items, and the field for the current record
contains the value “Blue,” then the third button in the group is selected.

27-16 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Note If the field does not match any strings in Items, a radio button may still be selected if
the field matches a string in the Values property. If the field for the current record
does not match any strings in Items or Values, no radio button is selected.

The Values property can contain an optional list of strings that can be returned to the
dataset when a user selects a radio button and posts a record. Strings are associated
with buttons in numeric sequence. The first string is associated with the first button,
the second string with the second button, and so on. For example, suppose Items
contains “Red,” “Yellow,” and “Blue,” and Values contains “Magenta,” “Yellow,”
and “Cyan.” If a user selects the button labeled “Red,” “Magenta” is posted to the
database.

If strings for Values are not provided, the Item string for a selected radio button is
returned to the database when a record is posted.

Viewing and editing data with TDBGrid
A TDBGrid control enables you to view and edit records in a dataset in a tabular grid
format.

Figure 27.1 TDBGrid control

Three factors affect the appearance of records displayed in a grid control:

• Existence of persistent column objects defined for the grid using the Columns
editor. Persistent column objects provide great flexibility setting grid and data
appearance.

• Creation of persistent field components for the dataset displayed in the grid. For
more information about creating persistent field components using the Fields
editor, see Chapter 20, “Working with field components.”

• The dataset’s ObjectView property setting for grids displaying ADT and array
fields. See “Displaying ADT and array fields” on page 27-23.

A grid control has a Columns property that is itself a wrapper on a TDBGridColumns
object. TDBGridColumns is a collection of TColumn objects representing all of the
columns in a grid control. You can use the Columns editor to set up column
attributes at design time, or use the Columns property of the grid to access the
properties, events, and methods of TDBGridColumns at runtime.

Current field Column titles

Record
indicator

U s i n g d a t a c o n t r o l s 27-17

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

The State property of a grid’s Columns property indicates if persistent column objects
exist for the grid. Columns->State is a runtime only property that is automatically set
for a grid. The default state is csDefault, meaning that persistent column objects do
not exist for the grid. In that case, the display of data in the grid is determined either
by persistent field components for the dataset displayed in the grid, or for datasets
without persistent field components, by a default set of data display characteristics.

Using a grid control in its default state

If a grid’s Columns->State property is csDefault, the appearance of records is
determined primarily by the properties of the fields in the grid’s dataset. Grid
columns are dynamically generated from the visible fields of the dataset, and the
order of columns in the grid matches the order of fields in the dataset. Every column
in the grid is associated with a field component. Property changes to field
components immediately show up in the grid.

Using a grid control with dynamically-generated columns is useful for viewing and
editing the contents of arbitrary tables selected at runtime. Because the grid’s
structure is not set, it can change dynamically to accommodate different datasets. A
single grid with dynamically-generated columns can display a Paradox table at one
moment, then switch to display the results of an SQL query when the grid’s
DataSource property changes or when the DataSet property of the data source itself is
changed.

You can change the appearance of a dynamic column at design time or runtime, but
what you are actually modifying are the corresponding properties of the field
component displayed in the column. Properties of dynamic columns exist only so
long as a column is associated with a particular field in a single dataset. For example,
changing the Width property of a column changes the DisplayWidth property of the
field associated with that column. Changes made to column properties that are not
based on field properties, such as Font, exist only for the lifetime of the column.

Properties of dynamic columns are retained for as long as the associated field
component exists. If a grid’s dataset consists of dynamic field components, the fields
are destroyed each time the dataset is closed. When the field components are
destroyed, all dynamic columns associated with them are destroyed as well. If a
grid’s dataset consists of persistent field components, the field components exist even
when the dataset is closed, so the columns associated with those fields also retain
their properties when the dataset is closed.

Note Changing a grid’s Columns->State property to csDefault at runtime deletes all column
objects in the grid (even persistent columns), and rebuilds dynamic columns based
on the visible fields of the grid’s dataset.

Creating a customized grid

A customized grid control is one for which you define persistent column objects that
describe how a column appears and how the data in the column is displayed. A
customized grid enables you to configure multiple grids to present different views of
the same dataset (different column orders, different field choices, and different

27-18 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

column colors and fonts, for example). A customized grid also enables you to let
users modify the appearance of the grid at runtime without affecting the fields used
by the grid or the field order of the dataset.

Customized grids are best used with datasets whose structure is known at design
time. Because they expect field names established at design time to exist in the
dataset, customized grids are not well suited to browsing arbitrary tables selected at
runtime.

Understanding persistent columns
When you create persistent column objects for a grid, they are only loosely associated
with underlying fields in a grid’s dataset. Default property values for persistent
columns are dynamically fetched from a default source (such as the grid or
associated field) until a value is assigned to the column property. Until you assign a
column property a value, its value changes as its default source changes.

For example, the default source for a column title caption is an associated field’s
DisplayLabel property. If you modify the DisplayLabel property, the column title
reflects that change immediately.

Once you assign a value to a column property, it no longer changes when its default
source changes. For example, if you assign a string to the column title’s caption, the
title caption is independent of the associated field’s DisplayLabel property.
Subsequent changes to the field’s DisplayLabel property no longer affect the column’s
title.

Persistent columns exist independently from field components with which they are
associated. In fact, persistent columns do not have to be associated with field objects
at all. If a persistent column’s FieldName property is blank, or if the field name does
not match the name of any field in the grid’s current dataset, the column’s Field
property is NULL and the column is drawn with blank cells. You can use a blank
column to display bitmaps or bar charts that graphically depict some aspect of a
record’s data in an otherwise blank cell, for example. To do so, you must override the
cells’ default drawing method.

Two or more persistent columns can be associated with the same field in a dataset.
For example, you might display a part number field at the left and right extremes of a
wide grid to make it easier to find the part number without having to scroll the grid.

Note Because persistent columns do not have to be associated with a field in a dataset, and
because multiple columns can reference the same field, a customized grid’s
FieldCount property can be less than or equal to the grid’s column count. Also note
that if the currently selected column in a customized grid is not associated with a
field, the grid’s SelectedField property is NULL and the SelectedIndex property is –1.

Persistent columns can be configured to display grid cells as a combo box drop-down
list of lookup values from another dataset or from a static pick list, or as an ellipsis
button (…) in a cell that can be clicked upon to launch special data viewers or dialogs
related to the current cell.

U s i n g d a t a c o n t r o l s 27-19

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Determining the source of a column property at runtime
At runtime you can test a column’s AssignedValues property to determine whether a
column property gets its values from an associated field component, or is assigned its
own value.

You can reset all default properties for a single column by calling the column’s
RestoreDefaults method. You can also reset default properties for all columns in a grid
by calling the column list’s RestoreDefaults method:

DBGrid1->Columns->RestoreDefaults();

To add a persistent column call the Add method for the column list:

DBGrid1->Columns->Add();

You can delete a persistent column by simply freeing the column object:

delete DBGrid1->Columns->Items[5];

Finally, assigning csCustomized to the Columns::State property for a grid at runtime
puts the grid into customized mode. Any existing columns in the grid are destroyed
and new persistent columns are built for each field in the grid’s dataset.

Creating persistent columns
To customize the appearance of grid at design time, you invoke the Columns editor
to create a set of persistent column objects for the grid. At runtime, the State property
for a grid with persistent column objects is automatically set to csCustomized.

To create persistent columns for a grid control,

1 Select the grid component in the form.

2 Invoke the Columns editor by double clicking on the grid’s Columns property in
the Object Inspector.

The Columns list box displays the persistent columns that have been defined for the
selected grid. When you first bring up the Columns editor, this list is empty because
the grid is in its default state, containing only dynamic columns.

You can create persistent columns for all fields in a dataset at once, or you can create
persistent columns on an individual basis. To create persistent columns for all fields:

1 Right-click the grid to invoke the context menu and choose Add All Fields. Note
that if the grid is not already associated with a data source, Add All Fields is
disabled. Associate the grid with a data source that has an active dataset before
choosing Add All Fields.

2 If the grid already contains persistent columns, a dialog box asks if you want to
delete the existing columns, or append to the column set. If you choose Yes, any
existing persistent column information is removed, and all fields in the current
dataset are inserted by field name according to their order in the dataset. If you
choose No, any existing persistent column information is retained, and new
column information, based on any additional fields in the dataset, are appended to
the dataset.

3 Click Close to apply the persistent columns to the grid and close the dialog box.

27-20 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

To create persistent columns individually:

1 Choose the Add button in the Columns editor. The new column will be selected in
the list box. The new column is given a sequential number and default name (for
example, 0 - TColumn).

2 To associate a field with this new column, set the FieldName property in the Object
Inspector.

3 To set the title for the new column, set the Caption option for the Title property in
the Object Inspector.

4 Close the Columns editor to apply the persistent columns to the grid and close the
dialog box.

Deleting persistent columns
Deleting a persistent column from a grid is useful for eliminating fields that you do
not want to display. To remove a persistent column from a grid,

1 Select the field to remove in the Columns list box.
2 Click Delete (you can also use the context menu or Del key, to remove a column).

Note If you delete all the columns from a grid, the Columns->State property reverts to its
csDefault state and automatically build dynamic columns for each field in the dataset.

Arranging the order of persistent columns
The order in which columns appear in the Columns editor is the same as the order
the columns appear in the grid. You can change the column order by dragging and
dropping columns within the Columns list box.

To change the order of a column,

1 Select the column in the Columns list box.
2 Drag it to a new location in the list box.

You can also change the column order by dragging the column in the actual grid, just
as you can at runtime.

Defining a lookup list column
To make a column display a drop-down list of values drawn from a separate lookup
table, you must define a lookup field object in the dataset. For more information
about creating lookup fields, see , “Defining a lookup field,” on page 20-9.

Once the lookup field is defined, set the column’s FieldName to the lookup field name
and make sure the column’s ButtonStyle is set to cbsAuto. The grid automatically
displays a combo box-like drop-down button when a cell of that column is in edit
mode. The drop-down list is populated with lookup values defined by the lookup
field.

U s i n g d a t a c o n t r o l s 27-21

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Defining a pick list column
A pick list column looks and operates like a lookup list column, except that the
column’s field is a normal field and the drop-down list is populated with the list of
values in the column’s PickList property instead of from a lookup table.

To define a pick list column:

1 Select the column in the Columns list box.

2 Set ButtonStyle to cbsAuto.

3 Double-click the Picklist property in the Object Inspector to bring up a string list
editor.

In the String List editor, enter the list of values you want to appear in the drop-down
list for this column. If the pick list contains data, the column becomes a pick list
column.

Note To restore a column to its normal behavior, delete all the text from the Pick list editor.

Putting a button in a column
A column can display an ellipsis button (…) to the right of the normal cell editor.
Ctrl+Enter or a mouse click fires the grid’s OnEditButtonClick event. You can use the
ellipsis button to bring up forms containing more detailed views of the data in the
column. For example, in a table that displays summaries of invoices, you could set up
an ellipsis button in the invoice total column to bring up a form that displays the
items in that invoice, or the tax calculation method, and so on. For graphic fields, you
could use the ellipsis button to bring up a form which displays an image.

To create an ellipsis button in a column:

1 Select the column in the Columns list box.
2 Set ButtonStyle to cbsEllipsis.
3 Write an OnEditButtonClick event handler.

Setting column properties at design time
Column properties determine how data is displayed in the cells of that column. Most
column properties obtain their default values from properties associated with
another component, called the default source, such as a grid or an associated field
component.

To set a column’s properties, select the column in the Columns editor and set its
properties in the Object Inspector. The following table summarizes key column
properties you can set.

27-22 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

The following table summarizes the options you can specify for the Title property.

Restoring default values to a column
You can undo property changes made to one or more columns. In the Columns
editor, select the column or columns to restore, and then select Restore Defaults from
the context menu. Restore defaults discards assigned property settings and restores a
column’s properties to those derived from its underlying field component.

Table 27.5 Column properties

Property Purpose

Alignment Left justifies, right justifies, or centers the field data in the column. Default
source: TField::Alignment.

ButtonStyle cbsAuto: (default) Displays a drop-down list if the associated field is a lookup
field, or if the column’s PickList property contains data.
cbsEllipsis: Displays an ellipsis (...) button to the right of the cell. Clicking on
the button fires the grid’s OnEditButtonClick event.
cbsAuto: The column uses only the normal edit control to edit data in the
column.

Color Specifies the background color of the cells of the column. For text foreground
color, see the font property. Default Source: TDBGrid::Color.

DropDownRows The number of lines of text displayed by the drop-down list. Default: 7.

Expanded Specifies whether the column is expanded. Only applies to columns
representing ADT or array fields.

FieldName Specifies the field name that is associated with this column. This can be blank.

ReadOnly true: The data in the column cannot be edited by the user.
false: (default) The data in the column can be edited.

Width Specifies the width of the column in screen pixels. Default Source: derived
from TField::DisplayWidth.

Font Specifies the font type, size, and color used to draw text in the column. Default
Source: TDBGrid::Font.

PickList Contains a list of values to display in a drop-down list in the column.

Title Sets properties for the title of the selected column.

Table 27.6 Expanded TColumn Title properties

Property Purpose

Alignment Left justifies (default), right justifies, or centers the caption text in the column title.

Caption Specifies the text to display in the column title. Default Source: TField::DisplayLabel.

Color Specifies the background color used to draw the column title cell. Default Source:
TDBGrid::FixedColor.

Font Specifies the font type, size, and color used to draw text in the column title. Default
Source: TDBGrid::TitleFont.

U s i n g d a t a c o n t r o l s 27-23

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Displaying ADT and array fields

Depending on the value of the dataset’s ObjectView property, a grid displays ADT
and array fields either flattened out, or in an object mode, where the field can be
expanded and collapsed. When ObjectView is true, the object fields can be expanded
and collapsed. When a field is expanded, each child field appears in its own column
with a title bar, which are below the title bar of the ADT or array field itself. When the
field is collapsed, only one column appears with an uneditable comma delimited
string containing the child fields. A column can be expanded and collapsed by
clicking on the arrow in the title bar of the field, and by setting the Expanded
property of the column. When the dataset’s ObjectView property is false, each child
field appears in a separate column.

Figure 27.2 shows the grid with an ADT field and an array field. The dataset’s
ObjectView property is set to false so that each child field has a column.

Figure 27.2 TDBGrid control with ObjectView set to false

Figures 27.3 and 27.4 show the grid with an ADT field and an array field. Figure 27.3
shows the fields collapsed. In this state they cannot be edited. Figure 27.4 shows the
fields expanded. The fields are expanded and collapsed by clicking on the arrow in
the fields title bar.

Table 27.7 Properties that affect the way ADT and array fields appear in a TDBGrid

Property Object Purpose

Expandable TColumn Specifies whether the column can be expanded to show
child fields in separate, editable columns.

Expanded TColumn Specifies whether the column is expanded.

MaxTitleRows TDBGrid Specifies the maximum number of title rows that can
appear in the grid.

ObjectView TDataSet Specifies whether fields are displayed flattened out, or in
an object mode, where each object field can be expanded
and collapsed.

ParentColumn TColumn Refers to the TColumn object that owns the child field’s
column.

ADT child fields Array child fields

27-24 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Figure 27.3 TDBGrid control with Expanded set to false

Figure 27.4 TDBGrid control with Expanded set to true

Setting grid options
You can use the grid Options property at design time to control basic grid behavior
and appearance at runtime. When a grid component is first placed on a form at
design time, the Options property in the Object Inspector is displayed with a + (plus)
sign to indicate that the Options property can be expanded to display a series of
Boolean properties that you can set individually.

To view and set these properties, double-click the Options property. The list of
options that you can set appears in the Object Inspector below the Options property.
The + sign changes to a – (minus) sign, indicating that you can collapse the list of
properties by double-clicking the Options property.

The following table lists the Options properties that can be set, and describes how
they affect the grid at runtime.

Table 27.8 Expanded TDBGrid Options properties

Option Purpose

dgEditing true: (Default). Enables editing, inserting, and deleting records in the
grid.
false: Disables editing, inserting, and deleting records in the grid.

dgAlwaysShowEditor true: When a field is selected, it is in Edit state.
false: (Default). A field is not automatically in Edit state when selected.

dgTitles true: (Default). Displays field names across the top of the grid.
false: Field name display is turned off.

ADT child field columns Array child field columns

U s i n g d a t a c o n t r o l s 27-25

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Editing in the grid

At runtime, you can use a grid to modify existing data and enter new records, if the
following default conditions are met:

• The CanModify property of the Dataset is true.
• The ReadOnly property of grid is false.

When a user edits a record in the grid, changes to each field are posted to an internal
record buffer, but are not posted until the user moves to a different record in the grid.
Even if focus is changed to another control on a form, the grid does not post changes
until another the cursor for the dataset is moved to another record. When a record is
posted, the dataset checks all associated data-aware components for a change in

dgIndicator true: (Default). The indicator column is displayed at the left of the grid,
and the current record indicator (an arrow at the left of the grid) is
activated to show the current record. On insert, the arrow becomes an
asterisk. On edit, the arrow becomes an I-beam.
false: The indicator column is turned off.

dgColumnResize true: (Default). Columns can be resized by dragging the column rulers
in the title area. Resizing changes the corresponding width of the
underlying TField component.
false: Columns cannot be resized in the grid.

dgColLines true: (Default). Displays vertical dividing lines between columns.
false: Does not display dividing lines between columns.

dgRowLines true: (Default). Displays horizontal dividing lines between records.
false: Does not display dividing lines between records.

dgTabs true: (Default). Enables tabbing between fields in records.
false: Tabbing exits the grid control.

dgRowSelect true: The selection bar spans the entire width of the grid.
false: (Default). Selecting a field in a record selects only that field.

dgAlwaysShowSelection true: (Default). The selection bar in the grid is always visible, even if
another control has focus.
false: The selection bar in the grid is only visible when the grid has
focus.

dgConfirmDelete true: (Default). Prompt for confirmation to delete records (Ctrl+Del).
false: Delete records without confirmation.

dgCancelOnExit true: (Default). Cancels a pending insert when focus leaves the grid.
This option prevents inadvertent posting of partial or blank records.
false: Permits pending inserts.

dgMultiSelect true: Allows user to select noncontiguous rows in the grid using
Ctrl+Shift or Shift+ arrow keys.
false: (Default). Does not allow user to multi-select rows.

Table 27.8 Expanded TDBGrid Options properties (continued)

Option Purpose

27-26 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

status. If there is a problem updating any fields that contain modified data,
C++Builder raises an exception, and does not modify the record.

You can cancel all edits for a record by pressing Esc in any field before moving to
another record.

Rearranging column order at design time

In grid controls with persistent columns, and default grids whose datasets contain
persistent fields, you can reorder the grid columns at design time by clicking on the
title cell of a column and dragging it to its new location in the grid.

Note Reordering persistent fields in the Fields editor also reorders columns in a default
grid, but not a custom grid.

Important You cannot reorder columns in grids containing both dynamic columns and dynamic
fields at design time, since there is nothing persistent to record the altered field or
column order.

Rearranging column order at runtime

At runtime, a user can use the mouse to drag a column to a new location in the grid if
its DragMode property is set to dmManual. Reordering the columns of a grid with a
State property of csDefault state also reorders the field components in the dataset
underlying the grid. The order of fields in the physical table is not affected.

A grid’s OnColumnMoved event is fired after a column has been moved.

To prevent a user from rearranging columns at runtime, set the grid’s DragMode
property to dmAutomatic.

Controlling grid drawing
Your first level of control over how a grid control draws itself is setting column
properties. The grid automatically uses the font, color, and alignment properties of a
column to draw the cells of that column. The text of data fields is drawn using the
DisplayFormat or EditFormat properties of the field component associated with the
column.

You can augment the default grid display logic with code in a grid’s
OnDrawColumnCell event. If the grid’s DefaultDrawing property is true, all the normal
drawing is performed before your OnDrawColumnCell event handler is called. Your
code can then draw on top of the default display. This is primarily useful when you
have defined a blank persistent column and want to draw special graphics in that
column’s cells.

If you want to replace the drawing logic of the grid entirely, set DefaultDrawing to
false and place your drawing code in the grid’s OnDrawColumnCell event. If you want
to replace the drawing logic only in certain columns or for certain field data types,
you can call the DefaultDrawColumnCell inside your OnDrawColumnCell event
handler to have the grid use its normal drawing code for selected columns. This

U s i n g d a t a c o n t r o l s 27-27

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

reduces the amount of work you have to do if you only want to change the way
Boolean field types are drawn, for example.

Responding to user actions at runtime

You can modify grid behavior by writing event handlers to respond to specific
actions within the grid at runtime. Because a grid typically displays many fields and
records at once, you may have very specific needs to respond to changes to
individual columns. For example, you might want to activate and deactivate a button
elsewhere on the form every time a user enters and exits a specific column.

The following table lists the grid events available in the Object Inspector.

There are many uses for these events. For example, you might write a handler for the
OnDblClick event that pops up a list from which a user can choose a value to enter in
a column. Such a handler would use the SelectedField property to determine to
current row and column.

Table 27.9 Grid control events

Event Purpose

OnCellClick Occurs when a user clicks on a cell in the grid.

OnColEnter Occurs when a user moves into a column on the grid.

OnColExit Occurs when a user leaves a column on the grid.

OnColumnMoved Occurs when the user moves a column to a new location.

OnDblClick Occurs when a user double clicks in the grid.

OnDragDrop Occurs when a user drags and drops in the grid.

OnDragOver Occurs when a user drags over the grid.

OnDrawColumnCell Occurs when application needs to draw individual cells.

OnDrawDataCell (obsolete) Occurs when application needs to draw individual cells if State
is csDefault.

OnEditButtonClick Occurs when the user clicks on an ellipsis button in a column.

OnEndDrag Occurs when a user stops dragging on the grid.

OnEnter Occurs when the grid gets focus.

OnExit Occurs when the grid loses focus.

OnKeyDown Occurs when a user presses any key or key combination on the keyboard
when in the grid.

OnKeyPress Occurs when a user presses a single alphanumeric key on the keyboard
when in the grid.

OnKeyUp Occurs when a user releases a key when in the grid.

OnStartDrag Occurs when a user starts dragging on the grid.

OnTitleClick Occurs when a user clicks the title for a column.

27-28 D e v e l o p e r ’ s G u i d e

C r e a t i n g a g r i d t h a t c o n t a i n s o t h e r d a t a - a w a r e c o n t r o l s

Creating a grid that contains other data-aware controls
A TDBCtrlGrid control displays multiple fields in multiple records in a tabular grid
format. Each cell in a grid displays multiple fields from a single row. To use a
database control grid:

1 Place a database control grid on a form.

2 Set the grid’s DataSource property to the name of a data source.

3 Place individual data controls within the design cell for the grid. The design cell
for the grid is the top or leftmost cell in the grid, and is the only cell into which you
can place other controls.

4 Set the DataField property for each data control to the name of a field. The data
source for these data controls is already set to the data source of the database
control grid.

5 Arrange the controls within the cell as desired.

When you compile and run an application containing a database control grid, the
arrangement of data controls you set in the design cell at runtime is replicated in each
cell of the grid. Each cell displays a different record in a dataset.

Figure 27.5 TDBCtrlGrid at design time

The following table summarizes some of the unique properties for database control
grids that you can set at design time:

Table 27.10 Selected database control grid properties

Property Purpose

AllowDelete true (default): Permits record deletion.
false: Prevents record deletion.

AllowInsert true (default): Permits record insertion.
false: Prevents record insertion.

ColCount Sets the number of columns in the grid. Default = 1.

U s i n g d a t a c o n t r o l s 27-29

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

For more information about database control grid properties and methods, see the
online VCL Reference.

Navigating and manipulating records
TDBNavigator provides users a simple control for navigating through records in a
dataset, and for manipulating records. The navigator consists of a series of buttons
that enable a user to scroll forward or backward through records one at a time, go to
the first record, go to the last record, insert a new record, update an existing record,
post data changes, cancel data changes, delete a record, and refresh record display.

Figure 27.6 shows the navigator that appears by default when you place it on a form
at design time. The navigator consists of a series of buttons that let a user navigate
from one record to another in a dataset, and edit, delete, insert, and post records. The
VisibleButtons property of the navigator enables you to hide or show a subset of these
buttons dynamically.

Figure 27.6 Buttons on the TDBNavigator control

The following table describes the buttons on the navigator.

Orientation goVertical (default): Display records from top to bottom.
goHorizontal: Displays records from left to right.

PanelHeight Sets the height for an individual panel. Default = 72.

PanelWidth Sets the width for an individual panel. Default = 200.

RowCount Sets the number of panels to display. Default = 3.

ShowFocus true (default): Displays a focus rectangle around the current record’s panel at
runtime.
false: Does not display a focus rectangle.

Table 27.10 Selected database control grid properties (continued)

Property Purpose

Table 27.11 TDBNavigator buttons

Button Purpose

First Calls the dataset’s First method to set the current record to the first record.

Prior Calls the dataset’s Prior method to set the current record to the previous record.

Next Calls the dataset’s Next method to set the current record to the next record.

Last Calls the dataset’s Last method to set the current record to the last record.

First record

Insert record Delete current record

Post record edits

Refresh records

Cancel record edits

Edit current recordLast record

Prior record

Next record

27-30 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

Choosing navigator buttons to display

When you first place a TDBNavigator on a form at design time, all its buttons are
visible. You can use the VisibleButtons property to turn off buttons you do not want to
use on a form. For example, on a form that is intended for browsing rather than
editing, you might want to disable the Edit, Insert, Delete, Post, and Cancel buttons.

Hiding and showing navigator buttons at design time
The VisibleButtons property in the Object Inspector is displayed with a + sign to
indicate that it can be expanded to display a Boolean value for each button on the
navigator. To view and set these values, double-click the VisibleButtons property. The
list of buttons that can be turned on or off appears in the Object Inspector below the
VisibleButtons property. The + sign changes to a – (minus) sign, indicating that you
can collapse the list of properties by double-clicking the VisibleButtons property.

Button visibility is indicated by the Boolean state of the button value. If a value is set
to true, the button appears in the TDBNavigator. If false, the button is removed from
the navigator at design time and runtime.

Note As button values are set to false, they are removed from the TDBNavigator on the
form, and the remaining buttons are expanded in width to fill the control. You can
drag the control’s handles to resize the buttons.

For more information about buttons and the methods they call, see the online VCL
Reference.

Hiding and showing navigator buttons at runtime
At runtime you can hide or show navigator buttons in response to user actions or
application states. For example, suppose you provide a single navigator for
navigating through two different datasets, one of which permits users to edit records,
and the other of which is read-only. When you switch between datasets, you want to
hide the navigator’s Insert, Delete, Edit, Post, Cancel, and Refresh buttons for the
read-only dataset, and show them for the other dataset.

For example, suppose you want to prevent edits to the OrdersTable by hiding the
Insert, Delete, Edit, Post, Cancel, and Refresh buttons on the navigator, but that you also

Insert Calls the dataset’s Insert method to insert a new record before the current record, and
set the dataset in Insert state.

Delete Deletes the current record. If the ConfirmDelete property is true it prompts for
confirmation before deleting.

Edit Puts the dataset in Edit state so that the current record can be modified.

Post Writes changes in the current record to the database.

Cancel Cancels edits to the current record, and returns the dataset to Browse state.

Refresh Clears data control display buffers, then refreshes its buffers from the physical table or
query. Useful if the underlying data may have been changed by another application.

Table 27.11 TDBNavigator buttons (continued)

Button Purpose

U s i n g d a t a c o n t r o l s 27-31

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

want to allow editing for the CustomersTable. The VisibleButtons property controls
which buttons are displayed in the navigator. Here’s one way you might code the
OnEnter event handler:

void __fastcall TForm1::CustomerCompanyEnter(TObject *Sender)
{

if (Sender == (TObject *)CustomerCompany)
{

DBNavigatorAll->DataSource = CustomerCompany->DataSource;
DBNavigatorAll->VisibleButtons = TButtonSet() << nbFirst << nbPrior << nbNext << nbLast;

}
else
{

DBNavigatorAll->DataSource = OrderNum->DataSource;
DBNavigatorAll->VisibleButtons = TButtonSet() << nbInsert << nbDelete << nbEdit

<< nbPost << nbCancel << nbRefresh;
}

}

Displaying fly-over help

To display fly-over help for each navigator button at runtime, set the navigator
ShowHint property to true. When ShowHint is true, the navigator displays fly-by Help
Hints whenever you pass the mouse cursor over the navigator buttons. ShowHint is
false by default.

The Hints property controls the fly-over help text for each button. By default Hints is
an empty string list. When Hints is empty, each navigator button displays default
help text. To provide customized fly-over help for the navigator buttons, use the
String list editor to enter a separate line of hint text for each button in the Hints
property. When present, the strings you provide override the default hints provided
by the navigator control.

Using a single navigator for multiple datasets

As with other data-aware controls, a navigator’s DataSource property specifies the
data source that links the control to a dataset. By changing a navigator’s DataSource
property at runtime, a single navigator can provide record navigation and
manipulation for multiple datasets.

Suppose a form contains two edit controls linked to the CustomersTable and
OrdersTable datasets through the CustomersSource and OrdersSource data sources
respectively. When a user enters the edit control connected to CustomersSource, the
navigator should also use CustomersSource, and when the user enters the edit control
connected to OrdersSource, the navigator should switch to OrdersSource as well. You

27-32 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

can code an OnEnter event handler for one of the edit controls, and then share that
event with the other edit control. For example:

void __fastcall TForm1::CustomerCompanyEnter(TObject *Sender)
{

if (Sender == (TObject *)CustomerCompany)
DBNavigatorAll->DataSource = CustomerCompany->DataSource;

else
DBNavigatorAll->DataSource = OrderNum->DataSource;

}

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-1

C h a p t e r

28
Chapter28Using decision support components

The decision support components help you create cross-tabulated—or, crosstab—
tables and graphs. You can then use these tables and graphs to view and summarize
data from different perspectives. For more information on cross-tabulated data, see
“About crosstabs” on page 28-2.

Overview
The decision support components appear on the Decision Cube page of the
component palette:

• The decision cube, TDecisionCube, is a multidimensional data store.

• The decision source, TDecisionSource, defines the current pivot state of a decision
grid or a decision graph.

• The decision query, TDecisionQuery, is a specialized form of TQuery used to define
the data in a decision cube.

• The decision pivot, TDecisionPivot, lets you open or close decision cube
dimensions, or fields, by pressing buttons.

• The decision grid, TDecisionGrid, displays single- and multidimensional data in
table form.

• The decision graph, TDecisionGraph, displays fields from a decision grid as a
dynamic graph that changes when data dimensions are modified.

Figure 28.1 shows all the decision support components placed on a form at design
time.

28-2 D e v e l o p e r ’ s G u i d e

A b o u t c r o s s t a b s

Figure 28.1 Decision support components at design time

About crosstabs
Cross-tabulations, or crosstabs, are a way of presenting subsets of data so that
relationships and trends are more visible. Table fields become the dimensions of the
crosstab while field values define categories and summaries within a dimension.

You can use the decision support components to set up crosstabs in forms.
TDecisionGrid shows data in a table, while TDecisionGraph charts it graphically.
TDecisionPivot has buttons that make it easier to display and hide dimensions and
move them between columns and rows.

Crosstabs can be one-dimensional or multidimensional.

Decision query
Decision cube

Decision grid

Decision pivot

Decision graph

Decision source

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-3

G u i d e l i n e s f o r u s i n g d e c i s i o n s u p p o r t c o m p o n e n t s

One-dimensional crosstabs

One-dimensional crosstabs show a summary row (or column) for the categories of a
single dimension. For example, if Payment is the chosen column dimension and
Amount Paid is the summary category, the crosstab in Figure 28.2 shows the amount
paid for in each way.

Figure 28.2 One-dimensional crosstab

Multidimensional crosstabs

Multidimensional crosstabs use additional dimensions for the rows and/or columns.
For example, a two-dimensional crosstab could show amounts paid by payment
method for each country.

A three-dimensional crosstab could show amounts paid by payment method and
terms by country, as shown in the Figure 28.3.

Figure 28.3 Three-dimensional crosstab

Guidelines for using decision support components
The decision support components listed on page 28-1 can be used together to present
multidimensional data as tables and graphs. More than one table or graph can be
attached to each dataset. More than one instance of TDecisionPivot can be used to
display the data from different perspectives at runtime.

28-4 D e v e l o p e r ’ s G u i d e

G u i d e l i n e s f o r u s i n g d e c i s i o n s u p p o r t c o m p o n e n t s

To create a form with tables and graphs of multidimensional data, follow these steps:

1 Create a form.

2 Add these components to the form and use the Object Inspector to bind them as
indicated:

• A dataset, usually TDecisionQuery (for details, see “Creating decision datasets
with the Decision Query editor” on page 28-6) or TQuery

• A decision cube, TDecisionCube, bound to the dataset by setting its DataSet
property to the dataset’s name

• A decision source, TDecisionSource, bound to the decision cube by setting its
DecisionCube property to the decision cube’s name

3 Add a decision pivot, TDecisionPivot, and bind it to the decision source with the
Object Inspector by setting its DecisionSource property to the appropriate decision
source name. The decision pivot is optional but useful; it lets the form developer
and end users change the dimensions displayed in decision grids or decision
graphs by pushing buttons.

In its default orientation, horizontal, buttons on the left side of the decision pivot
apply to fields on the left side of the decision grid (rows); buttons on the right side
apply to fields at the top of the decision grid (columns).

You can determine where the decision pivot’s buttons appear by setting its
GroupLayout property to xtVertical, xtLeftTop, or xtHorizontal (the default). For
more information on decision pivot properties, see “Using decision pivots” on
page 28-10.

4 Add one or more decision grids and graphs, bound to the decision source. For
details, see “Creating and using decision grids” on page 28-11 and “Creating and
using decision graphs” on page 28-13.

5 Use the Decision Query editor or SQL property of TDecisionQuery (or TQuery) to
specify the tables, fields, and summaries to display in the grid or graph. The last
field of the SQL SELECT should be the summary field. The other fields in the
SELECT must be GROUP BY fields. For instructions, see “Creating decision
datasets with the Decision Query editor” on page 28-6.

6 Set the Active property of the decision query (or alternate dataset component) to
true.

7 Use the decision grid and graph to show and chart different data dimensions. See
“Using decision grids” on page 28-11 and “Using decision graphs” on page 28-14
for instructions and suggestions.

For an illustration of all decision support components on a form, see Figure 28.1 on
page 28-2.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-5

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

Using datasets with decision support components
The only decision support component that binds directly to a dataset is the decision
cube, TDecisionCube. TDecisionCube expects to receive data with groups and
summaries defined by an SQL statement of an acceptable format. The GROUP BY
phrase must contain the same non-summarized fields (and in the same order) as the
SELECT phrase, and summary fields must be identified.

The decision query component, TDecisionQuery, is a specialized form of TQuery. You
can use TDecisionQuery to more simply define the setup of dimensions (rows and
columns) and summary values used to supply data to decision cubes, TDecisionCube.
You can also use an ordinary TQuery or other dataset as a dataset for TDecisionCube,
but the correct setup of the dataset and TDecisionCube are then the responsibility of
the designer.

To work correctly with the decision cube, all projected fields in the dataset must
either be dimensions or summaries. The summaries should be additive values (like
sum or count), and should represent totals for each combination of dimension values.
For maximum ease of setup, sums should be named “Sum...” in the dataset while
counts should be named “Count...”.

The Decision Cube can pivot, subtotal, and drill-in correctly only for summaries
whose cells are additive. (SUM and COUNT are additive, while AVERAGE, MAX,
and MIN are not.) Build pivoting crosstab displays only for grids that contain only
additive aggregators. If you are using non-additive aggregators, use a static decision
grid that does not pivot, drill, or subtotal.

Since averages can be calculated using SUM divided by COUNT, a pivoting average
is added automatically when SUM and COUNT dimensions for a field are included
in the dataset. Use this type of average in preference to an average calculated using
an AVERAGE statement.

Averages can also be calculated using COUNT(*). To use COUNT(*) to calculate
averages, include a “COUNT(*) COUNTALL” selector in the query. If you use
COUNT(*) to calculate averages, the single aggregator can be used for all fields. Use
COUNT(*) only in cases where none of the fields being summarized include blank
values, or where a COUNT aggregator is not available for every field.

Creating decision datasets with TQuery or TTable

If you use an ordinary TQuery component as a decision dataset, you must manually
set up the SQL statement, taking care to supply a GROUP BY phrase which contains
the same fields (and in the same order) as the SELECT phrase.

The SQL should look similar to this:

SELECT ORDERS."Terms", ORDERS."ShipVIA",
ORDERS."PaymentMethod", SUM(ORDERS."AmountPaid")

FROM "ORDERS.DB" ORDERS
GROUP BY ORDERS."Terms", ORDERS."ShipVIA", ORDERS."PaymentMethod"

28-6 D e v e l o p e r ’ s G u i d e

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

The ordering of the SELECT fields should match the ordering of the GROUP BY
fields.

With TTable, you must supply information to the decision cube about which of the
fields in the query are grouping fields, and which are summaries. To do this, Fill in
the Dimension Type for each field in the DimensionMap of the Decision Cube. You
must indicate whether each field is a dimension or a summary, and if a summary,
you must provide the summary type. Since pivoting averages depend on SUM/
COUNT calculations, you must also provide the base field name to allow the decision
cube to match pairs of SUM and COUNT aggregators.

Creating decision datasets with the Decision Query editor

All data used by the decision support components passes through the decision cube,
which accepts a specially formatted dataset most easily produced by an SQL query.
See “Using datasets with decision support components” on page 28-5 for more
information.

While both TTable and TQuery can be used as decision datasets, it is easier to use
TDecisionQuery; the Decision Query editor supplied with it can be used to specify
tables, fields, and summaries to appear in the decision cube and will help you set up
the SELECT and GROUP BY portions of the SQL correctly.

Using the Decision Query editor
To use the Decision Query editor:

1 Select the decision query component on the form, then right-click and choose
Decision Query editor. The Decision Query editor dialog box appears.

2 Choose the database to use.

3 For single-table queries, click the Select Table button.

For more complex queries involving multi-table joins, click the Query Builder
button to display the SQL Builder or type the SQL statement into the edit box on
the SQL tab page.

4 Return to the Decision Query editor dialog box.

5 In the Decision Query editor dialog box, select fields in the Available Fields list
box and assign them to be either Dimensions or Summaries by clicking the
appropriate right-arrow button. As you add fields to the Summaries list, select
from the menu displayed the type of summary to use: sum, count, or average.

6 By default, all fields and summaries defined in the SQL property of the decision
query appear in the Active Dimensions and Active Summaries list boxes. To
remove a dimension or summary, select it in the list and click the left-arrow beside
the list, or double-click the item to remove. To add it back, select it in the Available
Fields list box and click the appropriate right-arrow.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-7

U s i n g d e c i s i o n c u b e s

Once you define the contents of the decision cube, you can further manipulate
dimension display with its DimensionMap property and the buttons of TDecisionPivot.
For more information, see the next section, “Using decision cubes,” “Using decision
sources” on page 28-9, and “Using decision pivots” on page 28-10.

Note When you use the Decision Query editor, the query is initially handled in ANSI-92
SQL syntax, then translated (if necessary) into the dialect used by the server. The
Decision Query editor reads and displays only ANSI standard SQL. The dialect
translation is automatically assigned to the TDecisionQuery’s SQL property. To
modify a query, edit the ANSI-92 version in the Decision Query rather then the SQL
property.

Decision query properties

The decision query has no properties than are not inherited from other components.
Important inherited properties are Active, described in online Help and the Visual
Component Library Reference under TDataSet, and SQL, described under TQuery.
Queries are described in more detail in Chapter 22, “Working with queries.”

Using decision cubes
The decision cube component, TDecisionCube, is a multidimensional data store that
fetches its data from a dataset (typically a specially structured SQL statement entered
through TDecisionQuery or TQuery). The data is stored in a form that makes its easy
to pivot (that is, change the way in which the data is organized and summarized)
without needing to run the query a second time.

Decision cube properties and events

The DimensionMap properties of TDecisionCube not only control which dimensions
and summaries appear but also let you set date ranges and specify the maximum
number of dimensions the decision cube may support. You can also indicate whether
or not to display data during design. You can display names, (categories) values,
subtotals, or data. Display of data at design time can be time consuming, depending
on the data source.

When you click the ellipsis next to DimensionMap in the Object Inspector, the
Decision Cube editor dialog box appears. You can use its pages and controls to set
the DimensionMap properties.

The OnRefresh event fires whenever the decision cube cache is rebuilt. Developers can
access the new dimension map and change it at that time to free up memory, change
the maximum summaries or dimensions, and so on. OnRefresh is also useful if users
access the Decision Cube editor; application code can respond to user changes at that
time.

28-8 D e v e l o p e r ’ s G u i d e

U s i n g d e c i s i o n c u b e s

Using the Decision Cube editor

You can use the Decision Cube editor to set the DimensionMap properties of decision
cubes. You can display the Decision Cube editor through the Object Inspector, as
described in the previous section, or by right-clicking a decision cube on a form at
design time and choosing Decision Cube editor.

The Decision Cube Editor dialog box has two tabs:

• Dimension Settings, used to activate or disable available dimensions, rename and
reformat dimensions, put dimensions in a permanently drilled state, and set date
ranges to display.

• Memory Control, used to set the maximum number of dimensions and summaries
that can be active at one time, to display information about memory usage, and to
determine the names and data that appear at design time.

Viewing and changing dimension settings
To view the dimension settings, display the Decision Cube editor and click the
Dimension Settings tab. Then, select a dimension or summary in the Available Fields
list. Its information appears in the boxes on the right side of the editor:

• To change the dimension or summary name that appears in the decision pivot,
decision grid, or decision graph, enter a new name in the Display Name edit box.

• To determine whether the selected field is a dimension or summary, read the text
in the Type edit box. If the dataset is a TTable component, you can use Type to
specify whether the selected field is a dimension or summary.

• To disable or activate the selected dimension or summary, change the setting in
the Active Type drop-down list box: Active, As Needed, or Inactive. Disabling a
dimension or setting it to As Needed saves memory.

• To change the format of that dimension or summary, enter a format string in the
Format edit box.

• To display that dimension or summary by Year, Quarter, or Month, change the
setting in the Binning drop-down list box. Note that you can choose Set in the
Binning list box to put the selected dimension or summary in a permanently
“drilled down” state. This can be useful for saving memory when a dimension has
many values. For more information, see “Decision support components and
memory control” on page 28-20.

• To determine the starting value for ranges, or the drill-down value for a “Set”
dimension, first choose the appropriate Grouping value in the Grouping
drop-down, and then enter the starting range value or permanent drill-down
value in the Initial Value drop-down list.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-9

U s i n g d e c i s i o n s o u r c e s

Setting the maximum available dimensions and summaries
To determine the maximum number of dimensions and summaries available for
decision pivots, decision grids, and decision graphs bound to the selected decision
cube, display the Decision Cube editor and click the Memory Control tab. Use the
edit controls to adjust the current settings, if necessary. These settings help to control
the amount of memory required by the decision cube. For more information, see
“Decision support components and memory control” on page 28-20.

Viewing and changing design options
To determine how much information appears during design time, display the
Decision Cube editor and click the Memory Control tab. Then, check the setting that
indicates which names and data to display. Display of data or field names at design
time can cause performance delays in some cases because of the time needed to fetch
the data.

Using decision sources
The decision source component, TDecisionSource, defines the current pivot state of
decision grids or decision graphs. Any two objects which use the same decision
source also share pivot states.

Properties and events

The following are some special properties and events that control the appearance and
behavior of decision sources:

• The ControlType property of TDecisionSource indicates whether the decision pivot
buttons should act like check boxes (multiple selections) or radio buttons
(mutually exclusive selections).

• The SparseCols and SparseRows properties of TDecisionSource indicate whether to
display columns or rows with no values; if true, sparse columns or rows are
displayed.

• TDecisionSource has the following events:

• OnLayoutChange occurs when the user performs pivots or drill-downs that
reorganize the data.

• OnNewDimensions occurs when the data is completely altered, such as when the
summary or dimension fields are altered.

• OnSummaryChange occurs when the current summary is changed.

28-10 D e v e l o p e r ’ s G u i d e

U s i n g d e c i s i o n p i v o t s

• OnStateChange occurs when the Decision Cube activates or deactivates.

• OnBeforePivot occurs when changes are committed but not yet reflected in the
user interface. Developers have an opportunity to make changes, for example,
in capacity or pivot state, before application users see the result of their
previous action.

• OnAfterPivot fires after a change in pivot state. Developers can capture
information at that time.

Using decision pivots
The decision pivot component, TDecisionPivot, lets you open or close decision cube
dimensions, or fields, by pressing buttons. When a row or column is opened by
pressing a TDecisionPivot button, the corresponding dimension appears on the
TDecisionGrid or TDecisionGraph component. When a dimension is closed, its detailed
data doesn’t appear; it collapses into the totals of other dimensions. A dimension
may also be in a “drilled” state, where only the summaries for a particular value of
the dimension field appear.

You can also use the decision pivot to reorganize dimensions displayed in the
decision grid and decision graph. Just drag a button to the row or column area or
reorder buttons within the same area.

For illustrations of decision pivots at design time, see Figures 28.1, 28.2, and 28.3.

Decision pivot properties

The following are some special properties that control the appearance and behavior
of decision pivots:

• The first properties listed for TDecisionPivot define its overall behavior and
appearance. You might want to set ButtonAutoSize to false for TDecisionPivot to
keep buttons from expanding and contracting as you adjust the size of the
component.

• The Groups property of TDecisionPivot defines which dimension buttons appear.
You can display the row, column, and summary selection button groups in any
combination. Note that if you want more flexibility over the placement of these
groups, you can place one TDecisionPivot on your form which contains only rows
in one location, and a second which contains only columns in another location.

• Typically, TDecisionPivot is added above TDecisionGrid. In its default orientation,
horizontal, buttons on the left side of TDecisionPivot apply to fields on the left side
of TDecisionGrid (rows); buttons on the right side apply to fields at the top of
TDecisionGrid (columns).

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-11

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

• You can determine where TDecisionPivot’s buttons appear by setting its
GroupLayout property to xtVertical, xtLeftTop, or xtHorizontal (the default, described
in the previous paragraph).

Creating and using decision grids
Decision grid components, TDecisionGrid, present cross-tabulated data in table form.
These tables are also called crosstabs, described on page 28-2. Figure 28.1 on
page 28-2 shows a decision grid on a form at design time.

Creating decision grids

To create a form with one or more tables of cross-tabulated data,

1 Follow steps 1–3 listed under “Guidelines for using decision support components”
on page 28-3.

2 Add one or more decision grid components (TDecisionGrid) and bind them to the
decision source, TDecisionSource, with the Object Inspector by setting their
DecisionSource property to the appropriate decision source component.

3 Continue with steps 5–7 listed under “Guidelines for using decision support
components.”

For a description of what appears in the decision grid and how to use it, see “Using
decision grids” on page 28-11.

To add a graph to the form, follow the instructions in “Creating decision graphs” on
page 28-14.

Using decision grids

The decision grid component, TDecisionGrid, displays data from decision cubes
(TDecisionCube) bound to decision sources (TDecisionSource).

By default, the grid appears with dimension fields at its left side and/or top,
depending on the grouping instructions defined in the dataset. Categories, one for
each data value, appear under each field. You can

• Open and close dimensions
• Reorganize, or pivot, rows and columns
• Drill down for detail
• Limit dimension selection to a single dimension for each axis

For more information about special properties and events of the decision grid, see
“Decision grid properties” on page 28-12.

28-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

Opening and closing decision grid fields
If a plus sign (+) appears in a dimension or summary field, one or more fields to its
right are closed (hidden). You can open additional fields and categories by clicking
the sign. A minus sign (-) indicates a fully opened (expanded) field. When you click
the sign, the field closes. This outlining feature can be disabled; see “Decision grid
properties” on page 28-12 for details.

Reorganizing rows and columns in decision grids
You can drag row and column headings to new locations within the same axis or to
the other axis. In this way, you can reorganize the grid and see the data from new
perspectives as the data groupings change. This pivoting feature can be disabled; see
“Decision grid properties” on page 28-12 for details.

If you included a decision pivot, you can push and drag its buttons to reorganize the
display. See “Using decision pivots” on page 28-10 for instructions.

Drilling down for detail in decision grids
You can drill down to see more detail in a dimension.

For example, if you right-click a category label (row heading) for a dimension with
others collapsed beneath it, you can choose to drill down and only see data for that
category. When a dimension is drilled, you do not see the category labels for that
dimension displayed on the grid, since only the records for a single category value
are being displayed. If you have a decision pivot on the form, it displays category
values and lets you change to other values if you want.

To drill down into a dimension,

• Right-click a category label and choose Drill In To This Value, or
• Right-click a pivot button and choose Drilled In.

To make the complete dimension active again,

• Right-click the corresponding pivot button, or right-click the decision grid in the
upper-left corner and select the dimension.

Limiting dimension selection in decision grids
You can change the ControlType property of the decision source to determine whether
more than one dimension can be selected for each axis of the grid. For more
information, see “Using decision sources” on page 28-9.

Decision grid properties

The decision grid component, TDecisionGrid, displays data from the TDecisionCube
component bound to TDecisionSource. By default, data appears in a grid with
category fields on the left side and top of the grid.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-13

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

The following are some special properties that control the appearance and behavior
of decision grids:

• TDecisionGrid has unique properties for each dimension. To set these, choose
Dimensions in the Object Inspector, then select a dimension. Its properties then
appear in the Object Inspector: Alignment defines the alignment of category labels
for that dimension, Caption can be used to override the default dimension name,
Color defines the color of category labels, FieldName displays the name of the active
dimension, Format can hold any standard format for that data type, and Subtotals
indicates whether to display subtotals for that dimension. With summary fields,
these same properties are used to changed the appearance of the data that appears
in the summary area of the grid. When you’re through setting dimension
properties, either click a component in the form or choose a component in the
drop-down list box at the top of the Object Inspector.

• The Options property of TDecisionGrid lets you control display of grid lines
(cgGridLines = true), enabling of outline features (collapse and expansion of
dimensions with + and - indicators; cgOutliner = true), and enabling of
drag-and-drop pivoting (cgPivotable = true).

• The OnDecisionDrawCell event of TDecisionGrid gives you a chance to change the
appearance of each cell as it is drawn. The event passes the String, Font, and Color
of the current cell as reference parameters. You are free to alter those parameters to
achieve effects such as special colors for negative values. In addition to the
DrawState which is passed by TCustomGrid, the event passes TDecisionDrawState,
which can be used to determine what type of cell is being drawn. Further
information about the cell can be fetched using the Cells, CellValueArray, or
CellDrawState functions.

• The OnDecisionExamineCell event of TDecisionGrid lets you hook the
right-click-on-event to data cells, and is intended to allow a program to display
information (such as detail records) about that particular data cell. When the user
right-clicks a data cell, the event is supplied with all the information which is was
used to compose the data value, including the currently active summary value and
a ValueArray of all the dimension values which were used to create the summary
value.

Creating and using decision graphs
Decision graph components, TDecisionGraph, present cross-tabulated data in graphic
form. Each decision graph shows the value of a single summary, such as Sum, Count,
or Avg, charted for one or more dimensions. For more information on crosstabs, see
page 28-3. For illustrations of decision graphs at design time, see Figure 28.1 on
page 28-2 and Figure 28.4 on page 28-15.

28-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

Creating decision graphs

To create a form with one or more decision graphs,

1 Follow steps 1–3 listed under “Guidelines for using decision support components”
on page 28-3.

2 Add one or more decision graph components (TDecisionGraph) and bind them to
the decision source, TDecisionSource, with the Object Inspector by setting their
DecisionSource property to the appropriate decision source component.

3 Continue with steps 5–7 listed under “Guidelines for using decision support
components.”

4 Finally, right-click the graph and choose Edit Chart to modify the appearance of
the graph series. You can set template properties for each graph dimension, then
set individual series properties to override these defaults. For details, see
“Customizing decision graphs” on page 28-16.

For a description of what appears in the decision graph and how to use it, see the
next section, “Using decision graphs.”

To add a decision grid—or crosstab table—to the form, follow the instructions in
“Creating and using decision grids” on page 28-11.

Using decision graphs

The decision graph component, TDecisionGraph, displays fields from the decision
source (TDecisionSource) as a dynamic graph that changes when data dimensions are
opened, closed, dragged and dropped, or rearranged with the decision pivot
(TDecisionPivot).

Graphed data comes from a specially formatted dataset such as TDecisionQuery. For
an overview of how the decision support components handle and arrange this data,
see page 28-1.

By default, the first row dimension appears as the x-axis and the first column
dimension appears as the y-axis.

You can use decision graphs instead of or in addition to decision grids, which present
cross-tabulated data in table form. Decision grids and decision graphs that are bound
to the same decision source present the same data dimensions. To show different
summary data for the same dimensions, you can bind more than one decision graph
to the same decision source. To show different dimensions, bind decision graphs to
different decision sources.

For example, in Figure 28.4 the first decision pivot and graph are bound to the first
decision source and the second decision pivot and graph are bound to the second. So,
each graph can show different dimensions.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-15

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

Figure 28.4 Decision graphs bound to different decision sources

For more information about what appears in a decision graph, see the next section,
“The decision graph display.”

To create a decision graph, see the previous section, “Creating decision graphs.”

For a discussion of decision graph properties and how to change the appearance and
behavior of decision graphs, see “Customizing decision graphs” on page 28-16.

The decision graph display

By default, the decision graph plots summary values for categories in the first active
row field (along the y-axis) against values in the first active column field (along the
x-axis). Each graphed category appears as a separate series.

If only one dimension is selected—for example, by clicking only one TDecisionPivot
button—only one series is graphed.

If you used a decision pivot, you can push its buttons to determine which decision
cube fields (dimensions) are graphed. To exchange graph axes, drag the decision
pivot dimension buttons from one side of the separator space to the other. If you
have a one-dimensional graph with all buttons on one side of the separator space,
you can use the Row or Column icon as a drop target for adding buttons to the other
side of the separator and making the graph multidimensional.

28-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

If you only want one column and one row to be active at a time, you can set the
ControlType property for TDecisionSource to xtRadio. Then, there can be only one
active field at a time for each decision cube axis, and the decision pivot’s
functionality will correspond to the graph’s behavior. xtRadioEx works the same as
xtRadio, but does not allow the state where all row or all columns dimensions are
closed.

When you have both a decision grid and graph connected to the same
TDecisionSource, you’ll probably want to set ControlType back to xtCheck to
correspond to the more flexible behavior of TDecisionGrid.

Customizing decision graphs

The decision graph component, TDecisionGraph, displays fields from the decision
source (TDecisionSource) as a dynamic graph that changes when data dimensions are
opened, closed, dragged and dropped, or rearranged with the decision pivot
(TDecisionPivot). You can change the type, colors, marker types for line graphs, and
many other properties of decision graphs.

To customize a graph,

1 Right-click it and choose Edit Chart. The Chart Editing dialog box appears.

2 Use the Chart page of the Chart Editing dialog box to view a list of visible series,
select the series definition to use when two or more are available for the same
series, change graph types for a template or series, and set overall graph
properties.

The Series list on the Chart page shows all decision cube dimensions (preceded by
Template:) and currently visible categories. Each category, or series, is a separate
object. You can:

• Add or delete series derived from existing decision-graph series. Derived series
can provide annotations for existing series or represent values calculated from
other series.

• Change the default graph type, and change the title of templates and series.

For a description of the other Chart page tabs, search for the following topic in
online Help: “Chart page (Chart Editing dialog box).”

3 Use the Series page to establish dimension templates, then customize properties
for each individual graph series.

By default, all series are graphed as bar graphs and up to 16 default colors are
assigned. You can edit the template type and properties to create a new default.
Then, as you pivot the decision source to different states, the template is used to
dynamically create the series for each new state. For template details, see “Setting
decision graph template defaults” on page 28-17.

To customize individual series, follow the instructions in “Customizing decision
graph series” on page 28-17.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-17

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

For a description of each Series page tab, search for the following topic in online
Help: “Series page (Chart Editing dialog box).”

Setting decision graph template defaults
Decision graphs display the values from two dimensions of the decision cube: one
dimension is displayed as an axis of the graph, and the other is used to create a set of
series. The template for that dimension provides default properties for those series
(such as whether the series are bar, line, area, and so on). As users pivot from one
state to another, any required series for the dimension are created using the series
type and other defaults specified in the template.

A separate template is provided for cases where users pivot to a state where only one
dimension is active. A one-dimensional state is often represented with a pie chart, so
a separate template is provided for this case.

You can

• Change the default graph type.
• Change other graph template properties.
• View and set overall graph properties.

Changing the default decision graph type
To change the default graph type,

1 Select a template in the Series list on the Chart page of the Chart Editing dialog
box.

2 Click the Change button.

3 Select a new type and close the Gallery dialog box.

Changing other decision graph template properties
To change color or other properties of a template,

1 Select the Series page at the top of the Chart Editing dialog box.
2 Choose a template in the drop-down list at the top of the page.
3 Choose the appropriate property tab and select settings.

Viewing overall decision graph properties
To view and set decision graph properties other than type and series,

1 Select the Chart page at the top of the Chart Editing dialog box.
2 Choose the appropriate property tab and select settings.

Customizing decision graph series
The templates supply many defaults for each decision cube dimension, such as graph
type and how series are displayed. Other defaults, such as series color, are defined by
TDecisionGraph. If you want you can override the defaults for each series.

The templates are intended for use when you want the program to create the series
for categories as they are needed, and discard them when they are no longer needed.

28-18 D e v e l o p e r ’ s G u i d e

D e c i s i o n s u p p o r t c o m p o n e n t s a t r u n t i m e

If you want, you can set up custom series for specific category values. To do this,
pivot the graph so its current display has a series for the category you want to
customize. When the series is displayed on the graph, you can use the Chart editor to

• Change the graph type.
• Change other series properties.
• Save specific graph series that you have customized.

To define series templates and set overall graph defaults, see “Setting decision graph
template defaults” on page 28-17.

Changing the series graph type
By default, each series has the same graph type, defined by the template for its
dimension. To change all series to the same graph type, you can change the template
type. See “Changing the default decision graph type” on page 28-17 for instructions.

To change the graph type for a single series,

1 Select a series in the Series list on the Chart page of the Chart editor.
2 Click the Change button.
3 Select a new type and close the Gallery dialog box.
4 Check the Save Series check box.

Changing other decision graph series properties
To change color or other properties of a decision graph series,

1 Select the Series page at the top of the Chart Editing dialog box.
2 Choose a series in the drop-down list at the top of the page.
3 Choose the appropriate property tab and select settings.
4 Check the Save Series check box.

Saving decision graph series settings
By default, only settings for templates are saved at design time. Changes made to
specific series are only saved if the Save box is checked for that series in the Chart
Editing dialog box.

Saving series can be memory intensive, so if you don’t need to save them you can
uncheck the Save box.

Decision support components at runtime
At runtime, users can perform many operations by left-clicking, right-clicking, and
dragging visible decision support components. These operations, discussed earlier in
this chapter, are summarized below.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-19

D e c i s i o n s u p p o r t c o m p o n e n t s a t r u n t i m e

Decision pivots at runtime

Users can:

• Left-click the summary button at the left end of the decision pivot to display a list
of available summaries. They can use this list to change the summary data
displayed in decision grids and decision graphs.

• Right-click a dimension button and choose to:

• Move it from the row area to the column area or the reverse.
• Drill In to display detail data.

• Left-click a dimension button following the Drill In command and choose:

• Open Dimension to move back to the top level of that dimension.

• All Values to toggle between displaying just summaries and summaries plus all
other values in decision grids.

• From a list of available categories for that dimension, a category to drill into for
detail values.

• Left-click a dimension button to open or close that dimension.

• Drag and drop dimension buttons from the row area to the column area and the
reverse; they can drop them next to existing buttons in that area or onto the row or
column icon.

Decision grids at runtime

Users can:

• Right-click within the decision grid and choose to:

• Toggle subtotals on and off for individual data groups, for all values of a
dimension, or for the whole grid.

• Display the Decision Cube editor, described on page 28-8.
• Toggle dimensions and summaries open and closed.

• Click + and – within the row and column headings to open and close dimensions.

• Drag and drop dimensions from rows to columns and the reverse.

Decision graphs at runtime

Users can drag from side to side or up and down in the graph grid area to scroll
through off-screen categories and values.

28-20 D e v e l o p e r ’ s G u i d e

D e c i s i o n s u p p o r t c o m p o n e n t s a n d m e m o r y c o n t r o l

Decision support components and memory control
When a dimension or summary is loaded into the decision cube, it takes up memory.
Adding a new summary increases memory consumption linearly: that is, a decision
cube with two summaries uses twice as much memory as the same cube with only
one summary, a decision cube with three summaries uses three times as much
memory as the same cube with one summary, and so on. Memory consumption for
dimensions increases more quickly. Adding a dimension with 10 values increases
memory consumption ten times. Adding a dimension with 100 values increases
memory consumption 100 times. Thus adding dimensions to a decision cube can
have a dramatic effect on memory use, and can quickly lead to performance
problems. This effect is especially pronounced when adding dimensions that have
many values.

The decision support components have a number of settings to help you control how
and when memory is used. For more information on the properties and techniques
mentioned here, look up TDecisionCube in the online Help.

Setting maximum dimensions, summaries, and cells

The decision cube’s MaxDimensions and MaxSummaries properties can be used with
the CubeDim->ActiveFlag property to control how many dimensions and summaries
can be loaded at a time. You can set the maximum values on the Cube Capacity page
of the Decision Cube editor to place some overall control on how many dimensions
or summaries can be brought into memory at the same time.

Limiting the number of dimensions or summaries provides a rough limit on the
amount of memory used by the decision cube. However, it does not distinguish
between dimensions with many values and those with only a few. For greater control
of the absolute memory demands of the decision cube, you can also limit the number
of cells in the cube. Set the maximum number of cells on the Cube Capacity page of
the Decision Cube editor.

Setting dimension state

The ActiveFlag property controls which dimensions get loaded. You can set this
property on the Dimension Settings tab of the Decision Cube editor using the
Activity Type control. When this control is set to Active, the dimension is loaded
unconditionally, and will always take up space. Note that the number of dimensions
in this state must always be less than MaxDimensions, and the number of summaries
set to Active must be less than MaxSummaries. You should set a dimension or
summary to Active only when it is critical that it be available at all times. An Active
setting decreases the ability of the cube to manage the available memory.

When ActiveFlag is set to AsNeeded, a dimension or summary is loaded only if it can
be loaded without exceeding the MaxDimensions, MaxSummaries, or MaxCells limit.
The decision cube will swap dimensions and summaries that are marked AsNeeded in
and out of memory to keep within the limits imposed by MaxCells, MaxDimensions,

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 28-21

D e c i s i o n s u p p o r t c o m p o n e n t s a n d m e m o r y c o n t r o l

and MaxSummaries. Thus, a dimension or summary may not be loaded in memory if
it is not currently being used. Setting dimensions that are not used frequently to
AsNeeded results in better loading and pivoting performance, although there will be a
time delay to access dimensions which are not currently loaded.

Using paged dimensions

When Binning is set to Set on the Dimension Settings tab of the Decision cube editor
and Start Value is not NULL, the dimension is said to be “paged,” or “permanently
drilled down.” You can access data for just a single value of that dimension at a time,
although you can programmatically access a series of values sequentially. Such a
dimension may not be pivoted or opened.

It is extremely memory intensive to include dimensional data for dimensions that
have very large numbers of values. By making such dimensions paged, you can
display summary information for one value at a time. Information is usually easier to
read when displayed this way, and memory consumption is much easier to manage.

28-22 D e v e l o p e r ’ s G u i d e

W r i t i n g d i s t r i b u t e d a p p l i c a t i o n s

P a r t

III
Part IIIWriting distributed applications

The chapters in “Writing distributed applications” present concepts and skills
necessary for building applications that are distributed over a local area network or
over the Internet.

Note The components described in Chapter 29 are available only with the Enterprise
edition of C++Builder. The components described in Chapter 30 are available only in
the Professional and Enterprise editions.

W r i t i n g C O R B A a p p l i c a t i o n s 29-1

C h a p t e r

29
Chapter29Writing CORBA applications

 CORBA (Common Object Request Broker Architecture) is a specification adopted by
the Object Management Group (OMG) to address the complexity of developing
distributed object applications.

As its name implies, CORBA provides an object-oriented approach to writing
distributed applications. This is in contrast to a message-oriented approach such as
the one described for HTTP applications in Chapter 30, “Creating Internet server
applications.” Under CORBA, server applications implement objects that can be used
remotely by client applications, through well-defined interfaces.

Note COM provides another object-oriented approach to distributed applications. For
more information about COM, see Chapter 32, “Overview of COM technologies.”
Unlike COM, however, CORBA is a standard that applies to platforms other than
Windows. This means you can write CORBA clients or servers using C++Builder that
can communicate with CORBA-enabled applications running on other platforms.

The CORBA specification defines how client applications communicate with objects
that are implemented on a server. This communication is handled by an Object
Request Broker (ORB). C++Builder is tightly integrated with Inprise’s VisiBroker
ORB to make your CORBA development easier.

In addition to the basic ORB technology, which enables clients to communicate with
objects on server machines, the CORBA standard defines a number of standard
services. Because these services use well-defined interfaces, developers can write
clients that use these services even if the servers are written by different vendors.

Overview of a CORBA application
If you are already doing object-oriented programming, CORBA makes writing
distributed applications easy, because it lets you use remote objects almost as if they
were local. This is because the design of a CORBA application is much like any other
object-oriented application, except that it includes an additional layer for handling

29-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f a C O R B A a p p l i c a t i o n

network communication when an object resides on a different machine. This
additional layer is handled by special objects called stubs and skeletons.

Figure 29.1 The structure of a CORBA application

On CORBA clients, the stub acts as a proxy for an object that may be implemented by
the same process, another process, or on another (server) machine. The client
interacts with the stub as it would with any other object.

However, unlike most objects, the stub handles interface calls by calling into the ORB
software that is installed on the client machine. The VisiBroker ORB uses a Smart
Agent (osagent) that is running somewhere on the local area network. The Smart
Agent is a dynamic, distributed directory service that locates an available server
which provides the real object implementation.

On the CORBA server, the ORB software passes interface calls to an
automatically-generated skeleton. The skeleton communicates with the ORB
software through the Basic Object Adaptor (BOA). Using the BOA, the skeleton
registers the object with the Smart Agent, indicates the scope of the object (whether it
can be used on remote machines), and indicates when objects are instantiated and
ready to respond to clients.

Understanding stubs and skeletons

The basis of a distributed object under CORBA is its interface. The interface is much
like a class definition, except that it includes no implementation information. You
define interfaces using the CORBA interface definition language (IDL). You can then
add the interface definition to your project as an IDL file. For more information about
IDL files, stubs, and skeletons, see the VisiBroker Programmer’s Guide. For more
information on working with IDL files in C++Builder, see “Defining object
interfaces” on page 29-5.

When you compile the IDL file, C++Builder builds two .cpp files for you. One, the
client file, contains the implementation of the stub class. The other, the server file,

Client
Application

Stub

ORB
Smart
Agent

Object
Implementation

Skeleton

ORB Basic Object
Adaptor

W r i t i n g C O R B A a p p l i c a t i o n s 29-3

O v e r v i e w o f a C O R B A a p p l i c a t i o n

contains the implementation of the skeleton class. Stubs and skeletons provide the
mechanism that allows CORBA applications to marshal interface calls. Marshaling

• Takes an object instance in the server’s process and makes it available to code in
the client process.

• Transfers the arguments of an interface call as passed from the client and places
the arguments into the remote object’s process space.

When the client application calls the method of a CORBA object, it pushes arguments
onto the stack and calls the stub object. The stub writes the arguments into a
marshaling buffer and transmits the call in a structure to the remote object. The
server skeleton unpacks this structure, pushes the arguments onto the stack, and calls
the object’s implementation. In essence, the skeleton recreates the client’s call in its
own address space.

Using Smart Agents

The Smart Agent (osagent) is a dynamic, distributed directory service that locates an
available server that implements an object. If there are multiple servers to choose
from, the Smart Agent provides load balancing. It also protects against server failures
by attempting to restart the server when a connection fails, or, if necessary, locating a
server on another host.

A Smart Agent must be started on at least one host in your local network, where local
network refers to a network within which a broadcast message can be sent. The ORB
locates a Smart Agent by using a broadcast message. If the network includes multiple
Smart Agents, the ORB uses the first one that responds. Once the Smart Agent is
located, the ORB uses a point-to-point UDP protocol to communicate with the Smart
Agent. The UDP protocol consumes fewer network resources than a TCP connection.

When a network includes multiple Smart Agents, each Smart Agent recognizes a
subset of the objects available, and communicates with other Smart Agents to locate
objects it can’t recognize directly. If one Smart Agent terminates unexpectedly, the
objects it keeps track of are automatically re-registered with another available Smart
Agent.

For details about configuring and using Smart Agents on your local networks, see the
VisiBroker Installation and Administration Guide.

Activating server applications

When the server application starts, it informs the ORB (through the Basic Object
Adaptor) of the objects that can accept client calls. This code to initialize the ORB and
inform it that the server is up and ready is added to your application automatically
by the wizard you use to start your CORBA server application.

Typically, CORBA server applications are started manually. However, you can use
the Object Activation Daemon (OAD) to start your servers or instantiate their objects
only when clients need to use them.

29-4 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

To use the OAD, you must register your objects with it. When you register your objects
with the OAD, it stores the association between your objects and the server application
that implements them in a database called the Implementation Repository.

Once there is an entry for your object in the Implementation Repository, the OAD
simulates your application to the ORB. When a client requests the object, the ORB
contacts the OAD as if it were the server application. The OAD then forwards the
client request to the real server, launching the application if necessary.

For details about registering your objects with the OAD, see the VisiBroker
Programmers Guide.

Binding interface calls dynamically

Typically, CORBA clients use static binding when calling the interfaces of objects on
the server. This approach has many advantages, including faster performance and
compile-time type checking. However, there are times when you can’t know until
runtime what interface you want to use. For these cases, C++Builder lets you bind to
interfaces dynamically at runtime.

When using dynamic binding, it helps to register your interfaces with the Interface
Repository.

For details on how to use dynamic binding in your CORBA client applications, see
the information on the Dynamic Invocation Interface (DII) in the VisiBroker
Programmer’s Guide.

Writing CORBA servers
C++Builder includes several wizards to ease the process of developing CORBA
servers. The following steps describe how to create a CORBA server using
C++Builder:

1 Define your object interfaces. These interfaces define how client applications
interact with your server. They also are the basis from which C++Builder creates
your stub and skeleton implementations.

2 Use the CORBA server wizard to create a new CORBA server application that
includes the code to initialize the CORBA BOA and ORB at startup.

3 Compile the IDL files that contain your interface definitions into skeleton classes
(and stub classes).

4 Use the CORBA object wizard to define (and instantiate) your implementation
classes.

5 Implement your CORBA objects by completing the classes created in step 5.

6 If necessary, change your CORBA interfaces and fold those changes into your
implementation classes.

In addition to the steps listed above, you may choose to register your IDL files with
the Interface Repository and Object Activation Daemon.

W r i t i n g C O R B A a p p l i c a t i o n s 29-5

W r i t i n g C O R B A s e r v e r s

Defining object interfaces

CORBA object interfaces are defined using the CORBA Interface Definition
Language (IDL). IDL has a syntax similar to C++, so that an IDL file looks similar to a
C++ header file. The IDL file acts much like a header file also, declaring the interfaces
that can be shared, just the way a header file declares the classes that can be shared.
However, in CORBA, the interfaces (classes) are shared with other applications
rather than (or in addition to) other modules in the same application.

Note The term IDL is used in different contexts to refer to similar, but not identical,
interface definition languages. There is a CORBA IDL (defined by OMG), a Microsoft
IDL (used for COM) and a DCE IDL. For details on the CORBA IDL, see the online
help.

To define a new IDL file from within C++Builder, choose File|New and select
CORBA IDL File from the Multitier page of the New Items dialog. This opens the
code editor with a blank IDL file and adds the IDL file to your current project.

If you already have an IDL file defining your objects, you can simply add this file to
your project by choosing Project|Add to Project, selecting IDL files as a file type, and
selecting your existing IDL file.

Using the CORBA Server Wizard

To start a new CORBA Server project, choose File|New and from the Multitier page
of the New Items dialog, choose the icon labeled CORBA Server. The CORBA Server
wizard lets you indicate whether you want to create a console application or a
windows application.

If you are creating a console application, you can specify whether your server will
use the VCL classes. If you do not check the VCL checkbox, all generated code can be
ported to other platforms.

In addition to choosing the type of application, you can include any existing IDL files
to your project, or specify that you want to include a new, blank IDL file. Your server
project must eventually include one or more IDL files, which define the interfaces
clients use to communicate with your server.

Note If you do not add the IDL files when you start a CORBA server project, you can
always add them later by choosing Project|Add to Project (for existing IDL files) or
choosing CORBA IDL file from the Multitier page of the New Items dialog (to define
a new IDL file).

When you indicate the type of server you want and click OK, the CORBA Server
wizard creates a new server project of the specified type, adding the CORBA libraries
to the project file and startup code to initialize the ORB (Object Request Broker) and
BOA (Basic Object Adaptor).

The automatically generated code declares two variables, orb and boa, that you can
use to communicate with the ORB and BOA:

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

29-6 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

If you specified a console application, you will also see the following line:

boa->impl_is_ready();

This call allows your application to receive messages from the BOA, much the way a
Windows message loop allows a Windows application to receive messages from
Windows. (Windows applications use the Windows message loop for CORBA
messages as well).

For more information about the ORB and BOA, see your VisiBroker documentation.

Generating stubs and skeletons from an IDL file

Once you have added the IDL file that describes your CORBA interfaces to a CORBA
project, you are ready to generate the stub and skeleton classes that handle the
communication between your server and its client applications.

To generate the stub and skeleton classes, simply compile the IDL file. You can
compile this file by choosing Project|Compile Unit when the IDL file is displayed in
the code editor, or right-click on the IDL file in the project manager and choose
Compile. The IDL compiler generates two new files, which appear in the code editor
and project manger. These are

• The server file (xxx_s.cpp). This file contains the implementation of the skeleton
classes.

• The client file (xxx_c.cpp). This file contains the implementation of the stub
classes.

The CORBA page of the project options dialog allows you to influence how the stub
and skeleton classes are generated from you IDL file. For example, you can specify
that you only want to include the generated server unit in your project, or specify
that you want to include Tie classes if your server uses the delegation model
(described in “Using the delegation model” on page 29-8). These options affect the
compilation of all IDL files included in the current project.

Using the CORBA Object Implementation Wizard

To implement the CORBA objects defined in your IDL file, you must create
implementation classes that correspond to every skeleton class. To do this, choose
File|New, and from the multitier page of the New Items dialog, choose CORBA
Object Implementation. This brings up the CORBA Object Implementation Wizard.

The CORBA Object Implementation Wizard lists all the interfaces that are defined in
the IDL files included in your project. Choose an IDL file and from that IDL file select
the interface that you want to implement. Provide a name for the implementation
class and specify the unit name for the .h and .cpp files that will contain the object
definition and implementation.

In the Wizard, indicate whether your implementation classes should be descendants
of the automatically generated skeleton classes, or whether you are using a
delegation model (tie classes). If you are using the delegation model (and your server

W r i t i n g C O R B A a p p l i c a t i o n s 29-7

W r i t i n g C O R B A s e r v e r s

application is VCL-enabled), you can also tell the Wizard to make your
implementation class a data module. This allows you to add components to the
implementation data module that you want to use when writing the implementation.

You can tell the wizard to add code to instantiate your CORBA objects when the
application starts up, so that they are available to receive client requests. If you
instantiate objects at start-up, you must supply them with a name so that they can be
located by clients. This name is passed to the constructor as a parameter, it is not the
name of the variable that references the instance. When client applications bind to
your CORBA object, they use this name to indicate the object they want.

When you click OK, the CORBA Object Implementation Wizard generates the
definition for your implementation class and generates an implementation where
every method has an empty body. It may also add code to instantiate your objects if
you indicated that was what you wanted.

Before these changes are added to your project, you can view and edit them. To do so,
check the box labeled Show Updates before clicking OK. After you have viewed the
changes and edited them, they are added to your project. If you do not choose to view
and edit the changes when you exit the wizard, you can edit them later in the code editor.

To implement multiple interfaces, you must invoke the CORBA Object
Implementation Wizard several times, once for each interface. However, you can tell
the Wizard to generate multiple instances of a single implementation class by
providing multiple names.

Instantiating CORBA objects
For every CORBA object, you must decide how it is to be instantiated. There are two
choices:

• The object is instantiated when the server application starts. In this case, the object
is available to client applications whenever the server is.

• The object is instantiated in response to a client request (a method call on an
existing object). In this case, the server application instantiates the object within
the implementation of an interface method, and returns a reference to the object
from that method.

If the object is instantiated when the application starts, check the box labeled
Instantiate in main in the CORBA Object Wizard. The Wizard adds the code to
instantiate your implementation class directly to your project’s source file. You can
see this code by choosing Project|View Source. After the lines that the CORBA
Server Wizard inserted to call ORB_init and BOA_init, and before the call to
impl_is_ready(), you will find the code that instantiates your implementation class
and inform the boa that the object can take requests:

MyObjImpl MyObject_TheObject("TheObject"); // create the object instance
boa->obj_is_ready(&MyObject_TheObject); // inform the boa it can take requests

You can add initialization code between the constructor and the call to obj_is_ready:

MyObjImpl MyObject_TheObject("TheObject"); // create the object instance
MyObject_TheObject.Initialize(50000);
boa->obj_is_ready(&MyObject_TheObject); // inform the boa it can take requests

29-8 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

Note If you are using tie classes (see below), there will also be a call to instantiate the tie
class.

If you do not instantiate your objects at startup, then can call the constructor (and, if
necessary, the constructor for the tie class) from a method and return a reference to
the object instance. It is good practice to add a call to the BOA’s obj_is_ready method
as well.

Objects that accept calls from CORBA clients must be given a name, or the clients
can’t find them. Transient objects (objects created in response to client calls and
returned as references) do not need to be given names.

Using the delegation model
By default, CORBA objects are descendants of skeleton classes that are created when
you compile an IDL file. This means that the object classes inherit all the code that
marshals interface calls and interacts with the BOA. However, if you want to expose
objects in your CORBA server that have already been written, that descend from
VCL classes (which do not permit multiple inheritance), or that you want to share
with other, non-CORBA applications, it is possible to use server classes that have no
dependence on CORBA or the generated server files.

To expose objects that do not descend from a skeleton class, your application must
use a delegation model. A delegation model is one where the instances of the
skeleton classes do not directly implement the CORBA objects, but rather pass
interface class on to a completely separate implementation class. That is, the
implementation class is not a descendant of the skeleton, but rather, is called by the
skeleton.

To use the delegation model, you must generate tie classes when you compile the
IDL files. Before compiling the IDL files, choose Project|Options, and on the IDL
page of the project options dialog, check the box for generating tie classes.

When the IDL file is compiled, the server file contains a special tie class in addition to
the skeleton class. This tie class acts as a proxy for your implementation class, and for
its method implementations, it delegates (passes the call on) to your implementation
class.

When you use the CORBA Object Wizard to define your implementation class,
choose the Delegation (Tie) radio button, so that the implementation class is not
created as a descendant of the skeleton class. The CORBA Object Wizard adds a
comment next to the class declaration. Do not remove this comment: it is used by
C++Builder to identify the class as a CORBA implementation class.

In addition to changing the way the CORBA Object Wizard generates the
implementation class, choosing Tie also affects any automatically generated code that
instantiates the object.

When your server application instantiates the implementation class, it must
immediately afterward instantiate the associated tie class, passing the
implementation class instance as an argument to the constructor. If your
implementation class is instantiated at start-up, the code to do this is generated
automatically by the CORBA Object Wizard. However, if you are instantiating your

W r i t i n g C O R B A a p p l i c a t i o n s 29-9

W r i t i n g C O R B A s e r v e r s

CORBA object dynamically at runtime, you must add this code yourself. For
example:

MyObjImpl myobj(); // instantiate implementation object
_tie_MyObj<MyObjImpl> tieobj(myobj, "InstanceName");

Viewing and editing changes
Before adding any changes to your project, it is a good idea to preview and edit those
changes. This serves two purposes:

• You are aware of all changes made to your project. No automatically generated
code will appear that creates behavior you don’t know about.

• You can customize those changes without having to search through your
implementation files. This is especially helpful if you are adding changes to a file
that already has a lot of code.

To view and edit changes, use the Project Updates dialog box. This dialog box
appears when you check Show Updates in any of the CORBA wizards or when you
choose Edit|CORBA Refresh.

The Project Updates dialog lists the changes in a pane on the left. You can reject any
change by unchecking the box that appears to its left. If you reject a change, it is not
committed to your project, and you must write the analogous code yourself.

Note The changes are listed in the order in which they are made. Removing one change
may remove other changes that depend on that change. For example, unchecking the
creation of a new file will uncheck the changes that represent code added to that file.

As you scroll through the list of changes, you will see the code that is added in the
code pane. The file that is changed to contain that code is listed at the bottom of the
code pane.

You can edit the code pane if you want to customize a change. For example, you may
want to add an additional ancestor class to your implementation class so that inherits
the behavior of one of your existing classes. You can also add code to implement
methods, filling in the automatically generated empty method bodies.

When you have finished viewing and editing the automatically generated changes,
click OK, and they are added to your project, including any edits you made. If you do
not want to accept any of the changes, cancel the dialog.

Implementing CORBA Objects

If you are not using a delegation model, the implementation class is a descendant of
the skeleton class that was generated when you compiled the IDL file. Otherwise,
there are no explicit ancestors to your implementation classes. You can change this
class definition so that it inherits from another class in your server application, but do
not remove any existing inheritance from a skeleton class.

29-10 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

Consider the following declaration from an IDL file, account.IDL:

interface Account {
float balance();

};

When the IDL file is compiled (without tie classes), the generated server header
(account_s.hh) includes the declaration of a skeleton class with pure virtual methods
for every method in your interface.

The CORBA Object Wizard creates an implementation unit that derives an
implementation class from the skeleton class (_sk_Account). It’s header file looks like
the following:

#ifndef Interface1ServerH
#define Interface1ServerH
#include "account_s.hh"
//---
class AccountImpl: public _sk_Account
{
 protected:
 public:
 AccountImpl(const char *object_name=NULL);
 CORBA::float balance();
};

#endif

You may want to add additional data members or methods to this class definition
that you need for your implementation. For example:

#ifndef Interface1ServerH
#define Interface1ServerH
#include "account_s.hh"
//---
class AccountImpl: public _sk_Account
{
 protected:

CORBA::float _bal;
 public:

void Initialize(CORBA::float startbal); // not available to clients
 AccountImpl(const char *object_name=NULL);
 CORBA::float balance();
};

#endif

These additional methods and properties are available from the server application
but are not exposed to clients.

In the generated .cpp file, fill in the body of the implementation class so that you
have a working CORBA object:

AccountImpl::AccountImpl(const char *object_name):
 _sk_Account(object_name)
{
}

W r i t i n g C O R B A a p p l i c a t i o n s 29-11

W r i t i n g C O R B A s e r v e r s

CORBA::float AccountImpl::balance()
{

return _bal;
};

void Initialize(CORBA::float startbal) // not available to clients
{

_bal = startbal;
}

Note From your CORBA server, you can write code that interacts with the BOA. For
example, using the BOA, you can temporarily hide, or deactivate, server objects and
later reactivate them. See the VisiBroker Programmer’s Guide for details on how to
write code that interacts with the BOA.

Guarding against thread conflicts
By default, CORBA applications are multi-threaded. This means that you must guard
against thread conflicts when implementing your CORBA objects. It is possible to
create single-threaded CORBA servers by linking to orb_b.dll and orb_br.dll, but
when you do this you can’t take advantage of the IDE support for CORBA or use the
VCL in your server application.

Unless you specify otherwise, the BOA pools client threads, meaning that client
requests can use any available thread. You can, however, ensure that each client
always uses the same thread by starting the BOA with a per-session threading policy.
When each client always uses the same thread, you can store persistent client
information in thread variables. See the VisiBroker Programmer’s Guide for information
about how to set the threading policy when you start the BOA.

The VisiBroker library includes classes that can help you guard your code against
thread conflicts. These are defined in the header file vthread.h, which is installed in
the VisiBroker include directory. The VisiBroker thread support classes include a
mutex (VisMutex), a condition variable (VISCondition), and a read/write lock that
works like the VCL’s multi-read exclusive-write synchronizer (VISRWLock). One
advantage to using these classes is that they are portable across all platforms
supported by VisiBroker.

For example, you can protect instance data by adding a VisMutex field to your
implementation class:

class A {
VISMutex _mtx;
...

}

Then, when you need to synchronize access to instance data, you can lock the mutex
within any method that accesses the instance data:

void A::AccessSharedMemory(...)
{

VISMutex_var lock(_mtx); // acquires a lock that is released on exit
// add code here to access the instance data
}

29-12 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

Note that the mutex is released when AccessSharedMemory completes execution,
even if an exception is thrown within the body of the method.

If you are using the VCL in your server application, C++Builder includes a number of
classes that can help you guard against thread conflicts. See Chapter 7, “Writing
multi-threaded applications” for more information about them.

Changing CORBA interfaces

If you make changes to the interfaces in your IDL files after you have generated
implementation classes for them using the CORBA Object Wizard, C++Builder lets
you automatically update your server project to reflect those changes without losing
the work you have already invested in writing the implementation classes.

After you have changed the IDL files, choose Edit|CORBA Refresh. This command
recompiles your IDL files so that the automatically generated client and server files
reflect the new interface definitions and current compiler options. If the IDL files
successfully compile, you can preview and edit the changes that C++Builder makes,
using the Project Updates dialog.

Note If C++Builder does not find the interface that corresponds to an existing
implementation class, it asks if you have renamed the interface. If you say yes, you
will be prompted to indicate how your interfaces were renamed, so that the
implementation classes can be correctly matched to interfaces.

When you use the CORBA Refresh command, new methods are added to your
implementation classes and declarations are updated to reflect changes to existing
methods and attributes. However, certain changes do not lead to updates. In
particular, if you delete a method or attribute, the code for it is not deleted. Instead,
deleted methods remain a part of the class, but are no longer available to CORBA
clients. Similarly, if you rename a method or attribute, this is treated like a deletion
and an addition, so the old method or attribute remains, and code is generated for a
new method or attribute.

Registering server interfaces

While it is not necessary to register your server interfaces if you are only using static
binding of client calls into your server objects, registering your interfaces is
recommended. There are two utilities with which you can register your interfaces:

• The Interface Repository. By registering with the Interface Repository, clients can
programmatically obtain information about your interfaces when they use the
dynamic invocation interface (DII). For more information about using DII, see
“Using the dynamic invocation interface” on page 29-15. Registering with the
Interface Repository is also a convenient way to allow other developers to view
your interfaces when they write client applications.

You can register your interfaces with the interface repository by choosing
Tools|IDL Repository.

W r i t i n g C O R B A a p p l i c a t i o n s 29-13

W r i t i n g C O R B A c l i e n t s

• The Object Activation Daemon. By registering with the Object Activation
Daemon (OAD), your server need not be launched or your objects instantiated
until they are needed by clients. This conserves resources on your server system.

Writing CORBA clients
When you write a CORBA client, the first step is to ensure that the client application
can talk to the ORB software on the client machine. To do this, use the CORBA Client
wizard. Choose File|New, and from the Multitier page of the New Items dialog,
choose the icon labeled CORBA Client. The CORBA Client wizard lets you indicate
whether you want to create a console application or a windows application.

As with a CORBA server application, you can specify whether your CORBA client
application will use the VCL classes. If you do not check the VCL checkbox, all
generated code can be ported to other platforms.

In the CORBA Client wizard, include any existing IDL files that define the interfaces
of server objects you want to use. While it is possible to create a CORBA client
application without including any IDL files (by explicitly adding a generated client
unit to the project), this is not the preferred approach. When the project includes the
IDL files for server interfaces, you can use the Use CORBA Object wizard to bind to
objects on the server.

Note If you do not add the IDL files when you start a CORBA client project, you can
always add them later by choosing Project|Add to Project.

The CORBA Client wizard always creates a new client project of the specified type,
adding the CORBA libraries to the project file and adds the following startup code to
initialize the ORB (Object Request Broker).

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

If you intend to pass callback interfaces to the CORBA server, you will need to
initialize the BOA (Basic Object Adaptor) in your client application as well. To do
this, simply check the appropriate box in the wizard.

Next, proceed with writing your application in the same way you write any other
application in C++Builder. However, when you want to use objects that are defined
in the server application, you do not work directly with an object instance. Instead,
you obtain a reference to a CORBA object and work with that. You can obtain the
CORBA object reference in one of two ways, depending on whether you want to use
static or dynamic binding.

To use static binding, you can invoke the Use CORBA Object wizard by choosing
Edit|Use CORBA Object. Using static binding is faster than using dynamic binding,
and provides additional benefits such as compile-time type checking and
code-completion.

However, there are times when you do not know until runtime what object or
interface you want to use. For these cases, you can use dynamic binding. Dynamic
binding uses a generic CORBA object, which passes requests to the server using a
special CORBA type called an Any.

29-14 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A c l i e n t s

Using stubs

Stub classes are generated automatically when you Compile the IDL file. They are
defined in the generated client files, which have names of the form BaseName_c.cpp
and BaseName_c.hh.

Note You can tell C++Builder to build only the client (stub) files and not the server files
using the CORBA page of the Project Options dialog.

When writing a CORBA client, you do not edit the code in the generated client files.
Instead, instantiate the stub classes where they are used. To do this, choose Edit|Use
CORBA Object to bring up the Use CORBA Object wizard.

In the Use CORBA Object wizard, specify the IDL file that contains the interface you
want to access, and select the interface you will use. If you want to bind only to a
specific named instance of the CORBA object, you can optionally supply a name for
the CORBA Object.

The Use CORBA Object wizard lets you choose from several mechanisms for binding
to a server object.

• If your client application is a VCL-enabled Windows application, it can create a
property on your application’s form that holds an instance of your CORBA
object’s stub class. You can then use this property like an instance of the CORBA
server object.

• If you are creating a console application, the wizard can instantiate the stub class
as a variable in your application’s main() function. Similarly, it can instantiate the
stub class as a variable in the WinMain() function if you are creating a Windows
application.

• Whether you are creating a Windows application or a console application, the
wizard can add a property to an existing class in any unit you specify, or start a
new class for you that includes a property for the stub instance.

No matter which mechanism you choose, the wizard adds any necessary header files
and generates code that binds a stub variable or property to the CORBA server
object. For example, the following code instantiates the stub for a server interface
named MyServerObj in the main() function of a console application:

#include <corba.h>
#include <condefs.h>
#include “MyServerObj_c.hh”
#pragma argsused
int main(int argc, char* argv[])
{

try
{

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
MyServerObj_var TheObject = MyServerObj::_bind("InstanceName");

}

W r i t i n g C O R B A a p p l i c a t i o n s 29-15

W r i t i n g C O R B A c l i e n t s

catch(const CORBA::Exception& e)
{

cerr << e << endl;
return(1);

}
return 0;

}

Warning If you copy the code that binds to a sever object to another portion of your
application, be sure that the stub variable is a local variable or the data member of a
class. Global stub variables are tricky because they may not release their CORBA
reference count before the orb variable is released. If you must use a global stub
variable, be sure to unbind by setting the variable to NULL before the orb is released.

If your client application includes only the generated client unit (BaseName_c), you
can’t use the CORBA Object wizard to bind to server objects. Instead, you must
generate this code yourself. You may also want to write your own bind code to take
advantage of VisiBroker’s bind options. (For example, you may want to specify a
specific server, disable the feature that automatically tries to rebind to a server if the
CORBA connection is lost, and so on.) For more information about writing code that
binds to server objects, see the VisiBroker documentation.

 Using the dynamic invocation interface

The dynamic invocation interface (DII) allows client applications to call server objects
without using a stub class that explicitly marshals interface calls. Because DII must
encode all type information before the client sends a request and then decode that
information on the server, it is slower than using a stub class.

 To use DII in a client application, you must

1 Create a generic CORBA object, which works like a stub object, except that its
implementation does not include the code for marshaling requests. You must
supply the repository ID of the object to indicate what object should receive DII
requests:

CORBA::Object_var diiObj;
try
{

diiObj = orb->bind("IDL:ServerObj:1.0");
} catch (const CORBA::Exception& E)
{

// handle the bind exception.
}

2 Next, use the generic CORBA object to create a request object for a specific method
of the object represented by the generic CORBA object:

CORBA::Request_var req = diiObj->_request("methodName");

3 Next, add any arguments that the method takes. The arguments are added to a list
on the request of type CORBA::NVList_ptr. Each argument is of the CORBA::Any
type, which is similar to a Variant. The CORBA::Any type is required because a

29-16 D e v e l o p e r ’ s G u i d e

T e s t i n g C O R B A s e r v e r s

named value list (CORBA::NVList) must handle any argument list, which may
include values of any type.

CORBA::Any arg;
arg <<= (const char *)"argvalue";
CORBA::NVList_ptr arguments = req->arguments();
arguments->add_value("arg1", arg, CORBA::ARG_IN);

4 Now the request can be invoked:

req->invoke();

5 Finally, check for errors, and retrieve the result:

if (req->env()->exception())
// handle exception

else
{

CORBA::Any_ptr pRetVal = req->result()->value();
CORBA::float val;
Any_ptr >>= val;

}

For more details on using the dynamic invocation interface, see the VisiBroker
Developer’s Guide.

Testing CORBA servers
C++Builder provides you with two types of support for testing and debugging your
CORBA application:

As with other distributed applications, you can use C++Builder’s remote debugging
support to debug your distributed application as a whole, rather than testing each
piece separately. The debugger can respond to specific CORBA events (such as when
a client tries to locate the server) by adding entries to the event log or by stopping at a
breakpoint. Use the Distributed Debugging page of the Debugger Options dialog to
indicate what CORBA events you want to track and how you want the debugger to
respond when they occur.

In addition, C++Builder includes a CORBATest demo, that builds a universal client
which allows you to test your server interfaces. CORBATest records and runs scripts
that exercise the objects in your CORBA server application.

Note If you plan to use CORBATest to test many servers, you may find it convenient to
install this application on your Tools menu. To do this, Choose Tools|Configure
Tools, and add CorbaTest.exe using the Tools Options dialog box.

W r i t i n g C O R B A a p p l i c a t i o n s 29-17

T e s t i n g C O R B A s e r v e r s

Setting up the testing tool

Before you can use CORBATest to test a CORBA application, the interface for your
server must be registered with a running Interface Repository. To do this:

1 Make sure that the VisiBroker SmartAgent is running by choosing
Tools|VisiBroker SmartAgent if the menu item is not checked.

2 Run the server application you wish to test.

3 Choose Tools|IDL Repository to add the .IDL files for your server application to
the Interface Repository. While you can use any running interface repository, you
will probably want to use a dedicated testing repository so that your testing does
not interfere with other uses of the interface repository. To start a dedicated testing
repository, click the Add IREP button in the Update IDL Repository dialog that
appears when you choose Tools|IDL Repository.

4 Start the testing tool by running CORBATest.exe, which can be built from the
demo code in the corbatest directory (..\examples\corba\corbatest).

Recording and running test scripts

A test script is simply a set CORBA object methods to be called, along with any
parameters to be passed to those methods. A single script can contain several calls to
the same method (for example, to test the method with different parameter values).

Build up a script by adding commands to the commands pane in the upper middle
pane of the testing tool. To add a command

1 If the object whose method you want to call does not have a tabbed page in the
objects pane (upper left), choose Edit|Add Object. The New Objects dialog
appears, where you can select an object by its repository ID. The repository ID for
an object is a string of the form “IDL:MyInterface1:1.0”, where “MyInterface” is
the interface name as declared in the .IDL file. When you select an object, assign it
a name.

2 In the upper left pane, select the tab for the object whose method you want to add.
Each tab is labeled with an object name, which you assign when you add the object
(step 1). Each tabbed page lists the operations (methods) of the object that can be
tested.

3 Add commands to the script by dragging an operation from the object pane into
the commands pane in the upper middle of the testing tool.

4 When you select a method in the commands pane, its input parameters appear in
the details pane at the upper right. Supply values for the input parameters. The
status bar indicates the type of value required for the current input parameter.

Repeat these steps to add as many commands as you like for as many objects as you
like. When your script contains all the commands you want, choose Edit|Save Script
As (or click the Save Script button) to save your script and give it a name. You can
then begin a new script by choosing File|New Script (or clicking the New Script
button).

29-18 D e v e l o p e r ’ s G u i d e

T e s t i n g C O R B A s e r v e r s

Note You can remove objects or commands that you have added to a script by selecting the
object or command and choosing Edit|Remove Object or Edit|Remove Command.

You can run your script by choosing Run|Run, or clicking the Run Script button.
When the script is run, the testing tool uses the dynamic invocation interface to call
the CORBA server, passing the indicated parameter values. The return value (if any)
and any return parameters for all methods are then displayed in the results section of
the testing tool (or in a results file for automated testing).

The results section displays the results of all commands in the script on the results
tab. These same results also appear on the other pages of the results sections, divided
into categories so that you can more easily locate the information you want. The
other pages of the results section include return values, input parameter values,
output parameter values, and errors that occurred when running the script.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-1

C h a p t e r

30
Chapter30Creating Internet server applications

C++Builder allows you to create Web server applications as CGI applications or
dynamic-link libraries (DLLs). These Web server applications can contain any
nonvisual component. Special components on the Internet palette page make it easy
to create event handlers that are associated with a specific Uniform Resource
Identifier (URI) and, when processing is complete, to programmatically construct
HTML documents and transfer them to the client. These components, and the
architecture that defines there relationships, are collectively referred to as the
WebBroker technology.

Frequently, the content of Web pages is drawn from databases. Internet components
can be used to automatically manage connections to databases, allowing a single DLL
to handle numerous simultaneous, thread-safe database connections.

This chapter describes these Internet components, and discusses the creation of
several types of Internet applications.

Note You can also use ActiveForms or Active Server Pages as Internet server applications.
For more information about these approaches, see Chapter 36, “Creating an Active
Server Page” and “Generating an ActiveX control based on a VCL form” on
page 37-6.

Terminology and standards
Many of the protocols that control activity on the Internet are defined in Request for
Comment (RFC) documents that are created, updated, and maintained by the
Internet Engineering Task Force (IETF), the protocol engineering and development
arm of the Internet. There are several important RFCs that you will find useful when
writing Internet applications:

• RFC822, “Standard for the format of ARPA Internet text messages,” describes the
structure and content of message headers.

30-2 D e v e l o p e r ’ s G u i d e

T e r m i n o l o g y a n d s t a n d a r d s

• RFC1521, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies,” describes
the method used to encapsulate and transport multipart and multiformat
messages.

• RFC1945, “Hypertext Transfer Protocol — HTTP/1.0,” describes a transfer
mechanism used to distribute collaborative hypermedia documents.

The IETF maintains a library of the RFCs on their Web site, www.ietf.cnri.reston.va.us

Parts of a Uniform Resource Locator

The Uniform Resource Locator (URL) is a complete description of the location of a
resource that is available over the net. It is composed of several parts that may be
accessed by an application. These parts are illustrated in Figure 30.1:

Figure 30.1 Parts of a Uniform Resource Locator

The first portion (not technically part of the URL) identifies the protocol (http). This
portion can specify other protocols such as https (secure http), ftp, and so on.

The Host portion identifies the machine that runs the Web server and Web server
application. Although it is not shown in the preceding picture, this portion can
override the port that receives messages. Usually, there is no need to specify a port,
because the port number is implied by the protocol.

The ScriptName portion specifies the name of the Web server application. This is the
application to which the Web server passes messages.

Following the script name is the pathinfo. This identifies the destination of the
message within the Web server application. Path info values may refer to directories
on the host machine, the names of components that respond to specific messages, or
any other mechanism the Web server application uses to divide the processing of
incoming messages.

The Query portion contains a set a named values. These values and their names are
defined by the Web server application.

URI vs. URL
The URL is a subset of the Uniform Resource Identifier (URI) defined in the HTTP
standard, RFC1945. Web server applications frequently produce content from many
sources where the final result does not reside in a particular location, but is created as
necessary. URIs can describe resources that are not location-specific.

Host ScriptName PathInfo Query

Query Field Query Field

http://www.Tsite.com/art/gallery.dll/mammals?animal=dog&color=black

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-3

H T T P s e r v e r a c t i v i t y

HTTP request header information

HTTP request messages contain many headers that describe information about the
client, the target of the request, the way the request should be handled, and any
content sent with the request. Each header is identified by a name, such as “Host”
followed by a string value. For example, consider the following HTTP request:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

The first line identifies the request as a GET. A GET request message asks the Web
server application to return the content associated with the URI that follows the word
GET (in this case /art/gallery.dll/animals?animal=doc&color=black). The last part
of the first line indicates that the client is using the HTTP 1.0 standard.

The second line is the Connection header, and indicates that the connection should
not be closed once the request is serviced. The third line is the User-Agent header,
and provides information about the program generating the request. The next line is
the Host header, and provides the Host name and port on the server that is contacted
to form the connection. The final line is the Accept header, which lists the media
types the client can accept as valid responses.

HTTP server activity
The client/server nature of Web browsers is deceptively simple. To most users,
retrieving information on the World Wide Web is a simple procedure: click on a link,
and the information appears on the screen. More knowledgeable users have some
understanding of the nature of HTML syntax and the client/server nature of the
protocols used. This is usually sufficient for the production of simple, page-oriented
Web site content. Authors of more complex Web pages have a wide variety of
options to automate the collection and presentation of information using HTML.

Before building a Web server application, it is useful to understand how the client
issues a request and how the server responds to client requests.

Composing client requests

When an HTML hypertext link is selected (or the user otherwise specifies a URL), the
browser collects information about the protocol, the specified domain, the path to the
information, the date and time, the operating environment, the browser itself, and
other content information. It then composes a request.

For example, to display a page of images based on criteria selected by clicking
buttons on a form, the client might construct this URL:

http://www.TSite.com/art/gallery.dll/animals?animal=dog&color=black

30-4 D e v e l o p e r ’ s G u i d e

H T T P s e r v e r a c t i v i t y

which specifies an HTTP server in the www.TSite.com domain. The client contacts
www.TSite.com, connects to the HTTP server, and passes it a request. The request
might look something like this:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Serving client requests

The Web server receives a client request and can perform any number of actions,
based on its configuration. If the server is configured to recognize the /gallery.dll
portion of the request as a program, it passes information about the request to that
program. The way information about the request is passed to the program depends
on the type of Web server application:

• If the program is a Common Gateway Interface (CGI) program, the server passes
the information contained in the request directly to the CGI program. The server
waits while the program executes. When the CGI program exits, it passes the
content directly back to the server.

• If the program is WinCGI, the server opens a file and writes out the request
information. It then executes the Win-CGI program, passing the location of the file
containing the client information and the location of a file that the Win-CGI
program should use to create content. The server waits while the program
executes. When the program exits, the server reads the data from the content file
written by the Win-CGI program.

• If the program is a dynamic-link library (DLL), the server loads the DLL (if
necessary) and passes the information contained in the request to the DLL as a
structure. The server waits while the program executes. When the DLL exits, it
passes the content directly back to the server.

In all cases, the program acts on the request of and performs actions specified by the
programmer: accessing databases, doing simple table lookups or calculations,
constructing or selecting HTML documents, and so on.

Responding to client requests

When a Web server application finishes with a client request, it constructs a page of
HTML code or other MIME content, and passes it back (via the server) to the client
for display. The way the response is sent also differs based on the type of program:

• When a Win-CGI script finishes it constructs a page of HTML, writes it to a file,
writes any response information to another file, and passes the locations of both
files back to the server. The server opens both files and passes the HTML page
back to the client.

• When a DLL finishes, it passes the HTML page and any response information
directly back to the server, which passes them back to the client.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-5

W e b s e r v e r a p p l i c a t i o n s

Creating a Web server application as a DLL reduces system load and resource use by
reducing the number of processes and disk accesses necessary to service an
individual request.

Web server applications
Web server applications extend the functionality and capability of existing Web
servers. The Web server application receives HTTP request messages from the Web
server, performs any actions requested in those messages, and formulates responses
that it passes back to the Web server. Any operation that you can perform with a
C++Builder application can be incorporated into a Web server application.

Types of Web server applications

Using the internet components, you can create four types of Web server applications.
Each type uses a type-specific descendant of TWebApplication, TWebRequest, and
TWebResponse:

ISAPI and NSAPI
An ISAPI or NSAPI Web server application is a DLL that is loaded by the Web server.
Client request information is passed to the DLL as a structure and evaluated by
TISAPIApplication, which creates TISAPIRequest and TISAPIResponse objects. Each
request message is automatically handled in a separate execution thread.

CGI stand-alone
A CGI stand-alone Web server application is a console application that receives client
request information on standard input and passes the results back to the server on
standard output. This data is evaluated by TCGIApplication, which creates
TCGIRequest and TCGIResponse objects. Each request message is handled by a
separate instance of the application.

Win-CGI stand-alone
A Win-CGI stand-alone Web server application is a Windows application that
receives client request information from a configuration settings (INI) file written by
the server and writes the results to a file that the server passes back to the client. The
INI file is evaluated by TCGIApplication, which creates TWinCGIRequest and

Table 30.1 Web server application components

Application Type Application Object Request Object Response Object

Microsoft Server DLL (ISAPI) TISAPIApplication TISAPIRequest TISAPIResponse

Netscape Server DLL (NSAPI) TISAPIApplication TISAPIRequest TISAPIResponse

Console CGI application TCGIApplication TCGIRequest TCGIResponse

Windows CGI application TCGIApplication TWinCGIRequest TWinCGIResponse

30-6 D e v e l o p e r ’ s G u i d e

W e b s e r v e r a p p l i c a t i o n s

TWinCGIResponse objects. Each request message is handled by a separate instance of
the application.

Creating Web server applications

All new Web server applications are created by selecting File|New from the menu of
the main window and selecting Web Server Application in the New Items dialog. A
dialog box appears, where you can select one of the Web server application types:

• ISAPI and NSAPI: Selecting this type of application sets up your project as a DLL
with the exported methods expected by the Web server. It also includes the
appropriate header files for generating your application.

• CGI stand-alone: Selecting this type of application sets up your project as a console
application and includes the appropriate header files.

• Win-CGI stand-alone: Selecting this type of application sets up your project as a
Windows application and includes the appropriate header files.

Choose the type of Web Server Application that communicates with the type of Web
Server your application will use. This creates a new project configured to use Internet
components and containing an empty Web Module.

The Web module

The Web module (TWebModule) is a descendant of TDataModule and may be used in
the same way: to provide centralized control for business rules and non-visual
components in the Web application.

Add any content producers that your application uses to generate response
messages. These can be the built-in content producers such as TPageProducer,
TDataSetPageProducer, TDataSetTableProducer, TQueryTableProducer and
TMIDASPageProducer, or descendants of TCustomContentProducer that you have
written yourself. If your application generates response messages that include
material drawn from databases, you can add data access components or special
components for writing a Web server that acts as a client in a MIDAS application.

In addition to storing non-visual components and business rules, the Web module
also acts as a dispatcher, matching incoming HTTP request messages to action items
that generate the responses to those requests.

You may have a data module already that is set up with many of the non-visual
components and business rules that you want to use in your Web application. You
can replace the Web module with your pre-existing data module. Simply delete the
automatically generated Web module and replace it with your data module. Then,
add a TWebDispatcher component to your data module, so that it can dispatch request
messages to action items, the way a Web module can. If you want to change the way
action items are chosen to respond to incoming HTTP request messages, derive a
new dispatcher component from TCustomWebDispatcher, and add that to the data
module instead.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-7

T h e s t r u c t u r e o f a W e b s e r v e r a p p l i c a t i o n

Your project can contain only one dispatcher. This can either be the Web module that
is automatically generated when you create the project, or the TWebDispatcher
component that you add to a data module that replaces the Web module. If a second
data module containing a dispatcher is created during execution, the Web server
application generates a runtime error.

Note The Web module that you set up at design time is actually a template. In ISAPI and
NSAPI applications, each request message spawns a separate thread, and separate
instances of the Web module and its contents are created dynamically for each
thread.

Warning The Web module in a DLL-based Web server application is cached for later reuse to
increase response time. The state of the dispatcher and its action list is not
reinitialized between requests. Enabling or disabling action items during execution
may cause unexpected results when that module is used for subsequent client
requests.

The Web Application object

The project that is set up for your Web application contains a global variable named
Application. Application is a descendant of TWebApplication (either TISAPIApplication
or TCGIApplication) that is appropriate to the type of application you are creating. It
runs in response to HTTP request messages received by the Web server.

Warning Do not include Forms.hpp after the include statement for CGIApp.hpp or
ISAPIApp.hpp in the project file. Forms.hpp also declares a global variable named
Application, and if it appears after CGIApp.hpp or ISAPIApp.hpp, Application will be
initialized to an object of the wrong type.

The structure of a Web server application
When the Web application receives an HTTP request message, it creates a
TWebRequest object to represent the HTTP request message, and a TWebResponse
object to represent the response that should be returned. The application then passes
these objects to the Web dispatcher (either the Web module or a TWebDispatcher
component).

The Web dispatcher controls the flow of the Web server application. The dispatcher
maintains a collection of action items (TWebActionItem) that know how to handle
certain types of HTTP request messages. The dispatcher identifies the appropriate
action items or auto-dispatching components to handle the HTTP request message,
and passes the request and response objects to the identified handler so that it can
perform any requested actions or formulate a response message. It is described more
fully in the section “The Web dispatcher” on page 30-8.

30-8 D e v e l o p e r ’ s G u i d e

T h e W e b d i s p a t c h e r

Figure 30.2 Structure of a Server Application

The action items are responsible for reading the request and assembling a response
message. Specialized content producer components aid the action items in
dynamically generating the content of response messages, which can include custom
HTML code or other MIME content. The content producers can make use of other
content producers or descendants of THTMLTagAttributes, to help them create the
content of the response message. For more information on content producers, see
“Generating the content of response messages” on page 30-17.

If you are creating the Web Client in a multi-tiered database application, your Web
server application may include additional, auto-dispatching components that
represent database information encoded in XML and database manipulation classes
encoded in javascript. The dispatcher calls on these auto-dispatching components to
handle the request message after it has tried all of its action items.

When all action items (or auto-dispatching components) have finished creating the
response by filling out the TWebResponse object, the dispatcher passes the result back
to the Web application. The application sends the response on to the client via the
Web server.

The Web dispatcher
If you are using a Web module, it acts as a Web dispatcher. If you are using a
pre-existing data module, you must add a single dispatcher component
(TWebDispatcher) to that data module. The dispatcher maintains a collection of action
items that know how to handle certain kinds of request messages. When the Web
application passes a request object and a response object to the dispatcher, it chooses
one or more action items to respond to the request.

Web Module (Dispatcher)

Web
Server

Action
Item

Content
Producer

Web
Application

Web
Response

Action
Item

Content
Producer

Content
Producer

Web
Request

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-9

T h e W e b d i s p a t c h e r

Adding actions to the dispatcher

Open the action editor from the Object Inspector by clicking the ellipsis on the Actions
property of the dispatcher. Action items can be added to the dispatcher by clicking
the Add button in the action editor.

Add actions to the dispatcher to respond to different request methods or target URIs.
You can set up your action items in a variety of ways. You can start with action items
that preprocess requests, and end with a default action that checks whether the
response is complete and either sends the response or returns an error code. Or, you
can add a separate action item for every type of request, where each action item
completely handles the request.

Action items are discussed in further detail in “Action items” on page 30-10.

Dispatching request messages

When the dispatcher receives the client request, it generates a BeforeDispatch event.
This provides your application with a chance to preprocess the request message
before it is seen by any of the action items.

Next, the dispatcher looks through its list of action items for one that matches the
pathinfo portion of the request message’s target URL and that can provide the service
specified as the method of the request message. It does this by comparing the PathInfo
and MethodType properties of the TWebRequest object with the properties of the same
name on the action item.

When the dispatcher finds an appropriate action item, it causes that action item to
fire. When the action item fires, it does one of the following:

• Fills in the response content and sends the response or signals that the request is
completely handled.

• Adds to the response and then allows other action items to complete the job.

• Defers the request to other action items.

After checking all its action items, if the message is not handled the dispatcher checks
any specially registered auto-dispatching components that do not use action items.
These components are specific to multi-tiered database applications, which are
described in “Building Web applications using InternetExpress” on page 15-27.

If, after checking all the action items and any specially registered auto-dispatching
components, the request message has still not been fully handled, the dispatcher calls
the default action item. The default action item does not need to match either the
target URL or the method of the request.

If the dispatcher reaches the end of the action list (including the default action, if any)
and no actions have been triggered, nothing is passed back to the server. The server
simply drops the connection to the client.

30-10 D e v e l o p e r ’ s G u i d e

A c t i o n i t e m s

If the request is handled by the action items, the dispatcher generates an
AfterDispatch event. This provides a final opportunity for your application to check
the response that was generated, and make any last minute changes.

Action items
Each action item (TWebActionItem) performs a specific task in response to a given
type of request message.

Action items can completely respond to a request or perform part of the response and
allow other action items to complete the job. Action items can send the HTTP
response message for the request, or simply set up part of the response for other
action items to complete. If a response is completed by the action items but not sent,
the Web server application sends the response message.

Determining when action items fire

Most properties of the action item determine when the dispatcher selects it to handle
an HTTP request message. To set the properties of an action item, you must first
bring up the action editor: select the Actions property of the dispatcher in the Object
Inspector and click on the ellipsis. When an action is selected in the action editor, its
properties can be modified in the Object Inspector.

The target URL
The dispatcher compares the PathInfo property of an action item to the PathInfo of the
request message. The value of this property should be the path information portion
of the URL for all requests that the action item is prepared to handle. For example,
given this URL,

http://www.TSite.com/art/gallery.dll/mammals?animal=dog&color=black

and assuming that the /gallery.dll part indicates the Web server application, the
path information portion is

/mammals

Use path information to indicate where your Web application should look for
information when servicing requests, or to divide you Web application into logical
subservices.

The request method type
The MethodType property of an action item indicates what type of request messages it
can process. The dispatcher compares the MethodType property of an action item to

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-11

A c t i o n i t e m s

the MethodType of the request message. MethodType can take one of the following
values:

Enabling and disabling action items
Each action item has an Enabled property that can be used to enable or disable that
action item. By setting Enabled to false, you disable the action item so that it is not
considered by the dispatcher when it looks for an action item to handle a request.

A BeforeDispatch event handler can control which action items should process a
request by changing the Enabled property of the action items before the dispatcher
begins matching them to the request message.

Caution Changing the Enabled property of an action during execution may cause unexpected
results for subsequent requests. If the Web server application is a DLL that caches
Web modules, the initial state will not be reinitialized for the next request. Use the
BeforeDispatch event to ensure that all action items are correctly initialized to their
appropriate starting states.

Choosing a default action item
Only one of the action items can be the default action item. The default action item is
selected by setting its Default property to true. When the Default property of an action
item is set to true, the Default property for the previous default action item (if any) is
set to false.

When the dispatcher searches its list of action items to choose one to handle a
request, it stores the name of the default action item. If the request has not been fully
handled when the dispatcher reaches the end of its list of action items, it executes the
default action item.

The dispatcher does not check the PathInfo or MethodType of the default action item.
The dispatcher does not even check the Enabled property of the default action item.
Thus, you can make sure the default action item is only called at the very end by
setting its Enabled property to false.

The default action item should be prepared to handle any request that is
encountered, even if it is only to return an error code indicating an invalid URI or
MethodType. If the default action item does not handle the request, no response is sent
to the Web client.

Table 30.2 MethodType values

Value Meaning

mtGet The request is asking for the information associated with the target URI to be
returned in a response message.

mtHead The request is asking for the header properties of a response, as if servicing an
mtGet request, but omitting the content of the response.

mtPost The request is providing information to be posted to the Web application.

mtPut The request asks that the resource associated with the target URI be replaced by the
content of the request message.

mtAny Matches any request method type, including mtGet, mtHead, mtPut, and mtPost.

30-12 D e v e l o p e r ’ s G u i d e

A c t i o n i t e m s

Caution Changing the Default property of an action during execution may cause unexpected
results for the current request. If the Default property of an action that has already
been triggered is set to true, that action will not be re-evaluated and the dispatcher
will not trigger that action when it reaches the end of the action list.

Responding to request messages with action items

The real work of the Web server application is performed by action items when they
execute. When the Web dispatcher fires an action item, that action item can respond
to the current request message in two ways:

• If the action item has an associated producer component as the value of its
Producer property, that producer automatically assigns the Content of the response
message using its Content method. The Internet page of the component palette
includes a number of content producer components that can help construct an
HTML page for the content of the response message.

• After the producer has assigned any response content (if there is an associated
producer), the action item receives an OnAction event. The OnAction event handler
is passed the TWebRequest object that represents the HTTP request message and a
TWebResponse object to fill with any response information.

If the action item’s content can be generated by a single content producer, it is
simplest to assign the content producer as the action item’s Producer property.
However, you can always access any content producer from the OnAction event
handler as well. The OnAction event handler allows more flexibility, so that you can
use multiple content producers, assign response message properties, and so on.

Both the content-producer component and the OnAction event handler can use any
objects or runtime library methods to respond to request messages. They can access
databases, perform calculations, construct or select HTML documents, and so on. For
more information about generating response content using content-producer
components, see “Generating the content of response messages” on page 30-17.

Sending the response
An OnAction event handler can send the response back to the Web client by using the
methods of the TWebResponse object. However, if no action item sends the response to
the client, it will still get sent by the Web server application as long as the last action
item to look at the request indicates that the request was handled.

Using multiple action items
You can respond to a request from a single action item, or divide the work up among
several action items. If the action item does not completely finish setting up the
response message, it must signal this state in the OnAction event handler by setting
the Handled parameter to false.

If many action items divide up the work of responding to request messages, each
setting Handled to false so that others can continue, make sure the default action item
leaves the Handled parameter set to true. Otherwise, no response will be sent to the
Web client.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-13

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

When dividing the work among several action items, either the OnAction event
handler of the default action item or the AfterDispatch event handler of the dispatcher
should check whether all the work was done and set an appropriate error code if it is
not.

Accessing client request information
When an HTTP request message is received by the Web server application, the
headers of the client request are loaded into the properties of a TWebRequest object. In
NSAPI and ISAPI applications, the request message is encapsulated by a
TISAPIRequest object. Console CGI applications use TCGIRequest objects, and
Windows CGI applications use TWinCGIRequest objects.

The properties of the request object are read-only. You can use them to gather all of
the information available in the client request.

Properties that contain request header information

Most properties in a request object contain information about the request that comes
from the HTTP request header. Not every request supplies a value for every one of
these properties. Also, some requests may include header fields that are not surfaced
in a property of the request object, especially as the HTTP standard continues to
evolve. To obtain the value of a request header field that is not surfaced as one of the
properties of the request object, use the GetFieldByName method.

Properties that identify the target
The full target of the request message is given by the URL property. Usually, this is a
URL that can be broken down into the protocol (HTTP), Host (server system),
ScriptName (server application), PathInfo (location on the host), and Query.

Each of these pieces is surfaced in its own property. The protocol is always HTTP,
and the Host and ScriptName identify the Web server application. The dispatcher uses
the PathInfo portion when matching action items to request messages. The Query is
used by some requests to specify the details of the requested information. Its value is
also parsed for you as the QueryFields property.

Properties that describe the Web client
The request also includes several properties that provide information about where
the request originated. These include everything from the e-mail address of the
sender (the From property), to the URI where the message originated (the Referer or
RemoteHost property). If the request contains any content, and that content does not
arise from the same URI as the request, the source of the content is given by the
DerivedFrom property. You can also determine the IP address of the client (the
RemoteAddr property), and the name and version of the application that sent the
request (the UserAgent property).

30-14 D e v e l o p e r ’ s G u i d e

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

Properties that identify the purpose of the request
The Method property is a string describing what the request message is asking the
server application to do. The HTTP 1.1 standard defines the following methods:

The Method property may indicate any other method that the Web client requests of
the server.

The Web server application does not need to provide a response for every possible
value of Method. The HTTP standard does require that it service both GET and HEAD
requests, however.

The MethodType property indicates whether the value of Method is GET (mtGet),
HEAD (mtHead), POST (mtPost), PUT (mtPut) or some other string (mtAny). The
dispatcher matches the value of the MethodType property with the MethodType of each
action item.

Properties that describe the expected response
The Accept property indicates the media types the Web client will accept as the
content of the response message. The IfModifiedSince property specifies whether the
client only wants information that has changed recently. The Cookie property
includes state information (usually added previously by your application) that can
modify the response.

Properties that describe the content
Most requests do not include any content, as they are requests for information.
However, some requests, such as POST requests, provide content that the Web server
application is expected to use. The media type of the content is given in the
ContentType property, and its length in the ContentLength property. If the content of
the message was encoded (for example, for data compression), this information is in
the ContentEncoding property. The name and version number of the application that
produced the content is specified by the ContentVersion property. The Title property
may also provide information about the content.

Value What the message requests

OPTIONS Information about available communication options.

GET Information identified by the URL property.

HEAD Header information from an equivalent GET message, without the content of the
response.

POST The server application to post the data included in the Content property, as
appropriate.

PUT The server application to replace the resource indicated by the URL property
with the data included in the Content property.

DELETE The server application to delete or hide the resource identified by the URL
property.

TRACE The server application to send a loop-back to confirm receipt of the request.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-15

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

The content of HTTP request messages

In addition to the header fields, some request messages include a content portion that
the Web server application should process in some way. For example, a POST
request might include information that should be added to a database maintained by
the Web server application.

The unprocessed value of the content is given by the Content property. If the content
can be parsed into fields separated by ampersands (&), a parsed version is available
in the ContentFields property.

Creating HTTP response messages
When the Web server application creates a TWebRequest object for an incoming HTTP
request message, it also creates a corresponding TWebResponse object to represent the
response message that will be sent in return. In NSAPI and ISAPI applications, the
response message is encapsulated by a TISAPIResponse object. Console CGI
applications use TCGIResponse objects, and Windows CGI applications use
TWinCGIResponse objects.

The action items that generate the response to a Web client request fill in the
properties of the response object. In some cases, this may be as simple as returning an
error code or redirecting the request to another URI. In other cases, this may involve
complicated calculations that require the action item to fetch information from other
sources and assemble it into a finished form. Most request messages require some
response, even if it is only the acknowledgment that a requested action was carried
out.

Filling in the response header

Most of the properties of the TWebResponse object represent the header information of
the HTTP response message that is sent back to the Web client. An action item sets
these properties from its OnAction event handler.

Not every response message needs to specify a value for every one of the header
properties. The properties that should be set depend on the nature of the request and
the status of the response.

Indicating the response status
Every response message must include a status code that indicates the status of the
response. You can specify the status code by setting the StatusCode property. The
HTTP standard defines a number of standard status codes with predefined
meanings. In addition, you can define your own status codes using any of the unused
possible values.

30-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

Each status code is a three-digit number where the most significant digit indicates the
class of the response, as follows:

• 1xx: Informational (The request was received but has not been fully processed).

• 2xx: Success (The request was received, understood, and accepted).

• 3xx: Redirection (Further action by the client is needed to complete the request).

• 4xx: Client Error (The request cannot be understood or cannot be serviced).

• 5xx: Server Error (The request was valid but the server could not handle it).

Associated with each status code is a string that explains the meaning of the status
code. This is given by the ReasonString property. For predefined status codes, you do
not need to set the ReasonString property. If you define your own status codes, you
should also set the ReasonString property.

Indicating the need for client action
When the status code is in the 300-399 range, the client must perform further action
before the Web server application can complete its request. If you need to redirect the
client to another URI, or indicate that a new URI was created to handle the request,
set the Location property. If the client must provide a password before you can
proceed, set the WWWAuthenticate property.

Describing the server application
Some of the response header properties describe the capabilities of the Web server
application. The Allow property indicates the methods to which the application can
respond. The Server property gives the name and version number of the application
used to generate the response. The Cookies property can hold state information about
the client’s use of the server application which is included in subsequent request
messages.

Describing the content
Several properties describe the content of the response. ContentType gives the media
type of the response, and ContentVersion is the version number for that media type.
ContentLength gives the length of the response. If the content is encoded (such as for
data compression), indicate this with the ContentEncoding property. If the content
came from another URI, this should be indicated in the DerivedFrom property. If the
value of the content is time-sensitive, the LastModified property and the Expires
property indicate whether the value is still valid. The Title property can provide
descriptive information about the content.

Setting the response content

For some requests, the response to the request message is entirely contained in the
header properties of the response. In most cases, however, action item assigns some
content to the response message. This content may be static information stored in a
file, or information that was dynamically produced by the action item or its content
producer.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-17

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

You can set the content of the response message by using either the Content property
or the ContentStream property.

The Content property is an AnsiString . AnsiStrings are not limited to text values, so
the value of the Content property can be a string of HTML commands, graphics
content such as a bit-stream, or any other MIME content type.

Use the ContentStream property if the content for the response message can be read
from a stream. For example, if the response message should send the contents of a
file, use a TFileStream object for the ContentStream property. As with the Content
property, ContentStream can provide a string of HTML commands or other MIME
content type. If you use the ContentStream property, do not free the stream yourself.
The Web response object automatically frees it for you.

Note If the value of the ContentStream property is not NULL, the Content property is
ignored.

Sending the response

If you are sure there is no more work to be done in response to a request message,
you can send a response directly from an OnAction event handler. The response
object provides two methods for sending a response: SendResponse and SendRedirect.
Call SendResponse to send the response using the specified content and all the header
properties of the TWebResponse object. If you only need to redirect the Web client to
another URI, the SendRedirect method is more efficient.

If none of the event handlers send the response, the Web application object sends it
after the dispatcher finishes. However, if none of the action items indicate that they
have handled the response, the application will close the connection to the Web client
without sending any response.

Generating the content of response messages
C++Builder provides a number of objects to assist your action items in producing
content for HTTP response messages. You can use these objects to generate strings of
HTML commands that are saved in a file or sent directly back to the Web client. You
can write your own content producers, deriving them from TCustomContentProducer
or one of its descendants.

TCustomContentProducer provides a generic interface for creating any MIME type as
the content of an HTTP response message. Its descendants include page producers
and table producers:

• Page producers scan HTML documents for special tags that they replace with
customized HTML code. They are described in the following section.

• Table producers create HTML commands based on the information in a dataset.
They are described in “Using database information in responses” on page 30-21.

30-18 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

Using page producer components
Page producers (TPageProducer and its descendants) take an HTML template and
convert it by replacing special HTML-transparent tags with customized HTML code.
You can store a set of standard response templates that are filled in by page
producers when you need to generate the response to an HTTP request message. You
can chain page producers together to iteratively build up an HTML document by
successive refinement of the HTML-transparent tags.

HTML templates
An HTML template is a sequence of HTML commands and HTML-transparent tags.
An HTML-transparent tag has the form

<#TagName Param1=Value1 Param2=Value2 ...>

The angle brackets (< and >) define the entire scope of the tag. A pound sign (#)
immediately follows the opening angle bracket (<) with no spaces separating it from
the angle bracket. The pound sign identifies the string to the page producer as an
HTML-transparent tag. The tag name immediately follows the pound sign with no
spaces separating it from the pound sign. The tag name can be any valid identifier
and identifies the type of conversion the tag represents.

Following the tag name, the HTML-transparent tag can optionally include
parameters that specify details of the conversion to be performed. Each parameter is
of the form ParamName=Value, where there is no space between the parameter name,
the equals symbol (=) and the value. The parameters are separated by whitespace.

The angle brackets (< and >) make the tag transparent to HTML browsers that do not
recognize the #TagName construct.

While you can create your own HTML-transparent tags to represent any kind of
information processed by your page producer, there are several predefined tag
names associated with values of the TTag data type. These predefined tag names
correspond to HTML commands that are likely to vary over response messages. They
are listed in the following table:

Tag Name TTag value What the tag should be converted to

Link tgLink A hypertext link. The result is an HTML sequence beginning
with an <A> tag and ending with an tag.

Image tgImage A graphic image. The result is an HTML tag.

Table tgTable An HTML table. The result is an HTML sequence beginning
with a <TABLE> tag and ending with a </TABLE> tag.

ImageMap tgImageMap A graphic image with associated hot zones. The result is an
HTML sequence beginning with a <MAP> tag and ending
with a </MAP> tag.

Object tgObject An embedded ActiveX object. The result is an HTML
sequence beginning with an <OBJECT> tag and ending with
an </OBJECT> tag.

Embed tgEmbed A Netscape-compliant add-in DLL. The result is an HTML
sequence beginning with an <EMBED> tag and ending with
an </EMBED> tag.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-19

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

Any other tag name is associated with tgCustom. The page producer supplies no
built-in processing of the predefined tag names. They are simply provided to help
applications organize the conversion process into many of the more common tasks.

Note The predefined tag names are case insensitive.

Specifying the HTML template
Page producers provide you with many choices in how to specify the HTML
template. You can set the HTMLFile property to the name of a file that contains the
HTML template. You can set the HTMLDoc property to a TStrings object that contains
the HTML template. If you use either the HTMLFile property or the HTMLDoc
property to specify the template, you can generate the converted HTML commands
by calling the Content method.

In addition, you can call the ContentFromString method to directly convert an HTML
template that is a single AnsiString which is passed in as a parameter. You can also
call the ContentFromStream method to read the HTML template from a stream. Thus,
for example, you could store all your HTML templates in a memo field in a database,
and use the ContentFromStream method to obtain the converted HTML commands,
reading the template directly from a TBlobStream object.

Converting HTML-transparent tags
The page producer converts the HTML template when you call one of its Content
methods. When the Content method encounters an HTML-transparent tag, it triggers
the OnHTMLTag event. You must write an event handler to determine the type of tag
encountered, and to replace it with customized content.

If you do not create an OnHTMLTag event handler for the page producer,
HTML-transparent tags are replaced with an empty string.

Using page producers from an action item
A typical use of a page producer component uses the HTMLFile property to specify a
file containing an HTML template. The OnAction event handler calls the Content
method to convert the template into a final HTML sequence:

void __fastcall WebModule1::MyActionEventHandler(TObject *Sender,
TWebRequest *Request, TWebResponse *Response, bool &Handled)

{
PageProducer1->HTMLFile = “Greeting.html”;
Response->Content = PageProducer1->Content();

}

Greeting.html is a file that contains this HTML template:

<HTML>
<HEAD><TITLE>Our brand new web site</TITLE></HEAD>
<BODY>
Hello <#UserName>! Welcome to our web site.
</BODY>
</HTML>

30-20 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

The OnHTMLTag event handler replaces the custom tag (<#UserName>) in the HTML
during execution:

void __fastcall WebModule1::HTMLTagHandler(TObject *Sender, TTag Tag,
const AnsiString TagString, TStrings *TagParams, AnsiString &ReplaceText)

{
if (CompareText(TagString,”UserName”) == 0)

ReplaceText = ((TPageProducer *)Sender)->Dispatcher->Request->Content;
}

If the content of the request message was the string Mr. Ed, the value of
Response->Content would be

<HTML>
<HEAD><TITLE>Our brand new web site</TITLE></HEAD>
<BODY>
Hello Mr. Ed! Welcome to our web site.
</BODY>
</HTML>

Note This example uses an OnAction event handler to call the content producer and assign
the content of the response message. You do not need to write an OnAction event
handler if you assign the page producer’s HTMLFile property at design time. In that
case, you can simply assign PageProducer1 as the value of the action item’s Producer
property to accomplish the same effect as the OnAction event handler above.

Chaining page producers together
The replacement text from an OnHTMLTag event handler need not be the final
HTML sequence you want to use in the HTTP response message. You may want to
use several page producers, where the output from one page producer is the input
for the next.

The simplest way is to chain the page producers together is to associate each page
producer with a separate action item, where all action items have the same PathInfo
and MethodType. The first action item sets the content of the Web response message
from its content producer, but its OnAction event handler makes sure the message is
not considered handled. The next action item uses the ContentFromString method of
its associated producer to manipulate the content of the Web response message, and
so on. Action items after the first one use an OnAction event handler such as the
following:

void __fastcall WebModule1::Action2Action(TObject *Sender,
TWebRequest *Request, TWebResponse *Response, bool &Handled)

{
Response->Content = PageProducer2->ContentFromString(Response->Content);

}

For example, consider an application that returns calendar pages in response to
request messages that specify the month and year of the desired page. Each calendar
page contains a picture, followed by the name and year of the month between small

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-21

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

images of the previous month and next months, followed by the actual calendar. The
resulting image looks something like this:

The general form of the calendar is stored in a template file. It looks like this:

<HTML>
<Head></HEAD>
<BODY>
<#MonthlyImage> <#TitleLine><#MainBody>
</BODY>
</HTML>

The OnHTMLTag event handler of the first page producer looks up the month and
year from the request message. Using that information and the template file, it does
the following:

• Replaces <#MonthlyImage> with <#Image Month=January Year=1997>.

• Replaces <#TitleLine> with <#Calendar Month=December Year=1996
Size=Small> January 1997 <#Calendar Month=February Year=1997 Size=Small>.

• Replaces <#MainBody> with <#Calendar Month=January Year=1997 Size=Large>.

The OnHTMLTag event handler of the next page producer uses the content produced
by the first page producer, and replaces the <#Image Month=January Year=1997> tag
with the appropriate HTML tag. Yet another page producer resolves the
#Calendar tags with appropriate HTML tables.

Using database information in responses
The response to an HTTP request message may include information taken from a
database. Specialized content producers on the Internet palette page can generate the
HTML to represent the records from a database in an HTML table.

As an alternate approach, special components on the InternetExpress page of the
component palette let you build Web servers that are part of a multi-tiered database
application. See “Building Web applications using InternetExpress” on page 15-27
for details.

30-22 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

Adding a session to the Web module

Both console CGI applications and Win-CGI applications are launched in response to
HTTP request messages. When working with databases in these types of
applications, you can use the default session to manage your database connections,
because each request message has its own instance of the application. Each instance
of the application has its own distinct, default session.

When writing an ISAPI application or an NSAPI application, however, each request
message is handled in a separate thread of a single application instance. To prevent
the database connections from different threads from interfering with each other, you
must give each thread its own session.

Each request message in an ISAPI or NSAPI application spawns a new thread. The
Web module for that thread is generated dynamically at runtime. Add a TSession
object to the Web module to handle the database connections for the thread that
contains the Web module.

Separate instances of the Web module are generated for each thread at runtime. Each
of those modules contains the session object. Each of those sessions must have a
separate name, so that the threads that handle separate request messages do not
interfere with each other’s database connections. To cause the session objects in each
module to dynamically generate unique names for themselves, set the
AutoSessionName property of the session object. Each session object will dynamically
generate a unique name for itself and set the SessionName property of all datasets in
the module to refer to that unique name. This allows all interaction with the database
for each request thread to proceed without interfering with any of the other request
messages. For more information on sessions, see Chapter 17, “Managing database
sessions.”

Representing database information in HTML

Specialized Content producer components on the Internet palette page supply
HTML commands based on the records of a dataset. There are two types of
data-aware content producers:

• The dataset page producer, which formats the fields of a dataset into the text of an
HTML document.

• Table producers, which format the records of a dataset as an HTML table.

Using dataset page producers
Dataset page producers work like other page producer components: they convert a
template that includes HTML-transparent tags into a final HTML representation.
They include the special ability, however, of converting tags that have a tagname
which matches the name of a field in a dataset into the current value of that field. For
more information about using page producers in general, see “Using page producer
components” on page 30-18.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-23

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

To use a dataset page producer, add a TDataSetPageProducer component to your web
module and set its DataSet property to the dataset whose field values should be
displayed in the HTML content. Create an HTML template that describes the output
of your dataset page producer. For every field value you want to display, include a
tag of the form

<#FieldName>

in the HTML template, where FieldName specifies the name of the field in the dataset
whose value should be displayed.

When your application calls the Content, ContentFromString, or ContentFromStream
method, the dataset page producer substitutes the current field values for the tags
that represent fields.

Using table producers
The Internet palette page includes two components that create an HTML table to
represent the records of a dataset:

• Dataset table producers, which format the fields of a dataset into the text of an
HTML document.

• Query table producers, which runs a query after setting parameters supplied by
the request message and formats the resulting dataset as an HTML table.

Using either of the two table producers, you can customize the appearance of a
resulting HTML table by specifying properties for the table’s color, border, separator
thickness, and so on. To set the properties of a table producer at design time,
double-click the table producer component to display the Response Editor dialog.

Specifying the table attributes
Table producers use the THTMLTableAttributes object to describe the visual
appearance of the HTML table that displays the records from the dataset. The
THTMLTableAttributes object includes properties for the table’s width and spacing
within the HTML document, and for its background color, border thickness, cell
padding, and cell spacing. These properties are all turned into options on the HTML
<TABLE> tag created by the table producer.

At design time, specify these properties using the Object Inspector. Select the table
producer object in the Object Inspector and expand the TableAttributes property to
access the display properties of the THTMLTableAttributes object.

You can also specify these properties programmatically at runtime.

Specifying the row attributes
Similar to the table attributes, you can specify the alignment and background color of
cells in the rows of the table that display data. The RowAttributes property is a
THTMLTableRowAttributes object.

At design time, specify these properties using the Object Inspector by expanding the
RowAttributes property. You can also specify these properties programmatically at
runtime.

30-24 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

You can also adjust the number of rows shown in the HTML table by setting the
MaxRows property.

Specifying the columns
If you know the dataset for the table at design time, you can use the Columns editor
to customize the columns’ field bindings and display attributes. Select the table
producer component, and right-click. From the context menu, choose the Columns
editor. This lets you add, delete, or rearrange the columns in the table. You can set the
field bindings and display properties of individual columns in the Object Inspector
after selecting them in the Columns editor.

If you are getting the name of the dataset from the HTTP request message, you can’t
bind the fields in the Columns editor at design time. However, you can still
customize the columns programmatically at runtime, by setting up the appropriate
THTMLTableColumn objects and using the methods of the Columns property to add
them to the table. If you do not set up the Columns property, the table producer
creates a default set of columns that match the fields of the dataset and specify no
special display characteristics.

Embedding tables in HTML documents
You can embed the HTML table that represents your dataset in a larger document by
using the Header and Footer properties of the table producer. Use Header to specify
everything that comes before the table, and Footer to specify everything that comes
after the table.

You may want to use another content producer (such as a page producer) to create
the values for the Header and Footer properties.

If you embed your table in a larger document, you may want to add a caption to the
table. Use the Caption and CaptionAlignment properties to give your table a caption.

Setting up a dataset table producer
TDataSetTableProducer is a table producer that creates an HTML table for a dataset.
Set the DataSet property of TDataSetTableProducer to specify the dataset that contains
the records you want to display. You do not set the DataSource property, as you
would for most data-aware objects in a conventional database application. This is
because TDataSetTableProducer generates its own data source internally.

You can set the value of DataSet at design time if your Web application always
displays records from the same dataset. You must set the DataSet property at runtime
if you are basing the dataset on the information in the HTTP request message.

Setting up a query table producer
You can produce an HTML table to display the results of a query, where the
parameters of the query come from the HTTP request message. Specify the TQuery
object that uses those parameters as the Query property of a TQueryTableProducer
component.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-25

D e b u g g i n g s e r v e r a p p l i c a t i o n s

If the request message is a GET request, the parameters of the query come from the
Query fields of the URL that was given as the target of the HTTP request message. If
the request message is a POST request, the parameters of the query come from the
content of the request message.

When you call the Content method of TQueryTableProducer, it runs the query, using
the parameters it finds in the request object. It then formats an HTML table to display
the records in the resulting dataset.

As with any table producer, you can customize the display properties or column
bindings of the HTML table, or embed the table in a larger HTML document.

Debugging server applications
Debugging Web server applications presents some unique problems, because they
run in response to messages from a Web server. You can not simply launch your
application from the IDE, because that leaves the Web server out of the loop, and
your application will not find the request message it is expecting. How you debug
your Web server application depends on its type.

Debugging ISAPI and NSAPI applications

ISAPI and NSAPI applications are actually DLLs that contain predefined entry
points. The Web server passes request messages to the application by making calls to
these entry points. You will need to set your application’s run parameters to launch
the server. Set up your breakpoints so that when the server passes a request message
to your DLL, you hit one of your breakpoints, and can debug normally.

Note Before launching the Web server using your application’s run parameters, make sure
that the server is not already running.

Debugging under Windows NT
Under Windows NT, you must have the correct user rights to debug a DLL. In the
User Manager, add your name to the lists granting rights for

• Log on as Service
• Act as part of the operation system
• Generate security audits

Debugging with a Microsoft IIS server
To debug a Web server application using Microsoft IIS server (version 3 or earlier),
choose Run|Parameters and set your application’s run parameters as follows:

Host Application: c:\winnt\system32\inetsrv\inetinfo.exe
Run Parameters: -e w3svc

This starts the IIS Server and allows you to debug your ISAPI DLL.

Note Your directory path for inetinfo.exe may differ from the example.

30-26 D e v e l o p e r ’ s G u i d e

D e b u g g i n g s e r v e r a p p l i c a t i o n s

If you are using version 4 or later, you must first make some changes to the Registry
and the IIS Administration service:

1 Use DCOMCnfg to change the identity of the IIS Admin Service to your user
account.

2 Use the Registry Editor (REGEDIT) or other utility to remove the “LocalService”
keyword from all IISADMIN-related subkeys under HKEY_CLASSES_ROOT/
AppID and HKEY_CLASSES_ROOT/CLSID. This keyword appears in the
following subkeys:

{61738644-F196-11D0-9953-00C04FD919C1} // IIS WAMREG admin Service
{9F0BD3A0-EC01-11D0-A6A0-00A0C922E752} // IIS Admin Crypto Extension
{A9E69610-B80D-11D0-B9B9-00A0C922E750} // IISADMIN Service

In addition, under the AppID node, remove the “RunAs” keyword from the first
two of these subkeys. To the last subkey listed, add “Interactive User” as the value
of the “RunAs” keyword.

3 Still using the Registry Editor, add “LocalService32” subkeys to all
IISADMIN-related subkeys under the CLSID node. That is, for every subkey listed
in step 2 (and any others under which you found the “LocalService” keyword),
add a “LocalService32” subkey under the CLSID/<subkey> node. Set the default
value of these new keys to

c:\\winnt\\system32\\inetsrv\\inetinfo.exe -e w3svc

(the path for inetinfo.exe may differ for your system).

4 Add a value of “dword:3” to the “Start” keyword for the following subkeys:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\IISADMIN]
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MSDTC]
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC]

5 Stop the WWW, FTP, and IISAdmin services from the Microsoft Management
Console or the Services dialog box in the control panel. As an alternative, you can
simply do KILL INETINFO using KILL.EXE from the NT Resource Kit.

Now you are ready to debug in the same way as when using IIS version 3 or earlier.
That is, choose Run|Parameters and set your application’s run parameters as
follows:

Host Application: c:\winnt\system32\inetsrv\inetinfo.exe
Run Parameters: -e w3svc

Note When you have finished debugging, you will need to back out all the Registry
changes you made in steps 2 through 4.

Debugging under MTS
Another approach you can take when using IIS is to configure your Web directory as
an MTS Library package. You can then debug your ISAPI dll by running it under
MTS.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-27

D e b u g g i n g s e r v e r a p p l i c a t i o n s

To configure the Web directory as an MTS Library package, use the following steps:

1 Start the Internet Service Manager. You should see both the Internet Information
Server and the Microsoft Transaction Server trees.

2 Expand the Internet Information Server tree to view the items under “Default Web
Site”. Select the Web directory where your ISAPI dll is installed. Right click and
choose Properties.

3 On the Virtual Directory tab page, check Run in separate memory space (isolated
process), and click OK.

4 Expand the Microsoft Transaction Server tree to view the items under “Packages
Installed”. Right click on the “Packages Installed” node and select Refresh.

5 You will see a package with the same suffix as the Web directory. Right click this
package and choose Properties.

6 On the Identity tab page, select the Interactive User radio button, and click OK.

The previous steps configure your Web directory. After doing so, you can debug
your ISAPI DLL as follows:

1 In C++Builder, choose Run|Parameters. In the Host Application field, enter the
fully qualified pathname of the MTS executable. Typically, this is

c:\winnt\system32\mtx.exe

2 In the parameters field, you must use the /p option with the name of the MTS
package. To get this value, start the Internet Service Manager and expand the
Microsoft Transaction Server tree to view the items under “Packages Installed”.
Right click on the package with the same suffix as the Web directory. Choose
Properties, and copy the package name from the General tab page to the clipboard.

In the parameters field, paste the name of the package, and then surround it with
double quotes and precede the quoted string with /p:. The resulting parameters
field should look similar to the following:

/p:“IIS-{Default Web Site//ROOT/WEBPUB/DEMO}”

Note that there should not be a space between the colon and the package name.

Tip When the Web directory is installed as an MTS package, you can also use MTS to
easily shut down the DLL. Just expand the Microsoft Transaction Server tree in the
Internet Service Manager so that you can see the items under the “Packages
Installed” node. Right click on the package with the same suffix as the Web directory
and choose Shut Down.

Debugging with a Windows 95 Personal Web Server
To debug a Web server application using Personal Web Server, set your application’s
run parameters as follows:

Host Application: c:\Program Files\websvc\system\inetsw95.exe
Run Parameters: -w3svc

This starts the Personal Web Server and allows you to debug your ISAPI DLL.

Note Your directory path for inetsw95.exe may differ from the example.

30-28 D e v e l o p e r ’ s G u i d e

D e b u g g i n g s e r v e r a p p l i c a t i o n s

Debugging with Netscape Server Version 2.0
Before using Web server applications on Netscape servers, you must make certain
configuration changes.

First, copy the ISAPITER.DLL file (from the Bin directory) into the C:\Netscape\
Server\Nsapi\Examples directory. (Your directory path may differ.)

Next, make the following modifications to the server configuration files located in the
C:\Netscape\Server\Httpd-<servername>\Config directory.

1 In the OBJ.CONF file, insert the line

Init funcs="handle_isapi,check_isapi,log_isapi" fn="load_modules"
shlib="c:/netscape/server/nsapi/examples/ISAPIter.dll"

after the line

Init fn=load-types mime-types=mime.types

2 In the <Object name=default> section of OBJ.CONF, insert the lines

NameTrans from="/scripts" fn="pfx2dir" dir="C:/Netscape/Server/docs/scripts"
name="isapi"

before the line

NameTrans fn=document-root root="C:/Netscape/Server/docs"

3 Add the following section to the end of OBJ.CONF:

<Object name="isapi">
PathCheck fn="check_isapi"
ObjectType fn="force-type" type="magnus-internal/isapi"
Service fn="handle_isapi"
</Object>

4 Add the following line to the end of the MIME.TYPES file:

type=magnus-internal/isapi exts=dll

This should be the last line in the file.

Note Line breaks are included in steps 1 and 2 above only to enhance readability. Do not
type carriage-returns when you place these lines in configuration files.

To debug a Web server application using Netscape Fast Track server, set the
application’s run parameters as follows:

Host Application: c:\Netscape\server\bin\httpd\httpd.exe
Run Parameters: c:\Netscape\server\httpd-<servername>\config

This starts the server and indicates to the server where the configuration files are
located.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 30-29

D e b u g g i n g s e r v e r a p p l i c a t i o n s

Debugging CGI and Win-CGI applications

It is more difficult to debug CGI and Win-CGI applications, because the application
itself must be launched by the Web server.

Simulating the server
For Win-CGI applications, you can simulate the server by manually writing the
configuration settings file that contains the request information. Then launch the
Win-CGI application, passing the location of the file containing the client information
and the location of a file that the Win-CGI program should use to create content. You
can then debug normally.

Debugging as a DLL
Another approach you can take with both CGI and Win-CGI applications is first to
create and debug your application as an ISAPI or NSAPI application. Once your
ISAPI or NSAPI application is working smoothly, convert it to a CGI or Win-CGI
application. To convert your application, use the following steps:

1 Right-click the Web module and choose Add To Repository.

2 In the Add To Repository dialog, give your Web module a title, text description,
repository page (probably Data Modules), author name, and icon.

3 Choose OK to save your web module as a template.

4 From the main menu, choose File|New and select Web Server Application. In the
New Web Server Application dialog, choose CGI or Win-CGI, as appropriate.

5 Delete the automatically generated Web Module.

6 From the main menu, choose File | New and select the template you saved in
step 3. This will be on the page you specified in step 2.

CGI and Win-CGI applications are simpler than ISAPI and NSAPI applications. Each
instance of a CGI or Win-CGI application must handle only a single thread. Thus,
these applications do not encounter the multi-threading issues that ISAPI and NSAPI
applications must deal with. They also are immune to the problems that can arise
from the caching of Web modules in ISAPI and NSAPI applications.

30-30 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s o c k e t s 31-1

C h a p t e r

31
Chapter31Working with sockets

This chapter describes the socket components that let you create an application that
can communicate with other systems using TCP/IP and related protocols. Using
sockets, you can read and write over connections to other machines without
worrying about the details of the actual networking software. Sockets provide
connections based on the TCP/IP protocol, but are sufficiently general to work with
related protocols such as Xerox Network System (XNS), Digital’s DECnet, or Novell’s
IPX/SPX family.

Using sockets, you can write network servers or client applications that read from
and write to other systems. A server or client application is usually dedicated to a
single service such as Hypertext Transfer Protocol (HTTP) or File Transfer Protocol
(FTP). Using server sockets, an application that provides one of these services can
link to client applications that want to use that service. Client sockets allow an
application that uses one of these services to link to server applications that provide
the service.

Implementing services
Sockets provide one of the pieces you need to write network servers or client
applications. For many services, such as HTTP or FTP, third party servers are readily
available. Some are even bundled with the operating system, so that there is no need
to write one yourself. However, when you want more control over the way the
service is implemented, a tighter integration between your application and the
network communication, or when no server is available for the particular service you
need, then you may want to create your own server or client application. For
example, when working with distributed data sets, you may want to write a layer to
communicate with databases on other systems.

31-2 D e v e l o p e r ’ s G u i d e

T y p e s o f s o c k e t c o n n e c t i o n s

Understanding service protocols

Before you can write a network server or client, you must understand the service that
your application is providing or using. Many services have standard protocols that
your network application must support. If you are writing a network application for
a standard service such as HTTP, FTP, or even finger or time, you must first
understand the protocols used to communicate with other systems. See the
documentation on the particular service you are providing or using.

If you are providing a new service for an application that communicates with other
systems, the first step is designing the communication protocol for the servers and
clients of this service. What messages are sent? How are these messages coordinated?
How is the information encoded?

Communicating with applications
Often, your network server or client application provides a layer between the
networking software and an application that uses the service. For example, an HTTP
server sits between the Internet and a Web server application that provides content
and responds to HTTP request messages.

Sockets provide the interface between your network server or client application and
the networking software. You must provide the interface between your application
and the applications that use it. You can copy the API of a standard third party server
(such as ISAPI), or you can design and publish your own API.

Services and ports

Most standard services are associated, by convention, with specific port numbers. We
will discuss port numbers in greater detail later. For now, consider the port number a
numeric code for the service.

If you are implementing a standard service, Windows socket objects provide
methods for you to look up the port number for the service. If you are providing a
new service, you can specify the associated port number in a SERVICES file on
Windows 95 or NT machines. See the Microsoft documentation for Windows sockets
for more information on setting up a SERVICES file.

Types of socket connections
Socket connections can be divided into three basic types, which reflect how the
connection was initiated and what the local socket is connected to. These are

• Client connections.
• Listening connections.
• Server connections.

Once the connection to a client socket is completed, the server connection is
indistinguishable from a client connection. Both end points have the same

W o r k i n g w i t h s o c k e t s 31-3

D e s c r i b i n g s o c k e t s

capabilities and receive the same types of events. Only the listening connection is
fundamentally different, as it has only a single endpoint.

Client connections

Client connections connect a client socket on the local system to a server socket on a
remote system. Client connections are initiated by the client socket. First, the client
socket must describe the server socket it wishes to connect to. The client socket then
looks up the server socket and, when it locates the server, requests a connection. The
server socket may not complete the connection right away. Server sockets maintain a
queue of client requests, and complete connections as they find time. When the
server socket accepts the client connection, it sends the client socket a full description
of the server socket to which it is connecting, and the connection is completed by the
client.

Listening connections

Server sockets do not locate clients. Instead, they form passive “half connections”
that listen for client requests. Server sockets associate a queue with their listening
connections; the queue records client connection requests as they come in. When the
server socket accepts a client connection request, it forms a new socket to connect to
the client, so that the listening connection can remain open to accept other client
requests.

Server connections

Server connections are formed by server sockets when a listening socket accepts a
client request. A description of the server socket that completes the connection to the
client is sent to the client when the server accepts the connection. The connection is
established when the client socket receives this description and completes the
connection.

Describing sockets
Sockets let your network application communicate with other systems over the
network. Each socket can be viewed as an endpoint in a network connection. It has an
address that specifies

• The system it is running on.
• The types of interfaces it understands.
• The port it is using for the connection.

A full description of a socket connection includes the addresses of the sockets on both
ends of the connection. You can describe the address of each socket endpoint by
supplying both the IP address or host and the port number.

31-4 D e v e l o p e r ’ s G u i d e

D e s c r i b i n g s o c k e t s

Before you can make a socket connection, you must fully describe the sockets that
form its end points. Some of the information is available from the system your
application is running on. For instance, you do not need to describe the local IP
address of a client socket—this information is available from the operating system.

The information you must provide depends on the type of socket you are working
with. Client sockets must describe the server they want to connect to. Listening
server sockets must describe the port that represents the service they provide.

Describing the host

The host is the system that is running the application that contains the socket. You
can describe the host for a socket by giving its IP address, which is a string of four
numeric (byte) values in the standard Internet dot notation, such as

123.197.1.2

A single system may support more than one IP address.

IP addresses are often difficult to remember and easy to mistype. An alternative is to
use the host name. Host names are aliases for the IP address that you often see in
Uniform Resource Locators (URLs). They are strings containing a domain name and
service, such as

http://www.wSite.Com

Most Intranets provide host names for the IP addresses of systems on the Internet.
On Windows 95 and NT machines, if a host name is not available, you can create one
for your local IP address by entering the name into the HOSTS file. See the Microsoft
documentation on Windows sockets for more information on the HOSTS file.

Server sockets do not need to specify a host. The local IP address can be read from the
system. If the local system supports more than one IP address, server sockets will
listen for client requests on all IP addresses simultaneously. When a server socket
accepts a connection, the client socket provides the remote IP address.

Client sockets must specify the remote host by providing either its host name or IP
address.

Choosing between a host name and an IP address
Most applications use the host name to specify a system. Host names are easier to
remember, and easier to check for typographical errors. Further, servers can change
the system or IP address that is associated with a particular host name. Using a host
name allows the client socket to find the abstract site represented by the host name,
even when it has moved to a new IP address.

If the host name is unknown, the client socket must specify the server system using
its IP address. Specifying the server system by giving the IP address is faster. When
you provide the host name, the socket must search for the IP address associated with
the host name, before it can locate the server system.

W o r k i n g w i t h s o c k e t s 31-5

U s i n g s o c k e t c o m p o n e n t s

Using ports

While the IP address provides enough information to find the system on the other
end of a socket connection, you also need a port number on that system. Without port
numbers, a system could only form a single connection at a time. Port numbers are
unique identifiers that enable a single system to host multiple connections
simultaneously, by giving each connection a separate port number.

Earlier, we described port numbers as numeric codes for the services implemented
by network applications. This is actually just a convention that allows listening server
connections to make themselves available on a fixed port number so that they can be
found by client sockets. Server sockets listen on the port number associated with the
service they provide. When they accept a connection to a client socket, they create a
separate socket connection that uses a different, arbitrary, port number. This way, the
listening connection can continue to listen on the port number associated with the
service.

Client sockets use an arbitrary local port number, as there is no need for them to be
found by other sockets. They specify the port number of the server socket to which
they want to connect so that they can find the server application. Often, this port
number is specified indirectly, by naming the desired service.

Using socket components
The Internet palette page includes two socket components (client sockets and server
sockets) that allow your network application to form connections to other machines,
and that allow you to read and write information over that connection. Associated
with each of these socket components are Windows socket objects, which represent
the endpoint of an actual socket connection. The socket components use the
Windows socket objects to encapsulate the Windows socket API calls, so that your
application does not need to be concerned with the details of establishing the
connection or managing the socket messages.

If you want to work with the Windows socket API calls, or customize the details of
the connections that the socket components make on your behalf, you can use the
properties, events, and methods of the Windows socket objects.

Using client sockets

Add a client socket component (TClientSocket) to your form or data module to turn
your application into a TCP/IP client. Client sockets allow you to specify the server
socket you want to connect to, and the service you want that server to provide. Once
you have described the desired connection, you can use the client socket component
to complete the connection to the server.

Each client socket component uses a single client Windows socket object
(TClientWinSocket) to represent the client endpoint in a connection.

31-6 D e v e l o p e r ’ s G u i d e

U s i n g s o c k e t c o m p o n e n t s

Specifying the desired server
Client socket components have a number of properties that allow you to specify the
server system and port to which you want to connect. You can specify the server
system by its host name using the Host property. If you do not know the host name,
or if you are concerned about the speed of locating the server, you can specify the IP
address of the server system by using the Address property. You must specify either a
host name or an IP address. If you specify both, the client socket component will use
the host name.

In addition to the server system, you must specify the port on the server system that
your client socket will connect to. You can specify the server port number directly
using the Port property, or indirectly by naming the desired service using the Service
property. If you specify both the port number and the service, the client socket
component will use the service name.

Forming the connection
Once you have set the properties of your client socket component to describe the
server you want to connect to, you can form the connection at runtime by calling the
Open method. If you want your application to form the connection automatically
when it starts up, set the Active property to true at design time, using the Object
Inspector.

Getting information about the connection
After completing the connection to a server socket, you can use the client Windows
socket object associated with your client socket component to obtain information
about the connection. Use the Socket property to get access to the client Windows
socket object. This Windows socket object has properties that enable you to
determine the address and port number used by the client and server sockets to form
the end points of the connection. You can use the SocketHandle property to obtain a
handle to the socket connection to use when making Windows socket API calls. You
can use the Handle property to access the window that receives messages from the
socket connection. The ASyncStyles property determines what types of messages that
window handle receives.

Closing the connection
When you have finished communicating with a server application over the socket
connection, you can shut down the connection by calling the Close method. The
connection may also be closed from the server end. If that is the case, you will receive
notification in an OnDisconnect event.

Using server sockets

Add a server socket component (TServerSocket) to your form or data module to turn
your application into a TCP/IP server. Server sockets allow you to specify the service
you are providing or the port you want to use to listen for client requests. You can
use the server socket component to listen for and accept client connection requests.

W o r k i n g w i t h s o c k e t s 31-7

U s i n g s o c k e t c o m p o n e n t s

Each server socket component uses a single server Windows socket object
(TServerWinSocket) to represent the server endpoint in a listening connection. It also
uses a server client Windows socket object (TServerClientWinSocket) for the server
endpoint of each active connection to a client socket that the server accepts.

Specifying the port
Before your server socket can listen to client requests, you must specify the port that
your server will listen on. You can specify this port using the Port property. If your
server application is providing a standard service that is associated by convention
with a specific port number, you can specify the port number indirectly using the
Service property. It is a good idea to use the Service property, as it is easy to miss
typographical errors made when setting the port number. If you specify both the Port
property and the Service property, the server socket will use the service name.

Listening for client requests
Once you have set the port number of your server socket component, you can form a
listening connection at runtime by calling the Open method. If you want your
application to form the listening connection automatically when it starts up, set the
Active property to true at design time, using the Object Inspector.

Connecting to clients
A listening server socket component automatically accepts client connection requests
when they are received. You receive notification every time this occurs in an
OnClientConnect event.

Getting information about connections
Once you have opened a listening connection with your server socket, you can use
the server Windows socket object associated with your server socket component to
obtain information about the connection. Use the Socket property to get access to the
server Windows socket object. This Windows socket object has properties that enable
you to find out about all the active connections to client sockets that were accepted by
your server socket component. Use the SocketHandle property to obtain a handle to
the socket connection to use when making Windows socket API calls. Use the Handle
property to access the window that receives messages from the socket connection.

Each active connection to a client application is encapsulated by a server client
Windows socket object (TServerClientWinSocket). You can access all of these through
the Connections property of the server Windows socket object. These server client
Windows socket objects have properties that enable you to determine the address
and port number used by the client and server sockets which form the end points of
the connection. You can use the SocketHandle property to obtain a handle to the socket
connection to use when making Windows socket API calls. You can use the Handle
property to access the window that receives messages from the socket connection.
The ASyncStyles property determines what types of messages that window handle
receives.

31-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o s o c k e t e v e n t s

Closing server connections
When you want to shut down the listening connection, call the Close method. This
shuts down all open connections to client applications, cancels any pending
connections that have not been accepted, and then shuts down the listening
connection so that your server socket component does not accept any new
connections.

When clients shut down their individual connections to your server socket, you are
informed by an OnClientDisconnect event.

Responding to socket events
When writing applications that use sockets, most of the work usually takes place in
event handlers of the socket components. Some sockets generate events when it is
time to begin reading or writing over the socket connection. These are described in
“Reading and writing events” on page 31-10.

Client sockets receive an OnDisconnect event when the server ends a connection, and
server sockets receive an OnClientDisconnect event when the client ends a connection.

Both client sockets and server sockets generate error events when they receive error
messages from the connection.

 Socket components also receive a number of events in the course of opening and
completing a connection. If your application needs to influence how the opening of
the socket proceeds, or if it should start reading or writing once the connection is
formed, you will want to write event handlers to respond to these client events or
server events.

Error events

Client sockets generate an OnError event when they receive error messages from the
connection. Server sockets generate an OnClientError. You can write an OnError or
OnClientError event handler to respond to these error messages. The event handler is
passed information about

• What Windows socket object received the error notification.
• What the socket was trying to do when the error occurred.
• The error code that was provided by the error message.

You can respond to the error in the event handler, and change the error code to 0 to
prevent the socket from throwing an exception.

W o r k i n g w i t h s o c k e t s 31-9

R e s p o n d i n g t o s o c k e t e v e n t s

Client events

When a client socket opens a connection, the following events occur:

1 An OnLookup event occurs prior to an attempt to locate the server socket. At this
point you can not change the Host, Address, Port, or Service properties to change the
server socket that is located. You can use the Socket property to access the client
Windows socket object, and use its SocketHandle property to make Windows API
calls that affect the client properties of the socket. For example, if you want to set
the port number on the client application, you would do that now before the
server client is contacted.

2 The Windows socket is set up and initialized for event notification.

3 An OnConnecting event occurs after the server socket is located. At this point, the
Windows Socket object available through the Socket property can provide
information about the server socket that will form the other end of the connection.
This is the first chance to obtain the actual port and IP address used for the
connection, which may differ from the port and IP address of the listening socket
that accepted the connection.

4 The connection request is accepted by the server and completed by the client
socket.

5 An OnConnect event occurs after the connection is established. If your socket
should immediately start reading or writing over the connection, write an
OnConnect event handler to do it.

Server events

Server socket components form two types of connections: listening connections and
connections to client applications. The server socket receives events during the
formation of each of these connections.

Events when listening
Just before the listening connection is formed, the OnListen event occurs. At this point
you can obtain the server Windows socket object through the Socket property. You
can use its SocketHandle property to make changes to the socket before it is opened for
listing. For example, if you want to restrict the IP addresses the server uses for
listening, you would do that in an OnListen event handler.

Events with client connections
When a server socket accepts a client connection request, the following events occur:

1 The server socket generates an OnGetSocket event, passing in the Windows socket
handle for the socket that forms the server endpoint of the connection. If you want
to provide your own customized descendant of TServerClientWinSocket, you can
create one in an OnGetSocket event handler, and that will be used instead of
TServerClientWinSocket.

31-10 D e v e l o p e r ’ s G u i d e

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

2 An OnAccept event occurs, passing in the new TServerClientWinSocket object to the
event handler. This is the first point when you can use the properties of
TServerClientWinSocket to obtain information about the server endpoint of the
connection to a client.

3 If ServerType is stThreadBlocking an OnGetThread event occurs. If you want to
provide your own customized descendant of TServerClientThread, you can create
one in an OnGetThread event handler, and that will be used instead of
TServerClientThread. For more information on creating custom server client
threads, see “Writing server threads” on page 31-13.

4 If ServerType is stThreadBlocking, an OnThreadStart event occurs as the thread
begins execution. If you want to perform any initialization of the thread, or make
any Windows socket API calls before the thread starts reading or writing over the
connection, use the OnThreadStart event handler.

5 The client completes the connection and an OnClientConnect event occurs. With a
non-blocking server, you may want to start reading or writing over the socket
connection at this point.

Reading and writing over socket connections
The reason you form socket connections to other machines is so that you can read or
write information over those connections. What information you read or write, or
when you read it or write it, depends on the service associated with the socket
connection.

Reading and writing over sockets can occur asynchronously, so that it does not block
the execution of other code in your network application. This is called a non-blocking
connection. You can also form blocking connections, where your application waits
for the reading or writing to be completed before executing the next line of code.

Non-blocking connections

Non-blocking connections read and write asynchronously, so that the transfer of data
does not block the execution of other code in you network application. To create a
non-blocking connection

• On client sockets, set the ClientType property to ctNonBlocking.
• On server sockets, set the ServerType property to stNonBlocking.

When the connection is non-blocking, reading and writing events inform your socket
when the socket on the other end of the connection tries to read or write information.

Reading and writing events
Non-blocking sockets generate reading and writing events that inform your socket
when it needs to read or write over the connection. With client sockets, you can
respond to these notifications in an OnRead or OnWrite event handler. With server

W o r k i n g w i t h s o c k e t s 31-11

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

sockets, you can respond to these events in an OnClientRead or OnClientWrite event
handler.

The Windows socket object associated with the socket connection is provided as a
parameter to the read or write event handlers. This Windows socket object provides a
number of methods to allow you to read or write over the connection.

To read from the socket connection, use the ReceiveBuf or ReceiveText method. Before
using the ReceiveBuf method, use the ReceiveLength method to get an estimate of the
number of bytes the socket on the other end of the connection is ready to send.

To write to the socket connection, use the SendBuf, SendStream, or SendText method. If
you have no more need of the socket connection after you have written your
information over the socket, you can use the SendStreamThenDrop method.
SendStreamThenDrop closes the socket connection after writing all information that
can be read from the stream. If you use the SendStream or SendStreamThenDrop
method, do not free the stream object. The socket frees the stream automatically
when the connection is closed.

Note SendStreamThenDrop will close down a server connection to an individual client, not a
listening connection.

Blocking connections

When the connection is blocking your socket must initiate reading or writing over the
connection rather than waiting passively for a notification from the socket
connection. Use a blocking socket when your end of the connection is in charge of
when reading and writing takes place.

For client sockets, set the ClientType property to ctBlocking to form a blocking
connection. Depending on what else your client application does, you may want to
create a new execution thread for reading or writing, so that your application can
continue executing code on other threads while it waits for the reading or writing
over the connection to be completed.

For server sockets, set the ServerType property to stThreadBlocking to form a blocking
connection. Because blocking connections hold up the execution of all other code
while the socket waits for information to be written or read over the connection,
server socket components always spawn a new execution thread for every client
connection when the ServerType is stThreadBlocking.

Using threads with blocking connections
Client sockets do not automatically spawn new threads when reading or writing
using a blocking connection. If your client application has nothing else to do until the
information has been read or written, this is what you want. If your application
includes a user interface that must still respond to the user, however, you will want
to generate a separate thread for the reading or writing.

When server sockets form blocking connections, they always spawn separate threads
for every client connection, so that no client must wait until another client has

31-12 D e v e l o p e r ’ s G u i d e

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

finished reading or writing over the connection. By default, server sockets use
TServerClientThread objects to implement the execution thread for each connection.

TServerClientThread objects simulate the OnClientRead and OnClientWrite events that
occur with non-blocking connections. However, these events occur on the listening
socket, which is not thread-local. If client requests are frequent, you will want to
create your own descendant of TServerClientThread to provide thread-safe reading
and writing.

Using TWinSocketStream
When implementing the thread for a blocking connection, you must determine when
the socket on the other end of the connection is ready for reading or writing. Blocking
connections do not notify the socket when it is time to read or write. To see if the
connection is ready, use a TWinSocketStream object. TWinSocketStream provides
methods to help coordinate the timing of reading and writing. Call the WaitForData
method to wait until the socket on the other end is ready to write.

When reading or writing using TWinSocketStream, the stream times out if the reading
or writing has not completed after a specified period of time. As a result of this
timing out, the socket application won’t hang endlessly trying to read or write over a
dropped connection.

Note You can not use TWinSocketStream with a non-blocking connection.

Writing client threads
To write a thread for client connections, define a new thread object using the New
Thread Object dialog. For more information, see “Defining thread objects” on
page 7-1.

The Execute method of your new thread object handles the details of reading and
writing over the thread connection. It creates a TWinSocketStream object, and uses
that to read or write. For example:

void __fastcall TMyClientThread::Execute()
{
 // create a TWinSocketStream for reading and writing
 TWinSocketStream *pStream = new TWinSocketStream(ClientSocket1->Socket, 60000);
 try
 {
 // fetch and process commands until the connection or thread is terminated
 while (!Terminated && ClientSocket1->Active)
 {
 try
 {
 char buffer[10];
 GetNextRequest(buffer); // GetNextRequest must be a thread-safe method
 // write the request to the server
 pStream->Write(buffer, strlen(buffer) + 1);
 // continue the communication (e.g. read a response from the server)
 ƒ
 }

W o r k i n g w i t h s o c k e t s 31-13

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

 catch (Exception &E)
 {
 if (!E.ClassNameIs("EAbort"))
 Synchronize(HandleThreadException()); // you must write HandleThreadException
 }
 }
 }
 __finally
 {
 delete pStream;
 }
}

To use your thread, create it in an OnConnect event handler. For more information
about creating and running threads, see “Executing thread objects” on page 7-10.

Writing server threads
Threads for server connections are descendants of TServerClientThread. Because of
this, you can’t use the New Thread object dialog. Instead, declare your thread
manually as follows:

class PACKAGE TMyServerThread : public ScktComp::TServerClientThread
{
 public
 void __fastcall ClientExecute(void);
}

To implement this thread, you override the ClientExecute method instead of the
Execute method.

Implementing the ClientExecute method is much the same as writing the Execute
method of the thread for a client connection. However, instead of using a client
socket component that you place in your application from the Component palette,
the server client thread must use the TServerClientWinSocket object that is created
when the listening server socket accepts a client connection. This is available as the
public ClientSocket property. In addition, you can use the protected HandleException
method rather than writing your own thread-safe exception handling. For example:

void __fastcall TMyServerThread::ClientExecute()
{
 while (!Terminated && ClientSocket->Connected) // make sure connection is active
 {
 try
 {
 TWinSocketStream *pStream = new TWinSocketStream(ClientSocket, 60000);
 try
 {
 char buffer[10];
 memset(buffer, 0, sizeof(buffer));
 if (pStream->WaitForData(60000)) // give the client 60 seconds to start writing
 {
 if (pStream->Read(buffer, sizeof(buffer) == 0)
 ClientSocket->Close(); // if can’t read in 60 seconds, close the connection

31-14 D e v e l o p e r ’ s G u i d e

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

 // now process the request
 ƒ
 }
 else
 ClientSocket->Close();
 }
 __finally
 {
 delete pStream;
 }
 }
 catch (...)
 {
 HandleException();
 }
 }
}

Warning Server sockets cache the threads they use. Be sure the ClientExecute method performs
any necessary initialization so that there are no adverse results from changes made
when the thread last executed.

To use your thread, create it in an OnGetThread event handler. When creating the
thread, set the CreateSuspended parameter to false.

D e v e l o p i n g C O M - b a s e d a p p l i c a t i o n s

P a r t

IV
Part IVDeveloping COM-based applications

The chapters in “Developing COM-based applications” present concepts necessary
for building COM-based applications, including Automation controllers,
Automation servers, ActiveX controls, and COM+ applications.

Note Support for COM clients is available in all editions of C++Builder. However, to create
servers, you need the Professional or Enterprise edition.

O v e r v i e w o f C O M t e c h n o l o g i e s 32-1

C h a p t e r

32
Chapter 32Overview of COM technologies

C++Builder provides wizards and classes to make it easy to implement applications
based on the Component Object Model (COM) from Microsoft. With these wizards,
you can create COM-based classes and components to use within applications or you
can create fully functional COM clients or servers that implement COM objects,
Automation servers (including Active Server Objects), ActiveX controls, or
ActiveForms.

COM is a language-independent software component model that enables interaction
between software components and applications running on a Windows platform.
The key aspect of COM is that it enables communication between components,
between applications, and between clients and servers through clearly defined
interfaces. Interfaces provide a way for clients to ask a COM component which
features it supports at runtime. To provide additional features for your component,
you simply add an additional interface for those features.

Applications can access the interfaces of COM components that exist on the same
computer as the application or that exist on another computer on the network using a
mechanism called Distributed COM (DCOM). For more information on clients,
servers, and interfaces see, “Parts of a COM application,” on page 32-2.

This chapter provides a conceptual overview of the underlying technology on which
Automation and ActiveX controls are built. Later chapters provide details on creating
Automation objects and ActiveX controls in C++Builder.

COM as a specification and implementation
COM is both a specification and an implementation. The COM specification defines
how objects are created and how they communicate with each other. According to
this specification, COM objects can be written in different languages, run in different
process spaces and on different platforms. As long as the objects adhere to the
written specification, they can communicate. This allows you to integrate legacy code
as a component with new components implemented in object-oriented languages.

32-2 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

The COM implementation is in the COM library (including OLE32.dll and
OLEAut32.dll), which provides a number of core services that support the written
specification. The COM library contains a set of standard interfaces that define the
core functionality of a COM object, and a small set of API functions designed for the
purpose of creating and managing COM objects.

When you use C++Builder wizards and VCL objects in your application, you are
using C++Builder’s implementation of the COM specification. In addition,
C++Builder provides some wrappers for COM services for those features that it does
not implement directly (such as Active Documents).

Note C++Builder implements objects conforming to the COM specification by using the
Microsoft Active Template Library (ATL), modified by classes and macros.

COM extensions
As COM has evolved, it has been extended beyond the basic COM services. COM
serves as the basis for other technologies such as Automation, ActiveX controls,
Active Documents, and Active Directories. For details on COM extensions, see
“COM extensions” on page 32-9.

In addition, when working in a large, distributed environment, you can create
transactional COM objects. Prior to Windows 2000, these objects were not
architecturally part of COM, but rather ran in the Microsoft Transaction Server (MTS)
environment. With the advent of Windows 2000, this support is integrated into
COM+. Transactional objects are described in detail in Chapter 38, “Creating MTS or
COM+ objects.”

C++Builder provides wizards to easily implement applications that incorporate the
above technologies in the C++Builder environment. For details, see “Implementing
COM objects with wizards” on page 32-17.

Parts of a COM application
When implementing a COM application, you supply the following:

COM Interface The way in which an object exposes its services externally to
clients. A COM object provides an interface for each set of related
methods and properties. Note that COM properties are not
identical to properties on VCL objects. COM properties always use
read and write access methods, and are not declared using the
__property keyword.

O v e r v i e w o f C O M t e c h n o l o g i e s 32-3

P a r t s o f a C O M a p p l i c a t i o n

COM interfaces

COM clients communicate with objects through COM interfaces. Interfaces are
groups of logically or semantically related routines which provide communication
between a provider of a service (server object) and its clients. The standard way to
depict a COM interface is shown in Figure 32.1:

Figure 32.1 A COM interface

For example, every COM object implements the basic interface, IUnknown, which
tells the client what interfaces are available on the COM object.

Objects can have multiple interfaces, where each interface implements a feature. An
interface provides a way to convey to the client what service it provides, without
providing implementation details of how or where the object provides this service.

Key aspects of COM interfaces are as follows:

• Once published, interfaces are immutable; that is, they do not change. You can rely
on an interface to provide a specific set of functions. Additional functionality is
provided by additional interfaces.

• By convention, COM interface identifiers begin with a capital I and a symbolic
name that defines the interface, such as IMalloc or IPersist.

• Interfaces are guaranteed to have a unique identification, called a Globally
Unique Identifier (GUID), which is a 128-bit randomly generated number.
Interface GUIDs are called Interface Identifiers (IIDs). This eliminates naming
conflicts between different versions of a product or different products.

• Interfaces are language independent. You can use any language to implement a
COM interface as long as the language supports a structure of pointers, and can
call a function through a pointer either explicitly or implicitly.

COM server A module, either an EXE, DLL, or OCX, that contains the code for a
COM object. Object implementations reside in servers. A COM
object implements one or more interfaces.

COM client The code that calls the interfaces to get the requested services from
the server. Clients know what they want to get from the server
(through the interface); clients do not know the internals of how
the server provides the services. C++Builder eases the process in
creating a client by letting you install COM servers (such as a Word
document or Powerpoint slide) as components on the Component
Palette. This allows you to connect to the server and hook its
events through the Object Inspector.

COM
Object

Interface

32-4 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

• Interfaces are not objects themselves; they provide a way to access an object.
Therefore, clients do not access data directly; clients access data through an
interface pointer.

• Interfaces are always inherited from the fundamental interface, IUnknown.

• Interfaces can be redirected by COM through proxies to enable interface method
calls to call between threads, processes, and networked machines, all without the
client or server objects ever being aware of the redirection. For more information
see , “In-process, out-of-process, and remote servers,” on page 32-6.

The fundamental COM interface, IUnknown
All COM objects must support the fundamental interface, called IUnknown, which
contains the following routines:

Clients obtain pointers to other interfaces through the IUnknown method,
QueryInterface. QueryInterface knows about every interface in the server object and
can give a client a pointer to the requested interface. When receiving a pointer to an
interface, the client is assured that it can call any method of the interface.

Objects track their own lifetime through the IUnknown methods, AddRef and Release,
which are simple reference counting methods. As long as an object’s reference count
is nonzero, the object remains in memory. Once the reference count reaches zero, the
interface implementation can safely dispose of the underlying object(s).

COM interface pointers
An interface pointer is a 32-bit pointer to an object instance that points, in turn, to the
implementation of each method in the interface. The implementation is accessed
through an array of pointers to these methods, which is called a vtable. Vtables are
similar to the mechanism used to support virtual functions in C++. Because of this
similarity, the compiler can resolve calls to methods on the interface the same way it
resolves calls to methods on C++ classes.

The vtable is shared among all instances of an object class, so for each object instance,
the object code allocates a second structure that contains its private data. The client’s
interface pointer, then, is a pointer to the pointer to the vtable, as shown in the
following diagram.

QueryInterface Provides pointers to other interfaces that the object supports.

AddRef and Release Simple reference counting methods that keep track of the
object’s lifetime so that an object can delete itself when the
client no longer needs its service.

O v e r v i e w o f C O M t e c h n o l o g i e s 32-5

P a r t s o f a C O M a p p l i c a t i o n

Figure 32.2 Interface vtable

COM servers

A COM server is an application or a library that provides services to a client
application or library. A COM server consists of one or more COM objects, where a
COM object is a set of properties (data members or content) and methods (or member
functions).

Clients do not know how a COM object performs its service; the object’s
implementation remains encapsulated. An object makes its services available
through its interfaces as described previously.

In addition, clients do not need to know where a COM object resides. COM provides
transparent access regardless of the object’s location.

When a client requests a service from a COM object, the client passes a class identifier
(CLSID) to COM. A CLSID is simply a GUID that identifies a COM object. COM uses
this CLSID, which is registered in the system registry, to locate the appropriate server
implementation. Once the server is located, COM brings the code into memory, and
has the server instantiate an object instance for the client. This process is handled
indirectly, through a special object called a class factory (based on the IClassFactory or
IClassFactory2 interface) that creates instances of objects on demand.

As a minimum, a COM server must perform the following:

• Register entries in the system registry that associate the server module with the
class identifier (CLSID).

• Implement a class factory object, which manufactures another object of a
particular CLSID.

• Expose the class factory to COM.

• Provide an unloading mechanism through which a server that is not servicing
clients can be removed from memory.

Note C++Builder wizards automate the creation of COM objects and servers as described
in “Implementing COM objects with wizards” on page 32-17.

Pointer to
Function 1

Implementation
of interface
functions

vtable pointerinterface pointer

object

Pointer to
Function 2

Pointer to
Function 3

32-6 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

CoClasses and class factories
A COM object is an instance of a CoClass, which is a class that implements one or
more COM interfaces. The COM object provides the services as defined by its
interfaces.

CoClasses are instantiated by a special type of object called a class factory. Whenever
an object’s services are requested by a client, a class factory creates and registers an
object instance for that particular client. Typically, if another client requests the
object’s services, the class factory creates another object instance to service the second
client. (Clients can also bind to running COM objects that register themselves to
support it.)

A CoClass must have a class factory and a class identifier (CLSID) so that it can be
instantiated externally, that is, from another module. Using these unique identifiers
for CoClasses means that they can be updated whenever new interfaces are
implemented in their class. A new interface can modify or add methods without
affecting older versions, which is a common problem when using DLLs.

C++Builder wizards take care of assigning class identifiers and of implementing and
instantiating class factories.

In-process, out-of-process, and remote servers
With COM, a client does not need to know where an object resides, it simply makes a
call to an object’s interface. COM performs the necessary steps to make the call. These
steps differ depending on whether the object resides in the same process as the client,
in a different process on the client machine, or in a different machine across the
network. The different types of servers are known as:

In-process server A library (DLL) running in the same process space as the client,
for example, an ActiveX control embedded in a Web page
viewed under Internet Explorer or Netscape. Here, the ActiveX
control is downloaded to the client machine and invoked
within the same process as the Web browser.

The client communicates with the in-process server using direct
calls to the COM interface.

Out-of-process
server (or local
server)

Another application (EXE) running in a different process space
but on the same machine as the client. For example, an Excel
spreadsheet embedded in a Word document are two separate
applications running on the same machine.

The local server uses COM to communicate with the client.

Remote server A DLL or another application running on a different machine
from that of the client. For example, a C++Builder database
application is connected to an application server on another
machine in the network.

The remote server uses distributed COM (DCOM) to access
interfaces and communicate with the application server.

O v e r v i e w o f C O M t e c h n o l o g i e s 32-7

P a r t s o f a C O M a p p l i c a t i o n

As shown in Figure 32.3, for in-process servers, pointers to the object interfaces are in the
same process space as the client, so COM makes direct calls into the object
implementation.

Figure 32.3 In-process server

Note This is not always true under COM+. When a client makes a call to an object in a
different context, COM+ intercepts the call so that it behaves like a call to an
out-of-process server (see below), even if the server is in-process. See Chapter 38,
“Creating MTS or COM+ objects” for more information working with COM+.

As shown in Figure 32.4, when the process is either in a different process or in a different
machine altogether, COM uses a proxy to initiate remote procedure calls. The proxy
resides in the same process as the client, so from the client’s perspective, all interface
calls look alike. The proxy intercepts the client’s call and forwards it to where the real
object is running. The mechanism that enables the client to access objects in a different
process space, or even different machine, as if they were in their own process, is called
marshaling.
Figure 32.4 Out-of-process and remote servers

The difference between out-of-process and remote servers is the type of interprocess
communication used. The proxy uses COM to communicate with an out-of-process
server, it uses distributed COM (DCOM) to communicate with a remote machine.
DCOM transparently transfers a local object request to the remote object running on
a different machine.

Client Process

Client
Server

In-process
Object

DCOM
RPC

Client Process

Client

In-process
Proxy

Out-of-Process Server

Stub In-process
Object

Remote machine

Remote machine

DCOM

Stub

Remote server

In-process
Object

COM
RPC

32-8 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

Note For remote procedure calls, DCOM uses the RPC protocol provided by Open
Group’s Distributed Computing Environment (DCE). For distributed security,
DCOM uses the NT LAN Manager (NTLM) security protocol. For directory services,
DCOM uses the Domain Name System (DNS).

The marshaling mechanism
Marshaling is the mechanism that allows a client to make interface function calls to
remote objects in another process or on a different machine. Marshaling

• Takes an interface pointer in the server’s process and makes a proxy pointer
available to code in the client process.

• Transfers the arguments of an interface call as passed from the client and places
the arguments into the remote object’s process space.

For any interface call, the client pushes arguments onto a stack and makes a function
call through the interface pointer. If the call to the object is not in-process, the call gets
passed to the proxy. The proxy packs the arguments into a marshaling packet and
transmits the structure to the remote object. The object’s stub unpacks the packet,
pushes the arguments onto the stack, and calls the object’s implementation. In
essence, the object recreates the client’s call in its own address space.

What type of marshaling occurs depends on what the COM object implements.
Objects can use a standard marshaling mechanism provided by the IDispatch
interface. This is a generic marshaling mechanism that enables communication
through a system-standard remote procedure call (RPC). For details on the IDispatch
interface, see “Automation interfaces” on page 35-11. Even if the object does not
implement IDispatch, if it limits itself to automation-compatible types and has a
registered type library, COM automatically provides marshaling support.

Aggregation
Sometimes, a server object makes use of another COM object to perform some of its
functions. For example, an inventory management object might make use of a
separate invoicing object to handle customer invoices. If the inventory management
object wants to present the invoice interface to clients, however, there is a problem:
Although a client that has the inventory interface can call QueryInterface to obtain the
invoice interface, when the invoice object was created it did not know about the
inventory management object and can’t return an inventory interface in response to a
call to QueryInterface. A client that has the invoice interface can’t get back to the
inventory interface.

To avoid this problem, some COM objects support aggregation. When the inventory
management object creates an instance of the invoice object, it passes it a copy of its
own IUnknown interface. The invoice object can then use that IUnknown interface to
handle any QueryInterface calls that request an interface, such as the inventory
interface, that it does not support. When this happens, the two objects together are
called an aggregate. The invoice object is called the inner, or contained object of the
aggregate, and the inventory object is called the outer object.

Note In order to act as the outer object of an aggregate, a COM object must create the inner
object using the Windows API CoCreateInstance or CoCreateInstanceEx, passing its

O v e r v i e w o f C O M t e c h n o l o g i e s 32-9

C O M e x t e n s i o n s

IUnknown pointer as a parameter that the inner object can use for QueryInterface calls.
You can also instantiate a TComInterface object and use its CreateInstance method for
this purpose.

Objects that act as the inner object of an aggregate provide two implementations of
the IUnknown interface: one that defers QueryInterface calls it can’t handle to the
controlling IUnknown of the outer object, and one that returns an error when it
receives QueryInterface calls it can’t handle. The C++Builder wizards automatically
create objects that include this support for acting as inner objects.

COM clients

Clients can always query the interfaces of a COM object to determine what it is
capable of providing. All COM objects allow clients to request known interfaces. In
addition, if the server supports the IDispatch interface, clients can query the server for
information about what methods the interface supports. Server objects have no
expectations about the client using its objects. Similarly, clients don’t need to know
how (or even where) an object provides the services; they simply rely on server
objects to provide the services they advertise through their interfaces.

There are two types of COM clients, controllers and containers. Controllers launch
the server and interact with it through its interface. They request services from the
COM object or drive it as a separate process. Containers host visual controls or
objects that appear in the container’s user interface. They use predefined interfaces to
negotiate display issues with server objects.

C++Builder makes it easier for you to develop COM clients by letting you import a
type library or ActiveX control into a component wrapper so that server objects look
like other VCL components. For details on this process, see Chapter 34, “Creating
COM clients.”

COM extensions
COM was originally designed to provide core communication functionality and to
enable the broadening of this functionality through extensions. COM itself has
extended its core functionality by defining specialized sets of interfaces for specific
purposes.

The following lists some of the services COM extensions currently provide.
Subsequent sections describe these services in greater detail.

Automation servers Automation refers to the ability of an application to control the
objects in another application programmatically. Automation
servers are the objects that can be controlled by other
executables at runtime.

ActiveX controls ActiveX controls are specialized in-process servers, typically
intended for embedding in a client application. The controls
offer both design and runtime behaviors as well as events.

32-10 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

The following diagram illustrates the relationship of the COM extensions and how
they are built upon COM:

Figure 32.5 COM-based technologies

COM objects can be visual or non-visual. Some must run in the same process space as
their clients; others can run in different processes or remote machines, as long as the
objects provide marshaling support. Table 32.1 summarizes the types of COM objects

Active Server Pages Active Server Pages are scripts that generate HTML pages. The
scripting language includes constructs for creating and running
Automation objects. That is, the Active Server Page acts as an
Automation controller.

Active Documents Objects that support linking and embedding, drag-and-drop,
visual editing, and in-place activation. Word documents and
Excel spreadsheets are examples of Active Documents.

Transactional
objects

Objects that include additional support for responding to large
numbers of clients. This includes features such as just-in-time
activation, transactions, resource pooling, and security services.
These features were originally handled by MTS but have been
built into COM with the advent of COM+.

Type libraries A collection of static data structures, often saved as a resource,
that provides detailed type information about an object and its
interfaces. Clients of Automation servers, ActiveX controls, and
transactional objects expect type information to be available.

O v e r v i e w o f C O M t e c h n o l o g i e s 32-11

C O M e x t e n s i o n s

that you can create, whether they are visual, process spaces they can run in, how they
provide marshaling, and whether they require a type library.

Automation servers

Automation refers to the ability of an application to control the objects in another
application programmatically, like a macro that can manipulate more than one
application at the same time. The server object being manipulated is called the
Automation object, and the client of the Automation object is referred to as an
Automation controller.

Automation can be used on in-process, local, and remote servers.

Automation is characterized by two key points:

• The Automation object defines a set of properties and commands, and describes
their capabilities through type descriptions. In order to do this, it must have a way
to provide information about its interfaces, the interface methods, and those
methods’ arguments. Typically this information is available in a type library. The
Automation server can also generate type information dynamically when queried
via its IDispatch interface (see following).

• Automation objects make their methods accessible so that other applications can
use them. For this, they implement the IDispatch interface. Through this interface
an object can expose all of its methods and properties. Through the primary
method of this interface, the object’s methods can be invoked, once having been
identified through type information.

Table 32.1 COM object requirements

Object Visual Object? Process space Communication Type library

Active
Document

Usually In-process, or
out-of-process

OLE Verbs No

Automation Occasionally In-process,
out-of-process,
or remote

Automatically marshaled
using the IDispatch interface
(for out-of process and
remote servers)

Required for
automatic
marshaling

ActiveX Control Usually In-process Automatically marshaled
using the IDispatch interface

Required

MTS or COM+ Occasionally In-process for
MTS,
any for COM+

Automatically marshaled via
a type library

Required

In-process
custom interface
object

Optionally In-process No marshaling required for
in-process servers

Recommended

Other custom
interface object

Optionally In-process,
out-of-process,
or remote

Automatically marshaled via
a type library; otherwise,
manually marshaled using
custom interfaces

Recommended

32-12 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

Developers often use Automation to create and use non-visual OLE objects that run
in any process space because the Automation IDispatch interface automates the
marshaling process. Automation does, however, restrict the types that you can use.

For a list of types that are valid for type libraries in general, and Automation
interfaces in particular, see “Valid types” on page 33-11.

For information on writing an Automation server, see Chapter 35, “Creating simple
COM servers.”

Active Server Pages

The Active Server Page (ASP) technology lets you write simple scripts, called Active
Server Pages, that can be launched by clients via a Web server. Unlike ActiveX
controls, which run on the client, Active Server Pages run on the server, and return a
resulting HTML page to clients.

Active Server Pages are written in Jscript or VB script. The script runs every time the
server loads the Web page. That script can then launch an embedded Automation
server (or Enterprise Java Bean). For example, you can write an Automation server,
such as one to create a bitmap or connect to a database, and this server accesses data
that gets updated every time a client loads the Web page.

Active Server Pages rely on the Microsoft Internet Information Server (IIS)
environment to serve your Web pages.

C++Builder wizards let you create an Active Server Object, which is an Automation
object specifically designed to work with an Active Server Page. For more
information about creating and using these types of objects, see Chapter 36,
“Creating an Active Server Page.”

ActiveX controls

ActiveX is a technology that allows COM components, especially controls, to be more
compact and efficient. This is especially necessary for controls that are intended for
Intranet applications that need to be downloaded by a client before they are used.

ActiveX controls are visual controls that run only in-process servers, and can be
plugged into an ActiveX control container application. They are not complete
applications in themselves, but can be thought of as prefabricated OLE controls that
are reusable in various applications. ActiveX controls have a visible user interface,
and rely on predefined interfaces to negotiate I/O and display issues with their host
containers.

ActiveX controls make use of Automation to expose their properties, methods, and
events. Features of ActiveX controls include the ability to fire events, bind to data
sources, and support licensing.

One use of ActiveX controls is on a Web site as interactive objects in a Web page. As
such, ActiveX is a standard that targets interactive content for the World Wide Web,
including the use of ActiveX Documents used for viewing non-HTML documents

O v e r v i e w o f C O M t e c h n o l o g i e s 32-13

C O M e x t e n s i o n s

through a Web browser. For more information about ActiveX technology, see the
Microsoft ActiveX Web site.

C++Builder wizards allow you to easily create ActiveX controls. For more
information about creating and using these types of objects, see Chapter 37,
“Creating an ActiveX control.”

Active Documents

Active Documents (previously referred to as OLE documents) are a set of COM
services that support linking and embedding, drag-and-drop, and visual editing.
Active Documents can seamlessly incorporate data or objects of different formats,
such as sound clips, spreadsheets, text, and bitmaps.

Unlike ActiveX controls, Active Documents are not limited to in-process servers; they
can be used in cross-process applications.

Unlike Automation objects, which are almost never visual, Active Document objects
can be visually active in another application. Thus, Active Document objects are
associated with two types of data: presentation data, used for visually displaying the
object on a display or output device, and native data, used to edit an object.

Active Document objects can be document containers or document servers. While
C++Builder does not provide an automatic wizard for creating Active Documents,
you can use the VCL class, TOleContainer, to support linking and embedding of
existing Active Documents.

You can also use TOleContainer as a basis for an Active Document container. To
create objects for Active Document servers, use the COM object wizard and add the
appropriate interfaces, depending on the services the object needs to support. For
more information about creating and using Active Document servers, see the
Microsoft ActiveX Web site.

Note While the specification for Active Documents has built-in support for marshaling in
cross-process applications, Active Documents do not run on remote servers because
they use types that are specific to a system on a given machine such as window
handles, menu handles, and so on.

Transactional objects

C++Builder uses the term “transactional objects” to refer to objects that take
advantage of the transaction services, security, and resource management supplied
by Microsoft Transaction Server (MTS) (for versions of Windows prior to Windows
2000) or COM+ (for Windows 2000 and later). These objects are designed to work in a
large, distributed environment.

The transaction services provide robustness so that activities are always completed
or rolled back (the server never partially completes an activity). The security services
allow you to expose different levels of support to different classes of clients. The
resource management allows an object to handle more clients by pooling resources or
keeping objects active only when they are in use. To enable the system to provide

32-14 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

these services, the object must implement the IObjectControl interface. To access the
services, transactional objects use an interface called IObjectContext, which is created
on their behalf by MTS or COM+.

Under MTS, the server object must be built into a library (DLL), which is then
installed in the MTS runtime environment. That is, the server object is an in-process
server that runs in the MTS runtime process space. Under COM+, this restriction
does not apply because all COM calls are routed through an interceptor. To clients,
the difference between MTS and COM+ is transparent.

MTS or COM+ servers group transactional objects that run in the same process space.
Under MTS, this group is called an MTS package, while under COM+ it is called a
COM+ application. A single machine can be running several different MTS packages
(or COM+ applications), where each one is running in a separate process space.

To clients, the transactional object may appear like any other COM server object. The
client need never know about transactions, security, or just-in-time activation unless
it is initiating a transaction itself.

Both MTS and COM+ provide a separate tool for administering transactional objects.
This tool lets you configure objects into packages or COM+ applications, view the
packages or COM+ applications installed on a computer, view or change the
attributes of the included objects, monitor and manage transactions, make objects
available to clients, and so on. Under MTS, this tool is the MTS Explorer. Under
COM+ it is the COM+ Component Manager.

Type libraries

Type libraries provide a way to get more type information about an object than can
be determined from an object’s interface. The type information contained in type
libraries provides needed information about objects and their interfaces, such as
what interfaces exist on what objects (given the CLSID), what member functions exist
on each interface, and what arguments those functions require.

You can obtain type information either by querying a running instance of an object or
by loading and reading type libraries. With this information, you can implement a
client which uses a desired object, knowing specifically what member functions you
need, and what to pass those member functions.

Clients of Automation servers, ActiveX controls, and transactional objects expect
type information to be available. All of C++Builder’s wizards generate a type library
automatically. You can view or edit this type information by using the Type Library
Editor as described in Chapter 33, “Working with type libraries.”

This section describes what a type library contains, how it is created, when it is used,
and how it is accessed. For developers wanting to share interfaces across languages,
the section ends with suggestions on using type library tools.

The content of type libraries
Type libraries contain type information, which indicates which interfaces exist in
which COM objects, and the types and numbers of arguments to the interface

O v e r v i e w o f C O M t e c h n o l o g i e s 32-15

C O M e x t e n s i o n s

methods. These descriptions include the unique identifiers for the CoClasses
(CLSIDs) and the interfaces (IIDs), so that they can be properly accessed, as well as
the dispatch identifiers (dispIDs) for Automation interface methods and properties.

Type libraries can also contain the following information:

• Descriptions of custom type information associated with custom interfaces

• Routines that are exported by the Automation or ActiveX server, but that are not
interface methods

• Information about enumeration, record (structures), unions, alias, and module
data types

• References to type descriptions from other type libraries

Creating type libraries
With traditional development tools, you create type libraries by writing scripts in the
Interface Definition Language (IDL) or the Object Description Language (ODL), then
running that script through a compiler. However, C++Builder automatically
generates a type library when you create a COM object (including ActiveX controls,
Automation objects, remote data modules, and so on) using any of the wizards on the
ActiveX or Multitier page of the new items dialog. You can also create a type library
by choosing from the main menu, File|New|ActiveX|Type Library.

You can view the type library using C++Builder’s Type Library editor. You can easily
edit your type library using the Type Library editor and C++Builder automatically
updates the corresponding .tlb file (binary type library file) when the type library is
saved. For any changes to Interfaces and CoClasses that were created using a wizard,
the Type Library editor also updates your implementation files. For more
information on using the Type Library editor to write interfaces and CoClasses, see
Chapter 33, “Working with type libraries.”

When to use type libraries
It is important to create a type library for each set of objects that is exposed to
external users, for example,

• ActiveX controls require a type library, which must be included as a resource in
the DLL that contains the ActiveX controls.

• Exposed objects that support vtable binding of custom interfaces must be
described in a type library because vtable references are bound at compile time.
Clients import information about the interfaces from the type library and use that
information to compile. For more information about vtable and compile time
binding, see “Automation interfaces” on page 35-11.

• Applications that implement Automation servers should provide a type library so
that clients can early bind to it.

• Objects instantiated from classes that support the IProvideClassInfo interface must
have a type library.

• Type libraries are not required, but are useful for identifying the objects used with
OLE drag-and-drop.

32-16 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

Accessing type libraries
The binary type library is normally a part of a resource file (.RES) or a stand-alone file
with a .TLB file-name extension. When included in a resource file, the type library
can be bound into a server (.dll, .ocx, or .exe).

Once a type library has been created, object browsers, compilers, and similar tools
can access type libraries through special type interfaces:

C++Builder can import and use type libraries from other applications by choosing
Project|Import Type Library.

Benefits of using type libraries
Even if your application does not require a type library, you can consider the
following benefits of using one:

• You can use early binding with Automation (as opposed to calling through
Variants), and controllers that do not support vtables or dual interfaces can encode
dispIDs at compile time, improving runtime performance.

• Type browsers can scan the library, so clients can see the characteristics of your
objects.

• The RegisterTypeLib function can be used to register your exposed objects in the
registration database.

• The UnRegisterTypeLib function can be used to completely uninstall an
application’s type library from the system registry.

• Local server access is improved because Automation uses information from the
type library to package the parameters that are passed to an object in another
process.

Interface Description

ITypeLib Provides methods for accessing a library of type descriptions.

ITypeLib2 Augments ITypeLib to include support for documentation strings, custom data,
and statistics about the type library.

ITypeInfo Provides descriptions of individual objects contained in a type library. For
example, a browser uses this interface to extract information about objects from
the type library.

ITypeInfo2 Augments ITypeInfo to access additional type library information, including
methods for accessing custom data elements.

ITypeComp Provides a fast way to access information that compilers need when binding to
an interface.

O v e r v i e w o f C O M t e c h n o l o g i e s 32-17

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

Using type library tools
The tools for working with type libraries are listed below.

• The TLIBIMP (Type Library Import) tool, which takes existing type libraries and
creates C++Builder Interface files (_TLB.cpp and _TLB.h files), is incorporated into
the Type Library editor. TLIBIMP provides additional configuration options not
available inside the Type Library editor.

• TRegSvr is a tool for registering and unregistering servers and type libraries,
which comes with C++Builder. The source to TRegSvr is available as an example
in the Examples directory.

• The Microsoft IDL compiler (MIDL) compiles IDL scripts to create a type library.
MIDL has an optional switch for generating header files, found in the MS Win32
SDK.

• RegSvr32.exe is a tool for registering and unregistering servers and type libraries,
which is a standard Windows utility.

• OLEView is a type library browser tool, found on Microsoft’s Web site.

• MKTYPLIB is an ODL compiler that compiles ODL scripts to create a type library,
found in the MS Win32 SDK. It represents older technology and its use is
discouraged at this point.

Implementing COM objects with wizards
C++Builder makes it easier to write COM server applications by providing wizards
that handle many of the details involved. C++Builder provides separate wizards to
create the following:

• A simple COM object
• An Automation object
• An Active Server Object (for embedding in an Active Server page)
• An ActiveX control
• An ActiveX Form
• A transactional object
• A Property page
• A Type library
• An ActiveX library

The wizards handle many of the tasks involved in creating each type of COM object.
They provide the required COM interfaces for each type of object. As shown in
Figure 32.6, with a simple COM object, the wizard implements the one required
COM interface, IUnknown, which provides an interface pointer to the object.

Figure 32.6 Simple COM object interface

COM
Object

IUnknown

32-18 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

The COM object wizard also provides an implementation for IDispatch if you specify
that you are creating an object that supports an IDispatch descendant.

As shown inFigure 32.7, for Automation and Active Server objects, the wizard
implements IUnknown and IDispatch, which provides automatic marshaling.

Figure 32.7 Automation object interface

As shown in Figure 32.8, for ActiveX control objects and ActiveX forms, the wizard
implements all the required ActiveX control interfaces, from IUnknown, IDispatch,
IOleObject, IOLEControl, and so on.

Figure 32.8 ActiveX object interface

Table 32.2 lists the various wizards and the interfaces they implement:

Table 32.2 C++Builder wizards for implementing COM, Automation, and ActiveX objects

Wizard Implemented interfaces What the wizard does

COM server IUnknown (and IDispatch if
you select a default interface
that descends from IDispatch)

Exports routines that handle server registration,
class registration, loading and unloading the
server, and object instantiation.
Creates and manages class factories for objects
implemented on the server.
Provides registry entries for the object that
specify the selected threading model.
Provides server-side support for generating
events, if requested.
Declares the methods that implement a selected
interface, providing skeletal implementations
for you to complete.
Provides a type library.

Automation
Object

IUnknown

IDispatch

IUnknown

IOleObject

IOleControl

IOleInPlaceObject

ISpecifyPropertyPages

ActiveX
Control
Object

IDispatch

•
••

O v e r v i e w o f C O M t e c h n o l o g i e s 32-19

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

Automation
server

IUnknown, IDispatch Performs the tasks of a COM server wizard
(described above), plus:
Implements the interface that you specify, either
dual or dispatch.

Active Server
Object

IUnknown, IDispatch,
(IASPObject)

Performs the tasks of an Automation object
wizard (described above) and optionally
generates an .ASP page which can be loaded
into a Web browser. It leaves you in the Type
Library editor so that you can modify the
object’s properties and methods if needed.
Surfaces the ASP intrinsics as properties so that
you can easily obtain information about the ASP
application and the HTTP messages that
launched it.

ActiveX Control IUnknown, IDispatch,
IPersistStreamInit,
IOleInPlaceActiveObject,
IPersistStorage, IViewObject,
IOleObject, IViewObject2,
IOleControl,
IPerPropertyBrowsing,
IOleInPlaceObject,
ISpecifyPropertyPages

Performs the tasks of the Automation server
wizard (described above), plus:
Generates an implementation CoClass that
corresponds to the VCL control on which the
ActiveX control is based and which implements
all the ActiveX interfaces.
Leaves you in the source code editor so that you
can modify the implementation class.

ActiveForm Same interfaces as ActiveX
Control

Performs the tasks of the ActiveX control
wizard, plus:
Creates a TActiveForm descendant that takes the
place of the pre-existing VCL class in the
ActiveX control wizard. This new class lets you
design the Active Form the same way you
design a form in a Windows application.

Transactional
object

IUnknown, IDispatch,
IObjectControl

Adds a new unit to the current project
containing the MTS or COM+ object definition.
It inserts proprietary GUIDs into the type
library so that C++Builder can install the object
properly, and leaves you in the Type Library
editor so that you can define the interface that
the object exposes to clients. You must install
the object separately after it is built.

Property Page IUnknown, IPropertyPage Creates a new property page that you can
design in the Forms designer.

COM+ Event
object

None, by default Creates a COM+ event object that you can
define using the Type Library editor. Unlike the
other object wizards, the COM+ Event object
wizard does not create an implementation unit
because event objects have no implementation
(it is provided by client sinks).

Type Library None, by default Creates a new type library and associates it with
the active project.

ActiveX library None, by default Creates a new ActiveX or Com server DLL and
exposes the necessary export functions.

Table 32.2 C++Builder wizards for implementing COM, Automation, and ActiveX objects (continued)

Wizard Implemented interfaces What the wizard does

32-20 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

You can add additional COM objects or reimplement an existing implementation. To
add a new object, it is easiest to use the wizard a second time. This is because the
wizard sets up an association between the type library and an implementation class,
so that changes you make in the type library editor are automatically applied to your
implementation object.

Code generated by wizards

C++Builder’s wizards generate code that uses the Microsoft Active Template Library
(ATL) as the basis of its COM support. ATL is a framework of template classes that
handle many of the implementation details of developing COM applications.
Because ATL is template-based, you don’t link to DLLs. Instead, your project
includes ATL header files that compile into your object code. The C++Builder
wizards generate include statements for these header files in a unit with the _ATL
suffix (For example, Project1_ATL.cpp and Project1_ATL.h).

Note The ATL header files in C++Builder’s Include/ATL directory differ slightly from the
ATL header files supplied by Microsoft. These differences are required so that
C++Builder’s compiler can compile the headers. You can’t replace these headers with
another version of ATL, because it will not compile properly.

In addition to the include statements for the ATL files (and additional files that
enable the ATL classes to work with VCL classes), the generated _ATL unit header
also includes the declaration of a global variable called _Module. _Module is an
instance of the ATL class CComModule, which isolates the rest of the application from
differences between DLLs and EXEs in the way threading and registration issues are
handled. In your project file (Project1.cpp), _Module is assigned to an instance of
TComModule, which is a descendant of CComModule that supports C++Builder’s style
of COM registration. Typically, you do not need to use this object directly.

The wizard also adds an object map to your project file. This is a set of ATL macros
that looks something like the following:

BEGIN_OBJECT_MAP(ObjectMap)
 OBJECT_ENTRY(CLSID_MyObj, TMyObjImpl)
END_OBJECT_MAP()

Each entry between the BEGIN_OBJECT_MAP line and the END_OBJECT_MAP line
defines an association between a class id and its ATL implementation class. The
_Module object uses this map to register components. The object map is also used by
the ATL object creator classes. If you add any COM objects to your application
without using a wizard, you must update the object map so that they can be properly
registered and created. To do so, add another line that uses the OBJECT_ENTRY
macro, assigning the class id and the implementation class name as parameters.

The wizards generate an implementation unit for the particular type of COM object
you are creating. The implementation unit contains the declaration of the class that
implements your COM object. This class is a descendant (directly or indirectly) of the
ATL class CComObjectRootEx, the ATL class CComCoClass, and other classes that
depend on the type of object you are creating.

O v e r v i e w o f C O M t e c h n o l o g i e s 32-21

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

CComCoClass provides the class factory support for creating your class. It uses the
object map that was added to your project file.

CComObjectRootEx is a template class that provides the underlying support for
IUnknown. It implements the QueryInterface method by making use of an interface
map, which you can find in the implementation unit header. The interface map looks
like the following:

BEGIN_COM_MAP(TMyObjImpl)
 COM_INTERFACE_ENTRY(IMyObj)
END_COM_MAP()

Each entry in the interface map is an interface that is exposed by the QueryInterface
method. If you add additional interfaces to your implementation class, you must add
them to the interface map (using the COM_INTERFACE_ENTRY macro), and add
them as additional ancestors of the implementation class.

CComObjectRootEx supplies the underlying support for reference counting. It does
not, however, declare the AddRef and Release methods. These methods are added to
your implementation class through the END_COM_MAP() macro at the end of the
interface map.

Note For more information on the ATL, see the Microsoft documentation. However, note
that C++Builder’s COM support does not use the ATL for registration, ActiveX
controls (which are based on VCL objects instead), or property page support.

The wizards also generate a type library and its associated unit, which has a name of
the form Project1_TLB. The Project1_TLB unit includes the definitions your
application needs to use the type definitions and interfaces defined in the type
library. For more information on the contents of this file, see “Code generated when
you import type library information” on page 34-5.

You can modify the interface generated by the wizard using the type library editor.
When you do this, the implementation class is automatically updated to reflect those
changes. You need only fill in the bodies of the generated methods to complete the
implementation.

32-22 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t y p e l i b r a r i e s 33-1

C h a p t e r

33
Chapter 33Working with type libraries

This chapter describes how to create and edit type libraries using C++Builder’s Type
Library editor. Type libraries are files that include information about data types,
interfaces, member functions, and object classes exposed by a COM object. They
provide a way to identify what types of objects and interfaces are available on a
server. For a detailed overview on why and when to use type libraries, see “Type
libraries” on page 32-14.

A type library can contain any and all of the following:

• Information about custom data types such as aliases, enumerations, structures,
and unions.

• Descriptions of one or more COM elements, such as an interface, dispinterface, or
CoClass. Each of these descriptions is commonly referred to as type information.

• Descriptions of constants and methods defined in external modules.

• References to type descriptions from other type libraries.

By including a type library with your COM application or ActiveX library, you make
information about the objects in your application available to other applications and
programming tools through COM’s type library tools and interfaces.

With traditional development tools, you create type libraries by writing scripts in the
Interface Definition Language (IDL), then run that script through a compiler. The
Type Library editor automates some of this process, easing the burden of creating
and modifying your own type libraries.

When you create a COM server of any type (ActiveX control, Automation object,
remote data module, and so on) using C++Builder’s wizards, the wizard
automatically generates a type library for you. Most of the work you do in
customizing the generated object starts with the type library, because that is where
you define the properties and methods it exposes to clients: you change the interface
of the CoClass generated by the wizard, using the Type Library editor. The Type
Library editor automatically updates the implementation unit for your object, so that
all you need do is fill in the bodies of the generated methods.

33-2 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Type Library editor
The Type Library editor enables developers to examine and create type information
for COM objects. Using the Type Library editor can greatly simplify the task of
developing COM objects by centralizing the tasks of defining interfaces, CoClasses,
and types, obtaining GUIDs for new interfaces, associating interfaces with CoClasses,
updating implementation units, and so on.

The Type Library editor outputs two types of file that represent the contents of the
type library:

• The .TLB file. This is the binary type library file. By default, you do not need to
use this file, because the type library is automatically compiled into the application
as a resource. However, you can use this file to explicitly compile the type library
into another project or to deploy the type library separately from the EXE or OCX.
For more information, see “Opening an existing type library” on page 33-12 and
“Deploying type libraries” on page 33-18.

• The _TLB unit. This unit (.cpp and .h files) interprets the contents of the type
library for use by your application. It contains all the declarations your application
needs to use the elements defined in the type library. Although you can open this
file in the code editor, you should never edit it -- it is maintained by the Type
Library editor, so any changes you make will be overwritten by the Type Library
editor. For more details on the contents of this file, see “Code generated when you
import type library information” on page 34-5.

Parts of the Type Library editor

The main elements of the Type Library editor are

• Toolbar, which you use to add new types, coclasses, interfaces, and interface
members to your type library. The toolbar also includes buttons for refreshing
your implementation unit, registering the type library, and saving an IDL file with
the information in your type library.

• Object list pane, which displays all the existing elements in the type library. When
you click on an item in the object list pane, it displays pages valid for that object.

• Status bar, which displays syntax errors if you try to add invalid types to your
type library.

• Pages, which display information about the selected object. Which pages appear
here depends on the type of object selected.

These parts are illustrated in Figure 33.1, which shows the Type Library editor
displaying type information for a COM object named cyc.

W o r k i n g w i t h t y p e l i b r a r i e s 33-3

T y p e L i b r a r y e d i t o r

Figure 33.1 Type Library editor

Toolbar
The Type Library editor’s toolbar located at the top of the Type Library Editor,
contains buttons that you click to add new objects into your type library.

The first group of buttons let you add elements to the type library. When you click a
toolbar button, the icon for that element appears in the object list pane. You can then
customize its attributes in the right pane. Depending on the type of icon you select,
different pages of information appear to the right.

The following table lists the elements you can add to your type library:

Icon Meaning

An interface description.

A dispinterface description.

A CoClass.

An enumeration.

An alias.

A record.

A union.

A module.

33-4 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

When you select one of the elements listed above in the object list pane, the second
group of buttons displays members that are valid for that element. For example,
when you select Interface, the Method and Property icons in the second box become
enabled because you can add methods and properties to your interface definition.
When you select Enum, the second group of buttons changes to display the Const
member, which is the only valid member for Enum type information.
The following table lists the members that can be added to elements in the object list
pane:

In the third box, you can choose to refresh, register, or export your type library (save
it as an IDL file), as described in “Saving and registering type library information” on
page 33-17.

Object list pane
The Object list pane displays all the elements of the current type library in a tree
view. The root of the tree represents the type library itself, and appears as the
following icon:

Descending from the type library node are the elements in the type library:
Figure 33.2 Object list pane

When you select any of these elements (including the type library itself), the pages of
type information to the right change to reflect only the relevant information for that
element. You can use these pages to edit the definition and properties of the selected
element.

Icon Meaning

A method of the interface, dispinterface, or an entry point in a module.

A property on an interface or dispinterface.

A write-only property. (available from the drop-down list on the property button)

A read-write property. (available from the drop-down list on the property button)

A read-only property. (available from the drop-down list on the property button)

A field in a record or union.

A constant in an enum or a module.

W o r k i n g w i t h t y p e l i b r a r i e s 33-5

T y p e L i b r a r y e d i t o r

You can manipulate the elements in the object list pane by right clicking to get the
object list pane context menu. This menu includes commands that let you use the
Windows clipboard to move or copy existing elements as well as commands to add
new elements or customize the appearance of the Type Library editor.

Status bar
When editing or saving a type library, syntax, translation errors, and warnings are
listed in the Status bar pane.

For example, if you specify a type that the Type Library editor does not support, you
will get a syntax error. For a complete list of types supported by the Type Library
editor, see “Valid types” on page 33-11.

Pages of type information
When you select an element in the object list pane, pages of type information appear
in the Type Library editor that are valid for the selected element. Which pages appear
depends on the element selected in the object list panel, as follows:

Table 33.1 Type library pages

Type Info
element

Page of
type information Contents of page

Type library Attributes Name, version, and GUID for the type library, as well as
information linking the type library to help.

Uses List of other type libraries that contain definitions on which
this one depends.

Flags Flags that determine how other applications can use the type
library.

Text All definitions and declarations defining the type library itself
(see discussion below).

Interface Attributes Name, version, and GUID for the interface, the name of the
interface from which it descends, and information linking the
interface to help.

Flags Flags that indicate whether the interface is hidden, dual,
Automation-compatible, and/or extensible.

Text The definitions and declarations for the Interface. (see
discussion below)

Dispinterface Attributes Name, version, and GUID for the interface, and information
linking it to help

Flags Flags that indicate whether the Dispinterface is hidden, dual,
and/or extensible.

Text The definitions and declarations for the Dispinterface. (see
discussion below)

CoClass Attributes Name, version, and GUID for the CoClass, and information
linking it to help

Implements A List of interfaces that the CoClass implements, as well as
their attributes.

33-6 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

COM+ The attributes of transactional objects, such as the transaction
model, call synchronization, just-in-time activation, object
pooling, and so on. Also includes the attributes of COM+
event objects.

Flags Flags that indicate various attributes of the CoClass, including
how clients can create and use instances, whether it is visible
to users in a browser, whether it is an ActiveX control, and
whether it can be aggregated (act as part of a composite).

Text The definitions and declarations for the CoClass. (see
discussion below)

Enumeration Attributes Name, version, and GUID for the enumeration, and
information linking it to help

Text The definitions and declarations for the enumerated type. (see
discussion below)

Alias Attributes Name, version, and GUID for the enumeration, the type the
alias represents, and information linking it to help

Text The definitions and declarations for the alias. (see discussion
below)

Record Attributes Name, version, and GUID for the record, and information
linking it to help

Text The definitions and declarations for the record. (see
discussion below)

Union Attributes Name, version, and GUID for the union, and information
linking it to help

Text The definitions and declarations for the union. (see discussion
below)

Module Attributes Name, version, GUID, and associated DLL for the module,
and information linking it to help

Text The definitions and declarations for the module. (see
discussion below)

Method Attributes Name, dispatch ID or DLL entry point, and information
linking it to help.

Parameters Method return type, and a list of all parameters with their
types and any modifiers.

Flags Flags to indicate how clients can view and use the method,
whether this is a default method for the interface, and
whether it is replaceable.

Text The definitions and declarations for the method. (see
discussion below)

Property Attributes Name, dispatch ID, type of property access method (getter vs.
setter), and information linking it to help.

Parameters Property access method return type, and a list of all
parameters with their types and any modifiers.

Flags Flags to indicate how clients can view and use the property,
whether this is a default for the interface, whether the
property is replaceable, bindable, and so on.

Table 33.1 Type library pages (continued)

Type Info
element

Page of
type information Contents of page

W o r k i n g w i t h t y p e l i b r a r i e s 33-7

T y p e L i b r a r y e d i t o r

Note For more detailed information about the various options you can set on type
information pages, see the online Help for the Type Library editor.

You can use each of the pages of type information to view or edit the values it
displays. Most of the pages organize the information into a set of controls so that you
can type in values or select them from a list without requiring that you know the
syntax of the corresponding declarations. This can prevent many small mistakes such
as typographic errors when specifying values from a limited set. However, you may
find it faster to type in the declarations directly. To do this, use the Text page.

All type library elements have a text page that displays the syntax for the element.
This syntax appears in an IDL subset of Microsoft Interface Definition Language.
Any changes you make in other pages of the element are reflected on the text page. If
you add code directly in the text page, changes are reflected in the other pages of the
Type Library editor.

The Type Library editor generates syntax errors if you add identifiers that are
currently not supported by the editor; the editor currently supports only those
identifiers that relate to type library support (not RPC support or constructs used by
the Microsoft IDL compiler for C++ code generation or marshaling support).

Type library elements

The Type Library interface can seem overwhelmingly complicated at first. This is
because it represents information about a great number of elements, each of which
has its own characteristics. However, many of these characteristics are common to all
elements. For example, every element (including the type library itself) has the
following:

• A Name, which is used to describe the element and which is used when referring
to the element in code.

Text The definitions and declarations for the property access
method. (see discussion below)

Const Attributes Name, value, type (for module consts), and information
linking it to help.

Flags Flags to indicate how clients can view and use the constant,
whether this represents a default value, whether the constant
is bindable, and so on.

Text The definitions and declarations for the constant. (see
discussion below)

Field Attributes Name, type, and information linking it to help.

Flags Flags to indicate how clients can view and use the field,
whether this represents a default value, whether the field is
bindable, and so on.

Text The definitions and declarations for the field. (see discussion
below)

Table 33.1 Type library pages (continued)

Type Info
element

Page of
type information Contents of page

33-8 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

• A GUID (globally unique identifier), which is a globally unique 128-bit value that
COM uses to identify the element. This should always be supplied for the type
library itself and for CoClasses and interfaces. It is optional otherwise.

• A Version number, which distinguishes between multiple versions of the element.
This is always optional, but should be provided for CoClasses and interfaces,
because some tools can’t use them without a version number.

• Information linking the element to a Help topic. These include a Help String, and
Help Context or Help String Context value. The Help Context is used for a
traditional Windows Help system where the type library has a stand-alone Help
file. The Help String Context is used when help is supplied by a separate DLL
instead. The Help Context or Help String Context refers to a Help file or DLL that
is specified on the type library’s Attributes page. This is always optional.

Interfaces
An interface describes the methods (and any properties expressed as ‘get’ and ‘set’
functions) for an object that must be accessed through a virtual function table
(VTable). If an interface is flagged as dual, a dispinterface is also implied and can be
accessed through OLE automation. By default, the type library flags all interfaces you
add as dual.

Interfaces can be assigned members: methods and properties. These appear in the
object list pane as children of the interface node. Properties for interfaces are
represented by the ‘get’ and ‘set’ methods used to read and write the property’s
underlying data. They are represented in the tree view using special icons that
indicate their purpose.

Note When a property is specified as Write By Reference, it means it is passed as a pointer
rather than by value. Some applications, such a Visual Basic, use Write By Reference,
if it is present, to optimize performance. To pass the property only by reference
rather than by value, use the property type By Reference Only. To pass the property by
reference as well as by value, select Read|Write|Write By Ref. To invoke this menu,
go to the toolbar and select the arrow next to the property icon.

Once you add the properties or methods using the toolbar button or the object list
pane context menu, you describe their syntax and attributes by selecting the property
or method and using the pages of type information.

The Attributes page lets you give the property or method a name and dispatch ID (so
that it can be called using IDispatch). For properties, you also assign a type. The
function signature is created using the Parameters page, where you can add, remove,
and rearrange parameters, set their type and any modifiers, and specify function
return types.

Note that when you assign properties and methods to an interface, they are implicitly
assigned to its associated CoClass. This is why the Type Library editor does not let
you add properties and methods directly to a CoClass.

W o r k i n g w i t h t y p e l i b r a r i e s 33-9

T y p e L i b r a r y e d i t o r

Dispinterfaces
Interfaces are more commonly used than dispinterfaces to describe the properties
and methods of an object. Dispinterfaces are only accessible through dynamic
binding, while interfaces can have static binding through a vtable.

You can add methods and properties to dispinterfaces in the same way you add them
to interfaces. However, when you create a property for a dispinterface, you can’t
specify a function kind or parameter types.

CoClasses
A CoClass describes a unique COM object that implements one or more interfaces.
When defining a CoClass, you must specify which implemented interface is the
default for the object, and optionally, which dispinterface is the default source for
events. Note that you do not add properties or methods to a CoClass in the Type
Library editor. Properties and methods are exposed to clients by interfaces, which are
associated with the CoClass using the Implements page.

Type definitions
Enumerations, aliases, records, and unions all declare types that can then be used
elsewhere in the type library.

Enums consist of a list of constants, each of which must be numeric. Numeric input is
usually an integer in decimal or hexadecimal format. The base value is zero by
default. You can add constants to your enumeration by selecting the enumeration in
the object list pane and clicking the Const button on the tool bar or selecting New|
Const command from the object list pane context menu.

Note It is strongly recommended that you provide help strings for your enumerations to
make their meaning clearer. The following is a sample entry of an enumeration type
for a mouse button and includes a help string for each enumeration element.

typedef enum TxMouseButton
{

[helpstring("mbLeft”)]
mbLeft = 0,
[helpstring("mbRight)]
mbRight = 1.
[helpstring("mbMiddle)]
mbMiddle = 2

} TxMouseButton;

An alias creates an alias (typedef) for a type. You can use the alias to define types that
you want to use in other type info such as records or unions. Associate the alias with
the underlying type definition by setting the Type attribute on the Attributes page.

A record is a C-style structure. It consists of a list of structure members or fields. A
union defines a C-style union. Like a record, a union consists of a list of structure
members or fields. However, unlike the members of records, each member of a union
occupies the same physical address, so that only one logical value can be stored.

Add the fields to a record or union by selecting it in the object list pane and clicking
the field button in the toolbar or right clicking and choosing field from the object list

33-10 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

pane context menu. Each field has a name and a type, which you assign by selecting
the field and assigning values using the Attributes page. Records and unions can be
defined with an optional tag, as with a C struct.

Members can be of any built-in type, or you can specify a type using alias before you
define the record.

Note C++Builder does not support marshaling related keywords for structs and unions,
such as switch_type, first_is, last_is, etc.

Modules
A module defines a group of functions, typically a set of DLL entry points. You
define a module by

• Specifying a DLL that it represents on the attributes page.

• Adding methods and constants using the tool bar or the object list pane context
menu. For each method or constant, you must then define its attributes by
selecting the it in the object list pane and setting the values on the Attributes page.

For module methods, you must assign a name and DLL entry-point using the
attributes page. Declare the function’s parameters and return type using the
parameters page.

For module constants, use the Attributes page to specify a name, type, and value.

Note The Type Library editor does not generate any declarations or implementation
related to a module. The specified DLL must be created as a separate project.

Using the Type Library editor

Using the type library editor, you can create new type libraries or edit existing ones.
Typically, an application developer uses a wizard to create the objects that are
exposed in the type library, letting C++Builder generate the type library
automatically. Then, the automatically-generated type library is opened in the Type
Library editor so that the interfaces can be defined (or modified), type definitions
added, and so on.

However, even if you are not using a wizard to define the objects, you can use the
Type Library editor to define a new type library. In this case, you must create any
implementation classes yourself, because the Type Library editor does not generate
code for CoClasses that were not associated with a type library by a wizard.

The editor supports a subset of valid types in a type library as described below.

The final topics in this section describe how to:

• Create a new type library
• Open an existing type library
• Add an interface to the type library
• Modify an interface
• Add properties and methods to the type library
• Add a CoClass to the type library

W o r k i n g w i t h t y p e l i b r a r i e s 33-11

T y p e L i b r a r y e d i t o r

• Add an interface to a CoClass
• Add an enumeration to the type library
• Add an alias to the type library
• Add a record or union to the type library
• Add a module to the type library
• Save and register type library information

Valid types
The Type Library editor supports the following IDL types in a type library. The
Automation compatible column specifies whether the type can be used by an
interface that has its Automation or DispInterface flag checked. These are the types
that COM can marshal via the type library automatically.

* May be Automation compatible with some applications.

IDL type Variant type
Automation
compatible Description

short VT_I2 Yes 2-byte signed integer

long VT_I4 Yes 4-byte signed integer

single VT_R4 Yes 4-byte real

double VT_R8 Yes 8-byte real

CURRENCY VT_CY Yes currency

DATE VT_DATE Yes date

BSTR VT_BSTR Yes binary string

IDispatch VT_DISPATCH Yes pointer to IDispatch interface

SCODE VT_ERROR Yes OLE Error Code

VARIANT_BOOL VT_BOOL Yes True = –1, False = 0

VARIANT VT_VARIANT Yes pointer to OLE Variant

IUnknown VT_UNKNOWN Yes pointer to IUnknown interface

DECIMAL VT_DECIMAL Yes 16-byte fixed point

byte VT_I1 No* 1-byte signed integer

unsigned char VT_UI1 Yes 1-byte unsigned integer

unsigned short VT_UI2 No* 2-byte unsigned integer

unsigned long VT_UI4 No* 4-byte unsigned integer

__int64 VT_I8 No 8-byte signed real

uint64 VT_UI8 No 8-byte unsigned real

int VT_INT No* system-dependent integer
(Win32=Integer)

unsigned int VT_UINT No* system-dependent unsigned integer

void VT_VOID Yes C style VOID

HRESULT VT_HRESULT No 32-bit error code

SAFEARRAY VT_SAFEARRAY Yes OLE Safe Array

LPSTR VT_LPSTR No null terminated string

LPWSTR VT_LPWSTR No wide null terminated string

33-12 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Note The unsigned char type (VT_UI1) is Automation-compatible, but is not allowed in a
Variant or OleVariant since many Automation servers do not handle this value
correctly.

Besides these IDL types, any interfaces and types defined in the library or defined in
referenced libraries can be used in a type library definition.

The Type Library editor stores type information in the generated type library (.TLB) file
in binary form.

SafeArrays
COM requires that arrays be passed via a special data type known as a SafeArray.
You can create and destroy SafeArrays by calling special COM functions to do so,
and all elements within a SafeArray must be valid automation-compatible types.

In the Type Library editor, a SafeArray must specify the type of its elements. For
example, the following line from the text page declares a method with a parameter
that is a SafeArray with an element type of long:

HRESULT _stdcall HighlightLines(SAFEARRAY(long) Lines);

Note Although you must specify the element type when declaring a SafeArray type in the
Type Library editor, the declaration in the generated _TLB unit does not indicate the
element type.

 Creating a new type library
You may want to create a type library that is independent of a particular COM object.
For example, you might want to define a type library that contains type definitions
that you use in several other type libraries. You can then create a type library of basic
definitions and add it to the uses page of other type libraries.

You can also create a type library for an object that is not yet implemented. Once the
type library contains the interface definition, you can use the COM object wizard to
generate a CoClass and implementation.

To create a new type library,

1 Choose File|New to open the New Items dialog box.

2 Choose the ActiveX page which opens the New page.

3 Select the Type Library icon.

4 Choose OK.

The Type Library editor opens with a prompt to enter a name for the type library.

5 Enter a name for the type library. Continue by adding elements to your type
library.

Opening an existing type library
When you use the wizards to create an ActiveX control, Automation object, Active
form, Active Server Page object, COM object, transactional object, remote data
module, or transactional data module, a type library is automatically created with an

W o r k i n g w i t h t y p e l i b r a r i e s 33-13

T y p e L i b r a r y e d i t o r

implementation unit. In addition, you may have type libraries that are associated
with other products (servers) that are available on your system.

To open a type library that is not currently part of your project,

1 Choose File|Open from the main menu in the IDE.

2 In the Open dialog box, set the File Type to type library.

3 Navigate to the desired type library files and choose Open.

To open a type library associated with the current project,

1 Choose View|Type Library.

Now, you can add interfaces, CoClasses, and other elements of the type library such
as enumerations, properties, and methods.

 Tip When writing client applications, you do not need to open the type library. You only
need the Project_TLB unit that the Type Library editor creates from a type library, not
the type library itself. You can add this file directly to a client project, or, if the type
library is registered on your system, you can use the Import Type Library dialog
(Project|Import Type Library).

Adding an interface to the type library
To add an interface,

1 On the toolbar, click on the interface icon.

An interface is added to the object list pane prompting you to add a name.

2 Type a name for the interface.

The new interface contains default attributes that you can modify as needed.

You can add properties (represented by getter/setter functions) and methods to suit
the purpose of the interface.

Modifying an interface using the type library
There are several ways to modify an interface or dispinterface once it is created.

• You can change the interface’s attributes using the page of type information that
contains the information you want to change. Select the interface in the object list
pane and then use the controls on the appropriate page of type information. For
example, you may want to change the parent interface using the attributes page, or
use the flags page to change whether or not it is a dual interface.

• You can edit the interface declaration directly by selecting the interface in the
object list pane and then editing the declarations on the Text page.

• You can Add properties and methods to the interface (see below).

• You can modify the properties and methods already in your interface by changing
their type information.

• You can associate it with a CoClass by selecting the CoClass in the object list pane,
right-clicking on the Implements page, and choosing Insert Interface.

33-14 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

If the interface is associated with a CoClass that was generated by a wizard, you can
tell the Type Library editor to apply your changes to the implementation file by
clicking the Refresh button on the toolbar.

Adding properties and methods to an interface or dispinterface
To add properties or methods to an interface or dispinterface,

1 Select the interface, and choose either a property or method icon from the toolbar.
If you are adding a property, you can click directly on the property icon to create a
read/write property (with both a getter and a setter), or click the down arrow to
display a menu of property types.

The property access method members or method member is added to the object
list pane, prompting you to add a name.

2 Type a name for the member.

The new member contains default settings on its attributes, parameters, and flags
pages that you can modify to suit the member. For example, you will probably want
to assign a type to a property on the attributes page. If you are adding a method, you
will probably want to specify its parameters on the parameters page.

As an alternate approach, you can add properties and methods by typing directly
into the text page using IDL syntax. For example, you can type the following
property declarations into the text page of an interface:

[
 uuid(5FD36EEF-70E5-11D1-AA62-00C04FB16F42),
 version(1.0),
 dual,
 oleautomation
]
interface Interface1: IDispatch
{ // Add everything between the curly braces
[propget, id(0x00000002)]
 HRESULT _stdcall AutoSelect([out, retval] long Value);
 [propget, id(0x00000003)]
 HRESULT _stdcall AutoSize([out, retval] VARIANT_BOOL Value);
 [propput, id(0x00000003)]
 HRESULT _stdcall AutoSize([in] VARIANT_BOOL Value);
};

After you have added members to an interface using the interface text page, the
members appear as separate items in the object list pane, each with its own attributes,
flags, and parameters pages. You can modify each new property or method by
selecting it in the object list pane and using these pages, or by making edits directly in
the text page.

If the interface is associated with a CoClass that was generated by a wizard, you can
tell the Type Library editor to apply your changes to the implementation file by
clicking the Refresh button on the toolbar. The Type Library editor adds new
methods to your implementation class to reflect the new members. You can then
locate the new methods in implementation unit’s source code and fill in their bodies
to complete the implementation.

W o r k i n g w i t h t y p e l i b r a r i e s 33-15

T y p e L i b r a r y e d i t o r

 Adding a CoClass to the type library
The easiest way to add a CoClass to your project is to choose File|New from the
main menu in the IDE and use the appropriate wizard on the ActiveX or Multitier
page of the new items dialog. The advantage to this approach is that, in addition to
adding the CoClass and its interface to the type library, the wizard adds an
implementation unit, updates the project file to include the new implementation unit,
and adds the new CoClass to the object map in the project file.

If you are not using a wizard, however, you can create a CoClass by clicking the
CoClass icon on the tool bar and then specifying its attributes. You will probably
want to give the new CoClass a name (on the Attributes page), and may want to use
the Flags page to indicate information such as whether the CoClass is an application
object, whether it represents an ActiveX control, and so on.

Note When you add a CoClass to a type library using the tool bar instead of a wizard, you
must generate the implementation for the CoClass yourself and update it by hand
every time you change an element on one of the CoClass’s interfaces. When you add
a CoClass implementation manually, be sure to add the new CoClass to the object
map in the project file.

You can’t add members directly to a CoClass. Instead, you implicitly add members
when you add an interface to the CoClass.

Adding an interface to a CoClass
CoClasses are defined by the interfaces they present to clients. While you can add
any number of properties and methods to the implementation class of a CoClass,
clients can only see those properties and methods that are exposed by interfaces
associated with the CoClass.

To associate an interface with a CoClass, right-click in the Implements page for the
class and choose Insert Interface to display a list of interfaces from which you can
choose. The list includes interfaces that are defined in the current type library and
those defined in any type libraries that the current type library references. Choose an
interface you want the class to implement. The interface is added to the page with its
GUID and other attributes.

If the CoClass was generated by a wizard, the Type Library editor automatically
updates the implementation class to include skeletal methods for the methods
(including property access methods) of any interfaces you add this way.

Adding an enumeration to the type library
To add enumerations to a type library,

1 On the toolbar, click on the enum icon.

An enum type is added to the object list pane prompting you to add a name.

2 Type a name for the enumeration.

The new enum is empty and contains default attributes in its attributes page for
you to modify.

33-16 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Add values to the enum by clicking on the New Const button. Then, select each
enumerated value and assign it a name (and possibly a value) using the attributes
page.

Once you have added an enumeration, the new type is available for use by the type
library or any other type library that references it from its uses page. For example,
you can use the enumeration as the type for a property or parameter.

Adding an alias to the type library
To add an alias to a type library,

1 On the toolbar, click on the alias icon.

An alias type is added to the object list pane prompting you to add a name.

2 Type a name for the alias.

By default, the new alias stands for an long type. Use the Attributes page to
change this to the type you want the alias to represent.

Once you have added an alias, the new type is available for use by the type library or
any other type library that references it from its uses page. For example, you can use
the alias as the type for a property or parameter.

Adding a record or union to the type library
To add a record or union to a type library,

1 On the toolbar, click on the record icon or the union icon.

The selected type element is added to the object list pane prompting you to add a
name.

2 Type a name for the record or union.

At this point, the new record or union contains no fields.

3 With the record or union selected in the object list pane, click on the field icon in
the tool bar. Specify the field’s name and type, using the Attributes page.

4 Repeat step 3 for as many fields as you need.

Once you have defined the record or union, the new type is available for use by the
type library or any other type library that references it from its uses page. For
example, you can use the record or union as the type for a property or parameter.

Adding a module to the type library
To add a module to a type library,

1 On the toolbar, click on the module icon.

The selected module is added to the object list pane prompting you to add a name.

2 Type a name for the module.

3 On the Attributes page, specify the name of the DLL whose entry points the
Module represents.

W o r k i n g w i t h t y p e l i b r a r i e s 33-17

T y p e L i b r a r y e d i t o r

4 Add any methods from the DLL you specified in step 3 by clicking on the Method
icon in the tool bar and then using the attributes pages to describe the method.

5 Add any constants you want the module to define by clicking on the Const icon on
the tool bar. For each constant, specify a name, type, and value.

Saving and registering type library information
After modifying your type library, you’ll want to save and register the type library
information.

Saving the type library automatically updates:

• The binary type library file (.tlb extension).

• The Project_TLB unit that represents its contents

• The implementation code for any CoClasses that were generated by a wizard.

Note The type library is stored as a separate binary (.TLB) file, but is also linked into the
server (.EXE, DLL, or .OCX).

The Type Library editor gives you options for storing your type library information.
Which way you choose depends on what stage you are at in implementing the type
library:

• Save, to save both the .TLB and the Project_TLB unit to disk.

• Refresh, to update the type library units in memory only.

• Register, to add an entry for the type library in your system’s Windows registry.
This is done automatically when the server with which the .TLB is associated is
itself registered.

• Export, to save a .IDL file that contains the type and interface definitions in IDL
syntax.

All the above methods perform syntax checking. When you refresh, register, or save
the type library, C++Builder automatically updates the implementation unit of any
CoClasses that were created using a wizard.

Saving a type library
Saving a type library

• Performs a syntax and validity check.

• Saves information out to a .TLB file.

• Saves information out to the Project_TLB unit.

• Notifies the IDE’s module manager to update the implementation, if the type
library is associated with a CoClass that was generated by a wizard.

To save the type library, choose File|Save from the C++Builder main menu.

33-18 D e v e l o p e r ’ s G u i d e

D e p l o y i n g t y p e l i b r a r i e s

Refreshing the type library
Refreshing the type library

• Performs a syntax check.

• Regenerates the C++Builder type library units in memory only. It does not save
any files to disk.

• Notifies the IDE’s module manager to update the implementation, if the type
library is associated with a CoClass that was generated by a wizard.

To refresh the type library choose the Refresh icon on the Type Library editor toolbar.

Note If you have renamed items in the type library, refreshing the implementation may
create duplicate entries. In this case, you must move your code to the correct entry
and delete any duplicates. Similarly, if you delete items in the type library, refreshing
the implementation does not remove them from CoClasses (under the assumption
that you are merely removing them from visibility to clients). You must delete these
items manually in the implementation unit if they are no longer needed.

Registering the type library
Typically, you do not need to explicitly register a type library because it is registered
automatically when you register your COM server application (see “Registering a
COM object” on page 35-16). However, when you create a type library using the
Type Library wizard, it is not associated with a server object. In this case, you can
register the type library directly using the toolbar.

Registering the type library,

• Performs a syntax check

• Adds an entry to the Windows Registry for the type library

To register the type library, choose the Register icon on the Type Library editor
toolbar.

Exporting an IDL file
Exporting the type library,

• Performs a syntax check.

• Creates an IDL file that contains the type information declarations. This file
describes the type information in Microsoft IDL.

To export the type library, choose the Export icon on the Type Library editor toolbar.

Deploying type libraries
By default, when you have a type library that was created as part of an ActiveX or
Automation server project, the type library is automatically linked into the .DLL,
.OCX, or EXE as a resource.

W o r k i n g w i t h t y p e l i b r a r i e s 33-19

D e p l o y i n g t y p e l i b r a r i e s

You can, however, deploy your application with the type library as a separate .TLB,
as C++Builder maintains the type library, if you prefer.

Historically, type libraries for Automation applications were stored as a separate file
with the .TLB extension. Now, typical Automation applications compile the type
libraries into the .OCX or .EXE file directly. The operating system expects the type
library to be the first resource in the executable (.DLL, .OCX, or .EXE) file.

When you make type libraries other than the primary project type library available to
application developers, the type libraries can be in any of the following forms:

• A resource. This resource should have the type TYPELIB and an integer ID. If you
choose to build type libraries with a resource compiler, it must be declared in the
resource (.RC) file as follows:

1 typelib mylib1.tlb
2 typelib mylib2.tlb

There can be multiple type library resources in an ActiveX library. Application
developers use the resource compiler to add the .TLB file to their own ActiveX
library.

• Stand-alone binary files. The .TLB file output by the Type Library editor is a binary
file.

33-20 D e v e l o p e r ’ s G u i d e

C r e a t i n g C O M c l i e n t s 34-1

C h a p t e r

34
Chapter34Creating COM clients

COM clients are applications that make use of a COM object implemented by another
application or library. The most common types are applications that control an
Automation server (Automation controllers) and applications that host an ActiveX
control (ActiveX containers).

At first glance these two types of COM client are very different: The typical
Automation controller launches an external server EXE and issues commands to
make that server perform tasks on its behalf. The Automation server is usually
nonvisual and out-of-process. The typical ActiveX client, on the other hand, hosts a
visual control, using it much the same way you use any control on the Component
palette. ActiveX servers are always in-process servers.

However, the task of writing these two types of COM client is remarkably similar:
The client application obtains an interface for the server object and uses its properties
and methods. C++Builder makes this particularly easy by letting you wrap the server
CoClass in a component on the client, which you can even install on the Component
palette. Samples of such component wrappers appear on two pages of the
Component palette: sample ActiveX wrappers appear on the ActiveX page and
sample Automation objects appear on the Servers page.

When writing a COM client, you must understand the interface that the server
exposes to clients, just as you must understand the properties and methods of a
component from the Component palette to use it in your application. This interface
(or set of interfaces) is determined by the server application, and typically published
in a type library. For specific information on a particular server application’s
published interfaces, you should consult that application’s documentation.

Even if you do not choose to wrap a server object in a component wrapper and install
it on the component palette, you must make its interface definition available to your
application. To do this, you can import the server’s type information.

34-2 D e v e l o p e r ’ s G u i d e

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Note You can also query the type information directly using COM APIs, but C++Builder
provides no special support for this.

Some older COM technologies, such as object linking and embedding (OLE), do not
provide type information in a type library. Instead, they rely on a standard set of
predefined interfaces. These are discussed in “Creating Clients for servers that do not
have a type library” on page 34-16.

Importing type library information
To make information about the COM server available to your client application, you
must import the information about the server that is stored in the server’s type
library. Your application can then use the resulting generated classes to control the
server object.

There are two ways to import type library information:

• You can use the Import Type Library dialog to import all available information
about the server types, objects, and interfaces. This is the most general method,
because it lets you import information from any type library and can optionally
generate component wrappers for all creatable CoClasses in the type library that
are not flagged as Hidden, Restricted, or PreDeclID.

• You can use the Import ActiveX dialog if you are importing from the type library
of an ActiveX control. This imports the same type information, but only creates
component wrappers for CoClasses that represent ActiveX controls.

Regardless of which method you choose to import type library information, the
resulting dialog creates a unit with the name TypeLibName_TLB, where TypeLibName
is the name of the type library. This file contains declarations for the classes, types,
and interfaces defined in the type library. By including it in your project, those
definitions are available to your application so that you can create objects and call
their interfaces.

In addition to adding type definitions to the TypeLibName_TLB unit, the dialog can
also create VCL class wrappers for any CoClasses defined in the type library, which it
puts in a separate unit with the name TypeLibName_OCX. When you use the Import
Type Library dialog, these wrappers are optional. When you use the Import ActiveX
dialog, they are always generated for all CoClasses that represent controls.

Note If you are generating Component wrappers, the import dialog generates the
TypeLibName_OCX unit, but does not add it to your project. (It only adds the
TypeLibName_TLB unit to your project.) You can explicitly add the
TypeLibName_OCX unit to your project by choosing Project|Add to Project.

The generated class wrappers represent the CoClasses to your application, and
expose the properties and methods of its interfaces. If a CoClass supports the
interfaces for generating events (IConnectionPointContainer and IConnectionPoint), the
VCL class wrapper creates an event sink so that you can assign event handlers for the
events as simply as you can for any other component. If you tell the dialog to install
the generated VCL classes on the component palette, you can use the Object
Inspector to assign property values and event handlers.

C r e a t i n g C O M c l i e n t s 34-3

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Note The Import Type Library dialog does not create class wrappers for COM+ event
objects. To write a client that responds to events generated by a COM+ event object,
you must create the event sink programmatically. This process is described in
“Handling COM+ events” on page 34-15.

For more details about the code generated when you import a type library, see “Code
generated when you import type library information” on page 34-5.

Using the Import Type Library dialog

To import a type library,

1 Choose Project|Import Type Library.

2 Select the type library from the list.

The dialog lists all the libraries registered on this system. If the type library is not
in the list, choose the Add button, find and select the type library file, choose OK.
This registers the type library, making it available. Then repeat step 2. Note that
the type library could be a stand-alone type library file (.TLB, .OLB), or a server
that provides a type library (.DLL, .OCX, .EXE).

3 If you want to generate a VCL component that wraps a CoClass in the type library,
check Generate Component Wrapper. If you do not generate the component, you
can still use the CoClass by using the definitions in the TypeLibName_TLB unit.
However, you will have to write your own calls to create the server object and, if
necessary, to set up an event sink.

The Import Type Library dialog only imports CoClasses that are have the
CanCreate flag set and that do not have the Hidden, Restricted, or PreDeclID flags
set.

4 If you do not want to install a generated component wrapper on the component
palette, choose Create Unit. This generates the TypeLibName_TLB unit and, if you
checked Generate Component Wrapper in step 3, the TypeLibName_OCX unit. This
exits the Import Type Library dialog.

5 If you want to install the generated component wrapper on the component palette,
select the Palette page on which this component will reside and then choose
Install. This generates the TypeLibName_TLB and TypeLibName_OCX units, like the
Create Unit button, and then displays the Install component dialog, letting you
specify the package where the components should reside (either an existing
package or a new one). This button is grayed out if no component can be created
for the type library.

When you exit the Import Type Library dialog, the new TypeLibName_TLB and
TypeLibName_OCX units appear in the directory specified by the Unit dir name
control. The TypeLibName_TLB unit contains declarations for the elements defined in
the type library. The TypeLibName_OCX unit contains the generated component
wrapper if you checked Generate Component Wrapper.

In addition, if you installed the generated component wrapper, a server object that
the type library described now resides on the Component palette. You can use the

34-4 D e v e l o p e r ’ s G u i d e

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Object Inspector to set properties or write an event handler for the server. If you add
the component to a form or data module, you can right-click on it at design time to
see its property page (if it supports one).

Note The Servers page of the component palette contains a number of example
Automation servers that were imported this way for you.

Using the Import ActiveX dialog

To import an ActiveX control,

1 Choose Component|Import ActiveX Control.

2 Select the type library from the list.

The dialog lists all the registered libraries that define ActiveX controls. (This is a
subset of the libraries listed in the Import Type Library dialog.) If the type library
is not in the list, choose the Add button, find and select the type library file, choose
OK. This registers the type library, making it available. Then repeat step 2. Note
that the type library could be a stand-alone type library file (.TLB, .OLB), or an
ActiveX server (.DLL, .OCX).

3 If you do not want to install the ActiveX control on the component palette, choose
Create Unit. This generates the TypeLibName_TLB unit and the TypeLibName_OCX
unit. This exits the Import ActiveX dialog.

4 If you want to install the ActiveX control on the component palette, select the
Palette page on which this component will reside and then choose Install. This
generates the TypeLibName_TLB and TypeLibName_OCX units, like the Create Unit
button, and then displays the Install component dialog, letting you specify the
package where the components should reside (either an existing package or a new
one).

When you exit the Import ActiveX dialog, the new TypeLibName_TLB and
TypeLibName_OCX units appear in the directory specified by the Unit dir name
control. The TypeLibName_TLB unit contains declarations for the elements defined in
the type library. The TypeLibName_OCX unit contains the generated component
wrapper for the ActiveX control.

Note Unlike the Import Type Library dialog where it is optional, the import ActiveX
dialog always generates a component wrapper. This is because, as a visual control, an
ActiveX control needs the additional support of the component wrapper so that it can
fit in with VCL forms.

If you installed the generated component wrapper, an ActiveX control now resides
on the Component palette. You can use the Object Inspector to set properties or write
event handlers for this control.If you add the control to a form or data module, you
can right-click on it at design time to see its property page (if it supports one).

Note The ActiveX page of the component palette contains a number of example ActiveX
controls that were imported this way for you.

C r e a t i n g C O M c l i e n t s 34-5

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Code generated when you import type library information

Once you import a type library, you can view the generated TypeLibName_TLB unit.
The source file for that unit defines constants that give symbolic names to the GUIDS
of the type library and its interfaces and CoClasses. The names for these constants are
generated as follows:

• The GUID for the type library has the form LIBID_TypeLibName, where
TypeLibName is the name of the type library.

• The GUID for an interface has the form IID_InterfaceName, where InterfaceName is
the name of the interface.

• The GUID for a dispinterface has the form DIID_InterfaceName, where
InterfaceName is the name of the dispinterface.

• The GUID for a CoClass has the form CLSID_ClassName, where ClassName is the
name of the CoClass.

If you right click in the source file and choose Open Source/Header file, you will find
the following definitions:

• Declarations for the CoClasses in the type library. These map each CoClass to its
default interface. In addition, a wrapper for each CoClass, using the TComInterface
template, is declared. This wrapper’s name has the form CoClassNamePtr.

• Declarations for the interfaces and dispinterfaces in the type library.

• Declarations of class wrappers for the interfaces and dispinterfaces. For interfaces,
the class wrapper uses the TComInterface template, and has a name of the form
TComInterfaceName. For dispinterfaces, the class wrapper uses the TAutoDriver
template, and has a name of the form InterfaceNameDisp.

• Declarations for a creator class for each CoClass whose default interface supports
Vtable binding. The creator class has two static methods, Create and CreateRemote,
that can be used to instantiate the CoClass locally (Create) or remotely
(CreateRemote).These methods return the class wrapper for the CoClass’s default
interface (defined in TypeLibName_TLB.h using the TComInterface template.

• A proxy class wrapper for every event interface. This class wrapper has a name of
the form TEvents_CoClassName, where CoClassName is the name of the CoClass
that generates the events. The proxy class maintains a list of all client event sinks
and invokes the appropriate method on all appropriate event sinks when the
server object fires events.

These declarations provide you with what you need to create instances of the
CoClass and access its interface. All you need do is include the generated
TypeLibName_TLB.h file in the unit where you wish to bind to a CoClass and call its
interfaces.

Warning The generated wrapper classes use a static object (TInitOleT) to handle COM
initialization. This can be a problem if you are creating objects from multiple threads,
because COM is only initialized on the first thread that connects to a server. You

34-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

must explicitly create a separate instance of TInitOleT or TInitOle on all other threads
that connect to a COM server.

Note The TypeLibName_TLB unit is also generated when you use the Type Library editor or
the command-line utility TLIBIMP.

If you want to use an ActiveX control, you also need the generated VCL wrapper in
addition to the declarations described above. The VCL wrapper handles window
management issues for the control. You may also have generated a VCL wrapper for
other CoClasses in the Import Type Library dialog. These VCL wrappers simplify the
task of creating server objects and calling their methods. They are especially
recommended if you want your client application to respond to events.

The declarations for generated VCL wrappers appear in the TypeLibName_OCX unit.
Component wrappers for ActiveX controls are descendants of TOleControl.
Component wrappers for Automation objects descend from TOleServer. The
generated component wrapper adds the properties, events, and methods exposed by
the CoClass’s interface. You can use this component like any other VCL component.

Warning You should not edit the generated TypeLibName_TLB or TypeLibname_OCX unit. They
are regenerated each time the type library is refreshed, so any changes will be
overwritten.

Note For the most up-to-date information about the generated code, refer to the comments
in the automatically-generated TypeLibName_TLB unit and utilcls.h.

Controlling an imported object
After importing type library information, you are ready to start programming with
the imported objects. How you proceed depends in part on the objects, and in part on
whether you have chosen to create component wrappers.

Using component wrappers

If you generated a component wrapper for your server object, writing your COM
client application is not very different from writing any other application that
contains VCL components. The server object’s properties, methods, and events are
already encapsulated in the VCL component. You need only assign event handlers,
set property values, and call methods.

To use the properties, methods, and events of the server object, see the
documentation for your server. The component wrapper automatically provides a
dual interface where possible. C++Builder determines the VTable layout from
information in the type library.

In addition, your new component inherits certain important properties and methods
from its base class.

C r e a t i n g C O M c l i e n t s 34-7

C o n t r o l l i n g a n i m p o r t e d o b j e c t

ActiveX wrappers
You should always use a component wrapper when hosting ActiveX controls,
because the component wrapper integrates the control’s window into the VCL
framework.

The properties and methods an ActiveX control inherits from TOleControl allow you to
access the underlying interface or obtain information about the control. Most
applications, however, do not need to use these. Instead, you use the imported control
the same way you would use any other VCL control.

Typically, ActiveX controls provide a property page that lets you set their properties.
Property pages are similar to the component editors some components display when
you double-click on them in the form designer. To display an ActiveX control’s
property page, right click and choose Properties.

The way you use most imported ActiveX controls is determined by the server
application. However, ActiveX controls use a standard set of notifications when they
represent the data from a database field. See “Using data-aware ActiveX controls” on
page 34-8 for information on how to host such ActiveX controls.

Automation object wrappers
The wrappers for Automation objects let you control how you want to form the
connection to your server object:

• The ConnectKind property indicates whether the server is local or remote and
whether you want to connect to a server that is already running or if a new
instance should be launched. When connecting to a remote server, you must
specify the machine name using the RemoteMachineName property.

• Once you have specified the ConnectKind, there are three ways you can connect
your component to the server:

• You can explicitly connect to the server by calling the component’s Connect
method.

• You can tell the component to connect automatically when your application
starts up by setting the AutoConnect property to true.

• You do not need to explicitly connect to the server. The component
automatically forms a connection when you use one of the server’s properties
or methods using the component.

Calling methods or accessing properties is the same as using any other component:

TServerComponent1->DoSomething();

Handling events is easy, because you can use the Object Inspector to write event
handlers. Note, however, that the event handler on your component may have
slightly different parameters than those defined for the event in the type library.
Parameters that are interface pointers are usually wrapped using the TComInterface
template, rather than appearing as a raw interface pointer. The resulting interface
wrapper has a name of the form InterfaceNamePtr.

34-8 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

For example, the following code shows an event handler for the ExcelApplication
event, OnNewWorkBook. The event handler has a parameter that provides the
interface of another CoClass (ExcelWorkbook). However, the interface is not passed
as an ExcelWorkBook interface pointer, but rather as an ExcelWorkbookPtr object.

void _fastcall TForm1::XLappNewWorkbook(TObject *Sender, ExcelWorkbookPtr Wb)
{

ExcelWorkbook1->ConnectTo(Wb);
}

In this example, the event handler assigns the workbook to an ExcelWorkbook
component (ExcelWorkbook1). This demonstrates how to connect a component
wrapper to an existing interface by using the ConnectTo method. The ConnectTo
method is added to the generated code for the component wrapper.

Servers that have an application object expose a Quit method on that object to let
clients terminate the connection. Quit typically exposes functionality that is
equivalent to using the File menu to quit the application. Code to call the Quit
method is generated in your component’s Disconnect method. If it is possible to call
the Quit method with no parameters, the component wrapper also has an AutoQuit
property. AutoQuit causes your controller to call Quit when the component is freed.
If you want to disconnect at some other time, or if the Quit method requires
parameters, you must call it explicitly. Quit appears as a public method on the
generated component.

Using data-aware ActiveX controls

When you use a data-aware ActiveX control in a C++Builder application, you must
associate it with the database whose data it represents. To do this, you need a data
source component, just as you need a data source for any data-aware VCL control.

After you place the data-aware ActiveX control in the form designer, assign its
DataSource property to the data source that represents the desired dataset. Once you
have specified a data source, you can use the Data Bindings editor to link the
control’s data-bound property to a field in the dataset.

To display the Data Bindings editor, right-click the data-aware ActiveX control to
display a list of options. In addition to the basic options, the additional Data
Bindings item appears. Select this item to see the Data Bindings editor, which lists the
names of fields in the dataset and the bindable properties of the ActiveX control.

To bind a field to a property,

1 In the ActiveX Data Bindings Editor dialog, select a field and a property name.

Field Name lists the fields of the database and Property Name lists the ActiveX
control properties that can be bound to a database field. The DispID of the
property is in parentheses, for example, Value(12).

2 Click Bind and OK.

Note If no properties appear in the dialog, the ActiveX control contains no data-aware
properties. To enable simple data binding for a property of an ActiveX control, use

C r e a t i n g C O M c l i e n t s 34-9

C o n t r o l l i n g a n i m p o r t e d o b j e c t

the type library as described in “Enabling simple data binding with the type library”
on page 37-11.

The following example walks you through the steps of using a data-aware ActiveX
control in the C++Builder container. This example uses the Microsoft Calendar
Control, which is available if you have Microsoft Office 97 installed on your system.

1 From the C++Builder main menu, choose Component|Import ActiveX.

2 Select a data-aware ActiveX control, such as the Microsoft Calendar control 8.0,
change its class name to TCalendarAXControl, and click Install.

3 In the Install dialog, click OK to add the control to the default user package, which
makes the control available on the Palette.

4 Choose Close All and File|New Application to begin a new application.

5 From the ActiveX tab, drop a TCalendarAXControl object, which you just added to
the Palette, onto the form.

6 From the Data Access tab, drop a DataSource and Table object onto the form.

7 Select the DataSource object and set its DataSet property to Table1.

8 Select the Table object and do the following:

• Set the DataBaseName property to BCDEMOS

• Set the TableName property to EMPLOYEE.DB

• Set the Active property to true

9 Select the TCalendarAXControl object and set its DataSource property to
DataSource1.

10 Select the TCalendarAXControl object, right-click, and choose Data Bindings to
invoke the ActiveX Control Data Bindings Editor.

Field Name lists all the fields in the active database. Property Name lists those
properties of the ActiveX Control that can be bound to a database field. The
DispID of the property is in parentheses.

11 Select the HireDate field and the Value property name, choose Bind, and OK.

The field name and property are now bound.

12 From the Data Controls tab, drop a DBGrid object onto the form and set its
DataSource property to DataSource1.

13 From the Data Controls tab, drop a DBNavigator object onto the form and set its
DataSource property to DataSource1.

14 Run the application.

15 Test the application as follows:

With the HireDate field displayed in the DBGrid object, navigate through the
database using the Navigator object. The dates in the ActiveX control change as
you move through the database.

34-10 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Example: Printing a document with Microsoft Word

The following steps show how to create an Automation controller that prints a
document using Microsoft Word 8 from Office 97.

Before you begin: Create a new project that consists of a form, a button, and an open
dialog box (TOpenDialog). These controls constitute the Automation controller.

Step 1: Prepare C++Builder for this example
For your convenience, C++Builder has provided many common servers, such as
Word, Excel, and Powerpoint, on the Component Palette. To demonstrate how to
import a server, we use Word. Since it already exists on the Component Palette, this
first step asks you to remove the package containing Word so that you can see how to
install it on the palette. Step 4 describes how to return the Component Palette to its
normal state.

To remove Word from the Component palette,

1 Choose Component|Install packages.

2 Click Borland Sample Automation Server components and choose Remove.

The Servers page of the Component Palette no longer contains any of the servers
supplied with C++Builder. (If no other servers have been imported, the Servers
page also disappears.)

Step 2: Import the Word type library
To import the Word type library,

1 Choose Project|Import Type Library.

2 In the Import Type Library dialog,

1 Select Microsoft Office 8.0 Object Library.

If Word (Version 8) is not in the list, choose the Add button, go to Program
Files\Microsoft Office\Office, select the Word type library file, MSWord8.olb
choose Add, and then select Word (Version 8) from the list.

2 For Palette Page, choose Servers.

3 Choose Install.

The Install dialog appears. Select the Into New Packages tab and type
WordExample to create a new package containing this type library.

3 Go to the Servers Palette Page, select WordApplication and place it on a form.

4 Write an event handler for the button object as described in the next step.

C r e a t i n g C O M c l i e n t s 34-11

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Step 3: Use a VTable or dispatch interface object to control Microsoft Word
You can use either a VTable or a dispatch object to control Microsoft Word.

Using a VTable interface object
By dropping an instance of the WordApplication object onto your form, you can
easily access the control using a VTable interface object. You simply call on methods
of the class you just created. For Word, this is the TWordApplication class.

1 Select the button, double-click its OnClick event handler and supply the following
event handling code:

void __fastcall TForm1::Button1Click(TObject *Sender)
{

if (OpenDialog1->Execute())
{

TVariant FileName = OpenDialog1->FileName.c_str();
WordApplication1->Documents.Open(FileName,
TNoParam,TNoParam,TNoParam,
TNoParam,TNoParam,TNoParam,
TNoParam,TNoParam,TNoParam);

WordApplication1->ActiveDocument.PrintOut(
TNoParam,TNoParam,TNoParam,
TNoParam,TNoParam,TNoParam,
TNoParam,TNoParam,TNoParam,
TNoParam,TNoParam,TNoParam,
TNoParam,TNoParam);

}
}

2 Build and run the program. By clicking the button, Word prompts you for a file to
print.

Using a dispatch interface object
As an alternate, you can use a dispatch interface for late binding. To use a dispatch
interface object, you create and initialize the Application object using the
_ApplicationDisp dispatch wrapper class as follows. Notice that dispinterface
methods are “documented” by the source as returning Vtable interfaces, but, in fact,
you must cast them to dispatch interfaces.

1 Select the button, double-click its OnQuit event handler and supply the following
event handling code:

void __fastcall TForm1::Button1Click(TObject *Sender)
{

if (OpenDialog1->Execute())
{

TVariant FileName = OpenDialog1->FileName.c_str();

34-12 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

_ApplicationDisp MyWord.Bind(CLSID_WordApplication);
DocumentsDisp MyDocs = MyWord->Documents;
MyDocs->Open(FileName, TNoParam, TNoParam, TNoParam,

TNoParam, TNoParam, TNoParam,
TNoParam, TNoParam, TNoParam);

_DocumentDisp MyActiveDoc = MyWord->ActiveDocument;
MyActiveDoc->PrintOut(TNoParam, TNoParam, TNoParam,

TNoParam, TNoParam, TNoParam, TNoParam, TNoParam,
TNoParam, TNoParam, TNoParam, TNoParam, TNoParam,
TNoParam);

MyWord->Quit(TNoParam,TNoParam,TNoParam);
}

}

2 Build and run the program. By clicking the button, Word prompts you for a file to
print.

Step 4: Clean up the example
After completing this example, you will want to restore C++Builder to its original
form.

1 Delete the objects on this Servers page:

1 Choose Component|Install Packages.

2 From the list, select the WordExample package and click remove.

3 Click Yes to the message box asking for confirmation.

4 Exit the Install Packages dialog by clicking OK.

2 Return the Borland Sample Automation Server Components package:

1 Choose Component|Install Packages.

2 Click the Add button.

3 In the resulting dialog, choose bcb97axserver50.bpl for the Office 97
components, or bcb2kaxserver50.bpl for the Office 2000 components.

4 Exit the Install Packages dialog by clicking OK.

Writing client code based on type library definitions

Although you must use a component wrapper for hosting an ActiveX control, you
can write an Automation controller using only the definitions from the type library
that appear in the TypeLibName_TLB unit. This process is a bit more involved that
letting a component do the work, especially if you need to respond to events.

Connecting to a server
Before you can drive an Automation server from your controller application, you
must obtain a reference to an interface it supports. Typically, you connect to a server

C r e a t i n g C O M c l i e n t s 34-13

C o n t r o l l i n g a n i m p o r t e d o b j e c t

through its main interface. For example, you connect to Microsoft Word through the
WordApplication component.

If the main interface is a dual interface, you can use the creator objects in the
TypeLibName_TLB.h file. The creator classes have the same name as the CoClass, with
the prefix “Co” added. You can connect to a server on the same machine by calling
the Create method, or a server on a remote machine using the CreateRemote method.
Because Create and CreateRemote are static methods, you do not need an instance of
the creator class to call them.

pInterface = CoServerClassName.Create();
pInterface = CoServerClassName.CreateRemote("Machine1");

Create and CreateRemote return the class wrapper for the CoClass’s default interface
(defined in TypeLibName_TLB.h using the TComInterface template.

If the default interface is a dispatch interface, then there is no Creator class generated
for the CoClass. Instead, you must create an instance of the automatically generated
wrapper class for the default interface. This class is defined using the TAutoDriver
template, and has a name of the form InterfaceNameDisp. Next, call the Bind method,
passing in the GUID for the CoClass (there is a constant for this GUID defined at the
top of the _TLB unit).

Controlling an Automation server using a dual interface
After using the automatically generated creator class to connect to the server, you call
methods of the interface wrapper object, using the “->” operator. For example,

TComApplication AppPtr = CoWordApplication_.Create();
AppPtr->DoSomething;

The interface wrapper and creator class are defined in the TypeLibName_TLB unit that
is generated automatically when you import a type library. An advantage of using
this wrapper class for interfaces is that it automatically frees the underlying interface
when it is destroyed.

For information about dual interfaces, see “Dual interfaces” on page 35-12.

Controlling an Automation server using a dispatch interface
Typically, you use the dual interface to control the Automation server, as described
above. However, you may find a need to control an Automation server with a
dispatch interface because no dual interface is available.

To call the methods of a dispatch interface,

1 Connect to the server, using the Bind method of the wrapper class for the dispatch
interface. For more details on connecting to the server, see “Connecting to a
server” on page 34-12.

2 Control the Automation server by calling methods of the dispatch interface
wrapper object.

The wrapper class surfaces the properties and methods of the dispatch interface as its
own properties and methods. In addition, because it descends from TAutoDriver, you
can use the IDispatch mechanism to call the server object’s properties and methods.

34-14 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Before you can access a property or method, you must obtain its dispatch ID. To do
this, use the GetIDsOfNames method, passing in the name and a reference to a DISPID
variable that receives the dispatch ID for that name. Once you have the dispatch ID,
you can use it to call OlePropertyGet, OlePropertyPut, or OleFunction to access the
server objects properties and methods.

Another way to use dispatch interfaces is to assign them to a Variant. This approach
is taken by some VCL objects for properties or parameters whose values are
interfaces. The Variant type includes built-in support for calling dispatch interfaces,
through its OlePropertyGet, OlePropertyPut, OleFunction, and OleProcedure methods,
which correspond to the methods on a dispatch interface wrapper class. Using
Variants can be a bit slower than using the dispatch interface wrapper class, because
the Variant methods dynamically look up the dispatch ID every time you call them.
However, they have the advantage that you do not need to import the type library to
use them.

Warning Care must be taken when assigning an interface to a Variant instead of a dispatch
interface wrapper. While the wrapper automatically handles calls to AddRef and
Release, the Variant does not. Thus, for example, if you assign a Variant whose value is
an interface to an interface wrapper, the interface wrapper does not call AddRef, but
its destructor calls Release. Because of this, using Variants is not recommended except
where they already appear as the property of a VCL object.

For more information on dispatch interfaces, see “Automation interfaces” on
page 35-11.

Handling events in an automation controller
If you do not use a Component wrapper (or if the server uses COM+ events), you
must write the event sink code yourself.

Handling Automation events programmatically
Before you can handle events, you must define an event sink. This is a class that
implements the event dispatch interface that is defined in the server’s type library.

The event sink is a descendant of TEventDispatcher, which is a templatized class that
requires two parameters, the class of your event sink and the GUID for the event
interface that your event sink handles:

class MyEventSinkClass: TEventDispatcher<MyEventSinkClass, DIID_TheServerEvents>
{
...// declare the methods of DIID_TheServerEvents here
}

Once you have an instance of your event sink class, call its ConnectEvents method to
let the server know about your event sink. This method uses the
IConnectionPointContainer and IConnectionPoint interfaces of the server to register the
object as an event sink. Now your object receives calls from the server when events
occur:

pInterface = CoServerClassName.CreateRemote("Machine1");
MyEventSinkClass ES;
ES.ConnectEvents(pInterface);

C r e a t i n g C O M c l i e n t s 34-15

C o n t r o l l i n g a n i m p o r t e d o b j e c t

You must terminate the connection before you free your event sink. To do this, call
the event sink’s DisconnectEvents method:

ES.DisconnectEvents(pInterface);

Note You must be certain that the server has released its connection to your event sink
before you free it. Because you don’t know how the server responds to the disconnect
notification initiated by DisconnectEvents, this may lead to a race condition if you free
your event sink immediately after the call. TEventDispatcher guards against this for
you by maintaining its own reference count that is not decremented until the server
releases the event sink’s interface.

Handling COM+ events
Under COM+, servers use a special helper object to generate events rather than a set
of special interfaces (IConnectionPointContainer and IConnectionPoint). Because of this,
you can’t use an event sink that descends from TEventDispatcher. TEventDispatcher is
designed to work with those interfaces, not COM+ event objects.

Instead of defining an event sink, your client application defines a subscriber object.
Subscriber objects, like event sinks, provide the implementation of the event
interface. They differ from event sinks in that they subscribe to a particular event
object rather than connecting to a server’s connection point.

To define a subscriber object, use the COM Object wizard, selecting the event object’s
interface as the one you want to implement. The wizard generates an implementation
unit with skeletal methods that you can fill in to create your event handlers. For more
information about using the COM Object wizard to implement an existing interface,
see “Using the COM object wizard” on page 35-2.

Note You may need to add the event object’s interface to the registry using the wizard if it
does not appear in the list of interfaces you can implement.

Once you create the subscriber object, you must subscribe to the event object’s
interface or to individual methods (events) on that interface. There are three types of
subscriptions from which you can choose:

• Transient subscriptions. Like traditional event sinks, transient subscriptions are
tied to the lifetime of an object instance. When the subscriber object is freed, the
subscription ends and COM+ no longer forwards events to it.

• Persistent subscriptions. These are tied to the object class rather than a specific
object instance. When the event occurs, COM locates or launches an instance of the
subscriber object and calls its event handler. In-process objects (DLLs) use this
type of subscription.

• Per-user subscriptions. These subscriptions provide a more secure version of
transient subscriptions. Both the subscriber object and the server object that fires
events must be running under the same user account on the same machine.

34-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g C l i e n t s f o r s e r v e r s t h a t d o n o t h a v e a t y p e l i b r a r y

To subscribe to an event object, use the global RegisterComPlusEventSubscription
function.

Note Objects that subscribe to COM+ events must be installed in a COM+ application.

Creating Clients for servers that do not have a type library
Some older COM technologies, such as object linking and embedding (OLE), do not
provide type information in a type library. Instead, they rely on a standard set of
predefined interfaces. To write clients that host such objects, you can use the
TOleContainer component. This component appears on the System page of the
component palette.

TOleContainer acts as a host site for an Ole2 object. It implements the IOleClientSite
interface and, optionally, IOleDocumentSite. Communication is handled using OLE
verbs.

To use TOleContainer,

1 Place a TOleContainer component on your form.

2 Set the AllowActiveDoc property to true if you want to host an Active document.

3 Set the AllowInPlace property to indicate whether the hosted object should appear
in the TOleContainer, or in a separate window.

4 Write event handlers to respond when the object is activated, deactivated, moved,
or resized.

5 To bind the TOleContainer object at design time, right click and choose Insert
Object. In the Insert Object dialog, choose a server object to host.

6 To bind the TOleContainer object at runtime, you have several methods to choose
from, depending on how you want to identify the server object. These include
CreateObject, which takes a program id, CreateObjectFromFile, which takes the
name of a file to which the object has been saved, CreateObjectFromInfo, which
takes a struct containing information on how to create the object, or
CreateLinkToFile, which takes the name of a file to which the object was saved and
links to it rather than embeds it.

7 Once the object is bound, you can access its interface using the OleObjectInterface
property. However, because communication with Ole2 objects was based on OLE
verbs, you will most likely want to send commands to the server using the DoVerb
method.

8 When you want to release the server object, call the DestroyObject method.

C r e a t i n g s i m p l e C O M s e r v e r s 35-1

C h a p t e r

35
Chapter 35Creating simple COM servers

C++Builder provides wizards to help you create various COM objects. The simplest
COM objects are servers that expose properties and methods (and possibly events)
through a default interface that clients can call. Two wizards, in particular, ease the
process of creating simple COM objects:

• The COM Object wizard builds a lightweight COM object whose default interface
descends from IUnknown or that implements an interface already registered on
your system. This wizard provides the most flexibility in the types of COM objects
you can create.

• The Automation Object wizard creates a simple Automation object whose default
interface descends from IDispatch. IDispatch introduces a standard marshaling
mechanism and support for late binding of interface calls.

Note COM defines many standard interfaces and mechanisms for handling specific
situations. The C++Builder wizards automate the most common tasks. However,
some tasks, such as custom marshaling, are not supported by any C++Builder
wizards. For information on that and other technologies not explicitly supported by
C++Builder, refer to the Microsoft Developer’s Network (MSDN) documentation.
The Microsoft Web site also provides current information on COM support.

Overview of creating a COM object
Whether you use the Automation object wizard to create a new Automation server or
the COM object wizard to create some other type of COM object, the process you
follow is the same. It involves these steps:

1 Design the COM object.

2 Use the COM Object wizard or the Automation Object wizard to create the server
object.

35-2 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a C O M o b j e c t

3 Specify options on the ATL page of the project options dialog to indicate how
COM will call the application that houses your object and what type of debugging
support you want.

4 Define the interface that the object exposes to clients.

5 Register the COM object.

6 Test and debug the application.

Designing a COM object
When designing the COM object, you need to decide what COM interfaces you want
to implement. You can write a COM object to implement an interface that has already
been defined, or you can define a new interface for your object to implement. In
addition, you can have your object support more than one interface. For information
about standard COM interfaces that you might want to support, see the MSDN
documentation.

• To create a COM object that implements an existing interface, use the COM Object
wizard.

• To create a COM object that implements a new interface that you define, use either
the COM Object wizard or the Automation Object wizard. The COM object wizard
can generate a new default interface that descends from IUnknown, and the
Automation object gives your object a default interface that descends from
IDispatch. No matter which wizard you use, you can always use the Type Library
editor later to change the parent interface of the default interface that the wizard
generates.

In addition to deciding what interfaces to support, you must decide whether the
COM object is an in-process server, out-of-process server, or remote server. For in-
process servers and for out-of-process and remote servers that use a type library,
COM marshals the data for you. Otherwise, you must consider how to marshal the
data to out-of-process servers. For information on server types, see “In-process, out-
of-process, and remote servers” on page 32-6.

Using the COM object wizard
The COM object wizard performs the following tasks:

• Creates a new unit.

• Defines a new class that descends from the ATL classes CComObjectRootEx and
CComCoClass. For more information on the base classes, see “Code generated by
wizards” on page 32-20.

• Adds a type library to your project and adds your object and its interface to the
type library.

C r e a t i n g s i m p l e C O M s e r v e r s 35-3

U s i n g t h e C O M o b j e c t w i z a r d

Before you create a COM object, create or open the project for the application
containing functionality that you want to implement. The project can be either an
application or ActiveX library, depending on your needs.

To bring up the COM object wizard,

1 Choose File|New to open the New Items dialog box.

2 Select the tab labeled, ActiveX.

3 Double-click the COM object icon.

In the wizard, you must specify the following:

• CoClass name: This is the name of the object as it appears to clients. The class
created to implement your object has this name with a ‘T’ prepended. If you do
not choose to implement an existing interface, the wizard gives your CoClass a
default interface that has this name with an ‘I’ prepended.

• Interface to implement: By default, the wizard gives your object a default
interface that descends from IUnknown. After exiting the wizard, you can then use
the Type Library editor to add properties and methods to this interface. However,
you can also select a pre-defined interface for your object to implement. Click the
List button in the COM object wizard to bring up the Interface Selection wizard,
where you can select any dual or custom interface defined in a type library
registered on your system. The interface you select becomes the default interface
for your new CoClass. The wizard adds all the methods on this interface to the
generated implementation class, so that you only need to fill in the bodies of the
methods in the implementation unit. Note that if you select an existing interface,
the interface is not added to your project’s type library. This means that when
deploying your object, you must also deploy the type library that defines the
interface.

• Threading Model: Typically, client requests to your object enter on different
threads of execution. You can specify how COM serializes these threads when it
calls your object. Your choice of threading model determines how the object is
registered. You are responsible for providing any threading support implied by
the model you choose. For information on the different possibilities, see
“Choosing a threading model” on page 35-5. For information on how to provide
thread support to your application, see Chapter 7, “Writing multi-threaded
applications.”

• Event support: You must indicate whether you want your object to generate
events to which clients can respond. The wizard can provide support for the
interfaces required to generate events and the dispatching of calls to client event
handlers. For information on how events work and what you need to do when
implementing them, see “Exposing events to clients” on page 35-10.

• Marshaling: If you are willing to confine yourself to Automation-compatible
types, you can let COM handle the marshaling for you when you are not
generating an in-process server. By marking your object’s interface as
OleAutomation in the type library, you enable COM to set up the proxies and
stubs for you and handles passing parameters across process boundaries. For
more information on this process, see “The marshaling mechanism” on page 32-8.

35-4 D e v e l o p e r ’ s G u i d e

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

You can only specify whether your interface is Automation-compatible if you are
generating a new interface. If you select an existing interface, its attributes are
already specified in its type library. If your object’s interface is not marked as
OleAutomation, you must either create an in-process server or write your own
marshalling code.

You can optionally add a description of your COM object. This description appears
in the type library for your object.

Using the Automation object wizard
The Automation object wizard performs the following tasks:

• Creates a new unit.

• Defines a new class that descends from the ATL classes CComObjectRootEx and
CComCoClass. For more information on the base classes, see “Code generated by
wizards” on page 32-20.

• Adds a type library to your project and adds your object and its interface to the
type library.

Before you create an Automation object, create or open the project for an application
containing functionality that you want to expose. The project can be either an
application or ActiveX library, depending on your needs.

To display the Automation wizard:

1 Choose File|New.

2 Select the tab labeled, ActiveX.

3 Double-click the Automation Object icon.

In the wizard dialog, specify the following:

• CoClass name: This is the name of the object as it appears to clients. Your object’s
default interface is created with a name based on this CoClass name with an ‘I’
prepended, and the class created to implement your object has this name with a ‘T’
prepended.

• Threading Model: Typically, client requests to your object enter on different
threads of execution. You can specify how COM serializes these threads when it
calls your object. Your choice of threading model determines how the object is
registered. You are responsible for providing any threading support implied by
the model you choose. For information on the different possibilities, see
“Choosing a threading model” on page 35-5. For information on how to provide
thread support to your application, see Chapter 7, “Writing multi-threaded
applications.”

• Event support: You must indicate whether you want your object to generate
events to which clients can respond. The wizard can provide support for the
interfaces required to generate events and the dispatching of calls to client event

C r e a t i n g s i m p l e C O M s e r v e r s 35-5

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

handlers. For information on how events work and what you need to do when
implementing them, see “Exposing events to clients” on page 35-10.

You can optionally add a description of your COM object. This description appears
in the type library for your object.

The Automation object implements a dual interface, which supports both early
(compile-time) binding through the VTable and late (runtime) binding through the
IDispatch interface. For more information, see “Dual interfaces” on page 35-12.

Choosing a threading model

When creating an object using a wizard, you select a threading model that your
object agrees to support. By adding thread support to your COM object, you can
improve its performance, because multiple clients can access your application at the
same time.

Table 35.1 lists the different threading models you can specify.

Table 35.1 Threading models for COM objects

Threading model Description Implementation pros and cons

Single The server provides no thread
support. COM serializes client
requests so that the application
receives one request at a time.

Clients are handled one at a time so
no threading support is needed.
No performance benefit.

Apartment (or Single-
threaded apartment)

COM ensures that only one client
thread can call the object at a time.
All client calls use the thread in
which the object was created.

Objects can safely access their own
instance data, but global data must
be protected using critical sections
or some other form of serialization.
The thread’s local variables are
reliable across multiple calls.
Some performance benefits.

Free (also called multi-
threaded apartment)

Objects can receive calls on any
number of threads at any time.

Objects must protect all instance
and global data using critical
sections or some other form of
serialization.
Thread local variables are not
reliable across multiple calls.

35-6 D e v e l o p e r ’ s G u i d e

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

Note Local variables (except those in callbacks) are always safe, regardless of the threading
model. This is because local variables are stored on the stack and each thread has its
own stack. Local variables may not be safe in callbacks when using free-threading.

The threading model you choose in the wizard determines how the object is
registered in the system Registry. You must make sure that your object
implementation adheres to the threading model you have chosen. For general
information on writing thread-safe code, see Chapter 7, “Writing multi-threaded
applications.”

Note In order for COM to call your object according to the specified threading model, it
must be initialized to support that kind of model. You can specify how COM is
initialized using the ATL page of the project options dialog.

For in-process servers, setting the threading model in the wizard sets the threading
model key in the CLSID registry entry.

Out-of-process servers are registered as EXE, and COM must be initialized for the
highest threading model required. For example, if an EXE includes a free-threaded
object, it is initialized for free threading, which means that it can provide the
expected support for any free-threaded or apartment-threaded objects contained in
the EXE. To specify how COM is initialized, use the ATL page of the project options
dialog.

Writing an object that supports the free threading model
Use the free threading (or both) model rather than apartment threading whenever
the object needs to be accessed from more than one thread. A common example is a
client application connected to an object on a remote machine. When the remote
client calls a method on that object, the server receives the call on a thread from the
thread pool on the server machine. This receiving thread makes the call locally to the
actual object; and, because the object supports the free threading model, the thread
can make a direct call into the object.

Both This is the same as the Free-
threaded model except that
outgoing calls (for example,
callbacks) are guaranteed to
execute in the same thread.

Maximum performance and
flexibility.
Does not require the application to
provide thread support for
parameters supplied to outgoing
calls

Neutral Multiple clients can call the object
on different threads at the same
time, but COM ensures that no
two calls conflict.

You must guard against thread
conflicts involving global data and
any instance data that is accessed
by multiple methods.
This model should not be used
with objects that have a user
interface (visual controls).
This model is only available under
COM+. Under COM, it is mapped
to the Apartment model

Table 35.1 Threading models for COM objects (continued)

Threading model Description Implementation pros and cons

C r e a t i n g s i m p l e C O M s e r v e r s 35-7

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

If the object supported the apartment threading model instead, the call would have to
be transferred to the thread on which the object was created, and the result would
have to be transferred back into the receiving thread before returning to the client.
This approach requires extra marshaling.

To support free threading, you must consider how instance data can be accessed for
each method. If the method is writing to instance data, you must use critical sections
or some other form of serialization, to protect the instance data. Likely, the overhead
of serializing critical calls is less than executing COM’s marshaling code.

Note that if the instance data is read-only, serialization is not needed.

Free-threaded in-process servers can improve performance by acting as the outer
object in an aggregation with the free-threaded marshaler. The free-threaded
marshaler provides a shortcut for COM’s standard thread handling when a free-
threaded DLL is called by a host (client) that is not free-threaded.

To aggregate with the free threaded marshaler, you must

• Call CoCreateFreeThreadedMarshaler, passing your object’s IUnknown interface for
the resulting free-threaded marshaler to use:

CoCreateFreeThreadedMarshaler(static_cast<IUnknown *>(this), &FMarshaler);

This line assigns the interface for the free-threaded marshaler to a class member,
FMarshaler.

• Using the Type Library editor, add the IMarshal interface to the set of interfaces
your CoClass implements.

• In your object’s QueryInterface method, delegate calls for IDD_IMarshal to the free-
threaded marshaler (stored as FMarshaler above).

Warning The free-threaded marshaler violates the normal rules of COM marshaling to provide
additional efficiency. It should be used with care. In particular, it should only be
aggregated with free-threaded objects in in-process servers, and should only be
instantiated by the object that uses it (not another thread).

Writing an object that supports the apartment threading model
To implement the (single-threaded) apartment threading model, you must follow a
few rules:

• The first thread in the application that gets created is COM’s main thread. This is
typically the thread on which WinMain was called. This must also be the last
thread to uninitialize COM.

• Each thread in the apartment threading model must have a message loop, and the
message queue must be checked frequently.

• When a thread gets a pointer to a COM interface, that pointer may only be used in
that thread.

The single-threaded apartment model is the middle ground between providing no
threading support and full, multi-threading support of the free threading model. A
server committing to the apartment model promises that the server has serialized
access to all of its global data (such as its object count). This is because different

35-8 D e v e l o p e r ’ s G u i d e

S p e c i f y i n g A T L o p t i o n s

objects may try to access the global data from different threads. However, the object’s
instance data is safe because the methods are always called on the same thread.

Typically, controls for use in Web browsers use the apartment threading model
because browser applications always initialize their threads as apartment.

Writing an object that supports the neutral threading model
Under COM+, you can use another threading model that is in between free threading
and apartment threading: the neutral model. Like the free-threading model, this
model allows multiple threads to access your object at the same time. There is no
extra marshaling to transfer to the thread on which the object was created. However,
your object is guaranteed to receive no conflicting calls.

Writing an object that uses the neutral threading model follows much the same rules
as writing an apartment-threaded object, except that you do need to guard instance
data against thread conflicts if it can be accessed by different methods in the object’s
interface. Any instance data that is only accessed by a single interface method is
automatically thread-safe.

Specifying ATL options
Once you have used a wizard to create a COM object, the Project Options dialog
gains an additional page labeled “ATL”. This page lets you set a number of
application-level flags that control what parameters are generated for ATL calls that
initialize COM or register the application, as well as flags that control whether debug
tracing is enabled in code that uses the ATL.

Use the ATL page to set the following options:

• Instancing: If your application is not an in-process server, instancing determines
how many instances of your object clients can create within a single process space.
If you specify single use, then once a client has instantiated your object, COM
removes the application from view so that other clients must launch their own
instances of the application. If you specify multiple use, then multiple clients can
each create their own instance of your object, and all instances run in the same
process space.

• OLE Initialization COINIT_XXX flag: This flag determines how COM is
initialized by your application. You can specify apartment-threaded, in which case
each object is always called on the thread in which it was created, or multi-
threaded, in which case the objects can be called on multiple threads. The COINIT
flags influence what threading models objects in the application can use. If the
COINIT flag is set to apartment-threaded, you can only have single-threaded or
apartment-threaded objects in the application. Objects that are registered with any
other threading model default to apartment-threaded.

• Debugging flags: You can also set flags to specify that ATL calls are logged in the
event log when your application runs in the IDE. You can trace calls to IUnknown
methods (QueryInterface and reference counting calls), or trace all ATL calls.

C r e a t i n g s i m p l e C O M s e r v e r s 35-9

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

Defining a COM object’s interface
When you use a wizard to create a COM object, the wizard automatically generates a
type library. The type library provides a way for host applications to find out what
the object can do. It also lets you define your object’s interface using the Type Library
editor. The interfaces you define in the Type Library editor define what properties,
methods, and events your object exposes to clients.

Note If you selected an existing interface in the COM object wizard, you do not need to
add properties and methods. The definition of the interface is imported from the type
library in which it was defined. Instead, simply locate the methods of the imported
interface in the implementation unit and fill in their bodies.

Adding a property to the object’s interface

When you add a property to your object’s interface using the Type Library editor, it
automatically adds a method to read the property’s value and/or a method to set the
property’s value. The Type Library editor, in turn, adds these methods to your
implementation class, and in your implementation unit creates empty method
implementations for you to complete.

To add a property to your object’s interface,

1 In the type library editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter “I”.
To determine the default, in the Type Library editor, choose the CoClass and
Implements tab, and check the list of implemented interfaces for the one marked,
“Default.”

2 To expose a read/write property, click the Property button on the toolbar;
otherwise, click the arrow next to the Property button on the toolbar, and then
click the type of property to expose.

3 In the Attributes pane, specify the name and type of the property.

4 On the toolbar, click the Refresh button.

A definition and skeletal implementations for the property access methods are
inserted into the object’s implementation unit.

5 In the implementation unit, locate the access methods for the property. These have
names of the form get_PropertyName and set_PropertyName, and include only
the code to catch exceptions and return an HRESULT. Add code (between try and
catch statements) that gets or sets the property value of your object. This code may
simply call an existing function inside the application, access a data member that
you add to the object definition, or otherwise implement the property.

35-10 D e v e l o p e r ’ s G u i d e

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

Adding a method to the object’s interface

When you add a method to your object’s interface using the Type Library editor, the
Type Library editor can, in turn, add the methods to your implementation class, and
in your implementation unit create empty implementation for you to complete.

To expose a method via your object’s interface,

1 In the Type Library editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter “I”.
To determine the default, in the Type Library editor, choose the CoClass and
Implements tab, and check the list of implemented interfaces for the one marked,
“Default.”

2 Click the Method button.

3 In the Attributes pane, specify the name of the method.

4 In the Parameters pane, specify the method’s return type and add the appropriate
parameters.

5 On the toolbar, click the Refresh button.

A definition and skeletal implementation for the method is inserted into the
object’s implementation unit.

6 In the implementation unit, locate the newly inserted method implementation.
The method is completely empty. Fill in the body to perform whatever task the
method represents.

Exposing events to clients

There are two types of events that a COM object can generate: traditional events and
COM+ events.

• COM+ events require that you create a separate event object using the event object
wizard and add code to call that event object from your server object. For more
information about generating COM+ events, see “Generating events under
COM+” on page 38-20.

• You can use the wizard to handle much of the work in generating traditional
events. This process is described below.

In order for an object to generate events, you need to do the following:

1 In the wizard, check the box, Generate event support code.

The wizard creates an object that includes an Events interface as well as the default
interface. This Events interface has a name of the form ICoClassnameEvents. It is an
outgoing (source) interface, which means that it is not an interface your object
implements, but rather is an interface that clients must implement and which your
object calls. (You can see this by selecting your CoClass, going to the Implements
page, and noting that the Source column on the Events interface says true.) The
GUID for the Events interface is added to the Connection Points map, which

C r e a t i n g s i m p l e C O M s e r v e r s 35-11

A u t o m a t i o n i n t e r f a c e s

appears beneath the interface map in the object’s declaration. For more
information about the Connection Points map, see the ATL documentation.

In addition to the Events interface, the wizard adds additional base classes to your
object. These include an implementation of the IConnectionPointContainer interface
(IConnectionPointContainerImpl) and a templatized base class that manages the
firing of events to all clients (TEvents_CoClassName). The template for this latter
class can be found in the _TLB unit header.

2 In the Type Library editor, select the outgoing Events interface for your object.
(This is the one with a name of the form ICoClassNameEvents)

3 Click the Method button from the Type Library toolbar. Each method you add to
the Events interface represents an event handler that the client must implement.

4 In the Attributes pane, specify the name of the event handler, such as MyEvent.

5 On the toolbar, click the Refresh button.

Your object implementation now has everything it needs to accept client event
sinks and maintain a list of interfaces to call when the event occurs. To call these
interfaces, you can call the method that fires an event (implemented by
TEvents_CoClassName) to generate the event on clients. For each event handler,
this method has a name of the form Fire_EventHandlerName.

6 Whenever you need to fire the event so that clients are informed of its occurrence,
call the method that dispatches the event to all event sinks:

if (EventOccurs) Fire_MyEvent; // Call method you created to fire events.

Managing events in your Automation object
For a server to support traditional COM events, it must provide the definition of an
outgoing interface which is implemented by a client. This outgoing interface includes
all the event handlers the client must implement to respond to server events.

When a client has implemented the outgoing event interface, it registers its interest in
receiving event notification by querying the server’s IConnectionPointContainer
interface. The IConnectionPointContainer interface returns the server’s
IConnectionPoint interface, which the client then uses to pass the server a pointer to its
implementation of the event handlers (known as a sink).

The server maintains a list of all client sinks and calls methods on them when an
event occurs, as described above.

Automation interfaces
The Automation Object wizard implements a dual interface by default, which means
that the Automation object supports both

• Late binding at runtime, which is through the IDispatch interface. This is
implemented as a dispatch interface, or dispinterface.

35-12 D e v e l o p e r ’ s G u i d e

A u t o m a t i o n i n t e r f a c e s

• Early binding at compile-time, which is accomplished through directly calling one
of the member functions in the object’s virtual function table (VTable). This is
referred to as a custom interface.

Note Any interfaces generated by the COM object wizard that do not descend from
IDispatch only support VTable calls.

Dual interfaces

A dual interface is a custom interface and a dispinterface at the same time. It is
implemented as a COM VTable interface that derives from IDispatch. For those
controllers that can access the object only at runtime, the dispinterface is available.
For objects that can take advantage of compile-time binding, the more efficient
VTable interface is used.

Dual interfaces offer the following combined advantages of VTable interfaces and
dispinterfaces:

• For Automation controllers that cannot obtain type information, the dispinterface
provides runtime access to the object.

• For in-process servers, you have the benefit of fast access through VTable
interfaces.

• For out-of-process servers, COM marshals data for both VTable interfaces and
dispinterfaces. COM provides a generic proxy/stub implementation that can
marshal the interface based on the information contained in a type library. For
more information on marshaling, see “Marshaling data” on page 35-14.

The following diagram depicts the IMyInterface interface in an object that supports a
dual interface named IMyInterface. The first three entries of the VTable for a dual
interface refer to the IUnknown interface, the next four entries refer to the IDispatch
interface, and the remaining entries are COM entries for direct access to members of
the custom interface.

C r e a t i n g s i m p l e C O M s e r v e r s 35-13

A u t o m a t i o n i n t e r f a c e s

Figure 35.1 Dual interface VTable

Dispatch interfaces

Automation controllers are clients that use the COM IDispatch interface to access the
COM server objects. The controller must first create the object, then query the object’s
IUnknown interface for a pointer to its IDispatch interface. IDispatch keeps track of
methods and properties internally by a dispatch identifier (dispID), which is a
unique identification number for an interface member. Through IDispatch, a
controller retrieves the object’s type information for the dispatch interface and then
maps interface member names to specific dispIDs. These dispIDs are available at
runtime, and controllers get them by calling the IDispatch method, GetIDsOfNames.

Once it has the dispID, the controller can then call the IDispatch method, Invoke, to
execute the appropriate code (property or method), packaging the parameters for the
property or method into one of the Invoke parameters. Invoke has a fixed compile-time
signature that allows it to accept any number of arguments when calling an interface
method.

The Automation object’s implementation of Invoke must then unpackage the
parameters, call the property or method, and be prepared to handle any errors that
occur. When the property or method returns, the object passes its return value back
to the controller.

This is called late binding because the controller binds to the property or method at
runtime rather than at compile time.

Note C++Builder can’t create CoClasses with dispatch interfaces that are not dual
interfaces. This is because its COM support rests on the ATL, which does not support
non-dual dispatch interfaces.

QueryInterface

AddRef

Release

GetIDsOfNames

GetTypeInfo

GetTypeInfoCount

Invoke

IUnknown
methods

IDispatch
methods

Method1

Method2

Remaining methods
of IMyInterface

IMyInterface
methods

35-14 D e v e l o p e r ’ s G u i d e

M a r s h a l i n g d a t a

Custom interfaces

Custom interfaces are user-defined interfaces that allow clients to invoke interface
methods based on their order in the VTable and knowledge of the argument types.
The VTable lists the addresses of all the properties and methods that are members of
the object, including the member functions of the interfaces that it supports. If the
object does not support IDispatch, the entries for the members of the object’s custom
interfaces immediately follow the members of IUnknown.

If the object has a type library, you can access the custom interface through its VTable
layout, which you can get using the Type Library editor. If the object has a type
library and also supports IDispatch, a client can also get the dispIDs of the IDispatch
interface and bind directly to a VTable offset. C++Builder’s type library importer
(TLIBIMP) retrieves dispIDs at import time, so clients that use dispinterface
wrappers can avoid calls to GetIDsOfNames; this information is already in the _TLB
unit. However, clients still need to call Invoke.

Marshaling data
For out-of-process and remote servers, you must consider how COM marshals data
outside the current process. You can provide marshaling:

• Automatically, using the IDispatch interface.

• Automatically, by creating a type library with your server and marking the
interface with the Ole Automation flag. COM knows how to marshal all the
Automation-compatible types in the type library and can set up the proxies and
stubs for you. Some type restrictions apply to enable automatic marshaling.

• Manually by implementing all the methods of the IMarshal interface. This is called
custom marshaling.

Note The first method (using IDispatch) is only available for interfaces on Automation
servers. The others are available on objects you create with the COM object wizard as
well.

Automation compatible types

Function result and parameter types of the methods declared in dual and dispatch
interfaces and interfaces that you mark as Ole Automation must be Automation-
compatible types. The following types are OLE Automation-compatible:

• The predefined valid types such as Smallint, Integer, Single, Double, WideString. For
a complete list, see “Valid types” on page 33-11.

• Enumeration types defined in a type library. OLE Automation-compatible
enumeration types are stored as 32-bit values and are treated as values of type
Integer for purposes of parameter passing.

C r e a t i n g s i m p l e C O M s e r v e r s 35-15

M a r s h a l i n g d a t a

• Interface types defined in a type library that are OLE Automation safe, that is,
derived from IDispatch and containing only OLE Automation compatible types.

• Dispinterface types defined in a type library.

• IFont, IStrings, and IPicture. Helper objects must be instantiated to map

• an IFont to a TFont
• an IStrings to a TStrings
• an IPicture to a TPicture

The ActiveX control and ActiveForm wizards create these helper objects
automatically when needed. To use the helper objects, call the global routines,
GetOleFont, GetOleStrings, GetOlePicture, respectively.

Type restrictions for automatic marshaling

For an interface to support automatic marshaling, the following restrictions apply.
When you edit your object using the type library editor, the editor enforces these
restrictions:

• Types must be compatible for cross-platform communication. For example, you
cannot use data structures (other than implementing another property object),
unsigned arguments, wide strings, and so on.

• String data types must be transferred as BSTR. PChar and AnsiString cannot be
marshaled safely.

• All members of a dual interface must pass an HRESULT as the function’s return
value.

• Members of a dual interface that need to return other values should specify these
parameters as var or out, indicating an output parameter that returns the value of
the function.

Note One way to bypass the Automation types restrictions is to implement a separate
IDispatch interface and a custom interface. By doing so, you can use the full range of
possible argument types. This means that COM clients have the option of using the
custom interface, which Automation controllers can still access. In this case, though,
you must implement the marshaling code manually.

Custom marshaling

Typically, you use automatic marshaling in out-of-process and remote servers
because it is easier—COM does the work for you. However, you may decide to
provide custom marshaling if you think you can improve marshaling performance.
When implementing your own custom marshaling, you must support the IMarshal
interface. For more information, on this approach, see the Microsoft documentation.

35-16 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g a C O M o b j e c t

Registering a COM object
You can register your server object as an in-process or an out-of-process server. For
more information on the server types, see “In-process, out-of-process, and remote
servers” on page 32-6.

Note Before you remove a COM object from your system, you should unregister it.

Registering an in-process server

To register an in-process server (DLL or OCX),

• Choose Run|Register ActiveX Server.

To unregister an in-process server,

• Choose Run|Unregister ActiveX Server.

Registering an out-of-process server

To register an out-of-process server,

• Run the server with the /regserver command-line option.

You can set command-line options with the Run|Parameters dialog box.

You can also register the server by running it.

To unregister an out-of-process server,

• Run the server with the /unregserver command-line option.

As an alternative, you can use the tregsvr command from the command line or run
the regsvr32.exe from the operating system.

Note If the COM server is intended for use under COM+, you should install it in a COM+
application rather than register it. (Installing the object in a COM+ application
automatically takes care of registration.) For information on how to install an object
in a COM+ application, see “Installing transactional objects” on page 38-24.

C r e a t i n g s i m p l e C O M s e r v e r s 35-17

T e s t i n g a n d d e b u g g i n g t h e a p p l i c a t i o n

Testing and debugging the application
To test and debug your COM server application,

1 Turn on debugging information using the Compiler tab on the Project|Options
dialog box, if necessary. Also, turn on Integrated Debugging in the Tools|
Debugger Options dialog.

2 For an in-process server, choose Run|Parameters, type the name of the
Automation controller in the Host Application box, and choose OK.

3 Choose Run|Run.

4 Set breakpoints in the Automation server.

5 Use the Automation controller to interact with the Automation server.

The Automation server pauses when the breakpoints are reached.

In addition, it can be helpful to trace the calls your application makes to interfaces. By
examining the flow of COM calls, it is possible to determine whether your
application is behaving as expected. To tell C++Builder to add messages to the event
log whenever a COM interface is called, use the ATL page of the project objects
dialog to specify debugging options.

35-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r P a g e 36-1

C h a p t e r

36
Chapter 36Creating an Active Server Page

If you are using the Microsoft Internet Information Server (IIS) environment to serve
your Web pages, you can use Active Server Pages (ASP) to create dynamic Web-
based client-server applications. Active Server Pages let you write a script that gets
called every time the server loads the Web page. This script can, in turn, call on
Automation objects to obtain information that it includes in a generated HTML page.
For example, you can write a C++Builder Automation server, such as one to create a
bitmap or connect to a database, and use this control to access data that gets updated
every time the server loads the Web page.

On the client side, the ASP acts like a standard HTML document and can be viewed
by users on any platform using any Web Browser.

ASP applications are analogous to applications you write using C++Builder’s Web
broker technology. For more information about the Web broker technology, see
Chapter 30, “Creating Internet server applications.” ASP differs, however, in the way
it separates the UI design from the implementation of business rules or complex
application logic.

• The UI design is managed by the Active Server Page. This is essentially an HTML
document, but it can include embedded script that calls on Active Server objects to
supply it with content that reflects your business rules or application logic.

• The application logic is encapsulated by Active Server objects that expose simple
methods to the Active Server Page, supplying it with the content it needs.

Note Although ASP provides the advantage of separating UI design from application
logic, its performance is limited in scale. For Web sites that respond to extremely
large numbers of clients, an approach based on the Web broker technology is
recommended instead.

The script in your Active Server Pages and the Automation objects you embed in an
active server page can make use of the ASP intrinsics (built-in objects that provide
information about the current application, HTTP messages from the browser, and so
on).

36-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

This chapter shows how to create an Active Server Object using the C++Builder
Active Server Object wizard. This special Automation control can then be called by
an Active Server Page and supply it with content.

Here are the steps for creating an Active Server Object:

• Create an Active Server Object for the application.

• Define the Active Server Object’s interface.

• Register the Active Server Object.

• Test and debug the application.

Creating an Active Server Object
An Active Server Object is an Automation object that has access to information about
the entire ASP application and the HTTP messages it uses to communicate with
browsers. It descends from TASPObject or TMTSASPObject (as well as the ATL base
classes CComObjectRootEx and CComCoClass), and supports Automation protocols,
exposing itself for other applications (or the script in the Active Server page) to use.
You create an Active Server Object using the Active Server Object wizard.

Your Active Server Object project can be either an executable (EXE) or library (DLL),
depending on your needs. However, you should be aware of the drawbacks of using
an out-of-process server. These drawbacks are discussed in “Creating ASPs for
in-process or out-of-process servers” on page 36-7.

To display the Active Server Object wizard:

1 Choose File|New.

2 Select the tab labeled, ActiveX.

3 Double-click the Active Server Object icon.

In the wizard, give your new Active Server Object a name, and specify the threading
model you want to support. You must write the implementation so that it adheres to
the model (for example, avoiding thread conflicts). The threading model involves the
same choices that you make for other COM objects. For details, see “Choosing a
threading model” on page 35-5.

The thing that makes an Active Server Object unique is its ability to access
information about the ASP application and the HTTP messages that pass between the
Active Server page and client Web browsers. This information is accessed using the
ASP intrinsics. In the wizard, you can specify how your object accesses these by
setting the Active Server Type:

• If you are working with IIS 3 or IIS 4, you use Page Level Event Methods. Under
this model, your object implements the methods, OnStartPage and OnEndPage,
which are called when the Active Server page loads and unloads. When your
object is loaded, it automatically obtains an IScriptingContext interface, which it
uses to access the ASP intrinsics. These interfaces are, in turn, surfaced as
properties inherited from the base class (TASPObject).

C r e a t i n g a n A c t i v e S e r v e r P a g e 36-3

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

• If you are working with IIS5 or later, you use the Object Context type. Under this
model, your object fetches an IObjectContext interface, which it uses to access the
ASP intrinsics. Again, these interfaces are surfaced as properties in the inherited
base class (TMTSASPObject). One advantage of this latter approach is that your
object has access to all of the other services available through IObjectContext. To
access the IObjectContext interface, use the ObjectContext property of your Active
Server Object. For more information about the services available through
IObjectContext, see Chapter 38, “Creating MTS or COM+ objects.”

You can tell the wizard to generate a simple .ASP page to host your new Active
Server Object. The generated page provides a minimal script (written in VBScript)
that creates your Active Server Object based on its ProgID, and indicates where you
can call its methods. This script calls Server.CreateObject to launch your Active
Server Object.

Note Although the generated test script uses VBScript, Active Server Pages also can be
written using Jscript.

When you exit the wizard, a new unit is added to the current project that contains the
definition for the Active Server Object. In addition, the wizard adds a type library
project and opens the Type Library editor. Now you can expose the properties and
methods of the interface through the type library as described in “Defining a COM
object’s interface” on page 35-9. As you write the implementation of your object’s
properties and methods, you can take advantage of the ASP intrinsics (described
below) to obtain information about the ASP application and the HTTP messages it
uses to communicate with browsers.

The Active Server Object, like any other Automation object, implements a dual
interface, which supports both early (compile-time) binding through the VTable and
late (runtime) binding through the IDispatch interface. For more information on dual
interfaces, see “Dual interfaces” on page 35-12.

Using the ASP intrinsics

The ASP intrinsics are a set of COM objects supplied by ASP to the objects running in
an Active Server Page. They let your Active Server Object access information that
reflects the messages passing between your application and the Web browser, as well
as a place to store information that is shared among Active Server Objects that belong
to the same ASP application.

To make these objects easy to access, the base class for your Active Server Object
surfaces them as properties. For a complete understanding of these objects, see the
Microsoft documentation. However, the following topics provide a brief overview.

Application
The Application object is accessed through an IApplicationObject interface. It
represents the entire ASP application, which is defined as the set of all .asp files in a
virtual directory and its subdirectories. The Application object can be shared by
multiple clients, so it includes locking support that you should use to prevent thread
conflicts.

36-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

IApplicationObject includes the following:

Request
The Request object is accessed through an IRequest interface. It provides information
about the HTTP request message that caused the Active Server Page to be opened.

IRequest includes the following:

Response
The Request object is accessed through an IResponse interface. It lets you specify
information about the HTTP response message that is returned to the client browser.

Table 36.1 IApplicationObject interface members

Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the application using script
commands. This interface has two methods, Remove and RemoveAll,
that you can use to delete one or all objects from the list.

StaticObjects property Lists all the objects that were added to the application with the
<OBJECT> tag.

Lock method Prevents other clients from locking the Application object until you
call Unlock. All clients should call Lock before accessing shared
memory (such as the properties).

Unlock method Releases the lock that was set using the Lock method.

Application_OnEnd event Occurs when the application quits, after the Session_OnEnd event.
The only intrinsics available are Application and Server. The event
handler must be written in VBScript or JScript.

Application_OnStart event Occurs before the new session is created (before Session_OnStart).
The only intrinsics available are Application and Server. The event
handler must be written in VBScript or JScript.

Table 36.2 IRequest interface members

Property, Method, or Event Meaning

ClientCertificate property Indicates the values of all fields in the client certificate that is sent
with the HTTP message.

Cookies property Indicates the values of all Cookie headers on the HTTP message.

Form property Indicates the values of form elements in the HTTP body. These can
be accessed by name.

QueryString property Indicates the values of all variables in the query string from the
HTTP header.

ServerVariables property Indicates the values of various environment variables. These
variables represent most of the common HTTP header variables.

TotalBytes property Indicates the number of bytes in the request body. This is an upper
limit on the number of bytes returned by the BinaryRead method.

BinaryRead method Retrieves the content of a Post message. Call the method, specifying
the maximum number of bytes to read. The resulting content is
returns as a Variant array of bytes. After calling BinaryRead, you
can’t use the Form property.

C r e a t i n g a n A c t i v e S e r v e r P a g e 36-5

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

IResponse includes the following:

Session
The Session object is accessed through the ISessionObject interface. It allows you to
store variables that persist for the duration of a client’s interaction with the ASP
application. That is, these variables are not freed when the client moves from page to
page within the ASP application, but only when the client exits the application
altogether.

Table 36.3 IResponse interface members

Property, Method, or Event Meaning

Cookies property Determines the values of all Cookie headers on the HTTP message.

Buffer property Indicates whether page output is buffered When page output is
buffered, the server does not send a response to the client until all
of the server scripts on the current page are processed.

CacheControl property Determines whether proxy servers can cache the output in the
response.

Charset property Adds the name of the character set to the content type header.

ContentType property Specifies the HTTP content type of the response message’s body.

Expires property Specifies how long the response can be cached by a browser before
it expires.

ExpiresAbsolute property Specifies the date and time when the response expires.

isClientConnected property Indicates whether the client has disconnected from the server.

Pics property Set the value for the pics-label field of the response header.

Status property Indicates the status of the response. This is the value of an HTTP
status header.

AddHeader method Adds an HTTP header with a specified name and value.

AppendToLog method Adds a string to the end of the Web server log entry for this
request.

BinaryWrite method Writes raw (uninterpreted) information to the body of the response
message.

Clear method Erases any buffered HTML output.

End method Stops processing the .asp file and returns the current result.

Flush method Sends any buffered output immediately.

Redirect method Sends a redirect response message, redirecting the client browser to
a different URL.

Write method Writes a variable to the current HTTP output as a string.

36-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

ISessionObject includes the following:

Server
The Server object is accessed through an IServer interface. It provides various utilities
for writing your ASP application.

IServer includes the following:

Table 36.4 ISessionObject interface members

Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the session using the
<OBJECT> tag. You can access any variable in the list by name, or
call the Contents object’s Remove or RemoveAll method to delete
values.

StaticObjects property Lists all the objects that were added to the session with the
<OBJECT> tag.

CodePage property Specifies the code page to use for symbol mapping. Different
locales may use different code pages.

LCID property Specifies the locale identifier to use for interpreting string content.

SessionID property Indicates the session identifier for the current client.

Timeout property Specifies the time, in minutes, that the session persists without a
request (or refresh) from the client until the application terminates.

Abandon method Destroys the session and releases its resources.

Session_OnEnd event Occurs when the session is abandoned or times out. The only
intrinsics available are Application, Server, and Session. The event
handler must be written in VBScript or JScript.

Session_OnStart event Occurs when the server creates a new session is created (after
Application_OnStart but before running the script on the Active
Server Page). All intrinsics are available. The event handler must be
written in VBScript or JScript.

Table 36.5 IServer interface members

Property, Method, or Event Meaning

ScriptTimeout property Same as the Timeout property on the Session object.

CreateObject method Instantiates a specified Active Server Object.

Execute method Executes the script in a specified .asp file.

GetLastError method Returns an ASPError object that describes the error condition.

HTMLEncode method Encodes a string for use in an HTML header, replacing reserved
characters by the appropriate symbolic constants.

MapPath method Maps a specified virtual path (an absolute path on the current
server or a path relative to the current page) into a physical path.

Transfer method Sends all of the current state information to another Active Server
Page for processing.

URLEncode method Applies URL encoding rules, including escape characters, to a
specified string

C r e a t i n g a n A c t i v e S e r v e r P a g e 36-7

R e g i s t e r i n g a n A c t i v e S e r v e r O b j e c t

Creating ASPs for in-process or out-of-process servers

You can use Server.CreateObject in an ASP page to launch either an in-process or
out-of-process server, depending on your requirements. However, launching
in-process servers is more common.

Unlike most in-process servers, an Active Server Object in an in-process server does
not run in the client’s process space. Instead, it runs in the IIS process space. This
means that the client does not need to download your application (as, for example, it
does when you use ActiveX objects). In-process component DLLs are faster and more
secure than out-of-process servers, so they are better suited for server-side use.

Because out-of-process servers are less secure, it is common for IIS to be configured
to not allow out-of-process executables. In this case, creating an out-of-process server
for your Active Server Object would result in an error similar to the following:

Server object error 'ASP 0196'
Cannot launch out of process component
/path/outofprocess_exe.asp, line 11

Also, out-of-process components often create individual server processes for each
object instance, so they are slower than CGI applications. They do not scale as well as
component DLLs.

If performance and scalability are priorities for your site, in-process servers are
highly recommended. However, intranet sites that receive moderate to low traffic
may use an out-of-process component without adversely affecting the site's overall
performance.

For general information on in-process and out-of-process servers, see “In-process,
out-of-process, and remote servers” on page 32-6.

Registering an Active Server Object
You can register the Active Server Page as an in-process or an out-of-process server.
However, in-process servers are more common.

Note When you want to remove the Active Server Page object from your system, you
should first unregister it, removing its entries from the Windows registry.

Registering an in-process server

To register an in-process server (DLL or OCX),

• Choose Run|Register ActiveX Server.

To unregister an in-process server,

• Choose Run|Unregister ActiveX Server.

36-8 D e v e l o p e r ’ s G u i d e

T e s t i n g a n d d e b u g g i n g t h e A c t i v e S e r v e r P a g e a p p l i c a t i o n

Registering an out-of-process server

To register an out-of-process server,

• Run the server with the /regserver command-line option. (You can set
command-line options with the Run|Parameters dialog box.)

You can also register the server by running it.

To unregister an out-of-process server,

• Run the server with the /unregserver command-line option.

Testing and debugging the Active Server Page application
Debugging any in-process server such as an Active Server Object is much like
debugging a DLL. You choose a host application that loads the DLL, and debug as
usual. To test and debug an Active Server Object,

1 Turn on debugging information using the Compiler tab on the Project|Options
dialog box, if necessary. Also, turn on Integrated Debugging in the
Tools|Debugger Options dialog.

2 Choose Run|Parameters, type the name of your Web Server in the Host
Application box, and choose OK.

3 Choose Run|Run.

4 Set breakpoints in the Active Server Object implementation.

5 Use the Web browser to interact with the Active Server Page.

The debugger pauses when the breakpoints are reached.

C r e a t i n g a n A c t i v e X c o n t r o l 37-1

C h a p t e r

37
Chapter 37Creating an ActiveX control

An ActiveX control is a software component that integrates into and extends the
functionality of any host application that supports ActiveX controls, such as
C++Builder, Delphi, Visual Basic, Internet Explorer, and (given a plug-in) Netscape
Navigator. ActiveX controls implement a particular set of interfaces that allow this
integration.

For example, C++Builder comes with several ActiveX controls, including charting,
spreadsheet, and graphics controls. You can add these controls to the component
palette in the IDE, and then use them like any standard VCL component, dropping
them on forms and setting their properties using the Object Inspector.

An ActiveX control can also be deployed on the Web, allowing it to be referenced in
HTML documents and viewed with ActiveX-enabled Web browsers.

C++Builder provides wizards that let you create two types of ActiveX controls:

• ActiveX controls that wrap VCL classes. By wrapping a VCL class, you can
convert existing components into ActiveX controls or create new ones, test them
out locally, and then convert them into ActiveX controls. ActiveX controls are
typically intended to be embedded in a larger host application.

• Active forms. Active forms let you use the form designer to create a more
elaborate control that acts like a dialog or like a complete application. You develop
the Active form in much the same way that you develop a typical C++Builder
application. Active Forms are typically intended for deployment on the Web.

This chapter provides an overview of how to create an ActiveX control in the
C++Builder environment. It is not intended to provide complete implementation
details of writing ActiveX control without using a wizard. For that information, refer
to your Microsoft Developer’s Network (MSDN) documentation or search the
Microsoft Web site for ActiveX information.

37-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f A c t i v e X c o n t r o l c r e a t i o n

Overview of ActiveX control creation
Creating ActiveX controls using C++Builder is very similar to creating ordinary
controls or forms. This differs markedly from creating other COM objects, where you
first define the object’s interface and then complete the implementation. To create
ActiveX controls (other than Active Forms), you reverse this process, starting with
the implementation of a VCL control, and then generating the interface and type
library once the control is written. When creating Active Forms, the interface and
type library are created at the same time as your form, and then you use the form
designer to implement the form.

The completed ActiveX control consists of a VCL control that provides the
underlying implementation, a COM object that wraps the VCL control, and a type
library that lists the COM object’s properties, methods, and events.

To create a new ActiveX control (other than an Active Form), perform the following
steps:

1 Design and create the custom VCL control that forms the basis of your ActiveX
control.

2 Use the ActiveX control wizard to create an ActiveX control from the VCL control
you created in step 1.

3 Use the ActiveX property page wizard to create one or more property pages for
the control (optional).

4 Associate the property page with the ActiveX control (optional).

5 Register the control.

6 Test the control with all potential target applications.

7 Deploy the ActiveX control on the Web. (optional)

To create a new Active Form, perform the following steps:

1 Use the ActiveForm wizard to create an Active Form, which appears as a blank
form in the IDE, and an associated ActiveX wrapper for that form.

2 Use the form designer to add components to your Active Form and implement its
behavior in the same way you create and implement an ordinary form using the
form designer.

3 Follow steps 3-7 above to give your Active Form a property page, register it, and
deploy it on the Web.

Elements of an ActiveX control

An ActiveX control involves many elements which each perform a specific function.
The elements include a VCL control, a corresponding COM object wrapper that
exposes properties, methods, and events, and one or more associated type libraries.

C r e a t i n g a n A c t i v e X c o n t r o l 37-3

O v e r v i e w o f A c t i v e X c o n t r o l c r e a t i o n

VCL control
The underlying implementation of an ActiveX control in C++Builder is a VCL
control. When you create an ActiveX control, you must first design or choose the
VCL control from which you will make your ActiveX control.

The underlying VCL control must be a descendant of TWinControl, because it must
have a window that can be parented by the host application. When you create an
Active form, this object is a descendant of TActiveForm.

Note The ActiveX control wizard lists the available TWinControl descendants from which
you can choose to make an ActiveX control. This list does not include all TWinControl
descendants, however. Some controls, such as THeaderControl, are registered as
incompatible with ActiveX (using the RegisterNonActiveX procedure) and do not
appear in the list.

ActiveX wrapper
The actual COM object is an ActiveX wrapper object for the VCL control. It has a
name of the form TVCLClassXImpl, where TVCLClass is the name of the VCL control
class. Thus, for example, the ActiveX wrapper for TButton would be named
TButtonXImpl.

The wrapper class descends from the classes declared by the VCLCONTROL_IMPL
macro, which provide support for the ActiveX interfaces. The ActiveX wrapper
inherits this support, which allows it to forward Windows messages to the VCL
control and parent its window in the host application.

The ActiveX wrapper exposes the VCL control’s properties and methods to clients
via its default interface. The wizard automatically implements most of the wrapper
class’s properties and methods, delegating method calls to the underlying VCL
control. The wizard also provides the wrapper class with methods that fire the VCL
control’s events on clients and assigns these methods as event handlers on the VCL
control.

Type library
The ActiveX control wizards automatically generate a type library that contains the
type definitions for the wrapper class, its default interface, and any type definitions
that these require. This type information provides a way for your control to advertise
its services to host applications. You can view and edit this information using the
Type Library editor. Although this information is stored in a separate, binary type
library file (.TLB extension), it is also automatically compiled into the ActiveX control
DLL as a resource.

Property page
You can optionally give your ActiveX control a property page. The property page
allows the user of a host (client) application to view and edit your control’s
properties. You can group several properties on a page, or use a page to provide a
dialog-like interface for a property. For information on how to create property pages,
see “Creating a property page for an ActiveX control” on page 37-13.

37-4 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a n A c t i v e X c o n t r o l

Designing an ActiveX control
When designing an ActiveX control, you start by creating a custom VCL control. This
forms the basis of your ActiveX control. For information on creating custom controls,
see Part V, “Creating custom components.”

When designing the VCL control, keep in mind that it will be embedded in another
application; this control is not an application in itself. For this reason, you probably
do not want to use elaborate dialog boxes or other major user-interface components.
Your goal is typically to make a simple control that works inside of, and follows the
rules of the main application.

In addition, you should make sure that the types for all properties and methods you
want your object to expose to clients are Automation-compatible, because the
ActiveX control’s interface must support IDispatch. The wizard does not add any
methods to the wrapper class’s interface that have parameters that are not
Automation-compatible. For a list of Automation-compatible types, see “Valid
types” on page 33-11.

The wizards implement all the necessary ActiveX interfaces required using the COM
wrapper class. They also surface all Automation-compatible properties, methods,
and events through the wrapper class’s default interface. Once the wizard has
generated the COM wrapper class and its interface, you can use the Type Library
editor to modify the default interface or augment the wrapper class by implementing
additional interfaces.

Generating an ActiveX control from a VCL control
To generate an ActiveX control from a VCL control, use the ActiveX Control wizard.
The properties, methods, and events of the VCL control become the properties,
methods, and events of the ActiveX control.

Before using the ActiveX control wizard, you must decide what VCL control will
provide the underlying implementation of the generated ActiveX control.

To bring up the ActiveX control wizard,

1 Choose File|New to open the New Items dialog box.

2 Select the tab labeled ActiveX.

3 Double-click the ActiveX Control icon.

In the wizard, select the name of the VCL control that will be wrapped by the new
ActiveX control. The dialog lists all available controls, which are descendants of
TWinControl that are not registered as incompatible with ActiveX using the
RegisterNonActiveX procedure.

Tip If you do not see the control you want in the drop-down list, check whether you have
installed it in the IDE or added its unit to your project.

Once you have selected a VCL control, the wizard automatically generates a name for
the CoClass, the implementation unit for the ActiveX wrapper, and the ActiveX

C r e a t i n g a n A c t i v e X c o n t r o l 37-5

G e n e r a t i n g a n A c t i v e X c o n t r o l f r o m a V C L c o n t r o l

library project. (If you currently have an ActiveX library project open, and it does not
contain a COM+ event object, the current project is automatically used.) You can
change any of these in the wizard (unless you have an ActiveX library project already
open, in which case the project name is not editable).

The wizard always specifies Apartment as the threading model. This is not a problem
if your ActiveX project usually contains only a single control. However, if you add
additional objects to your project, you are responsible for providing thread support.

The wizard also lets you configure various options on your ActiveX control:

• Enabling licensing: You can make your control licensed to ensure that users of the
control can't open it either for design purposes or at runtime unless they have a
license key for the control.

• Including Version information: You can include version information, such as a
copyright or a file description, in the ActiveX control. This information can be
viewed in a browser. Some host clients, such as Visual Basic 4.0, require Version
information or they will not host the ActiveX control. Specify version information
by choosing Project|Options and selecting the Version Info page.

• Including an About box: You can tell the wizard to generate a separate form that
implements an About box for your control. Users of the host application can
display this About box in a development environment. By default, the About box
includes the name of the ActiveX control, an image, copyright information, and an
OK button. You can modify this default form, which the wizard adds to your
project.

When you exit the wizard, it generates the following:

• An ActiveX Library project file, which contains the code required to start an
ActiveX control. You usually don’t change this file.

• A type library, which defines and CoClass for your control, the interface it exposes
to clients, and any type definitions that these require. For more information about
the type library, refer to Chapter 33, “Working with type libraries.”

• An ActiveX implementation unit, which defines and implements the ActiveX
control, which is adapted to the Microsoft Active Template Library (ATL) using
the VCLCONTROL_IMPL macro. This ActiveX control is a fully-functioning
implementation that requires no additional work on your part. However, you can
modify this class if you want to customize the properties, methods, and events
that the ActiveX control exposes to clients.

• An ATL unit, which has a name of the form ActiveXControlProj_ATL.cpp (.h),
where ActiveXControlProj is the name of the project. This unit mostly consists of
include statements that make the ATL template classes available to your project
and define classes that allow your generated ActiveX wrapper to work with a VCL
object. It also declares the global variable called _Module, which represents the
ActiveX library to the ATL classes.

• An About box form and unit if you requested them.

• A .LIC file if you enabled licensing.

37-6 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g a n A c t i v e X c o n t r o l b a s e d o n a V C L f o r m

Generating an ActiveX control based on a VCL form
Unlike other ActiveX controls, Active Forms are not first designed and then wrapped
by an ActiveX wrapper class. Instead, the ActiveForm wizard generates a blank form
that you design later when the wizard leaves you in the Form Designer.

When an ActiveForm is deployed on the Web, C++Builder creates an HTML page to
contain the reference to the ActiveForm and specify its location on the page. The
ActiveForm can then displayed and run from a Web browser. Inside the browser, the
form behaves just like a stand-alone C++Builder form. The form can contain any VCL
components or ActiveX controls, including custom-built VCL controls.

To start the ActiveForm wizard,

1 Choose File|New to open the New Items dialog box.

2 Select the tab labeled ActiveX.

3 Double-click the ActiveForm icon.

The Active Form wizard looks just like the ActiveX control wizard, except that you
can’t specify the name of the VCL class to wrap. This is because Active forms are
always based on TActiveForm.

As in the ActiveX control wizard, you can change the default names for the CoClass,
implementation unit, and ActiveX library project. Similarly, this wizard lets you
indicate whether you want your Active Form to require a license, whether it should
include version information, and whether you want an About box form.

When you exit the wizard, it generates the following:

• An ActiveX Library project file, which contains the code required to start an
ActiveX control. You usually don’t change this file.

• A type library, which defines and CoClass for your control, the interface it exposes
to clients, and any type definitions that these require. For more information about
the type library, refer to Chapter 33, “Working with type libraries.”

• A form that descends from TActiveForm. This form appears in the form designer,
where you can use it to visually design the Active Form that appears to clients. Its
implementation appears in the generated implementation unit.

• The declaration of an ActiveX wrapper for the form. This wrapper class is also
defined in the implementation unit, and has a name of the form
TActiveFormXImpl, where TActiveFormX is the name of the form class. This
ActiveX wrapper is a fully-functioning implementation that requires no additional
work on your part. However, you can modify this class if you want to customize
the properties, methods, and events that the Active Form exposes to clients.

• An ATL unit, which has a name of the form ActiveXControlProj_ATL.cpp (.h),
where ActiveXControlProj is the name of the project. This unit mostly consists of
include statements that make the ATL template classes available to your project
and define classes that allow your generated ActiveX wrapper to work with a VCL
form. It also declares the global variable called _Module, which represents the
ActiveX library to the ATL classes.

C r e a t i n g a n A c t i v e X c o n t r o l 37-7

L i c e n s i n g A c t i v e X c o n t r o l s

• An About box form and unit if you requested them.

• A .LIC file if you enabled licensing.

At this point, you can add controls and design the form as you like.

After you have designed and compiled the ActiveForm project into an ActiveX
library (which has the OCX extension), you can deploy the project to your Web
server and C++Builder creates a test HTML page with a reference to the ActiveForm.

Licensing ActiveX controls
Licensing an ActiveX control consists of providing a license key at design-time and
supporting the creation of licenses dynamically for controls created at runtime.

To provide design-time licenses, the ActiveX wizard creates a key for the control,
which it stores in a file with the same name as the project with the LIC extension. This
.LIC file is added to the project. The user of the control must have a copy of the .LIC
file to open the control in a development environment. Each control in the project
that has Make Control Licensed checked has a separate key entry in the LIC file.

To support runtime licenses, the wrapper class implements two methods,
GetLicenseString and GetLicenseFilename. These return the license string for the control
and the name of the .LIC file, respectively. When a host application tries to create the
ActiveX control, the class factory for the control calls these methods and compares
the string returned by GetLicenseString with the string stored in the .LIC file.

Runtime licenses for the Internet Explorer require an extra level of indirection
because users can view HTML source code for any Web page, and because an
ActiveX control is copied to the user’s computer before it is displayed. To create
runtime licenses for controls used in Internet Explorer, you must first generate a
license package file (LPK file) and embed this file in the HTML page that contains the
control. The LPK file is essentially an array of ActiveX control CLSIDs and license
keys.

Note To generate the LPK file, use the utility, LPK_TOOL.EXE, which you can download
from the Microsoft Web site (www.microsoft.com).

To embed the LPK file in a Web page, use the HTML objects, <OBJECT> and
<PARAM> as follows:

<OBJECT CLASSID="clsid:6980CB99-f75D-84cf-B254-55CA55A69452">
 <PARAM NAME="LPKPath" VALUE="ctrllic.lpk">
</OBJECT>

The CLSID identifies the object as a license package and PARAM specifies the
relative location of the license package file with respect to the HTML page.

When Internet Explorer tries to display the Web page containing the control, it parses
the LPK file, extracts the license key, and if the license key matches the control’s
license (returned by GetLicenseString), it renders the control on the page. If more than
one LPK is included in a Web page, Internet Explorer ignores all but the first.

For more information, look for Licensing ActiveX Controls on the Microsoft Web site.

37-8 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

Customizing the ActiveX control’s interface
The ActiveX Control and ActiveForm wizards generate a default interface for the
ActiveX wrapper class. This default interface simply exposes the properties,
methods, and events of the original VCL control or form, with the following
exceptions:

• Data-aware properties do not appear. Because ActiveX controls have a different
mechanism for making controls data-aware than VCL controls, the wizards do not
convert properties related to data. See “Enabling simple data binding with the
type library” on page 37-11. for information on how to make your ActiveX control
data-aware.

• Any property, method, or event that type that is not Automation-compatible does
not appear. You may want to add these to the ActiveX control’s interface after the
wizard has finished.

You can add, edit, and remove the properties, methods, and events in an ActiveX
control by editing the type library using the Type Library editor as described in
Chapter 33, “Working with type libraries.”

Note You can add unpublished properties to your ActiveX control’s interface. Such
properties can be set at runtime and will appear in a development environment, but
changes made to them will not persist. That is, when the user of the control changes
the value of a property at design time, the changes are not reflected when the control
is run. This is because ActiveX controls use the VCL streaming system rather than the
ATL streaming system. If the source is a VCL object and the property is not already
published, you can make properties persistent by creating a descendant of the VCL
object and publishing the property in the descendant.

You may also choose not to expose all of the VCL control’s properties, methods, and
events to host applications. You can use the Type Library editor to remove these from
the interfaces that the wizard generated. When you remove properties and methods
from an interface using the Type Library editor, the Type Library editor does not
remove them from the corresponding implementation class. Edit the ActiveX
wrapper class in the implementation unit to remove these after you have changed the
interface in the Type Library editor.

Warning Any changes you make to the type library will be lost if you regenerate the ActiveX
control from the original VCL control or form.

Tip It is a good idea to check the methods that the wizard adds to your ActiveX wrapper
class. Not only does this give you a chance to note where the wizard omitted any
data-aware properties or methods that were not Automation-compatible, it also lets
you detect methods for which the wizard could not generate an implementation.
Such methods appear with a comment in the implementation that indicates the
problem.

C r e a t i n g a n A c t i v e X c o n t r o l 37-9

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

Adding additional properties, methods, and events

Adding properties and methods to your ActiveX control’s interface works the same
way as adding properties, methods, and events to any COM interface. Adding events
is the same as adding methods (event handlers), except that you add them to the
Events interface rather than the object’s default interface. Using the type library to
add properties and events is described in “Defining a COM object’s interface” on
page 35-9.

When you add to an ActiveX control’s interface, you are often just surfacing a
property, method, or event in the underlying VCL control. The following topics
describe how to do this.

Adding properties and methods
The ActiveX wrapper class implements properties in its interface using read and
write access methods. That is, the wrapper class has COM properties, which appear
on an interface as getter and/or setter methods. Unlike VCL properties, you do not
see a “property” declaration on the interface for COM properties. Rather, you see
methods that are flagged as property access methods. When you add a property to
the ActiveX control’s default interface, the wrapper class definition (which appears in
the _TLB unit that is updated by the Type Library editor) gains one or two new
methods (a getter and/or setter) that you must implement, just as when you add a
method to the interface, the wrapper class gains a corresponding method for you to
implement. Thus, adding properties to the wrapper class’s interface is essentially the
same as adding methods: the wrapper class definition gains new skeletal method
implementations for you to complete.

Note For details on what appears in the generated _TLB unit, see “Code generated when
you import type library information” on page 34-5.

For example, consider a Caption property, of type AnsiString in the underlying VCL
object. When you add this property in the Type Library editor, C++Builder adds the
following declarations to the wrapper class:

STDMETHOD(get_Caption(BSTR* Value));
STDMETHOD(set_Caption(BSTR Value));

In addition, it adds skeletal method implementations for you to complete:

STDMETHODIMP TButtonXImpl::get_Caption(BSTR* Value)
{

try
{
}
catch(Exception &e)
{

return Error(e.Message.c_str(), IID_IButtonX);
}
return S_OK;

};

37-10 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

STDMETHODIMP TButtonXImpl::set_Caption(BSTR Value)
{

try
{
}
catch(Exception &e)
{

return Error(e.Message.c_str(), IID_IButtonX);
}
return S_OK;

};

Typically, you can implement these methods by simply delegating to the associated
VCL control, which can be accessed using the m_VclCtl member of the wrapper class:

STDMETHODIMP TButtonXImpl::get_Caption(BSTR* Value)
{
 try
 {
 *Value = WideString(m_VclCtl->Caption).Copy();
 }
 catch(Exception &e)
 {
 return Error(e.Message.c_str(), IID_IButtonX);
 }
 return S_OK;
};

STDMETHODIMP TButtonXImpl::set_Caption(BSTR Value)
{

try
{

m_VclCtl->Caption = AnsiString(Value);
}
catch(Exception &e)
{

return Error(e.Message.c_str(), IID_IButtonX);
}
return S_OK;

};

In some cases, you may need to add code to convert the COM data types to native
C++ types. The preceding example manages this with typecasting.

Adding events
The ActiveX control can fire events to its container in the same way that an
automation object fires events to clients. This mechanism is described in “Exposing
events to clients” on page 35-10.

If the VCL control you are using as the basis of your ActiveX control has any
published events, the wizards automatically add the necessary support for managing
a list of client event sinks to your ActiveX wrapper class and define the outgoing
dispinterface that clients must implement to respond to events.

C r e a t i n g a n A c t i v e X c o n t r o l 37-11

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

In order to fire events to the container, your ActiveX wrapper class must implement
an event handler for the event on the VCL object. This event handler calls the
Fire_EventName method that is implemented by the TEvents_CoClassName class
defined in the _TLB unit:

void __fastcall TButtonXImpl::KeyPressEvent(TObject *Sender, char &Key)
{
 short TempKey;
 TempKey = (short)Key;
 Fire_OnKeyPress(&TempKey);
 Key = (short)TempKey;
};

You must then assign this event handler to the VCL control so that it is called when
the event occurs. To do this, add the event to the InitializeControl method, which
appears in the wrapper class’s declaration (in the header of the implementation unit):

void InitializeControl()
{

m_VclCtl->OnClick = ClickEvent;
m_VclCtl->OnKeyPress = KeyPressEvent;

}

Enabling simple data binding with the type library

With simple data binding, you can bind a property of your ActiveX control to a field
in a database. To do this, the ActiveX control must communicate with its host
application about what value represents field data and when it changes. You enable
this communication by setting the property’s binding flags using the Type Library
editor.

By marking a property bindable, when a user modifies the property (such as a field
in a database), the control notifies its container (the client host application) that the
value has changed and requests that the database record be updated. The container
interacts with the database and then notifies the control whether it succeeded or
failed to update the record.

Note The container application that hosts your ActiveX control is responsible for
connecting the data-aware properties you enable in the type library to the database.
See “Using data-aware ActiveX controls” on page 34-8 for information on how to write
such a container using C++Builder.

Use the type library to enable simple data binding,

1 On the toolbar, click the property that you want to bind.

2 Choose the flags page.

37-12 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

3 Select the following binding attributes:

4 Click the Refresh button on the toolbar to update the type library.

To test a data-binding control, you must register it first.

For example, to convert a TEdit control into a data-bound ActiveX control, create the
ActiveX control from a TEdit and then change the Text property flags to Bindable,
Display Bindable, Default Bindable, and Immediate Bindable.

To enable editing of data in the ActiveX wrapper, it must ask its container if its value
can be changed before allowing edits. To do this, it calls its FireOnRequestEdit, which
it inherits from the TVclComControl base class, when the VCL control receives key
press messages from the user. The ActiveX wrapper already assigns an OnKeyPress
event handler to the VCL control. This is modified to look like the following:

void __fastcall TMyAwareEditImpl::KeyPressEvent(TObject *Sender, char &Key)
{
 signed_char TempKey;
 const DISPID dispid = -517; // this is the dispatch id of the data-bound property

 if (FireOnRequestEdit(dispid) == S_FALSE) // ask container if edits ok?
 {
 Key = 0; // if edits not ok, cancel the keypress message
 return;
 }
 TempKey = (signed_char)Key;
 Fire_OnKeyPress(&TempKey);// this forwards the OnKeyPress event to fire in the container
 Key = (signed_char)TempKey;
};

The ActiveX wrapper also needs to notify the container when the data changes. To do
this, it calls its FireOnChanged method (inherited from TVclComControl) when the edit
control’s value changes. FireOnChanged notifies the control that something is
different. When data in the control is edited, the container can put the associated

Binding attribute Description

Bindable Indicates that the property supports data binding. If marked
bindable, the property notifies its container when the property value
has changed.

Request Edit Indicates that the property supports the OnRequestEdit notification.
This allows the control to ask the container if its value can be edited
by the user.

Display Bindable Indicates that the container can show users that this property is
bindable.

Default Bindable Indicates the single, bindable property that best represents the object.
Properties that have the default bind attribute must also have the
bindable attribute. Cannot be specified on more than one property in
a dispinterface.

Immediate Bindable Allows individual bindable properties on a form to specify this
behavior. When this bit is set, all changes will be notified. The
bindable and request edit attribute bits need to be set for this new bit
to have an effect.

C r e a t i n g a n A c t i v e X c o n t r o l 37-13

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

dataset into edit mode. FireOnChanged also enables real-time modification of field
data. The following code shows the modified OnChange event handler:

void __fastcall TMyAwareEditImpl::ChangeEvent(TObject *Sender)
{
 const DISPID dispid = -517; // the dispath id of the data-bound property
 FireOnChanged(dispid); // add this line to inform the container of changes
 Fire_OnChange(); // this was the original call to fire the event in the container
};

After the control is registered and imported, it can be used to display data.

Creating a property page for an ActiveX control
A property page is a dialog box similar to the C++Builder Object Inspector in which
users can change the properties of an ActiveX control. A property page dialog allows
you to group many properties for a control together to be edited at once. Or, you can
provide a dialog box for more complex properties.

Typically, users access the property page by right-clicking the ActiveX control and
choosing Properties.

The process of creating a property page is similar to creating a form, you

1 Create a new property page.

2 Add controls to the property page.

3 Associate the controls on the property page with the properties of an ActiveX
control.

4 Connect the property page to the ActiveX control.

Note When adding properties to an ActiveX control or ActiveForm, you must publish the
properties that you want to persist. If they are not published in the underlying VCL
control, you must make a custom descendant of the VCL control that redeclares the
properties as published and then use the ActiveX control wizard to create an ActiveX
control from the descendant class.

Creating a new property page

You use the Property Page wizard to create a new property page.

To create a new property page,

1 Choose File|New.

2 Select the ActiveX tab.

3 Double-click the Property Page icon.

The wizard creates a new form and implementation unit for the property page. The
form is a descendant of TPropertyPage, which lets you associate the form with the
ActiveX control whose properties it edits. In addition, the implementation unit
declares an implementation object (using the PROPERTYPAGE_IMPL macro). This

37-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

implementation object implements the property page interfaces, passing appropriate
calls to the form.

Adding controls to a property page

You must add a control to the property page for each property of the ActiveX control
that you want the user to access.

For example, the following illustration shows a property page for setting the
MaskEdit property of an ActiveX control.

Figure 37.1 Mask Edit property page in design mode

The list box allows the user to select from a list of sample masks. The edit controls
allow the user to test the mask before applying it to the ActiveX control. You add
controls to the property page the same as you would to a form.

Associating property page controls with ActiveX control properties

After adding the controls you need to the property page, you must associate each
control with its corresponding property. You make this association by adding code to
the property page’s UpdatePropertyPage and UpdateObject methods.

Updating the property page
Add code to the UpdatePropertyPage method to update the control on the property
page when the properties of the ActiveX control change. You must add code to the
UpdatePropertyPage method to update the property page with the current values of
the ActiveX control’s properties.

You can access the ActiveX control using the property page’s OleObject property,
which is an OleVariant that contains the ActiveX control’s interface.

For example, the following code updates the property page’s edit control
(InputMask) with the current value of the ActiveX control’s EditMask property:

void __fastcall TPropertyPage1::UpdatePropertyPage(void)
{

InputMask->Text = OleObject.OlePropertyGet("EditMask");
}

C r e a t i n g a n A c t i v e X c o n t r o l 37-15

R e g i s t e r i n g a n A c t i v e X c o n t r o l

Note It is also possible to write a property page that represents more than one ActiveX
control. In this case, you don’t use the OleObject property. Instead, you must iterate
through a list of interfaces that is maintained by the OleObjects property.

Updating the object
Add code to the UpdateObject method to update the property when the user changes
the controls on the property page. You must add code to the UpdateObject method in
order to set the properties of the ActiveX control to their new values.

Once again you use the OleObject property to access the ActiveX control.

For example, the following code sets the EditMask property of the ActiveX control
using the value in the property page’s edit box control (InputMask):

void __fastcall TPropertyPage1::UpdateObject(void)
{

TAutoArgs<1> args;
args[1] = WideString(InputMask->Text).Copy();
OleObject.OlePropertySet("EditMask", args);

}

Connecting a property page to an ActiveX control

To connect a property page to an ActiveX control,

1 Between the BEGIN_PROPERTY_MAP and END_PROPERTY_MAP statements in
the ActiveX control’s implementation unit, add a PROP_PAGE macro call, passing
it the property page’s GUID. (The GUID is defined in the property page’s
implementation unit; it is generated automatically by the Property Page wizard.)

For example, if the GUID for the property page is defined as
CLSID_PropertyPage1 (the default), then the property map section for an ActiveX
control based on a VCL form should look like this:

BEGIN_PROPERTY_MAP(TActiveFormXImpl)
// Define property pages here. Property pages are defined using
// the PROP_PAGE macro with the class id of the page. For example,
// PROP_PAGE(CLSID_ActiveFormXPage)

 PROP_PAGE(CLSID_PropertyPage1)
END_PROPERTY_MAP()

2 Include the property page unit in the ActiveX control’s unit.

Registering an ActiveX control
After you have created your ActiveX control, you must register it so that other
applications can find and use it.

To register an ActiveX control:

• Choose Run|Register ActiveX Server.

Note Before you remove an ActiveX control from your system, you should unregister it.

37-16 D e v e l o p e r ’ s G u i d e

T e s t i n g a n A c t i v e X c o n t r o l

To unregister an ActiveX control:

• Choose Run|Unregister ActiveX Server.

As an alternative, you can use the tregsvr command from the command line or run
the regsvr32.exe from the operating system.

Testing an ActiveX control
To test your control, add it to a package and import it as an ActiveX control. This
procedure adds the ActiveX control to the C++Builder component palette. You can
drop the control on a form and test as needed.

Your control should also be tested in all target applications that will use the control.

To debug the ActiveX control, select Run|Parameters and type the client name in the
Host Application edit box.

The parameters then apply to the host application. Selecting Run|Run will run the
host or client application and allow you to set breakpoints in the control.

Deploying an ActiveX control on the Web
Before the ActiveX controls that you create can be used by Web clients, they must be
deployed on your Web server. Every time you make a change to the ActiveX control,
you must recompile and redeploy it so that client applications can see the changes.

Before you can deploy your ActiveX control, you must have a Web Server that will
respond to client messages.

To deploy your ActiveX control, use the following steps:

1 Select Project|Web Deployment Options.

2 On the Project page, set the Target Dir to the location of the ActiveX control DLL
as a path on the Web server. This can be a local path name or a UNC path, for
example, C:\INETPUB\wwwroot.

3 Set the Target URL to the location as a Uniform Resource Locators (URL) of the
ActiveX control DLL (without the file name) on your Web Server, for example,
http://mymachine.inprise.com/. See the documentation for your Web Server for
more information on how to do this.

4 Set the HTML Dir to the location (as a path) where the HTML file that contains a
reference to the ActiveX control should be placed, for example, C:\INETPUB\
wwwroot. This path can be a standard path name or a UNC path.

5 Set desired Web deployment options as described in “Setting options” on
page 37-17.

6 Choose OK.

7 Choose Project|Web Deploy.

C r e a t i n g a n A c t i v e X c o n t r o l 37-17

D e p l o y i n g a n A c t i v e X c o n t r o l o n t h e W e b

This creates a deployment code base that contains the ActiveX control in an
ActiveX library (with the OCX extension). Depending on the options you specify,
this deployment code base can also contain a cabinet (with the CAB extension) or
information (with the INF extension).

The ActiveX library is placed in the Target Directory you specified in step 2. The
HTML file has the same name as the project file but with the HTM extension. It is
created in the HTML Directory specified in step 4. The HTML file contains a URL
reference to the ActiveX library at the location specified in step 3.

Note If you want to put these files on your Web server, use an external utility such as
ftp.

8 Invoke your ActiveX-enabled Web browser and view the created HTML page.

When this HTML page is viewed in the Web browser, your form or control is
displayed and runs as an embedded application within the browser. That is, the
library runs in the same process as the browser application.

Setting options

Before deploying an ActiveX control, specify the Web deployment options that
should be followed when creating the ActiveX library.

Web deployment options include settings to allow you to set the following:

• Including additional files: If your ActiveX control depends on any packages or
other additional files, you can indicate that these should be deployed with the
project. By default, these files use the same options that you specify for the entire
project, but you can override these settings using the Packages or Additional files
tab. When you include packages or additional files, C++Builder creates a file with
the .INF extension (for INFormation). This file specifies the various files that need
to be downloaded and set up for the ActiveX library to run. The syntax of the INF
file allows URLs pointing to packages or additional files to download.

• CAB file compression: A cabinet is a single file, usually with a CAB file extension,
that stores compressed files in a file library. Cabinet compression can dramatically
decrease download time (up to 70%) of a file. During installation, the browser
decompresses the files stored in a cabinet and copies them to the user’s system.
Each file that you deploy can be CAB file compressed. You can specify that the
ActiveX library use CAB file compression on the Project tab of the Web
Deployment options dialog.

• Version information: You can specify that you want version information included
with your ActiveX control. This information is set in the VersionInfo page of the
Project Options dialog. Part of this information is the release number, which you
can have automatically updated every time you deploy your ActiveX control. If
you include additional packages or files, their Version information resources can
get added to the INF file as well.

Depending on whether you include additional files and whether you use CAB file
compression, the resulting ActiveX library may be an OCX file, a CAB file containing

37-18 D e v e l o p e r ’ s G u i d e

D e p l o y i n g a n A c t i v e X c o n t r o l o n t h e W e b

an OCX file, or an INF file. The following table summarizes the results of choosing
different combinations.

Packages and/or
additional files

CAB file
compression Result

No No An ActiveX library (OCX) file.

No Yes A CAB file containing an ActiveX library file.

Yes No An INF file, an ActiveX library file, and any additional files
and packages.

Yes Yes An INF file, a CAB file containing an ActiveX library, and a
CAB file each for any additional files and packages.

C r e a t i n g M T S o r C O M + o b j e c t s 38-1

C h a p t e r

38
Chapter 38Creating MTS or COM+ objects

C++Builder uses the term transactional objects to refer to objects that take advantage
of the transaction services, security, and resource management supplied by Microsoft
Transaction Server (MTS) (for versions of Windows prior to Windows 2000) or
COM+ (for Windows 2000 and later). These objects are designed to work in a large,
distributed environment.

C++Builder provides a wizard that creates transactional objects so that you can take
advantage of the benefits of COM+ attributes or the MTS environment. These
features make creating COM clients and servers, particularly remote servers, easier
to implement.

Note For database applications, C++Builder also provides a Transactional Data Module.
For more information, see Chapter 15, “Creating multi-tiered applications.”

Transactional objects make use of a number of low-level services, such as

• Managing system resources, including processes, threads, and database
connections so that your server application can handle many simultaneous users

• Automatically initiating and controlling transactions so that your application is
reliable.

• Creating, executing, and deleting server components when needed.

• Providing role-based security so that only authorized users can access your
application.

• Managing events so that clients can respond to conditions that arise on the server
(COM+ only).

By letting MTS or COM+ provide these underlying services, you can concentrate on
developing the specifics for your particular distributed application. Which
technology you choose (MTS or COM+) depends on the server on which you choose
to run your application. To clients, the difference between the two (or, for that matter,
the fact that the server object uses any of these services) is transparent (unless the
client explicitly manipulates transactional services via a special interface).

38-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t r a n s a c t i o n a l o b j e c t s

Understanding transactional objects
Typically, transactional objects are small, and are used for discrete business
functions. They can implement an application’s business rules, providing views and
transformations of the application state. Consider, for example, the case of a medical
application. Medical records stored in various databases represent the persistent
state of the application, such as a patient’s health history. Transactional objects
update that state to reflect such changes as new patients, test results, and X-ray files.

Transactional objects are distinguished from other COM objects in that they use a set
of attributes supplied by MTS or COM+ for handling issues that arise in a distributed
computing environment. Some of these attributes require the transactional object to
implement the IObjectControl interface. IObjectControl defines methods that are called
when the object is activated or deactivated, where you can manage resources such as
database connections. It also is required for object pooling, which is described in
“Object pooling” on page 38-9.

Note If you are using MTS, your transactional objects must implement IObjectControl.
Under COM+, IObjectControl is not required, but is highly recommended.

A client of a transactional object is called a base client. From a base client’s
perspective, a transactional object looks like any other COM object.

Under MTS, the transactional object must be built into a library (DLL), which is then
installed in the MTS runtime environment (the MTS executive, mtxex.exe). That is,
the server object runs in the MTS runtime process space. The MTS executive can be
running in the same process as the base client, as a separate process on the same
machine as the base client, or as a remote server process on a separate machine.

Under COM+, the server application need not be an in-process server. Because the
various services are integrated into the COM libraries, there is no need for a separate
MTS process to intercept calls to the server. Instead, COM itself (or, rather, COM+)
provides the resource management, transaction support, and so on. However, the
server application must still be installed, this time into a COM+ application.

The connection between the base client and the transactional object is handled by a
proxy on the client and a stub on the server, just as with any out-of-process server.
Connection information is maintained by the proxy. The connection between the
base client and proxy remains open as long as the client requires a connection to the
server, so it appears to the client that it has continued access to the server. In reality,
though, the proxy may deactivate and reactivate the object, conserving resources so
that other clients may use the connection. For details on activating and deactivating,
see “Just-in-time activation” on page 38-4.

Requirements for a transactional object

In addition to the COM requirements, a transactional object must meet the following
requirements:

• The object must have a standard class factory. This is automatically supplied by
the wizard when you create the object.

C r e a t i n g M T S o r C O M + o b j e c t s 38-3

M a n a g i n g r e s o u r c e s

• The server must expose its class object by exporting the standard DllGetClassObject
method. Code to do this is supplied by the wizard.

• All object interfaces and CoClasses must be described by a type library, which is
created automatically by the wizard. You can add methods and properties to
interfaces in the type library by using the Type Library editor. The information in
the type library is used by the MTS Explorer or COM+ Component Manager to
extract information about the installed components at runtime.

• The server must only export interfaces that use standard COM marshaling. This is
automatically supplied by the Transactional Object wizard. C++Builder’s support
of transactional objects does not allow manual marshaling for custom interfaces.
All interfaces must be implemented as dual interfaces that use COM’s automatic
marshaling support.

• The server must export the DllRegisterServer function and perform self-registration
of its CLSID, ProgID, interfaces, and type library in this routine. This is provided
by the Transactional Object wizard.

When using MTS rather than COM+, the following conditions apply as well:

• MTS requires that the server be a dynamic-link library (DLL). Servers that are
implemented as executable files (.EXE files) cannot execute in the MTS runtime
environment.

• The object must implement the IObjectControl interface. Support for this interface
is automatically added by the Transactional Object wizard.

• A server running in the MTS process space cannot aggregate with COM objects
not running in MTS.

Managing resources
Transactional objects can be administered to better manage the resources used by
your application. These resources include everything from the memory for the object
instances themselves to any resources they use (such as database connections).

In general, you configure how your application manages resources by the way you
install and configure your object. You set your transactional object so that it takes
advantage of the following:

• Just-in-time activation
• Resource pooling
• Object pooling (COM+ only)

If you want your object to take full advantage of these services, however, it must use
the IObjectContext interface to indicate when resources can safely be released.

Accessing the object context

As with any COM object, a transactional object must be created before it is used.
COM clients create an object by calling the COM library function, CoCreateInstance.

38-4 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

Each transactional object must have a corresponding context object. This context
object is implemented automatically by MTS or COM+ and is used to manage the
transactional object. The context object’s interface is IObjectContext. Transactional
objects created by the Transactional object wizard automatically fetch the object
context when they are activated. The object context is stored in a member variable
called m_spObjectContext. For example, you can use the object context pointer as
follows:

BOOL flags;
m_spObjectContext->IsCallerInRole(OLESTR("Manager"), &flags);

You can also obtain a pointer to the object context by calling the Get_ObjectContext
method of TMtsDll. The TMtsDll object adapts your call to fetch the object context so
that it work whether your application runs under MTS or COM+:

IObjectContext* IAmWatchingYou = NULL;
TMtsDll MTSDLL;
HRESULT hr = MTSDLL.Get_ObjectContext(&IAmWatchingYou);
if (! (SUCCEEDED(hr)))
{

// do something useful with the error
}

BOOL flags;
IAmWatchingYou->IsCallerInRole(OLESTR("Manager"), &flags);

Warning Use the Get_ObjectContext method of TMtsDll rather than the GetObjectContext macro
defined in comsvcs.h. The latter is undefined by VCL headers to avoid redefining the
GetObjectContext method of TDatabase.

Note The m_spObjectContext member is assigned using the TMtsDll method, so it works
under both MTS and COM+.

Just-in-time activation

The ability for an object to be deactivated and reactivated while clients hold
references to it is called just-in-time activation. From the client's perspective, only a
single instance of the object exists from the time the client creates it to the time it is
finally released. Actually, it is possible that the object has been deactivated and
reactivated many times. By having objects deactivated, clients can hold references to
the object for an extended time without affecting system resources. When an object is
deactivated, all its resources can be released. For example, when an object is
deactivated, it can release its database connection so that other objects can use it.

A transactional object is created in a deactivated state and becomes active upon
receiving a client request. When the transactional object is created, a corresponding
context object is also created. This context object exists for the entire lifetime of the
transactional object, across one or more reactivation cycles. The context object,
accessed by the IObjectContext interface, keeps track of the object during deactivation
and coordinates transactions.

Transactional objects are deactivated as soon as it is safe to do so. This is called as-
soon-as-possible deactivation. A transactional object is deactivated when any of the
following occurs:

C r e a t i n g M T S o r C O M + o b j e c t s 38-5

M a n a g i n g r e s o u r c e s

• The object requests deactivation with SetComplete or SetAbort: An object calls
the IObjectContext SetComplete method when it has successfully completed its work
and it does not need to save the internal object state for the next call from the
client. An object calls SetAbort to indicate that it cannot successfully complete its
work and its object state does not need to be saved. That is, the object’s state rolls
back to the state prior to the current transaction. Often, objects can be designed to
be stateless, which means that objects deactivate upon return from every method.

• A transaction is committed or aborted: When an object's transaction is committed
or aborted, the object is deactivated. Of these deactivated objects, the only ones
that continue to exist are the ones that have references from clients outside the
transaction. Subsequent calls to these objects reactivate them and cause them to
execute in a new transaction.

• The last client releases the object: Of course, when a client releases the object, the
object is deactivated, and the object context is also released.

Note If you install the transactional object under COM+ from the IDE, you can specify
whether object supports just-in-time activation using the COM+ page of the Type
Library editor. Just select the object (CoClass) in the Type Library editor, go to the
COM+ page, and check or uncheck the box for Just In Time Activation. Otherwise, a
system administrator specifies this attribute using the COM+ Component Manger or
MTS Explorer. (The system administrator can also override any settings you specify
using the Type Library editor.)

Resource pooling

Since idle system resources are freed during a deactivation, the freed resources are
available to other server objects. For example, a database connection that is no longer
used by a server object can be reused by another client. This is called resource
pooling. Pooled resources are managed by a resource dispenser.

A resource dispenser caches resources, so that transactional objects that are installed
together can share them. The resource dispenser also manages nondurable shared
state information. In this way, resource dispensers are similar to resource managers
such as the SQL Server, but without the guarantee of durability.

When writing your transactional object, you can take advantage of two types of
resource dispenser that are provided for you already:

• Database resource dispensers

• Shared Property Manager

Before other objects can use pooled resources, you must explicitly release them.

Database resource dispensers
Opening and closing connections to a database can be time-consuming. By using a
resource dispenser to pool database connections, your object can reuse existing
database connections rather than create new ones. For example, if you have a
database lookup and a database update component running in a customer
maintenance application, you can install those components together, and then they

38-6 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

can share database connections. In this way, your application does not need as many
connections and new object instances can access the data more quickly by using a
connection that is already open but not in use.

• If you are using BDE components to connect to your data, the resource dispenser
is the Borland Database Engine (BDE). This resource dispenser is only available
when your transactional object is installed with MTS. To enable the resource
dispenser, use the BDE administrator to turn on MTS POOLING in the System/
Init area of the configuration.

• If you are using the ADO database components to connect to your data, the
resource dispenser is provided by ADO.

Note There is no built-in resource pooling if you are using InterbaseExpress components
for your database access.

For remote transactional data modules, connections are automatically enlisted on an
object's transactions, and the resource dispenser can automatically reclaim and reuse
connections.

Shared property manager
The Shared Property Manager is a resource dispenser that you can use to share state
among multiple objects within a server process. By using the Shared Property
Manager, you avoid having to add a lot of code to your application for managing
shared data: the Shared Property Manager handles it for you by implementing locks
and semaphores to protect shared properties from simultaneous access. The Shared
Property Manager eliminates name collisions by providing shared property groups,
which establish unique name spaces for the shared properties they contain.

To use the Shared Property Manager resource, you first use the
CreateSharedPropertyGroup helper function to create a shared property group. Then
you can write all the properties to that group and read all the properties from that
group. By using a shared property group, the state information is saved across all
deactivations of a transactional object. In addition, state information can be shared
among all transactional objects installed in the same MTS package or COM+
application. You can install transactional objects into a package as described in
“Installing transactional objects” on page 38-24.

For objects to share state, they all must run in the same process. If you want instances
of different components to share properties, you must install them in the same MTS
package or COM+ application. Because there is a risk that administrators may move
components from one package to another, it's safest to limit the use of a shared
property group to instances of objects that are defined in the same DLL or EXE.

Objects sharing properties must have the same activation attribute. If two
components in the same package have different activation attributes, they generally
won't be able to share properties. For example, if one component is configured to run
in a client's process and the other is configured to run in a server process, their objects
will usually run in different processes, even though they're in the same MTS package
or COM+ application.

The following example shows how to add code to support the Shared Property
Manager in a transactional object:

C r e a t i n g M T S o r C O M + o b j e c t s 38-7

M a n a g i n g r e s o u r c e s

Example: Sharing properties among transactional object instances
This example creates a property group called MyGroup to contain the properties to
be shared among objects and object instances. In this example, there is a Counter
property that is shared. It uses the CreateSharedPropertyGroup helper function to
create the property group manager and property group, and then uses the
CreateProperty method of the Group object to create a property called Counter.

To get the value of a property, you use the PropertyByName method of the Group
object as shown below. You can also use the PropertyByPosition method.

#include "Project1_TLB.H"
#define _MTX_NOFORCE_LIBS
#include <vcl\mtshlpr.h>

class ATL_NO_VTABLE TSharedPropertyExampleImpl :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<TSharedPropertyExampleImpl, &CLSID_SharedPropertyExample>,
public IObjectControl,
public IDispatchImpl<ISharedPropertyExample, &IID_ISharedPropertyExample, &LIBID_Project1>

{
private:

ISharedPropertyGroupManager* manager;
ISharedPropertyGroup* PG13;
ISharedProperty* Counter;

public:
TSharedPropertyExampleImpl()
{
}
DECLARE_THREADING_MODEL(otApartment);
DECLARE_PROGID("Project1.SharedPropertyExample");
DECLARE_DESCRIPTION("");

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)
{

TTypedComServerRegistrarT<TSharedPropertyExampleImpl>
regObj(GetObjectCLSID(), GetProgID(), GetDescription());
return regObj.UpdateRegistry(bRegister);

}

DECLARE_NOT_AGGREGATABLE(TSharedPropertyExampleImpl)

BEGIN_COM_MAP(TSharedPropertyExampleImpl)
 COM_INTERFACE_ENTRY(ISharedPropertyExample)
 COM_INTERFACE_ENTRY(IObjectControl)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

public:
 STDMETHOD(Activate)();
 STDMETHOD(IncrementCounter());
 STDMETHOD_(BOOL, CanBePooled)();
 STDMETHOD_(void, Deactivate)();

CComPtr<IObjectContext> m_spObjectContext;

public:

};

38-8 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

// SHAREDPROPERTYEXAMPLEIMPL : Implementation of TSharedPropertyExampleImpl

#include <vcl.h>
#pragma hdrstop

#include "SHAREDPROPERTYEXAMPLEIMPL.H"

STDMETHODIMP TSharedPropertyExampleImpl::Activate()
{

static TMtsDll Mts;
HRESULT hr = E_FAIL;
hr = Mts.Get_ObjectContext(&m_spObjectContext);
if (SUCCEEDED(hr))
{

VARIANT_BOOL _false = VARIANT_FALSE;
VARIANT_BOOL _true = VARIANT_TRUE;
CoCreateInstance(CLSID_SharedPropertyGroupManager, NULL, CLSCTX_INPROC_SERVER,

IID_ISharedPropertyGroupManager, (void**)manager);
manager->CreatePropertyGroup(L"Test Group", LockSetGet, Standard, &_false, &PG13);
if ((PG13->CreateProperty(L"Counter", &_true, &Counter)) == S_OK)
{
Counter->put_Value(TVariant(0));

}
return S_OK;

}
return hr;

}

STDMETHODIMP_(BOOL) TSharedPropertyExampleImpl::CanBePooled()
{

return FALSE;
}

STDMETHODIMP_(void) TSharedPropertyExampleImpl::Deactivate()
{

PG13->Release();
manager->Release();
m_spObjectContext.Release();

}

STDMETHODIMP TSharedPropertyExampleImpl::IncrementCounter()
{

try
{

TVariant temp;
Counter->get_Value(&temp);
temp=(int)temp+1;;
Counter->put_Value(temp);

}
catch(Exception &e)
{

return Error(e.Message.c_str(), IID_ISharedPropertyExample);
}
return S_OK;

};

C r e a t i n g M T S o r C O M + o b j e c t s 38-9

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Releasing resources
You are responsible for releasing resources of an object. Typically, you do this by
calling the IObjectContext methods SetComplete and SetAbort after servicing a client
request. These methods release the resources allocated by the resource dispenser.

At this same time, you must release references to all other resources, including
references to other objects (including transactional objects and context objects) and
memory held by any instances of the component (freeing the component).

The only time you would not include these calls is if you want to maintain state
between client calls. For details, see “Stateful and stateless objects” on page 38-12.

Object pooling

Just as you can pool resources, under COM+ you can also pool objects. When an
object is deactivated, COM+ calls the IObjectControl interface method, CanBePooled,
which indicates that the object can be pooled for reuse. If CanBePooled is returns true,
then instead of being destroyed on deactivation, the object is moved to the object
pool. It remains in the object pool for a specified timeout period, during which time it
is available for use to any client requesting it. Only when the object pool is empty is a
new instance of the object created. Objects that return false or that do not support the
IObjectControl interface are destroyed when they are deactivated.

Object pooling is not available under MTS. MTS calls CanBePooled as described, but
no pooling takes place. Because of this, when the wizard creates transactional objects
the generated CanBePooled method always returns false. If your object will only run
under COM+ and you want to allow object pooling, locate this method in the
implementation unit and edit it so that it returns true.

Even if an object’s CanBePooled method returns true, it can be configured so that
COM+ does not move it to the object pool. If you install the transactional object
under COM+ from the IDE, you can specify whether COM+ tries to pool the object
using the COM+ page of the Type Library editor. Just select the object (CoClass) in
the type library editor, go to the COM+ page, and check or uncheck the box for
Object Pooling. Otherwise, a system administrator specifies this attribute using the
COM+ Component Manger or MTS Explorer.

Similarly, you can configure the time a deactivated object remains in the object pool
before it is freed If you are installing from the IDE, you can specify this duration
using the Creation Timeout setting on the COM+ page of the type library editor.
Otherwise, a system administrator specifies this attribute using the COM+
Component Manager.

MTS and COM+ transaction support
The transaction support that gives transactional objects their name lets you group
actions into transactions. For example, in a medical records application, if you had a
Transfer component to transfer records from one physician to another, you could
include your Add and Delete methods in the same transaction. That way, either the

38-10 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

entire Transfer works or it can be rolled back to its previous state. Transactions
simplify error recovery for applications that must access multiple databases.

Transactions ensure that

• All updates in a single transaction are either committed or get aborted and rolled
back to their previous state. This is referred to as atomicity.

• A transaction is a correct transformation of the system state, preserving the state
invariants. This is referred to as consistency.

• Concurrent transactions do not see each other's partial and uncommitted results,
which might create inconsistencies in the application state. This is referred to as
isolation. Resource managers use transaction-based synchronization protocols to
isolate the uncommitted work of active transactions.

• Committed updates to managed resources (such as database records) survive
failures, including communication failures, process failures, and server system
failures. This is referred to as durability. Transactional logging allows you to
recover the durable state after disk media failures.

An object's associated context object indicates whether the object is executing within
a transaction and, if so, the identity of the transaction. When an object is part of a
transaction, the services that resource managers and resource dispensers perform on
its behalf execute under the transaction as well. Resource dispensers use the context
object to provide transaction-based services. For example, when an object executing
within a transaction allocates a database connection by using the ADO or BDE
resource dispenser, the connection is automatically enlisted on the transaction. All
database updates using this connection become part of the transaction, and are either
committed or aborted.

Work from multiple objects can be composed into a single transaction. Allowing an
object to either live in its own transaction or be part of a larger group of objects that
belong to a single transaction is a major advantage of MTS and COM+. It allows an
object to be used in various ways, so that application developers can reuse
application code in different applications without rewriting the application logic. In
fact, developers can determine how objects are used in transactions when installing
the transactional object. They can change the transaction behavior simply by adding
an object to a different MTS package or COM+ application. For details about
installing transactional objects, see “Installing transactional objects” on page 38-24.

Transaction attributes

Every transactional object has a transaction attribute that is recorded in the MTS
catalog or that is registered with COM+.

C++Builder lets you set the transaction attribute at design time using the
Transactional Object wizard or the Type Library editor.

C r e a t i n g M T S o r C O M + o b j e c t s 38-11

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Each transaction attribute can be set to these settings:

Setting the transaction attribute
You can set a transaction attribute when you first create a transactional object using
the Transactional Object wizard.

You can also set (or change) the transaction attribute using the Type Library editor.
To change the transaction attribute in the Type Library editor,

1 Choose View|Type Library to open the Type Library editor.

2 Select the class corresponding to the transactional object.

3 Click the COM+ tab and choose the desired transaction attribute.

Warning When you set the transaction attribute, C++Builder inserts a special GUID for the
specified attribute as custom data in the type library. This value is not recognized
outside of C++Builder. Therefore, it only has an effect if you install the transactional
object from the IDE. Otherwise, a system administrator must set this value using the
MTS Explorer or COM+ Component Manager.

Requires a
transaction

Objects must execute within the scope of a transaction. When a new
object is created, its object context inherits the transaction from
the context of the client. If the client does not have a transaction
context, a new one is automatically created.

Requires a new
transaction

Objects must execute within their own transactions. When a new
object is created, a new transaction is automatically created for
the object, regardless of whether its client has a transaction. An
object never runs inside the scope of its client's transaction.
Instead, the system always creates independent transactions for
the new objects.

Supports
transactions

Objects can execute within the scope of their client's transactions.
When a new object is created, its object context inherits the
transaction from the context of the client. This enables multiple
objects to be composed in a single transaction. If the client does
not have a transaction, the new context is also created without
one.

Transactions
Ignored

Objects do not run within the scope of transactions. When a new
object is created, its object context is created without a
transaction, regardless of whether the client has a transaction.
This setting is only available under COM+.

Does not support
transactions

The meaning of this setting varies, depending on whether you
install the object under MTS or COM+. Under MTS, this setting
has the same meaning as Transactions Ignored under COM+.
Under COM+, not only is the object context created without a
transaction, this setting prevents the object from being activated if
the client has a transaction.

38-12 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Note: If the transactional object is already installed, you must first uninstall the object and
reinstall it when changing the transaction attribute. Use Run|Install MTS objects or
Run|Install COM+ objects to do so.

Stateful and stateless objects

Like any COM object, transactional objects can maintain internal state across multiple
interactions with a client. For example, the client could set a property value in one
call, and expect that property value to remain unchanged when it makes the next call.
Such an object is said to be stateful. Transactional objects can also be stateless, which
means the object does not hold any intermediate state while waiting for the next call
from a client.

When a transaction is committed or aborted, all objects that are involved in the
transaction are deactivated, causing them to lose any state they acquired during the
course of the transaction. This helps ensure transaction isolation and database
consistency; it also frees server resources for use in other transactions. Completing a
transaction enables the resources held by an object to be reclaimed when the object is
deactivated. See the following section for information on how to control when the
object’s state is released.

Maintaining state on an object requires the object to remain activated, holding
potentially valuable resources such as database connections.

Note Stateless objects are more efficient and, therefore, they are recommended.

Influencing how transactions end

A transactional object uses the IObjectContext methods as shown in the following
table to influence how a transaction completes. These methods, together with the
object’s transaction attribute, allow you to enlist one or more objects into a single
transaction.

Table 38.1 IObjectContext methods for transaction support

Method Description

SetComplete Indicates that the object has successfully completed its work for the
transaction. The object is deactivated upon return from the method that first
entered the context. The object reactivates on the next call that requires object
execution.

SetAbort Indicates that the object's work can never be committed and the transaction
should be rolled back. The object is deactivated upon return from the method
that first entered the context. The object reactivates on the next call that
requires object execution.

C r e a t i n g M T S o r C O M + o b j e c t s 38-13

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Initiating transactions

Transactions can be controlled in three ways:

• They can be controlled by the client.

Clients can have direct control over transactions by using a transaction context
object (using the ITransactionContext interface).

• They can be controlled by the server.

Servers can control transactions explicitly creating an object context for them.
When the server creates an object this way, the created object is automatically
enlisted in the current transaction.

• Transactions can occur automatically as a result of the object’s transaction
attribute.

Transactional objects can be declared so that their objects always execute within a
transaction, regardless of how the objects are created. This way, objects do not
need to include any logic to handle transactions. This feature also reduces the
burden on client applications. Clients do not need to initiate a transaction simply
because the component that they are using requires it.

Setting up a transaction object on the client side
A client-based application can control transaction context through the
ITransactionContextEx interface. The following code example shows how a client
application uses CreateTransactionContextEx to create the transaction context. This
method returns an interface to this object.

EnableCommit Indicates that the object's work is not necessarily done, but that its
transactional updates can be committed in their current form. Use this to retain
state across multiple calls from a client while still allowing transactions to
complete. The object is not deactivated until it calls SetComplete or SetAbort.
EnableCommit is the default state when an object is activated. This is why an
object should always call SetComplete or SetAbort before returning from a method,
unless you want the object to maintain its internal state for the next call from a
client.

DisableCommit Indicates that the object's work is inconsistent and that it cannot complete its
work until it receives further method invocations from the client. Call this
before returning control to the client to maintain state across multiple client
calls while keeping the current transaction active.
DisableCommit prevents the object from deactivating and releasing its
resources on return from a method call. Once an object has called
DisableCommit, if a client attempts to commit the transaction before the object
has called EnableCommit or SetComplete, the transaction will abort.

Table 38.1 IObjectContext methods for transaction support (continued)

Method Description

38-14 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

#include <vcl\mtshlpr.h>

int main(int argc, char* argv[])
{

// first, create a transactional object. [requires COM+ or local installation of MTS]

TCOMITransactionClientExample first_client = CoTransactionClientExample::Create();

//then, check to see if it's in a transaction.

ITransactionContext* TCTX;
HRESULT happily_transacting = first_client->QueryInterface(IID_ITransactionContext,

(void**)&TCTX);

// if it is in a transaction, you can do your data access calls from here
// and then call Commit or Abort yourself instead of waiting for the
// transactional object to do so.

if (happily_transacting)
{

TVariant database = "name";
TVariant record = "data";
TVariant flag;
first_client.UpdateData(&database, &record, &flag);
flag ? TCTX->Commit() : TCTX->Abort();

}
else
{

// otherwise, you can create a transaction:
ITransactionContextEx* TXCTX = CreateTransactionContextEx();

// and an object. any objects you create in this fashion
// will be enlisted in the transaction represented by this object.

TCOMITransactionClientExample* second_client;
TXCTX->CreateInstance(CLSID_TransactionClientExample, IID_ITransactionClientExample,
(void**)&second_client);

// and then perform your data access and commit or abort.

TVariant database = "name";
TVariant record = "data";
TVariant flag;
second_client->UpdateData(&database, &record, &flag);
flag ? TXCTX->Commit() : TXCTX->Abort();

}
return 0;

}

Setting up a transaction object on the server side
To control transaction context from the server side, you create an instance of
ObjectContext. In the following example, the Transfer method is in the transactional
object. In using ObjectContext this way, the instance of the object we are creating will
inherit all the transaction attributes of the object that creates it.

C r e a t i n g M T S o r C O M + o b j e c t s 38-15

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

#include <vcl\mtshlpr.h>

STDMETHODIMP TTransactionServerExampleImpl::DoTransactionContext(long execflag)
{

if (m_spObjectContext->IsInTransaction())
{

// this means the current object has a transaction, and can pass
// its transaction information to its children.
// for simplicity, this object simply creates another object of its
// own type, within the same transaction.
// NOTE: you are still responsible for aggregating, if appropriate;

if (execflag)
{
TCOMITransactionServerExample* inner;
m_spObjectContext->CreateInstance(CLSID_TransactionServerExample,

IID_ITransactionServerExample, (void**)&inner);
inner->DoTransactionContext(false);

// add data access code here. data_access_succeeded() below is
// an unimplemented placeholder.

data_access_succeeded() ? m_spObjectContext->EnableCommit()
: m_spObjectContext->DisableCommit();

}
}
else
{

//this means the current object has no transaction, and must
//create one the way a client would.

ITransactionContextEx* TCTX = CreateTransactionContextEx();
TCOMITransactionServerExample* inner;

// afterwards, follow the same steps.

TCTX->CreateInstance(CLSID_TransactionServerExample,
IID_ITransactionServerExample, (void**)&inner);

inner->DoTransactionContext(true);

// add data access code here. data_access_succeeded() below is
// an unimplemented placeholder.
data_access_succeeded() ? TCTX->Commit() : TCTX->Abort();

}
}

Transaction timeout

The transaction timeout sets how long (in seconds) a transaction can remain active.
The system automatically aborts transactions that are still alive after the timeout. By
default, the timeout value is 60 seconds. You can disable transaction timeouts by
specifying a value of 0, which is useful when debugging transactional objects.

To set the timeout value on your computer,

1 In the MTS Explorer or COM+ Component Manager, select Computer, My
Computer.

38-16 D e v e l o p e r ’ s G u i d e

R o l e - b a s e d s e c u r i t y

By default, My Computer corresponds to the local computer.

2 Right-click and choose Properties and then choose the Options tab.

The Options tab is used to set the computer's transaction timeout property.

3 Change the timeout value to 0 to disable transaction timeouts.

4 Click OK to save the setting.

For more information on debugging MTS applications, see “Debugging and testing
transactional objects” on page 38-23.

Role-based security
MTS and COM+ provide role-based security where you assign a role to a logical
group of users. For example, a medical information application might define roles for
Physician, X-ray technician, and Patient.

You define authorization for each object and interface by assigning roles. For
example, in the physicians’ medical application, only the Physician may be
authorized to view all medical records; the X-ray Technician may view only X-rays;
and Patients may view only their own medical record.

Typically, you define roles during application development and assign roles for each
MTS package or COM+ Application. These roles are then assigned to specific users
when the application is deployed. Administrators can configure the roles using the
MTS Explorer or COM+ Component Manager.

If you want to control access to blocks of code rather than entire objects, you can
provide more fine-grained security by using the IObjectContext method,
IsCallerInRole. This method only works if security is enabled, which can be checked
by calling the IObjectContext method IsSecurityEnabled. For example,

if (m_spObjectContext.IsSecurityEnabled()) // check if security is enabled
{

if (!m_spObjectContext.IsCallerInRolel("Physician")) // check caller’s role
{ // If not a physician, do something appropriate here.
}
else
{ // execute the call normally
}

}
else // no security enabled
{ // do something appropriate
}

Note For applications that require stronger security, context objects implement the
ISecurityProperty interface, whose methods allow retrieval of the Window’s security
identifier (SID) for the direct caller and creator of the object, as well as the SID for the
clients which are using the object.

C r e a t i n g M T S o r C O M + o b j e c t s 38-17

O v e r v i e w o f c r e a t i n g t r a n s a c t i o n a l o b j e c t s

Overview of creating transactional objects
The process of creating transactional object is as follows:

1 Use the Transactional Object wizard to create the transactional object.

2 Add methods and properties to the object’s interface using the Type Library
editor. For details on adding methods and properties using the Type Library editor,
see Chapter 33, “Working with type libraries.”

3 When implementing your object’s methods, you can use the IObjectContext
interface to manage transactions, persistent state, and security. In addition, if you
are passing object references, you will need to use extra care so that they are
correctly handled. (See “Passing object references” on page 22.)

4 Debug and test the transactional object.

5 Install the transactional object into an MTS package or COM+ application.

6 Administer your objects using the MTS Explorer or COM+ Component Manager.

Using the Transactional Object wizard
Use the Transactional Object wizard to create a COM object that can take advantage
of the resource management, transaction processing, and role-based security
provided by MTS or COM+.

To bring up the Transactional Object wizard,

1 Choose File|New.

2 Select the tab labeled Multitier.

3 Double-click the Transactional Object icon.

In the wizard, you must specify the following:

• A threading model that indicates how client applications can call your object’s
interface. The threading model determines how the object is registered. You are
responsible for ensuring that the object’s implementation adheres to the selected
model. For more information on threading models, see “Choosing a threading
model for a transactional object” on page 38-18.

• A transaction model

• An indication of whether your object notifies clients of events. Event support is
only provided for traditional events, not COM+ events.

When you complete this procedure, a new unit is added to the current project that
contains the definition for the transactional object. In addition, the wizard adds a
type library to the project and opens it in the Type Library editor. Now you can
expose the properties and methods of the interface through the type library. You
define the interface as you would define any COM object as described in “Defining a
COM object’s interface” on page 35-9.

38-18 D e v e l o p e r ’ s G u i d e

U s i n g t h e T r a n s a c t i o n a l O b j e c t w i z a r d

The transactional object implements a dual interface, which supports both early
(compile-time) binding through the vtable and late (runtime) binding through the
IDispatch interface.

The generated transactional object implements the IObjectControl interface methods,
Activate, Deactivate, and CanBePooled.

It is not strictly necessary to use the transactional object wizard. You can convert any
Automation object into a COM+ transactional object (and any in-process Automation
object into an MTS transactional object) by using the COM+ page of the Type Library
editor and then installing the object into an MTS package or COM+ application.
However, the transactional object wizard provides certain benefits:

• It automatically implements the IObjectControl interface, adding OnActivate and
OnDeactivate events to the object so that you can create event handlers that
respond when the object is activated or deactivated.

• It automatically generates an m_spObjectContext member so that it is easy for
your object to access the IObjectContext methods to control activation and
transactions.

Choosing a threading model for a transactional object

The MTS runtime environment or COM+ manages threads for you. Transactional
objects should not create threads. They must also never terminate a thread that calls
into a DLL.

When you specify the threading model using the Transactional object wizard, you
specify how objects are assigned to threads for method execution.

Table 38.2 Threading models for transactional objects

Threading model Description Implementation pros and cons

Single No thread support. Client requests
are serialized by the calling
mechanism.
All objects of a single-threaded
component execute on the main
thread.
This is compatible with the default
COM threading model, which is
used for components that do not
have a Threading Model Registry
attribute or for COM components
that are not reentrant. Method
execution is serialized across all
objects in the component and
across all components in a process.

 Allows components to use libraries
that are not reentrant.
Very limited scalability.
Single-threaded, stateful components
are prone to deadlocks. You can
eliminate this problem by using
stateless objects and calling
SetComplete before returning from
any method.

C r e a t i n g M T S o r C O M + o b j e c t s 38-19

U s i n g t h e T r a n s a c t i o n a l O b j e c t w i z a r d

Note These threading models are similar to those defined by COM objects. However,
because the MTS and COM+ provide more underlying support for threads, the
meaning of each threading model differs here. Also, the free threading model does
not apply to transactional objects due to the built-in support for activities.

Activities
In addition to the threading model, transactional objects achieve concurrency
through activities. Activities are recorded in an object’s context, and the association
between an object and an activity cannot be changed. An activity includes the
transactional object created by the base client, as well as any transactional objects
created by that object and its descendants. These objects can be distributed across one
or more processes, executing on one or more computers.

For example, a physician’s medical application may have a transactional object to
add updates and remove records to various medical databases, each represented by a
different object. This record object may use other objects as well, such as a receipt
object to record the transaction. This results in several transactional objects that are
either directly or indirectly under the control of a base client. These objects all belong
to the same activity.

MTS or COM+ tracks the flow of execution through each activity, preventing
inadvertent parallelism from corrupting the application state. This feature results in a
single logical thread of execution throughout a potentially distributed collection of
objects. By having one logical thread, applications are significantly easier to write.

When a transactional object is created from an existing context, using either a
transaction context object or an object context, the new object becomes a member of
the same activity. In other words, the new context inherits the activity identifier of
the context used to create it.

Only a single logical thread of execution is allowed within an activity. This is similar
in behavior to a COM apartment threading model, except that the objects can be
distributed across multiple processes. When a base client calls into an activity, all
other requests for work in the activity (such as from another client thread) are
blocked until after the initial thread of execution returns back to the client.

Apartment
(or Single-threaded
apartment)

Each object is assigned to a thread
apartment, which lasts for the life
of the object; however, multiple
threads can be used for multiple
objects. This is a standard COM
concurrency model. Each
apartment is tied to a specific
thread and has a Windows
message pump.

Provides significant concurrency
improvements over the single
threading model.
Two objects can execute concurrently
as long as they are not in the same
activity.
Similar to a COM apartment, except
that the objects can be distributed
across multiple processes.

Table 38.2 Threading models for transactional objects (continued)

Threading model Description Implementation pros and cons

38-20 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g e v e n t s u n d e r C O M +

Under MTS, every transactional object belongs to one activity. Under COM+, you can
configure the way the object participates in activities by setting the call
synchronization. The following options are available:

Generating events under COM+
Before COM+, Automation servers used a set of special interfaces for generating
events. COM+, however, introduces a new system for managing events. Instead of
the server object managing events, keeping track of clients that need to be notified
and calling their interfaces when events occur, the underlying system (COM+)
manages this process.

Note Transactional objects installed under COM+ can still use the old system for managing
events. However, letting COM+ handle the process provides greater flexibility. For
example, when COM+ manages events, the client can be an in-process server that is
launched by COM+ when the event occurs.

When a COM+ object generates events, it does not do so directly. Rather, it makes
use of an associated event object that is specifically created to generate events. The
COM+ object calls its event object when it wants to fire an event. When that happens,
COM+ calls all clients that have registered an interest in the particular event object.

Using the Event Object wizard

You can create event objects using the Event Object wizard. The wizard first checks
whether the current project contains any implementation code, because projects
containing COM+ event objects do not include an implementation. They can only

Table 38.3 Call synchronization options

Option Meaning

Disabled COM+ does not assign activities to the object but it may inherit them with the
caller’s context. If the caller has no transaction or object context, the object is
not assigned to an activity. The result is the same as if the object was not
installed in a COM+ application. This option should not be used if any object
in the application uses a resource manager or if the object supports
transactions or just-in-time activation.

Not Supported COM+ never assigns the object to an activity, regardless of the status of its
caller. This option should not be used if any object in the application uses a
resource manager or if the object supports transactions or just-in-time
activation.

Supported COM+ assigns the object to the same activity as its caller. If the caller does not
belong to an activity, the object does not either. This option should not be used
if any object in the application uses a resource manager or if the object
supports transactions or just-in-time activation.

Required COM+ always assigns the object to an activity, creating one if necessary. This
option must be used if the transaction attribute is Supported or Required.

Requires New COM+ always assigns the object to a new activity, which is distinct from its
caller’s.

C r e a t i n g M T S o r C O M + o b j e c t s 38-21

G e n e r a t i n g e v e n t s u n d e r C O M +

contain event object definitions. (You can, however, include multiple COM+ event
objects in a single project.)

To bring up the Event Object wizard,

1 Choose File|New.

2 Select the tab labeled ActiveX.

3 Double-click the COM+ Event Object icon.

In the Event Object wizard, specify the name of the event object, the name of the
interface that defines the event handlers, and (optionally) a brief description of the
events.

When you exit, the wizard creates a project containing a type library that defines
your event object and its interface. Use the Type Library editor to define the methods
of that interface. These methods are the event handlers that clients implement to
respond to events.

The Event object project includes the project file, _ATL unit to import the ATL
template classes, and the _TLB unit to define the type library information. It does not
include an implementation unit, however, because COM+ event objects have no
implementation. The implementation of the interface is the responsibility of the
client. When your server object calls a COM+ event object, COM+ intercepts the call
and dispatches it to registered clients. Because COM+ event objects require no
implementation object, all you need to do after defining the object’s interface in the Type
Library editor is compile the project and install it with COM+

COM+ places certain restrictions on the interfaces of event objects. The interface you
define in the Type Library editor for your event object must obey the following rules:

• The event object’s interface must derive from IDispatch.

• All method names must be unique across all interfaces of the event object.

• All methods on the event object’s interface must return an HRESULT value.

• The modifier for all parameters of methods must be [in].

Firing events using a COM+ event object

When an event occurs, your COM+ object must call the event object and tell it to fire
the event on registered clients. It does this by creating an instance of the event object
and calling the method that corresponds to the event:

TAutoDriver<IEventObjectInterface> myDriver;
myDriver.Bind(DIID_IEventObjectInterface);
myDriver->OnStart();

Note Objects that fire COM+ events, like the event objects themselves, must be installed in
a COM+ application.

38-22 D e v e l o p e r ’ s G u i d e

P a s s i n g o b j e c t r e f e r e n c e s

Passing object references
Under MTS, you can pass object references, (for example, for use as a callback) only
in the following ways:

• Through return from an object creation interface, such as CoCreateInstance (or its
equivalent), ITransactionContext::CreateInstance, or IObjectContext::CreateInstance.

• Through a call to QueryInterface.

• Through a method that has called SafeRef to obtain the object reference.

An object reference that is obtained in the above ways is called a safe reference.
Methods invoked using safe references are guaranteed execute within the correct
context.

The MTS runtime environment requires calls to use safe references so that it can
manage context switches and allows transactional objects to have lifetimes that are
independent of client references. Safe references are not necessary under COM+.

Using the SafeRef method
An object can use the SafeRef function to obtain a reference to itself that is safe to pass
outside its context. This function is available as a method of the TMtsDll object,
which checks whether your server is running under MTS or COM+ and returns the
appropriate pointer accordingly.

SafeRef takes as input

• A reference to the interface ID (RIID) of the interface that the current object wants
to pass to another object or client.

• A reference to the current object’s IUnknown interface.

SafeRef returns a pointer to the interface specified in the RIID parameter that is safe to
pass outside the current object's context. It returns NULL if the object is requesting a
safe reference on an object other than itself, or the interface requested in the RIID
parameter is not implemented.

When an MTS object wants to pass a self-reference to a client or another object (for
example, for use as a callback), it should always call SafeRef first and then pass the
reference returned by this call. An object should never pass a self pointer, or a self-
reference obtained through an internal call to QueryInterface, to a client or to any
other object. Once such a reference is passed outside the object's context, it is no
longer a valid reference.

Calling SafeRef on a reference that is already safe returns the safe reference
unchanged, except that the reference count on the interface is incremented.

When a client calls QueryInterface on a reference that is safe, the reference returned
to the client is also a safe reference.

An object that obtains a safe reference must release the safe reference when finished
with it.

For details on SafeRef see the SafeRef topic in the Microsoft documentation.

C r e a t i n g M T S o r C O M + o b j e c t s 38-23

D e b u g g i n g a n d t e s t i n g t r a n s a c t i o n a l o b j e c t s

Callbacks
Objects can make callbacks to clients and to other transactional objects. For example,
you can have an object that creates another object. The creating object can pass a
reference of itself to the created object; the created object can then use this reference
to call the creating object.

If you choose to use callbacks, note the following restrictions:

• Calling back to the base client or another package requires access-level security on
the client. Additionally, the client must be a DCOM server.

• Intervening firewalls may block calls back to the client.

• Work done on the callback executes in the environment of the object being called.
It may be part of the same transaction, a different transaction, or no transaction.

• Under MTS, the creating object must call SafeRef and pass the returned reference to
the created object in order to call back to itself.

Debugging and testing transactional objects
You can debug local and remote transactional objects. When debugging transactional
objects, you may want to turn off transaction timeouts.

The transaction timeout sets how long (in seconds) a transaction can remain active.
Transactions that are still alive after the timeout are automatically aborted by the
system. By default, the timeout value is 60 seconds. You can disable transaction
timeouts by specifying a value of 0, which is useful when debugging.

For information on remote debugging, see the Remote Debugging topic in Online
help.

When testing a transactional object that you intend to run under MTS, you may first
want to test your object outside the MTS environment to simplify your test
environment.

While developing your server, you cannot rebuild the server when it is still in
memory. You may get a compiler error like, “Cannot write to DLL while executable
is loaded.” To avoid this, you can set the MTS package or COM+ application
properties to shut down the server when it is idle.

To shut down the server when idle,

1 In the MTS Explorer or COM+ Component Manager, right-click the MTS package
or COM+ application in which your transactional object is installed and choose
Properties.

2 Select the Advanced tab.

The Advanced tab determines whether the server process associated with a
package always runs, or whether it shuts down after a certain period of time.

3 Change the timeout value to 0, which shuts down the server as soon as no longer
has a client to service.

38-24 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g t r a n s a c t i o n a l o b j e c t s

4 Click OK to save the setting.

Installing transactional objects
MTS applications consist of a group of in-process MTS objects running in a single
instance of the MTS executive (EXE). A group of COM objects that all run in the same
process is called a package. A single machine can be running several different
packages, where each package is running within a separate MTS EXE.

Under COM+, you work with a similar group, called a COM+ application. In a
COM+ application, the objects need not be in-process, and there is no separate
runtime environment.

You can group your application components into a single MTS package or COM+
application to be managed by a single process. You might want to distribute your
components into different MTS packages or COM+ applications to partition your
application across multiple processes or machines.

To install transactional objects into an MTS package or COM+ application,

1 If your system supports COM+, choose Run|Install COM+ objects. If your system
does not support COM+ but you have MTS installed on your system, choose Run|
Install MTS objects. If your system supports neither MTS nor COM+, you will not
see a menu item for installing transactional objects.

2 In the Install Object dialog box, check the objects to be installed.

3 If you are installing MTS objects, click the Package button to get a list of MTS
packages on your system. If you are installing COM+ objects, click the Application
button. Indicate the MTS package or COM+ application into which you are
installing your objects. You can choose Into New Package or Into New Application
to create a new MTS package or COM+ application in which to install the object.
You can choose Into Existing Package or Into Existing Application to install the
object into an existing listed MTS package or COM+ application.

4 Choose OK to refresh the catalog, which makes the objects available at runtime.

MTS packages can contain components from multiple DLLs, and components from a
single DLL can be installed into different packages. However, a single component
cannot be distributed among multiple packages.

Similarly, COM+ applications can contain components from multiple executables
and different components from a single executable can be installed into different
COM+ applications.

Note You can also install your transactional object using the COM+ Component Manager
or MTS Explorer. Be sure when installing the object with one of these tools that you
apply the settings for the object that appear on the COM+ page of the Type Library
editor. These settings are not applied automatically when you do not install from the
IDE.

C r e a t i n g M T S o r C O M + o b j e c t s 38-25

A d m i n i s t e r i n g t r a n s a c t i o n a l o b j e c t s

Administering transactional objects
Once you have installed transactional objects, you can administer these runtime
objects using the MTS Explorer (if they are installed into an MTS package) or the
COM+ Component Manager (if they are installed into a COM+ application). Both
tools are identical, except that the MTS Explorer operates on the MTS runtime
environment and the COM+ Component Manager operates on COM+ objects.

The COM+ Component Manager and MTS Explorer have a graphical user interface
for managing and deploying transactional objects. Using one of these tools, you can

• Configure transactional objects, MTS packages or COM+ applications, and roles

• View properties of components in an package or COM+ application and view the
MTS packages or COM+ applications installed on a computer

• Monitor and manage transactions for objects that comprise transactions

• Move MTS packages or COM+ applications between computers

• Make a remote transactional object available to a local client

For more details on these tools, see the appropriate Administrator’s Guide from
Microsoft.

38-26 D e v e l o p e r ’ s G u i d e

C r e a t i n g c u s t o m c o m p o n e n t s

P a r t

V
Part VCreating custom components

The chapters in “Creating custom components” present concepts necessary for
designing and implementing custom components in C++Builder.

'

O v e r v i e w o f c o m p o n e n t c r e a t i o n 39-1

C h a p t e r

39
Chapter39Overview of component creation

This chapter provides an overview of component design and the process of writing
components for C++Builder applications. The material here assumes that you are
familiar with C++Builder and its standard components.

• Visual Component Library
• Components and classes
• How do you create components?
• What goes into a component?
• Creating a new component
• Testing uninstalled components
• Testing installed components
• Installing a component on the Component palette

For information on installing new components, see “Installing component packages”
on page 10-5.

Visual Component Library
C++Builder’s components are all part of a class hierarchy called the Visual
Component Library (VCL). Figure 39.1 shows the relationship of selected classes that
make up the VCL. For a more detailed discussion of class hierarchies and the
inheritance relationships among classes, see Chapter 40, “Object-oriented
programming for component writers.”

The TComponent class is the shared ancestor of every component in the VCL.
TComponent provides the minimal properties and events necessary for a component
to work in C++Builder. The various branches of the library provide other, more
specialized capabilities.

39-2 D e v e l o p e r ’ s G u i d e

C o m p o n e n t s a n d c l a s s e s

Figure 39.1 Visual Component Library class hierarchy

When you create a component, you add to the VCL by deriving a new class from one
of the existing class types in the hierarchy.

Components and classes
Because components are classes, component writers work with objects at a different
level from application developers. Creating new components requires that you
derive new classes.

Briefly, there are two main differences between creating components and using them
in applications. When creating components,

• You access parts of the class that are inaccessible to application programmers.
• You add new parts (such as properties) to your components.

Because of these differences, you need to be aware of more conventions and think
about how application developers will use the components you write.

How do you create components?
A component can be almost any program element that you want to manipulate at
design time. Creating a component means deriving a new class from an existing one.
You can derive a new component from any existing component, but the following are
the most common ways to create components:

• Modifying existing controls
• Creating windowed controls
• Creating graphic controls
• Subclassing Windows controls
• Creating nonvisual components

TCustomControl

TApplication

TObject

TPersistent

TComponent

TControl

TGraphicControl TWinControl

TScrollingWinControl

TCustomForm
TForm

TActiveForm

Exception TStream TComObject

TCollection TStringsTGraphicTGraphicObject

TDataSet TMenu TCommonDialog TField

Most visual controls
inherit from

TWinControl.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 39-3

H o w d o y o u c r e a t e c o m p o n e n t s ?

Table 39.1 summarizes the different kinds of components and the classes you use as
starting points for each.

You can also derive classes that are not components and cannot be manipulated on a
form. C++Builder includes many such classes, like TRegIniFile and TFont.

Modifying existing controls

The simplest way to create a component is to customize an existing one. You can
derive a new component from any of the components provided with C++Builder.

Some controls, such as list boxes and grids, come in several variations on a basic
theme. In these cases, the VCL includes an abstract class (with the word “custom” in
its name, such as TCustomGrid) from which to derive customized versions.

For example, you might want to create a special list box that does not have some of
the properties of the standard TListBox class. You cannot remove (hide) a property
inherited from an ancestor class, so you need to derive your component from
something above TListBox in the hierarchy. Rather than force you to start from the
abstract TWinControl class and reinvent all the list box functions, the VCL provides
TCustomListBox, which implements the properties of a list box but does not publish
all of them. When you derive a component from an abstract class like
TCustomListBox, you publish only the properties you want to make available in your
component and leave the rest protected.

Chapter 41, “Creating properties,” explains publishing inherited properties.
Chapter 47, “Modifying an existing component,” and Chapter 49, “Customizing a
grid,” show examples of modifying existing controls.

Creating windowed controls

Windowed controls are objects that appear at runtime and that the user can interact
with. Each windowed control has a window handle, accessed through its Handle
property, that lets Windows identify and operate on the control. The handle allows
the control to receive input focus and can be passed to Windows API functions.

All windowed controls descend from the TWinControl class. These include most
standard Windows controls, such as pushbuttons, list boxes, and edit boxes. While
you could derive an original control (one that’s not related to any existing control)

Table 39.1 Component creation starting points

To do this Start with this type

Modify an existing component Any existing component, such as TButton or TListBox, or
an abstract component type, such as TCustomListBox

Create a windowed control TWinControl

Create a graphic control TGraphicControl

Subclassing a Windows control Any Windows control

Create a nonvisual component TComponent

39-4 D e v e l o p e r ’ s G u i d e

H o w d o y o u c r e a t e c o m p o n e n t s ?

directly from TWinControl, C++Builder provides the TCustomControl component for
this purpose. TCustomControl is a specialized windowed control that makes it easier
to draw complex visual images.

Chapter 49, “Customizing a grid,” presents an example of creating a windowed
control.

Creating graphic controls

If your control does not need to receive input focus, you can make it a graphic
control. Graphic controls are similar to windowed controls, but have no window
handles, and therefore consume fewer system resources. Components like TLabel,
which never receive input focus, are graphic controls. Although these controls cannot
receive focus, you can design them to react to mouse messages.

C++Builder supports the creation of custom controls through the TGraphicControl
component. TGraphicControl is an abstract class derived from TControl. Although you
can derive controls directly from TControl, it is better to start from TGraphicControl,
which provides a canvas to paint on and handles WM_PAINT messages; all you need
to do is override the Paint method.

Chapter 48, “Creating a graphic component,” presents an example of creating a
graphic control.

Subclassing Windows controls

In traditional Windows programming, you create custom controls by defining a new
window class and registering it with Windows. The window class (which is similar to
the objects or classes in object-oriented programming) contains information shared
among instances of the same sort of control; you can base a new window class on an
existing class, which is called subclassing. You then put your control in a
dynamic-link library (DLL), much like the standard Windows controls, and provide
an interface to it.

Using C++Builder,you can create a component “wrapper” around any existing
window class. So if you already have a library of custom controls that you want to
use in C++Builder applications, you can create C++Builder components that behave
like your controls, and derive new controls from them just as you would with any
other component.

For examples of the techniques used in subclassing Windows controls, see the
components in the STDCTLS header file that represent standard Windows controls,
such as TEdit.

Creating nonvisual components

Nonvisual components are used as interfaces for elements like databases (TDataSet)
and system clocks (TTimer), and as placeholders for dialog boxes (TCommonDialog
and its descendants). Most of the components you write are likely to be visual

O v e r v i e w o f c o m p o n e n t c r e a t i o n 39-5

W h a t g o e s i n t o a c o m p o n e n t ?

controls. Nonvisual components can be derived directly from TComponent, the
abstract base class for all components.

What goes into a component?
To make your components reliable parts of the C++Builder environment, you need to
follow certain conventions in their design. This section discusses the following topics:

• Removing dependencies
• Properties, methods, and events
• Graphics encapsulation
• Registration

Removing dependencies

One quality that makes components usable is the absence of restrictions on what they
can do at any point in their code. By their nature, components are incorporated into
applications in varying combinations, orders, and contexts. You should design
components that function in any situation, without preconditions.

An excellent example of removing dependencies is the Handle property of
TWinControl. If you have written Windows applications before, you know that one of
the most difficult and error-prone aspects of getting a program running is making
sure that you do not try to access a window or control until you have created it by
calling the CreateWindow API function. C++Builder windowed controls relieve users
from this concern by ensuring that a valid window handle is always available when
needed. By using a property to represent the window handle, the control can check
whether the window has been created; if the handle is not valid, the control creates a
window and returns the handle. Thus, whenever an application’s code accesses the
Handle property, it is assured of getting a valid handle.

By removing background tasks like creating the window, C++Builder components
allow developers to focus on what they really want to do. Before passing a window
handle to an API function, there is no need to verify that the handle exists or to create
the window. The application developer can assume that things will work, instead of
constantly checking for things that might go wrong.

Although it can take time to create components that are free of dependencies, it is
generally time well spent. It not only spares application developers from repetition
and drudgery, but it reduces your documentation and support burdens.

Properties, methods, and events

Aside from the visible image manipulated in the Form designer, the most obvious
attributes of a component are its properties, events, and methods. Each of these has a
chapter devoted to it in this book, but the discussion that follows explains some of
the motivation for their use.

39-6 D e v e l o p e r ’ s G u i d e

W h a t g o e s i n t o a c o m p o n e n t ?

Properties
Properties give the application developer the illusion of setting or reading the value
of a variable, while allowing the component writer to hide the underlying data
structure or to implement special processing when the value is accessed.

There are several advantages to using properties:

• Properties are available at design time. The application developer can set or
change initial values of properties without having to write code.

• Properties can check values or formats as the application developer assigns them.
Validating input at design time prevents errors.

• The component can construct appropriate values on demand. Perhaps the most
common type of error programmers make is to reference a variable that has not
been initialized. By representing data with a property, you can ensure that a value
is always available on demand.

• Properties allow you to hide data under a simple, consistent interface. You can
alter the way information is structured in a property without making the change
visible to application developers.

Chapter 41, “Creating properties,” explains how to add properties to your
components.

Events
An event is a special property that invokes code in response to input or other activity
at runtime. Events give the application developer a way to attach specific blocks of
code to specific runtime occurrences, such as mouse actions and keystrokes. The code
that executes when an event occurs is called an event handler.

Events allow application developers to specify responses to different kinds of input
without defining new components.

Chapter 42, “Creating events,” explains how to implement standard events and how
to define new ones.

Methods
Class methods are functions that operate on a class rather than on specific instances
of the class. For example, every component’s constructor method is a class method.
Component methods are functions that operate on the component instances
themselves. Application developers use methods to direct a component to perform a
specific action or return a value not contained by any property.

Because they require execution of code, methods can be called only at runtime.
Methods are useful for several reasons:

• Methods encapsulate the functionality of a component in the same object where
the data resides.

• Methods can hide complicated procedures under a simple, consistent interface. An
application developer can call a component’s AlignControls method without

O v e r v i e w o f c o m p o n e n t c r e a t i o n 39-7

C r e a t i n g a n e w c o m p o n e n t

knowing how the method works or how it differs from the AlignControls method
in another component.

• Methods allow updating of several properties with a single call.

Chapter 43, “Creating methods,” explains how to add methods to your components.

Graphics encapsulation

C++Builder simplifies Windows graphics by encapsulating various graphic tools into
a canvas. The canvas represents the drawing surface of a window or control and
contains other classes, such as a pen, a brush, and a font. A canvas is much like a
Windows device context, but it takes care of all the bookkeeping for you.

If you have written a graphical Windows application, you are familiar with the
requirements imposed by Windows’ graphics device interface (GDI). For example,
GDI limits the number of device contexts available and requires that you restore
graphic objects to their initial state before destroying them.

With C++Builder, you do not have to worry about these things. To draw on a form or
other component, you access the component’s Canvas property. If you want to
customize a pen or brush, you set its color or style. When you finish, C++Builder
disposes of the resources. C++Builder also caches resources to avoid recreating them
if your application frequently uses the same kinds of resource.

You still have full access to the Windows GDI, but you will often find that your code
is simpler and runs faster if you use the canvas built into C++Builder components.
Graphics features are detailed in Chapter 44, “Using graphics in components.”

Registration

Before you can install your components in the C++Builder IDE, you have to register
them. Registration tells C++Builder where you want your component to appear on
the Component palette. You can also customize the way C++Builder stores your
components in the form file. For information on registering a component, see
Chapter 46, “Making components available at design time.”

Creating a new component
You can create a new component two ways:

• Using the Component wizard
• Creating a component manually

You can use either of these methods to create a minimally functional component
ready to install on the Component palette. After installing, you can add your new
component to a form and test it at both design time and runtime. You can then add
more features to the component, update the Component palette, and continue
testing.

39-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

There are several basic steps that you perform whenever you create a new
component. These steps are described below; other examples in this document
assume that you know how to perform them.

1 Creating a unit for the new component.

2 Deriving your component from an existing component type.

3 Adding properties, methods, and events.

4 Registering your component with C++Builder.

5 Creating a Help file for your component and its properties, methods, and events.

6 Creating a package (a special dynamic-link library) so that you can install your
component in the C++Builder IDE.

When you finish, the complete component includes these files:

• A package (.BPL) or package collection (.PCE) file
• A library (.LIB) for the package
• A Borland import library (.BPI) file for the package
• A compiled unit (.OBJ) file
• A compiled resource (.RES) file for the palette map
• A Help (.HLP) file

Creating a help file to instruct component users on how to use the component is
optional. Including a help file is mandatory only if one is created.

The chapters in the rest of Part IV explain all the aspects of building components and
provide several complete examples of writing different kinds of components.

Using the Component wizard

The Component wizard simplifies the initial stages of creating a component. When
you use the Component wizard, you need to specify only these things:

• The class from which it is derived
• The class name for the new component
• The Component palette page you want it to appear on
• The name of the unit in which the component is created
• The search path where the unit is found
• The name of the package in which you want to place the component

The Component wizard performs the same tasks you would when creating a
component manually:

• Creating a unit (a .CPP file and its associated header)
• Deriving the component
• Declaring a new constructor
• Registering the component

O v e r v i e w o f c o m p o n e n t c r e a t i o n 39-9

C r e a t i n g a n e w c o m p o n e n t

The Component wizard cannot add new components to an existing unit (consisting
of a .CPP file and an associated header file). If you want to add new components, you
must add them to the unit manually.

To start the Component wizard, choose one of these two methods:

• Choose Component|New Component.
• Choose File|New and double-click on Component

Figure 39.2 Component wizard

Fill in the fields in the Component wizard:

1 In the Ancestor Type field, specify the class from which you are deriving your new
component.

2 In the Class Name field, specify the name of your new component class.

3 In the Palette Page field, specify the page on the Component palette on which you
want the new component to be installed.

4 In the Unit file name field, specify the name of the unit you want the component
class declared in.

5 If the unit is not on the search path, edit the search path in the Search Path field as
necessary.

To place the component in a new or existing package, click Component|Install and
use the dialog box that appears to specify a package.

Warning If you derive a component from a VCL class whose name begins with “custom” (such
as TCustomControl), do not try to place the new component on a form until you have
overridden any abstract methods in the original component. C++Builder cannot
create instance objects of a class that has abstract properties or methods.

After you fill in the fields in the Component wizard, choose OK. C++Builder creates a
new unit consisting of a .CPP file and an associated header file.

The .CPP file appears in the Code editor. It contains a constructor for the component
and the Register function that registers the component, informing C++Builder which
component to add to the component library and on which page of the Component

39-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

palette it should appear. The file also contains an include statement that specifies the
header file that was created. For example,

#include <vcl\vcl.h>
#pragma hdrstop
#include "NewComponent.h"
#pragma package(smart_init);
//---
static inline TNewComponent *ValidCtrCheck()
{

return new TNewComponent(NULL);
}
//---
__fastcall TNewComponent::TNewComponent(TComponent* Owner)

: TComponent(Owner)
{
}
//---
namespace Newcomponent
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TNewComponent)};
RegisterComponents("Samples", classes, 0);

}
}

To open the header file in the Code editor, place your cursor on the header file name,
click your right mouse button to display the context menu, and choose Open File at
Cursor on the menu.

The header file contains the new class declaration, including a constructor
declaration, and several #include statements to support the new class. For example,

#ifndef NewComponentH
#define NewComponentH
//---
#include <vcl\SysUtils.hpp>
#include <vcl\Controls.hpp>
#include <vcl\Classes.hpp>
#include <vcl\Forms.hpp>
//---
class PACKAGE TNewComponent : public TComponent
{
private:
protected:
public:

__fastcall TNewComponent(TComponent* Owner);
__published:
};
//---
#endif

Save the .CPP file, with a meaningful name, before proceeding.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 39-11

C r e a t i n g a n e w c o m p o n e n t

Creating a component manually

The easiest way to create a new component is to use the Component wizard. You can,
however, perform the same steps manually.

To create a component manually, follow these steps:

1 Creating a unit file
2 Deriving the component
3 Declaring a new constructor
4 Registering the component

Creating a unit file
A C++Builder unit is comprised of a .CPP file and a .H file combination that is
compiled into an .OBJ file. C++Builder uses units for a number of purposes. Every
form has its own unit, and most components (or logical groups of components) have
their own units as well.

When you create a component, you either create a new unit for the component or add
the new component to an existing unit.

To create a unit for a component, choose one of these methods:

• Choose File|New Unit.

• Choose File|New to display the New Items dialog box, select the New tab, select
Unit, and choose OK.

C++Builder creates a .CPP file and a header file and displays the .CPP file in the Code
editor. Save the file with a meaningful name.

To open the header file, place your cursor on header file name in the Code editor,
right-click, and choose Open File at Cursor from the pop-up menu.

To open an existing unit, choose File|Open and select the source code unit that you
want to add your component to.

Note When adding a component to an existing unit, make sure that the unit contains only
component code. For example, adding component code to a unit that contains a form
causes errors in the Component palette.

Once you have either a new or existing unit for your component, you can derive the
component class.

Deriving the component
Every component is a class derived from TComponent, from one of its more
specialized descendants (such as TControl or TGraphicControl), or from an existing
component class. “How do you create components?” on page 39-2 describes which
class to derive different kinds of components from.

Deriving classes is explained in more detail in the section “Defining new classes” on
page 40-1.

To derive a component class, add a class declaration to the header file.

39-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

A simple component class is a nonvisual component descended directly from
TComponent.

To create a simple component class, add the following class declaration to your
header file:

class PACKAGE TNewComponent : public TComponent
{
};

The PACKAGE macro expands to a statement that allows classes to be imported and
exported. You should also add the necessary include statements that specify the .HPP
files needed by the new component. These are the most common include statements
you need:

#include <vcl\SysUtils.hpp>
#include <vcl\Controls.hpp>
#include <vcl\Classes.hpp>
#include <vcl\Forms.hpp>

So far the new component does nothing different from TComponent. You have created
a framework on which to build your new component.

Declaring a new constructor
Each new component must have a constructor that overrides the constructor of the
class from which it was derived. When you write the constructor for your new
component, it must always call the inherited constructor.

Within the class declaration, declare a virtual constructor in the public section of the
class. You can learn more about the public section in “Controlling access” on
page 40-4. For example,

class PACKAGE TNewComponent : public TComponent
{
public:

virtual __fastcall TNewComponent(TComponent* AOwner);
};

In the .CPP file, implement the constructor:

__fastcall TNewComponent::TNewComponent(TComponent* AOwner): TComponent(AOwner)
{
}

Within the constructor, you add the code you want to execute when the component is
created.

Registering the component
Registration is a simple process that tells C++Builder which components to add to its
component library, and on which pages of the Component palette they should
appear. For a more detailed discussion of the registration process, see Chapter 46,
“Making components available at design time.”

O v e r v i e w o f c o m p o n e n t c r e a t i o n 39-13

C r e a t i n g a n e w c o m p o n e n t

To register a component,

1 Add a function named Register to the unit’s .CPP file, placing it within a
namespace. The namespace is the name of the file the component is in, minus the
file extension, with all lowercase letters except the first letter.

For example, this code exists within a Newcomp namespace, whereas Newcomp is
the name of the .CPP file:

namespace Newcomp
{

void __fastcall PACKAGE Register()
{
}

}

2 Within the Register function, declare an open array of type TComponentClass that
holds the array of components you are registering. The syntax should look like
this:

TComponentClass classes[1] = {__classid(TNewComponent)};

In this case, the array of classes contains just one component, but you can add all
the components you want to register to the array.

3 Within the Register function, call RegisterComponents for each component you want
to register.

RegisterComponents is a function that takes three parameters: the name of a
Component palette page, the array of component classes, and the size – 1 of the
component classes. If you’re adding a component to an existing registration, you
can either add the new component to the set in the existing statement, or add a
new statement that calls RegisterComponents.

You can register multiple components with just one RegisterComponents call if all
components go on the same page on the Component palette.

To register a component named TNewComponent and place it on the Samples page of
the Component palette, add the following Register function to the .CPP file of the unit
that declares TNewComponent:

namespace Newcomp
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TNewComponent)};
RegisterComponents("Samples", classes, 0);

}
}

This Register call places TNewComponent on the Samples page of the Component
palette.

Once you register a component, you can test the component, and finally install the
component onto the Component palette. This is described in more detail in the
section “Installing a component on the Component palette” on page 39-16.

39-14 D e v e l o p e r ’ s G u i d e

T e s t i n g u n i n s t a l l e d c o m p o n e n t s

Testing uninstalled components
You can test the runtime behavior of a component before you install it on the
Component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the Component palette. For information on testing already installed components,
see “Testing installed components” on page 39-16.

Testing your components without installing has the added benefit of generating
compile-time errors that are seen only when the class is instantiated. For example,
trying to create an instance of an abstract class yields an error directing you to the
pure virtual that must be overloaded.

You test an uninstalled component by emulating the actions performed by
C++Builder when the component is selected from the palette and placed on a form.

To test an uninstalled component, do the following:

1 Create a new application or open an existing one.

2 Choose Project|Add to Project to add the component unit to your project.

3 Include the .H file of the component unit in the header file of a form unit.

4 Add a data member to the form to represent the component.

This is one of the main differences between the way you add components and the
way C++Builder does it. You add the data member to the public part at the bottom
of the form’s class declaration. C++Builder would add it above, in the published
part of the class declaration that it manages.

You should never add data members to the C++Builder-managed part of the
form’s class declaration. The items in that part of the class declaration correspond
to the items stored in the form file. Adding the names of components that do not
exist on the form can render your form file invalid.

5 Construct the component in the form’s constructor.

When you call the component’s constructor, you must pass a parameter specifying
the owner of the component (the component responsible for destroying the
component when the time comes). You nearly always pass this as the owner. In a
method, this is a reference to the class that contains the method. In this case, in the
form’s OnCreate handler, this refers to the form.

6 Assign the Parent property.

Setting the Parent property is always the first thing to do after constructing a
control. The parent is the component that visually contains the control, which is
most often the form, but might be a group box or panel. Normally, you’ll set Parent
to this, that is, the form. Always set Parent before setting other properties of the
control.

7 Set any other component properties as desired.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 39-15

T e s t i n g u n i n s t a l l e d c o m p o n e n t s

Suppose you want to test a new component of class TNewControl in a unit named
NewCtrl. Create a new project, then follow the steps to end up with a header file for
the form that looks like this:

//---
#ifndef TestFormH
#define TestFormH
//---
#include <vcl\Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>
#include "NewCtrl.h"
//---
class TForm1 : public TForm
{
__published: // IDE-managed Components
private: // User declarations
public: // User declarations

TNewControl* NewControl1;
__fastcall TForm1(TComponent* Owner);

};
//---
extern TForm1 *Form1;
//---
#endif

The #include statement that includes the NEWCTRL.H file assumes that the
component resides in the directory of the current project or in a directory that is on
the include path of the project.

This is the .CPP file of the form unit:

#include <vcl\vcl.h>
#pragma hdrstop
#include "TestForm.h"
#include "NewCtrl.h"
//---
#pragma package(smart_init);
#pragma resource "*.dfm"
TForm1 *Form1;
//---
static inline TNewControl *ValidCtrCheck()
{

return new TNewControl(NULL);
}
//---
__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)
{

NewControl1 = new TNewControl(this);
NewControl1->Parent = this;
NewControl1->Left = 12;

}
//---

39-16 D e v e l o p e r ’ s G u i d e

T e s t i n g i n s t a l l e d c o m p o n e n t s

namespace Newctrl
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TNewControl)};
RegisterComponents("Samples", classes, 0);

}
}

Testing installed components
You can test the design-time behavior of a component after you install it on the
Component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the Component palette. For information on testing components that have not yet
been installed, see “Testing uninstalled components” on page 39-14.

Testing your components after installing allows you to debug the component that
only generates design-time exceptions when dropped on a form.

Test an installed component using a second running instance of C++Builder:

1 From the C++Builder IDE menu select Project|Options|Debug Source Path and
set path to the component’s source file.

2 Then select Tools|Debugger Options| and enable the exceptions you want to
track.

3 Open the component source file and set breakpoints.

4 Select Run|Parameters and set the Host Application field to the name and location
of the C++Builder executable file.

5 In the Run Parameters dialog, click the Load button to start the second instance of
C++Builder.

6 Then drop the components to be tested on the form, which should break on your
breakpoints in the source.

Installing a component on the Component palette
There are two parts to the process of adding a component to the Component Palette.
The first is making the source files available and the second using the Install
Component dialog to actually add the component.

These two steps are

• Component file locations
• Adding the component

O v e r v i e w o f c o m p o n e n t c r e a t i o n 39-17

I n s t a l l i n g a c o m p o n e n t o n t h e C o m p o n e n t p a l e t t e

Component file locations

All source files used by a component should be located in the same directory. These
files include source code files (.CPP and .PAS) and binary files (.DFM, .RES, .RC, and
.DCR). Header files (.H and .HPP) should be located in the Include directory (or in a
location on the search path for the IDE or a project).

The process of adding a component results in the creation of a number of files. These
files are automatically put in directories specified in the IDE environment options
(use the menu command Tools|Environment Options, navigate to the Library tab
page). The .LIB files are placed in the BPI/LIB output directory. If adding the
component entails creating a new package (as opposed to installing it into an existing
package), the .BPL file is put in the BPL output directory and .BPI files in the BPI/LIB
output directory.

Adding the component

To add components to the component library,

1 Choose Component|Install Component.

The Install Component dialog box appears.

2 Elect to install the new component into an existing or a new package by selecting
the applicable tab page.

3 Enter the name of the .CPP file containing the new component or choose Browse to
find the unit.

4 Adjust the search path if the .CPP file for the new component is not in the default
location shown.

5 Enter the name of the package into which to install the component or choose
Browse to find the package.

6 If the component is installed into a new package, optionally enter a meaningful
description of the package.

7 Choose OK to close the Install Component dialog box. This compiles/rebuilds the
package and installs the component on the Component Palette.

Note Newly installed components initially appear on the page of the Component palette
that was specified by the component writer. You can move the components to a
different page after they have been installed on the palette with the
Component|Configure Palette dialog box.

39-18 D e v e l o p e r ’ s G u i d e

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 40-1

C h a p t e r

40
Chapter40Object-oriented programming for

component writers
If you have written applications with C++Builder, you know that a class contains
both data and code, and that you can manipulate classes at design time and at
runtime. In that sense, you’ve become a component user.

When you create new components, you deal with classes in ways that application
developers never need to. You also try to hide the inner workings of the component
from the developers who will use it. By choosing appropriate ancestors for your
components, designing interfaces that expose only the properties and methods that
developers need, and following the other guidelines in this chapter, you can create
versatile, reusable components.

Before you start creating components, you should be familiar with these topics,
which are related to object-oriented programming (OOP):

• Defining new classes
• Ancestors, descendants, and class hierarchies
• Controlling access
• Dispatching methods
• Abstract class members
• Classes and pointers

Defining new classes
The difference between component writers and application developers is that
component writers create new classes while application developers manipulate
instances of classes.

A class is essentially a type. As a programmer, you are always working with types
and instances, even if you do not use that terminology. For example, you create
variables of a type, such as int. Classes are usually more complex than simple data

40-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g n e w c l a s s e s

types, but they work the same way: By assigning different values to instances of the
same type, you can perform different tasks.

For example, it is quite common to create a form containing two buttons, one labeled
OK and one labeled Cancel. Each is an instance of the class TButton, but by assigning
different values to their Caption properties and different handlers to their OnClick
events, you make the two instances behave differently.

Deriving new classes

There are two reasons to derive a new class:

• To change class defaults to avoid repetition
• To add new capabilities to a class

In either case, the goal is to create reusable objects. If you design components with
reuse in mind, you can save work later on. Give your classes usable default values,
but allow them to be customized.

To change class defaults to avoid repetition
Most programmers try to avoid repetition. Thus, if you find yourself rewriting the
same lines of code over and over, you place the code in a function, or build a library
of routines that you can use in many programs. The same reasoning holds for
components. If you find yourself changing the same properties or making the same
method calls, you can create a new component that does these things by default.

For example, suppose that each time you create an application, you add a dialog box
to perform a particular operation. Although it is not difficult to recreate the dialog
each time, it is also not necessary. You can design the dialog once, set its properties,
and install a wrapper component associated with it onto the Component palette. By
making the dialog into a reusable component, you not only eliminate a repetitive
task, but you encourage standardization and reduce the likelihood of errors each
time the dialog is recreated.

Chapter 47, “Modifying an existing component,” shows an example of changing a
component’s default properties.

Note If you want to modify only the published properties of an existing component, or to
save specific event handlers for a component or group of components, you may be
able to accomplish this more easily by creating a component template.

To add new capabilities to a class
A common reason for creating new components is to add capabilities not found in
existing components. When you do this, you derive the new component from either
an existing component or an abstract base class, such as TComponent or TControl.

Derive your new component from the class that contains the closest subset of the
features you want. You can add capabilities to a class, but you cannot take them
away; so if an existing component class contains properties that you do not want to
include in yours, you should derive from that component’s ancestor.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 40-3

A n c e s t o r s , d e s c e n d a n t s , a n d c l a s s h i e r a r c h i e s

For example, if you want to add features to a list box, you could derive your
component from TListBox. However, if you want to add new features but exclude
some capabilities of the standard list box, you need to derive your component from
TCustomListBox, the ancestor of TListBox. Then you can recreate (or make visible)
only the list-box capabilities you want, and add your new features.

Chapter 49, “Customizing a grid,” shows an example of customizing an abstract
component class.

Declaring a new component class

In addition to standard components, C++Builder provides many abstract classes
designed as bases for deriving new components. Table 39.1 on page 39-3 shows the
classes you can start from when you create your own components.

To declare a new component class, add a class declaration to the component’s header
file.

Here is the declaration of a simple graphical component:

class PACKAGE TSampleShape : public TGraphicControl
{
public:

virtual __fastcall TSampleShape(TComponent* Owner);
};

Do not forget to include the PACKAGE macro (defined in Sysmac.h), which allows
classes to be imported and exported.

A finished component declaration includes property, data member, and method
declarations before the final brace, but an empty declaration is also valid, and
provides a starting point for the addition of component features.

Ancestors, descendants, and class hierarchies
Application developers take for granted that every control has properties named Top
and Left that determine its position on the form. To them, it may not matter that all
controls inherit these properties from a common ancestor, TControl. When you create
a component, however, you must know which class to derive it from so that it
inherits the appropriate features. And you must know everything that your control
inherits, so you can take advantage of inherited features without recreating them.

The class from which you derive a component is called its immediate ancestor. Each
component inherits from its immediate ancestor, and from the immediate ancestor of
its immediate ancestor, and so forth. All of the classes from which a component
inherits are called its ancestors; the component is a descendant of its ancestors.

Together, all the ancestor-descendant relationships in an application constitute a
hierarchy of classes. Each generation in the hierarchy contains more than its
ancestors, since a class inherits everything from its ancestors, then adds new
properties and methods or redefines existing ones.

40-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a c c e s s

If you do not specify an immediate ancestor, C++Builder derives your component
from the default ancestor, TObject. TObject is the ultimate ancestor of all classes in the
object hierarchy.

The general rule for choosing which object to derive from is simple: Pick the object
that contains as much as possible of what you want to include in your new object, but
which does not include anything you do not want in the new object. You can always
add things to your objects, but you cannot take things out.

Controlling access
There are five levels of access control—also called visibility—on properties, methods,
and data members. Visibility determines which code can access which parts of the
class. By specifying visibility, you define the interface to your components.

Table 40.1, “Levels of visibility within an object,” shows the levels of visibility, from
most restrictive to most accessible:

Hiding implementation details

Declaring part of a class as private makes that part invisible to code outside the class
unless the functions are friends of the class. Private parts of a class are mostly useful
for hiding details of implementation from users of the class. Because users of the class
cannot access the private parts, you can change the internal implementation of the
class without affecting user code.

If you do not specify any access control on a data member, method, or property, that
part is private.

Here is an example shown in two parts that illustrates how declaring a data member
as private prevents users from accessing information.

The first part is a form unit made up of a header file and a .CPP file that assigns a
value to a private data member in the form’s OnCreate event handler. Because the
event handler is declared within the TSecretForm class, the unit compiles without
error.

Table 40.1 Levels of visibility within an object

Visibility Meaning Used for

private Accessible only to code in the unit
where the class is defined.

Hiding implementation details.

protected Accessible to code in the unit(s)
where the class and its descendants
are defined.

Defining the component writer’s interface.

public Accessible to all code. Defining the runtime interface.

__automated Accessible to all code. Automation
type information is generated.

OLE automation only.

__published Accessible to all code and from the
Object Inspector.

Defining the design-time interface.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 40-5

C o n t r o l l i n g a c c e s s

#ifndef HideInfoH
#define HideInfoH
//---
#include <vcl\SysUtils.hpp>
#include <vcl\Controls.hpp>
#include <vcl\Classes.hpp>
#include <vcl\Forms.hpp>
//---
class PACKAGE TSecretForm : public TForm
{
__published: // IDE-managed Components

void __fastcall FormCreate(TObject *Sender);
private:

int FSecretCode; // declare a private data member
public: // User declarations

__fastcall TSecretForm(TComponent* Owner);
};
//---
extern TSecretForm *SecretForm;
//---
#endif

This is the accompanying .CPP file:

#include <vcl.h>
#pragma hdrstop
#include "hideInfo.h"
//---
#pragma package(smart_init);
#pragma resource "*.dfm"
TSecretForm *SecretForm;
//---
__fastcall TSecretForm::TSecretForm(TComponent* Owner)

: TForm(Owner)
{
}
//---
void __fastcall TSecretForm::FormCreate(TObject *Sender)
{

FSecretCode = 42; // this compiles correctly
}

The second part of this example is another form unit that attempts to assign a value
to the FSecretCode data member in the SecretForm form. This is the header file for the
unit:

#ifndef TestHideH
#define TestHideH
//---
#include <vcl\SysUtils.hpp>
#include <vcl\Controls.hpp>
#include <vcl\Classes.hpp>
#include <vcl\Forms.hpp>
//---

40-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a c c e s s

class PACKAGE TTestForm : public TForm
{
__published: // IDE-managed Components

void __fastcall FormCreate(TObject *Sender);
public: // User declarations

__fastcall TTestForm(TComponent* Owner);
};
//---
extern TTestForm *TestForm;
//---
#endif

This is the accompanying .CPP file. Because the OnCreate event handler attempts to
assign a value to a data member private to the SecretForm form, the compilation fails
with the error message ‘TSecretForm::FSecretCode’ is not accessible.

#include <vcl.h>
#pragma hdrstop
#include "testHide.h"
#include "hideInfo.h"
//---
#pragma package(smart_init);
#pragma resource "*.dfm"
TTestForm *TestForm;
//---
__fastcall TTestForm::TTestForm(TComponent* Owner)

: TForm(Owner)
{
}
//---
void __fastcall TTestForm::FormCreate(TObject *Sender)
{

SecretForm->FSecretCode = 13; //compiler stops here with error message
}

Although a program using the HideInfo unit can use classes of type TSecretForm, it
cannot access the FSecretCode data member in any of those classes.

Defining the component writer’s interface

Declaring part of a class as protected makes that part visible only to the class itself
and its descendants.

You can use protected declarations to define a component writer’s interface to the class.
Application units do not have access to the protected parts, but derived classes do.
This means that component writers can change the way a class works without
making the details visible to application developers.

Defining the runtime interface

Declaring part of a class as public makes that part visible to any code that has access
to the class as a whole.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 40-7

C o n t r o l l i n g a c c e s s

Public parts are available at runtime to all code, so the public parts of a class define
its runtime interface. The runtime interface is useful for items that are not meaningful
or appropriate at design time, such as properties that depend on runtime input or
which are read-only. Methods that you intend for application developers to call must
also be public.

Here is an example that shows two read-only properties declared as part of a
component’s runtime interface:

class PACKAGE TSampleComponent : public TComponent
{
private:

int FTempCelsius; // implementation details are private
int GetTempFahrenheit();

public:
ƒ
__property int TempCelsius = {read=FTempCelsius}; // properties are public
__property int TempFahrenheit = {read=GetTempFahrenheit};

};

This is the GetTempFahrenheit method in the .CPP file:

int TSampleComponent::GetTempFahrenheit()
{

return FTempCelsius * (9 / 5) + 32;
}

Defining the design-time interface

Declaring part of a class as published makes that part public and also generates
runtime type information. Among other things, runtime type information allows the
Object Inspector to access properties and events.

Because they show up in the Object Inspector, the published parts of a class define
that class’s design-time interface. The design-time interface should include any aspects
of the class that an application developer might want to customize at design time, but
must exclude any properties that depend on specific information about the runtime
environment.

Read-only properties cannot be part of the design-time interface because the
application developer cannot assign values to them directly. Read-only properties
should therefore be public, rather than published.

Here is an example of a published property called Temperature. Because it is
published, it appears in the Object Inspector at design time.

class PACKAGE TSampleComponent : public TComponent
{
private:

int FTemperature;
ƒ

__published:
__property int Temperature = {read=FTemperature, write=FTemperature};

};

40-8 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g m e t h o d s

Dispatching methods
Dispatch is the term used to describe how your application determines which class
method should be invoked when it encounters a class method call. When you write
code that calls a class method, it looks like any other function call. Classes, however,
have two different ways of dispatching methods.

The two types of method dispatch are

• Regular (not virtual) methods
• Virtual methods

Regular methods

Class methods are regular (or nonvirtual) unless you specifically declare them as
virtual, or unless they override a virtual method in a base class. The compiler can
determine the exact address of a regular class member at compile time. This is known
as compile-time binding.

A base class regular method is inherited by derived classes. In the following example,
an object of type Derived can call the method Regular() as it were its own method.
Declaring a method in a derived class with the same name and parameters as a
regular method in the class’s ancestor replaces the ancestor’s method. In the following
example, when d->AnotherRegular() is called, it is being dispatched to the Derived
class replacement for AnotherRegular().

class Base
{
public:

void Regular();
void AnotherRegular();
virtual void Virtual();

};

class Derived : public Base
{
public:

void AnotherRegular(); // replaces Base::AnotherRegular()
void Virtual(); // overrides Base::Virtual()

};

void FunctionOne()
{

Derived *d;
d = new Derived;
d->Regular(); // Calling Regular() as it were a member of Derived

// The same as calling d->Base::Regular()
d->AnotherRegular(); // Calling the redefined AnotherRegular(), ...

// ... the replacement for Base::AnotherRegular()
delete d;

}

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 40-9

D i s p a t c h i n g m e t h o d s

void FunctionTwo(Base *b)
{

b->Virtual();
b->AnotherRegular();

}

Virtual methods
Unlike regular methods, which are bound at compile time, virtual methods are
bound at runtime. The virtual mechanism of C++ allows a method to be called
depending on the class type that is being used to invoke the method.

In the previous example, if you were to call FunctionTwo() with a pointer to a Derived
object, the function Derived::Virtual() would be called. The virtual mechanism
dynamically inspects the class type of the object you passed at runtime and
dispatches the appropriate method. But the call to the regular function
b->AnotherRegular() will always call Base::AnotherRegular() because the address of
AnotherRegular() was determined at compile time.

To declare a new virtual method, preface the method declaration with the virtual
keyword.

When the compiler encounters the virtual keyword, it creates an entry in the class’s
virtual method table (VMT). The VMT holds the addresses of all the virtual methods
in a class. This lookup table is used at runtime to determine that b->Virtual should
call Derived::Virtual(), and not Base::Virtual().

When you derive a new class from an existing class, the new class receives its own
VMT, which includes the entries from its ancestor’s VMT, plus any additional virtual
methods declared in the new class. In addition, the descendant class can override any
of its inherited virtual methods.

Overriding methods
Overriding methods means extending or refining an ancestor’s method, rather than
replacing it. To override a method in a descendant class, redeclare the method in the
derived class, ensuring that the number and type of arguments are the same.

The following code shows the declaration of two simple components. The first
declares two methods, each with a different kind of dispatching. The other, derived
from the first, replaces the nonvirtual method and overrides the virtual method.

class PACKAGE TFirstComponent : public TComponent
{
public:

void Move(); // regular method
virtual void Flash(); // virtual method

};

class PACKAGE TSecondComponent : public TFirstComponent
{
public:

void Move(); // declares new method "hiding" TFirstComponent::Move()
void Flash(); // overrides virtual TFirstComponent::Flash in TFirstComponent

};

40-10 D e v e l o p e r ’ s G u i d e

A b s t r a c t c l a s s m e m b e r s

Abstract class members
When a method is declared as abstract in an ancestor class, you must surface it (by
redeclaring and implementing it) in any descendant component before you can use
the new component in applications. C++Builder cannot create instances of a class
that contains abstract members. For more information about surfacing inherited parts
of classes, see Chapter 41, “Creating properties,” and Chapter 43, “Creating
methods.”

Classes and pointers
Every class (and therefore every component) is really a pointer. The status of classes
as pointers becomes important when you pass a class as a parameter. In general, you
should pass classes by value rather than by reference. The reason is that classes are
already pointers, which are references; passing a class by reference amounts to
passing a reference to a reference.

C r e a t i n g p r o p e r t i e s 41-1

C h a p t e r

41
Chapter41Creating properties

Properties are the most visible parts of components. The application developer can
see and manipulate them at design time and get immediate feedback as the
components react in the Form designer. Well-designed properties make your
components easier for others to use and easier for you to maintain.

To make the best use of properties in your components, you should understand the
following:

• Why create properties?
• Types of properties
• Publishing inherited properties
• Defining properties
• Creating array properties
• Storing and loading properties

Why create properties?
From the application developer’s standpoint, properties look like variables.
Developers can set or read the values of properties as if they were data members.
(About the only thing you can do with a variable that you cannot do with a property
is pass it as an argument to a method by reference.)

Properties provide more power than simple data members because

• Application developers can set properties at design time. Unlike methods, which
are available only at runtime, properties let the developer customize components
before running an application. Properties can appear in the Object Inspector,
which simplifies the programmer’s job; instead of handling several parameters to
construct an object, you let C++ Builder read the values from the Object Inspector.
The Object Inspector also validates property assignments as soon as they are
made.

41-2 D e v e l o p e r ’ s G u i d e

T y p e s o f p r o p e r t i e s

• Properties can hide implementation details. For example, data stored internally in
an encrypted form can appear unencrypted as the value of a property; although
the value is a simple number, the component may look up the value in a database
or perform complex calculations to arrive at it. Properties let you attach complex
effects to outwardly simple assignments; what looks like an assignment to a data
member can be a call to a method which implements elaborate processing.

• Properties can be virtual. Hence, what looks like a single property to an
application developer may be implemented differently in different components.

A simple example is the Top property of all controls. Assigning a new value to Top
does not just change a stored value; it repositions and repaints the control. And the
effects of setting a property need not be limited to an individual component; for
example, setting the Down property of a speed button to true sets Down property of
all other speed buttons in its group to false.

Types of properties
A property can be of any type. Different types are displayed differently in the Object
Inspector, which validates property assignments as they are made at design time.

Publishing inherited properties
All components inherit properties from their ancestor classes. When you derive a
new component from an existing one, your new component inherits all the properties
of its immediate ancestor. If you derive from one of the abstract classes, many of the
inherited properties are either protected or public, but not published.

Table 41.1 How properties appear in the Object Inspector

Property type Object Inspector treatment

Simple Numeric, character, and string properties appear as numbers, characters, and
strings. The application developer can edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) appear as editable strings.
The developer can also cycle through the possible values by double-clicking
the value column, and there is a drop-down list that shows all possible values.

Set Properties of set types appear as sets. By double-clicking on the property, the
developer can expand the set and treat each element as a Boolean value (true if
it is included in the set).

Object Properties that are themselves classes often have their own property editors,
specified in the component’s registration procedure. If the class held by a
property has its own published properties, the Object Inspector lets the
developer to expand the list (by double-clicking) to include these properties
and edit them individually. Object properties must descend from TPersistent.

Array Array properties must have their own property editors; the Object Inspector
has no built-in support for editing them. You can specify a property editor
when you register your components.

C r e a t i n g p r o p e r t i e s 41-3

D e f i n i n g p r o p e r t i e s

To make a protected or public property available at design time in the Object
Inspector, you must redeclare the property as published. Redeclaring means adding
a declaration for the inherited property to the declaration of the descendant class.

If you derive a component from TWinControl, for example, it inherits the protected
DockSite property. By redeclaring DockSite in your new component, you can change
the level of protection to either public or published.

The following code shows a redeclaration of DockSite as published, making it available
at design time.

class PACKAGE TSampleComponent : public TWinControl
{
__published:

__property DockSite;
};

When you redeclare a property, you specify only the property name, not the type and
other information described below in “Defining properties.” You can also declare
new default values and specify whether to store the property.

Redeclarations can make a property less restricted, but not more restricted. Thus you
can make a protected property public, but you cannot hide a public property by
redeclaring it as protected.

Defining properties
This section shows how to declare new properties and explains some of the
conventions followed in the standard components. Topics include

• The property declaration
• Internal data storage
• Direct access
• Access methods
• Default property values

The property declaration

A property is declared in the declaration of its component class. To declare a
property, you specify three things:

• The name of the property.

• The type of the property.

• The methods used to read and write the value of the property. If no write method
is declared, the property is read-only.

Properties declared in a __published section of the component’s class declaration are
editable in the Object Inspector at design time. The value of a published property is
saved with the component in the form file. Properties declared in a public section are
available at runtime and can be read or set in program code.

41-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s

Here is a typical declaration for a property called Count.

class PACKAGE TYourComponent : public TComponent
{
private:

int FCount; // data member for storage
int __fastcall GetCount(); // read method
void __fastcall SetCount(int ACount); // write method

public:
__property int Count = {read=GetCount, write=SetCount}; // property declaration

ƒ
};

Internal data storage

There are no restrictions on how you store the data for a property. In general,
however, C++Builder components follow these conventions:

• Property data is stored in class data members.

• The data members used to store property data are private and should be accessed
only from within the component itself. Derived components should use the
inherited property; they do not need direct access to the property’s internal data
storage.

• Identifiers for these data members consist of the letter F followed by the name of
the property. For example, the raw data for the Width property defined in TControl
is stored in a data member called FWidth.

The principle that underlies these conventions is that only the implementation
methods for a property should access the data behind it. If a method or another
property needs to change that data, it should do so through the property, not by
direct access to the stored data. This ensures that the implementation of an inherited
property can change without invalidating derived components.

Direct access

The simplest way to make property data available is direct access. That is, the read and
write parts of the property declaration specify that assigning or reading the property
value goes directly to the internal-storage data member without calling an access
method. Direct access is useful when you want to make a property available in the
Object Inspector but changes to its value trigger no immediate processing.

It is common to have direct access for the read part of a property declaration but use
an access method for the write part. This allows the status of the component to be
updated when the property value changes.

C r e a t i n g p r o p e r t i e s 41-5

D e f i n i n g p r o p e r t i e s

The following component-type declaration shows a property that uses direct access
for both the read and the write parts.

class PACKAGE TSampleComponent : public TComponent
{
private: // internal storage is private

bool FReadOnly; // declare data member to hold value
ƒ

__published: // make property available at design time
__property bool ReadOnly = {read=FReadOnly, write=FReadOnly};

};

Access methods
You can specify an access method instead of a data member in the read and write parts of
a property declaration. Access methods should be protected, and are usually declared as
virtual; this allows descendant components to override the property’s implementation.

Avoid making access methods public. Keeping them protected ensures that application
developers do not inadvertently modify a property by calling one of these methods.

Here is a class that declares three properties using the index specifier, which allows
all three properties to have the same read and write access methods:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:
 int __fastcall GetDateElement(int Index); // note Index parameter
 void __fastcall SetDateElement(int Index, int Value);
public:
 __property int Day = {read=GetDateElement, write=SetDateElement, index=3, nodefault};
 __property int Month = {read=GetDateElement, write=SetDateElement, index=2, nodefault};
 __property int Year = {read=GetDateElement, write=SetDateElement, index=1, nodefault};
};

Because each element of the date (day, month, and year) is an int, and because setting
each requires encoding the date when set, the code avoids duplication by sharing the
read and write methods for all three properties. You need only one method to read a
date element, and another to write the date element.

Here is the read method that obtains the date element:

int __fastcall TSampleCalendar::GetDateElement(int Index)
{
 unsigned short AYear, AMonth, ADay;
 int result;
 FDate.DecodeDate(&AYear, &AMonth, &Aday); // break date into elements
 switch (Index)
 {
 case 1: result = AYear; break;
 case 2: result = AMonth; break;
 case 3: result = ADay; break;
 default: result = -1;
 }
 return result;
}

41-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s

This is the write method that sets the appropriate date element:

void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{
 unsigned short AYear, AMonth, ADay;
 if (Value > 0) // all elements must be positive
 {
 FDate.DecodeDate(&AYear, &AMonth, &ADay); // get date elements
 switch (Index)
 {
 case 1: AYear = Value; break;
 case 2: AMonth = Value; break;
 case 3: ADay = Value; break;
 default: return;
 }
 }
 FDate = TDateTime(AYear, AMonth, ADay); // encode the modified date
 Refresh();// update the visible calendar
}

The read method
The read method for a property is a function that takes no parameters (except as
noted below) and returns a value of the same type as the property. By convention, the
function’s name is Get followed by the name of the property. For example, the read
method for a property called Count would be GetCount. The read method
manipulates the internal storage data as needed to produce the value of the property
in the appropriate type.

The only exceptions to the no-parameters rule are for array properties and properties
that use index specifiers (see “Creating array properties” on page 41-8), both of
which pass their index values as parameters. (Use index specifiers to create a single
read method that is shared by several properties.)

If you do not declare a read method, the property is write-only. Write-only properties
are seldom used.

The write method
The write method for a property is a member function that takes a single parameter
(except as noted below) of the same type as the property. The parameter can be
passed by reference or by value, and can have any name you choose. By convention,
the write method’s name is Set followed by the name of the property. For example,
the write method for a property called Count would be SetCount. The value passed in
the parameter becomes the new value of the property; the write method must
perform any manipulation needed to put the appropriate data in the property’s
internal storage.

C r e a t i n g p r o p e r t i e s 41-7

D e f i n i n g p r o p e r t i e s

The only exceptions to the single-parameter rule are for array properties and
properties that use index specifiers, both of which pass their index values as a second
parameter. (Use index specifiers to create a single write method that is shared by
several properties.)

If you do not declare a write method, the property is read-only. For a published
property to be usable at design time, it must be defined as read/write.

Write methods commonly test whether a new value differs from the current value
before changing the property. For example, here is a simple write method for an
integer property called Count that stores its current value in a data member called
FCount.

void __fastcall TMyComponent::SetCount(int Value)
{

if (Value != FCount)
{

FCount = Value;
Update();

}

Default property values

When you declare a property, you can specify a default value for it. C++Builder uses
the default value to determine whether to store the property in a form file. If you do
not specify a default value for a property, C++Builder always stores the property.

To declare a default value for a property, append an equal sign after the property
name and a set of braces that holds the default keyword and the default value. For
example,

__property bool IsTrue = {default=true};

Note Declaring a default value does not set the property to that value. The component’s
constructor method should initialize property values when appropriate. However,
since objects always initialize their data members to 0, it is not strictly necessary for
the constructor to set integer properties to 0, string properties to null, or Boolean
properties to false.

Specifying no default value
When redeclaring a property, you can specify that the property has no default value,
even if the inherited property specified one.

To designate a property as having no default value, append an equal sign after the
property name and a set of braces that holds the nodefault keyword. For example,

__property int NewInteger = {nodefault};

When you declare a property for the first time, there is no need to include nodefault.
The absence of a declared default value means that there is no default.

41-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a r r a y p r o p e r t i e s

Here is the declaration of a component that includes a single Boolean property
named IsTrue with a default value of true, including the constructor that sets the
default value.

class PACKAGE TSampleComponent : public TComponent
{
private:

 bool FIsTrue;
public:

virtual __fastcall TSampleComponent(TComponent* Owner);
__published:

__property bool IsTrue = {read=FIsTrue, write=FIsTrue, default=true};
};

__fastcall TSampleComponent::TSampleComponent (TComponent* Owner)
: TComponent (Owner)

{
FIsTrue = true;

}

Creating array properties
Some properties lend themselves to being indexed like arrays. For example, the Lines
property of TMemo is an indexed list of the strings that make up the text of the memo;
you can treat it as an array of strings. Lines provides natural access to a particular
element (a string) in a larger set of data (the memo text).

Array properties are declared like other properties, except that

• The declaration includes one or more indexes with specified types. The indexes
can be of any type.

• The read and write parts of the property declaration, if specified, must be
methods. They cannot be data members.

The read and write methods for an array property take additional parameters that
correspond to the indexes. The parameters must be in the same order and of the same
type as the indexes specified in the declaration.

There are a few important differences between array properties and arrays. Unlike
the index of an array, the index of an array property does not have to be an integer
type. You can index a property on a string, for example. In addition, you can
reference only individual elements of an array property, not the entire range of the
property.

C r e a t i n g p r o p e r t i e s 41-9

S t o r i n g a n d l o a d i n g p r o p e r t i e s

The following example shows the declaration of a property that returns a string
based on an integer index.

class PACKAGE TDemoComponent : public TComponent
{
private:

System::AnsiString __fastcall GetNumberSize(int Index);
public:

__property System::AnsiString NumberSize[int Index] = {read=GetNumberSize};
ƒ

};

This is the GetNumberSize method in the .CPP file:

System::AnsiString __fastcall TDemoComponent::GetNumberSize(int Index)
{

System::AnsiString Result;
switch (Index)
{

case 0:
Result = "Zero";
break;

case 100:
Result = "Medium";
break;

case 1000:
Result = "Large";
break;

default: Result = "Unknown size";
}
return Result;

}

Storing and loading properties
C++Builder stores forms and their components in form (.DFM) files. A form file is a
binary representation of the properties of a form and its components. When
C++Builder developers add the components you write to their forms, your
components must have the ability to write their properties to the form file when
saved. Similarly, when loaded into C++Builder or executed as part of an application,
the components must restore themselves from the form file.

Most of the time you will not need to do anything to make your components work
with form files because the ability to store a representation and load from it are part
of the inherited behavior of components. Sometimes, however, you might want to
alter the way a component stores itself or the way it initializes when loaded; so you
should understand the underlying mechanism.

41-10 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

These are the aspects of property storage you need to understand:

• Using the store-and-load mechanism
• Specifying default values
• Determining what to store
• Initializing after loading
• Storing and loading unpublished properties

Using the store-and-load mechanism

The description of a form consists of a list of the form’s properties, along with similar
descriptions of each component on the form. Each component, including the form
itself, is responsible for storing and loading its own description.

By default, when storing itself, a component writes the values of all its public and
published properties that differ from their default values, in the order of their
declaration. When loading itself, a component first constructs itself, setting all
properties to their default values, then reads the stored, non-default property values.

This default mechanism serves the needs of most components, and requires no action
at all on the part of the component writer. There are several ways you can customize
the storing and loading process to suit the needs of your particular components,
however.

Specifying default values

C++Builder components save their property values only if those values differ from
the defaults. If you do not specify otherwise, C++Builder assumes a property has no
default value, meaning the component always stores the property, whatever its
value.

To specify a default value for a property,

1 Add an equal sign (=) after the property name.

2 After the equal sign, add braces({}).

3 Within the braces, type the keyword default, followed by another equal sign.

4 Specify the new default value.

For example,

__property Alignment = {default=taCenter};

You can also specify a default value when redeclaring a property. In fact, one reason
to redeclare a property is to designate a different default value.

Note Specifying the default value does not automatically assign that value to the property
on creation of the object. You must make sure that the component’s constructor
assigns the necessary value. A property whose value is not set by a component’s
constructor assumes a zero value—that is, whatever value the property assumes when
its storage memory is set to 0. Thus numeric values default to 0, Boolean values to false,

C r e a t i n g p r o p e r t i e s 41-11

S t o r i n g a n d l o a d i n g p r o p e r t i e s

pointers to NULL, and so on. If there is any doubt, assign a value in the constructor
method.

The following code shows a component declaration that specifies a default value for
the Align property and the implementation of the component’s constructor that sets
the default value. In this case, the new component is a special case of the standard
panel component that will be used for status bars in a window, so its default
alignment should be to the bottom of its owner.

class PACKAGE TMyStatusBar : public TPanel
{
public:

virtual __fastcall TMyStatusBar(TComponent* AOwner);
__published:
 __property Align = {default=alBottom};
};

The constructor of the TMyStatusBar component is in the .CPP file:

__fastcall TMyStatusBar::TMyStatusBar (TComponent* AOwner)
 : TPanel(AOwner)
{
 Align = alBottom;
}

Determining what to store

You can control whether C++Builder stores each of your components’ properties. By
default, all properties in the published part of the class declaration are stored. You
can choose not to store a given property at all, or you can designate a function that
determines at runtime whether to store the property.

To control whether C++Builder stores a property,

1 Add an equal sign (=) after the property name.

2 After the equal sign, add braces({}).

3 Within the braces, type the keyword stored, followed by true, false, or the name of
a Boolean method.

The following code shows a component that declares three new properties. One is
always stored, one is never stored, and the third is stored depending on the value of a
Boolean method:

class PACKAGE TSampleComponent : public TComponent
{
protected:

bool __fastcall StoreIt();
public:

ƒ
__published:

__property int Important = {stored=true}; // always stored
__property int Unimportant = {stored=false}; // never stored
__property int Sometimes = {stored=StoreIt}; // storage depends on function value

};

41-12 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

Initializing after loading

After a component reads all its property values from its stored description, it calls a
virtual method named Loaded, which performs any required initializations. The call
to Loaded occurs before the form and its controls are shown, so you do not need to
worry about initialization causing flicker on the screen.

To initialize a component after it loads its property values, override the Loaded
method.

Note The first thing to do in any Loaded method is call the inherited Loaded method. This
ensures that any inherited properties are correctly initialized before you initialize
your own component.

Storing and loading unpublished properties

By default, only published properties are loaded and saved with a component.
However, it is possible to load and save unpublished properties. This allows you to
have persistent properties that do not appear in the Object Inspector. It also allows
components to store and load property values that C++Builder does not know how
to read or write because the value of the property is too complex. For example, the
TStrings object can’t rely on C++Builder’s automatic behavior to store and load the
strings it represents and must use the following mechanism.

You can save unpublished properties by adding code that tells C++Builder how to
load and save your property’s value.

To write your own code to load and save properties, use the following steps:

1 Create methods to store and load the property value.

2 Override the DefineProperties method, passing those methods to a filer object.

Creating methods to store and load property values
To store and load unpublished properties, you must first create a method to store
your property value and another to load your property value. You have two choices:

• Create a method of type TWriterProc to store your property value and a method of
type TReaderProc to load your property value. This approach lets you take
advantage of C++Builder’s built-in capabilities for saving and loading simple
types. If your property value is built out of types that C++Builder knows how to
save and load, use this approach.

• Create two methods of type TStreamProc, one to store and one to load your
property’s value. TStreamProc takes a stream as an argument, and you can use the
stream’s methods to write and read your property values.

C r e a t i n g p r o p e r t i e s 41-13

S t o r i n g a n d l o a d i n g p r o p e r t i e s

For example, consider a property that represents a component that is created at
runtime. C++Builder knows how to write this value, but does not do so
automatically because the component is not created in the form designer. Because the
streaming system can already load and save components, you can use the first
approach. The following methods load and store the dynamically created component
that is the value of a property named MyCompProperty:

void __fastcall TSampleComponent::LoadCompProperty(TReader *Reader)
{

if (Reader->ReadBoolean())
MyCompProperty = Reader->ReadComponent(NULL);

}
void __fastcall TSampleComponent::StoreCompProperty(TWriter *Writer)
{

if (MyCompProperty)
{

Writer->WriteBoolean(true);
Writer->WriteComponent(MyCompProperty);

}
else

Writer->WriteBoolean(false);
}

Overriding the DefineProperties method
Once you have created methods to store and load your property value, you can
override the component’s DefineProperties method. C++Builder calls this method
when it loads or stores the component. In the DefineProperties method, you must call
the DefineProperty method or the DefineBinaryProperty method of the current filer,
passing it the method to use for loading or saving your property value. If your load
and store methods are of type TWriterProc and type TReaderProc, then you call the
filer’s DefineProperty method. If you created methods of type TStreamProc, call
DefineBinaryProperty instead.

No matter which method you use to define the property, you pass it the methods that
store and load your property value as well as a boolean value indicating whether the
property value needs to be written. If the value can be inherited or has a default
value, you do not need to write it.

For example, given the LoadCompProperty method of type TReaderProc and the
StoreCompProperty method of type TWriterProc, you would override DefineProperties
as follows:

void __fastcall TSampleComponent::DefineProperties(TFiler *Filer)
{

// before we do anything, let the base class define its properties.
// Note that this example assumes that TSampleComponent derives directly from TComponent
TComponent::DefineProperties(Filer);
bool WriteValue;

41-14 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

if (Filer->Ancestor) // check for inherited value
{

if ((TSampleComponent *)Filer->Ancestor)->MyCompProperty == NULL)
WriteValue = (MyCompProperty != NULL);

else if ((MyCompProperty == NULL) ||
(((TSampleComponent *)Filer->Ancestor)->MyCompProperty->Name !=

MyCompProperty->Name))
WriteValue = true;

else WriteValue = false;
}
else // no inherited value, write property if not null

WriteValue = (MyCompProperty != NULL);
Filer->DefineProperty("MyCompProperty ",LoadCompProperty,StoreCompProperty, WriteValue);

end;

C r e a t i n g e v e n t s 42-1

C h a p t e r

42
Chapter42Creating events

An event is a link between an occurrence in the system (such as a user action or a
change in focus) and a piece of code that responds to that occurrence. The responding
code is an event handler, and is nearly always written by the application developer.
Events let application developers customize the behavior of components without
having to change the classes themselves. This is known as delegation.

Events for the most common user actions (such as mouse actions) are built into all the
standard components, but you can also define new events. To create events in a
component, you need to understand the following:

• What are events?
• Implementing the standard events
• Defining your own events

Events are implemented as properties, so you should already be familiar with the
material in Chapter 41, “Creating properties” before you attempt to create or change
a component’s events.

What are events?
An event is a mechanism that links an occurrence to some code. More specifically, an
event is a closure that points to a method in a specific class instance.

From the application developer’s perspective, an event is just a name related to a
system occurrence, such as OnClick, to which specific code can be attached. For
example, a push button called Button1 has an OnClick method. By default,
C++Builder generates an event handler called Button1Click in the form that contains
the button and assigns it to OnClick. When a click event occurs in the button, the
button calls the method assigned to OnClick, in this case, Button1Click.

42-2 D e v e l o p e r ’ s G u i d e

W h a t a r e e v e n t s ?

To write an event, you need to understand the following:

• Events are closures.
• Events are properties.
• Event types are closure types.
• Event handlers have a return type of void.
• Event handlers are optional.

Events are closures

C++Builder uses closures to implement events. A closure is a special pointer type
that points to a specific method in a specific class instance. As a component writer,
you can treat the closure as a place holder: your code detects that an event occurs, so
you call the method (if any) specified by the user for that event.

Closures maintain a hidden pointer to a class instance. When the user assigns a
handler to a component’s event, the assignment is not just to a method with a
particular name, but rather to a specific method of a specific class instance. That
instance is usually the form that contains the component, but it need not be.

All controls, for example, inherit a virtual method called Click for handling click
events:

virtual void __fastcall Click(void);

The implementation of Click calls the user’s click-event handler, if one exists. If the
user has assigned a handler to a control’s OnClick event, clicking the control results in
that method being called. If no handler is assigned, nothing happens.

Events are properties

Components use properties to implement their events. Unlike most other properties,
events do not use methods to implement their read and write parts. Instead, event
properties use a private data member the same type as the property.

By convention, the data member’s name is the same as the name of the property, but
preceded by the letter F. For example, the OnClick closure is stored in a data member
called FOnClick of type TNotifyEvent, and the declaration of the OnClick event
property looks like this:

class PACKAGE TControl : public TComponent
{
private:

TNotifyEvent FOnClick;
ƒ

protected:
__property TNotifyEvent OnClick = {read=FOnClick, write=FOnClick};

ƒ
};

To learn about TNotifyEvent and other event types, see the next section, “Event types
are closure types.”

C r e a t i n g e v e n t s 42-3

W h a t a r e e v e n t s ?

As with any other property, you can set or change the value of an event at runtime.
The main advantage to having events be properties, however, is that component
users can assign handlers to events at design time, using the Object Inspector.

Event types are closure types

Because an event is a pointer to an event handler, the type of the event property must
be a closure type. Similarly, any code to be used as an event handler must be an
appropriately typed method of a class.

To be compatible with an event of a given type, an event-handler method must have
the same number and type of parameters, in the same order, passed in the same way.

C++Builder defines closures for all its standard events. When you create your own
events, you can use an existing closure if that is appropriate, or define one of your
own.

Event handlers have a return type of void
Event handlers must have a return type of void only. Even though the handler can
return only void, you can still get information back from the user’s code by passing
arguments by reference. When you do this, make sure you assign a valid value to the
argument before calling the handler so you do not require the user’s code to change
the value.

An example of passing arguments by reference to an event handler is the key-pressed
event, of type TKeyPressEvent. TKeyPressEvent defines two arguments, one to indicate
which object generated the event, and one to indicate which key was pressed:

typedef void __fastcall (__closure *TKeyPressEvent)(TObject *Sender, Char &Key);

Normally, the Key parameter contains the character pressed by the user. Under
certain circumstances, however, the user of the component might want to change the
character. One example might be to force all characters to uppercase in an edit
control. In that case, the user could define the following handler for keystrokes:

void __fastcall TForm1::Edit1KeyPress(TObject *Sender, Char &Key)
{

Key = UpCase(Key);
}

You can also use arguments passed by reference to let the user override the default
handling.

Event handlers are optional

When creating events, remember that developers using your components may not
attach handlers to them. This means that your component should not fail or generate
errors simply because there is no handler attached to a particular event. (The
mechanics of calling handlers and dealing with events that have no attached handler
are explained in “Calling the event” on page 42-8.)

42-4 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s

Events happen almost constantly in a Windows application. Just moving the mouse
pointer across a visual component makes Windows send numerous mouse-move
messages, which the component translates into OnMouseMove events. In most cases,
developers do not want to handle the mouse-move events, and this should not cause
a problem. So the components you create should not require handlers for their
events.

Moreover, application developers can write any code they want in an event handler.
The components in the VCL have events written in such a way as to minimize the
chance of an event handler generating errors. Obviously, you cannot protect against
logic errors in application code, but you can ensure that data structures are initialized
before calling events so that application developers do not try to access invalid data.

Implementing the standard events
The controls that come with C++Builder inherit events for the most common
Windows occurrences. These are called the standard events. Although all these events
are built into the controls, they are often protected, meaning developers cannot
attach handlers to them. When you create a control, you can choose to make events
visible to users of your control.

There are three things you need to consider when incorporating the standard events
into your controls:

• Identifying standard events
• Making events visible
• Changing the standard event handling

Identifying standard events

There are two categories of standard events: those defined for all controls and those
defined only for the standard windowed controls.

Standard events for all controls
The most basic events are defined in the class TControl. All controls, whether
windowed, graphical, or custom, inherit these events. The following are events
available in all controls:

The standard events have corresponding protected virtual methods declared in
TControl, with names that correspond to the event names. For example, OnClick
events call a method named Click, and OnEndDrag events call a method named
DoEndDrag.

OnClick OnDragDrop OnEndDrag OnMouseMove

OnDblClick OnDragOver OnMouseDown OnMouseUp

C r e a t i n g e v e n t s 42-5

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s

Standard events for standard controls
In addition to the events common to all controls, standard windowed controls (those
that descend from TWinControl) have the following events:

Like the standard events in TControl, the windowed-control events have
corresponding methods.

Making events visible

The declarations of the standard events in TControl and TWinControl are protected, as
are the methods that correspond to them. If you are inheriting from one of these
abstract classes and want to make their events accessible at runtime or design time,
you need to redeclare the events as either public or published.

Redeclaring a property without specifying its implementation keeps the same
implementation methods, but changes the protection level. You can, therefore, take
an event that is defined in TControl but not made visible, and surface it by declaring it
as public or published.

For example, to create a component that surfaces the OnClick event at design time,
you would add the following to the component’s class declaration.

class PACKAGE TMyControl : public TCustomControl
{

ƒ
__published:

__property OnClick; // Makes OnClick available in the Object Inspector
};

Changing the standard event handling

If you want to change the way your component responds to a certain kind of event,
you might be tempted to write some code and assign it to the event. As an
application developer, that is exactly what you would do. But when you are creating
a component, you must keep the event available for developers who use the
component.

This is the reason for the protected implementation methods associated with each of
the standard events. By overriding the implementation method, you can modify the
internal event handling; and by calling the inherited method you can maintain the
standard handling, including the event for the application developer’s code.

The order in which you call the methods is significant. As a rule, call the inherited
method first, allowing the application developer’s event-handler to execute before
your customizations (and in some cases, to keep the customizations from executing).
There may be times when you want to execute your code before calling the inherited
method, however. For example, if the inherited code is somehow dependent on the

OnEnter OnKeyDown OnKeyPress

OnKeyUp OnExit

42-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s

status of the component and your code changes that status, you should make the
changes and then allow the user’s code to respond to them.

Suppose you are writing a component and you want to modify the way it responds
to mouse clicks. Instead of assigning a handler to the OnClick event as a application
developer would, you override the protected method Click:

void __fastcall TMyControl::Click()
{

TWinControl::Click(); // perform standard handling, including calling handler
// your customizations go here

}

Defining your own events
Defining entirely new events is relatively unusual. There are times, however, when a
component introduces behavior that is entirely different from that of any other
component, so you will need to define an event for it.

There are the issues you will need to consider when defining an event:

• Triggering the event
• Defining the handler type
• Declaring the event
• Calling the event

Triggering the event

You need to know what triggers the event. For some events, the answer is obvious.
For example, a mouse-down event occurs when the user presses the left button on
the mouse and Windows sends a WM_LBUTTONDOWN message to the application.
Upon receiving that message, a component calls its MouseDown method, which in
turn calls any code the user has attached to the OnMouseDown event.

But some events are less clearly tied to specific external occurrences. For example, a
scroll bar has an OnChange event, which is triggered by several kinds of occurrence,
including keystrokes, mouse clicks, and changes in other controls. When defining
your events, you must ensure that all the appropriate occurrences call the proper
events.

Two kinds of events
There are two kinds of occurrence you might need to provide events for: user
interactions and state changes. User-interaction events are nearly always triggered by
a message from Windows, indicating that the user did something your component
may need to respond to. State-change events may also be related to messages from
Windows (focus changes or enabling, for example), but they can also occur through
changes in properties or other code. You have total control over the triggering of the

C r e a t i n g e v e n t s 42-7

D e f i n i n g y o u r o w n e v e n t s

events you define. Define the events with care so that developers are able to
understand and use them.

Defining the handler type

Once you determine when the event occurs, you must define how you want the event
handled. This means determining the type of the event handler. In most cases,
handlers for events you define yourself are either simple notifications or
event-specific types. It is also possible to get information back from the handler.

Simple notifications
A notification event is one that only tells you that the particular event happened,
with no specific information about when or where. Notifications use the type
TNotifyEvent, which carries only one parameter, the sender of the event. All a handler
for a notification “knows” about the event is what kind of event it was, and what
component the event happened to. For example, click events are notifications. When
you write a handler for a click event, all you know is that a click occurred and which
component was clicked.

Notification is a one-way process. There is no mechanism to provide feedback or
prevent further handling of a notification.

Event-specific handlers
In some cases, it is not enough to know which event happened and what component
it happened to. For example, if the event is a key-press event, it is likely that the
handler will want to know which key the user pressed. In these cases, you need
handler types that include parameters for additional information.

If your event was generated in response to a message, it is likely that the parameters
you pass to the event handler come directly from the message parameters.

Returning information from the handler
Because all event handlers return void only, the only way to pass information back
from a handler is through a parameter passed by reference. Your components can use
such information to determine how or whether to process an event after the user’s
handler executes.

For example, all the key events (OnKeyDown, OnKeyUp, and OnKeyPress) pass by
reference the value of the key pressed in a parameter named Key. The event handler
can change Key so that the application sees a different key as being involved in the
event. This is a way to force typed characters to uppercase, for example.

Declaring the event

Once you have determined the type of your event handler, you are ready to declare
the closure and the property for the event. Be sure to give the event a meaningful and

42-8 D e v e l o p e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s

descriptive name so that users can understand what the event does. Try to be
consistent with names of similar properties in other components.

Event names start with “On”
The names of most events in C++Builder begin with “On.” This is just a convention;
the compiler does not enforce it. The Object Inspector determines that a property is
an event by looking at the type of the property: all closure properties are assumed to
be events and appear on the Events page.

Developers expect to find events in the alphabetical list of names starting with “On.”
Using other kinds of names is likely to confuse them.

Calling the event

You should centralize calls to an event. That is, create a virtual method in your
component that calls the application’s event handler (if it assigns one) and provides
any default handling.

Putting all the event calls in one place ensures that someone deriving a new
component from yours can customize event handling by overriding a single method,
rather than searching through your code for places where you call the event.

There are two other considerations when calling the event:

• Empty handlers must be valid.
• Users can override default handling.

Empty handlers must be valid
You should never create a situation in which an empty event handler causes an error,
nor should the proper functioning of your component depend on a particular
response from the application’s event-handling code.

An empty handler should produce the same result as no handler at all. So the code
for calling an application’s event handler should look like this:

if (OnClick)
OnClick(this);

// perform default handling }

You should never have something like this:

if (OnClick)
OnClick(this);

else
// perform default handling

Users can override default handling
For some kinds of events, developers may want to replace the default handling or
even suppress all responses. To allow this, you need to pass an argument by
reference to the handler and check for a certain value when the handler returns.

C r e a t i n g e v e n t s 42-9

D e f i n i n g y o u r o w n e v e n t s

This is in keeping with the rule that an empty handler should have the same effect as
no handler at all. Because an empty handler will not change the values of arguments
passed by reference, the default handling always takes place after calling the empty
handler.

When handling key-press events, for example, the user can suppress the
component’s default handling of the keystroke by setting the Key parameter to a null
character. The logic for supporting that looks like this:

if (OnKeyPress)
OnKeyPress(this, &Key);

if (Key != NULL)
//perform default handling

The actual code is a little different from this because it deals with Windows
messages, but the logic is the same. By default, the component calls any
user-assigned handler, then performs its standard handling. If the user’s handler sets
Key to a null character, the component skips the default handling.

42-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g m e t h o d s 43-1

C h a p t e r

43
Chapter43Creating methods

Component methods are no different from any other class’s methods. That is, they
are member functions built into the structure of a component class. Although there
are essentially no restrictions on what you can do with the methods of a component,
C++Builder does use some standards you should follow. These guidelines include

• Avoiding dependencies
• Naming methods
• Protecting methods
• Making methods virtual
• Declaring methods

In general, components should not contain many methods and you should minimize
the number of methods that an application needs to call. The features you might be
inclined to implement as methods are often better encapsulated into properties.
Properties provide an interface that suits the C++Builder environment and are
accessible at design time.

Avoiding dependencies
At all times when writing components, minimize the preconditions imposed on the
developer. To the greatest extent possible, developers should be able to do anything
they want to a component, whenever they want to do it. There will be times when
you cannot accommodate that, but your goal should be to come as close as possible.

This list gives you an idea of the kinds of dependencies to avoid:

• Methods that the user must call to use the component

• Methods that must execute in a particular order

• Methods that put the component into a state or mode where certain events or
methods could be invalid

43-2 D e v e l o p e r ’ s G u i d e

N a m i n g m e t h o d s

The best way to handle these situations is to ensure that you provide ways out of
them. For example, if calling a method puts your component into a state where
calling another method might be invalid, then write that second method so that if an
application calls it when the component is in a bad state, the method corrects the
state before executing its main code. At a minimum, you should throw an exception
in cases when a user calls a method that is invalid.

In other words, if you create a situation where parts of your code depend on each
other, the burden should be on you to be sure that using the code in incorrect ways
does not cause problems. A warning message, for example, is preferable to a system
failure if the user does not accommodate your dependencies.

Naming methods
C++Builder imposes no restrictions on what you name methods or their parameters.
There are a few conventions that make methods easier for application developers,
however. Keep in mind that the nature of a component architecture dictates that
many different kinds of people might use your components.

If you are accustomed to writing code that only you or a small group of programmers
use, you might not think too much about how you name things. It is a good idea to
make your method names clear because people unfamiliar with your code (and even
unfamiliar with coding) might have to use your components.

Here are some suggestions for making clear method names:

• Make names descriptive. Use meaningful verbs.

A name like PasteFromClipboard is much more informative than simply Paste or
PFC.

• Function names should reflect the nature of what they return.

Although it might be obvious to you as a programmer that a function named X
returns the horizontal position of something, a name like GetHorizontalPosition is
more universally understandable.

• If a function return type is void, the function name should be active.

Use active verbs in your function names. For example, ReadFileNames is much
more helpful than DoFiles.

As a final consideration, make sure the method really needs to be a method. A good
guideline is that method names have verbs in them. If you find that you create a lot of
methods that do not have verbs in their names, consider whether those methods
ought to be properties.

C r e a t i n g m e t h o d s 43-3

P r o t e c t i n g m e t h o d s

Protecting methods
All parts of classes, including data members, methods, and properties, have a level of
protection or “visibility,” as explained in “Controlling access” on page 40-4.
Choosing the appropriate visibility for a method is simple.

Most methods you write in your components are public or protected. You rarely
need to make a method private, unless it is truly specific to that type of component,
to the point that even derived components should not have access to it.

Note There is generally no reason for declaring a method (other than an event handler) as
__published. Doing so looks to the end user exactly as if the method were public.

Methods that should be public

Any method that application developers need to call must be declared as public.
Keep in mind that most method calls occur in event handlers, so methods should
avoid tying up system resources or putting Windows in a state where it cannot
respond to the user.

Note Constructors and destructors should always be public.

Methods that should be protected

Any implementation methods for the component should be protected so that
applications cannot call them at the wrong time. If you have methods that application
code should not call, but that are called in derived classes, declare them as protected.

For example, suppose you have a method that relies on having certain data set up for
it beforehand. If you make that method public, there is a chance that applications
will call it before setting up the data. On the other hand, by making it protected, you
ensure that applications cannot call it directly. You can then set up other, public
methods that ensure that data setup occurs before calling the protected method.

Property-implementation methods should be declared as virtual protected methods.
Methods that are so declared allow the application developers to override the
property implementation, either augmenting its functionality or replacing it
completely. Such properties are fully polymorphic. Keeping access methods
protected ensures that developers do not accidentally call them, inadvertently
modifying a property.

Making methods virtual
You make methods virtual when you want different types to be able to execute
different code in response to the same method call.

If you create components intended to be used directly by application developers, you
can probably make all your methods nonvirtual. On the other hand, if you create

43-4 D e v e l o p e r ’ s G u i d e

D e c l a r i n g m e t h o d s

abstract components from which other components will be derived, consider making
the added methods virtual. This way, derived components can override the inherited
virtual methods.

Declaring methods
Declaring a method in a component is the same as declaring any class method.

To declare a new method in a component, you do these things:

• Add the declaration to the component’s class declaration in the component’s
header file.

• Write the code that implements the method in the .CPP file of the unit.

The following code shows a component that defines two new methods, one
protected method and one public virtual method. This is the interface definition in
the .H file:

class PACKAGE TSampleComponent : public TControl
{
protected:

void __fastcall MakeBigger();
public:

virtual int __fastcall CalculateArea();
ƒ

};

This is the code in the .CPP file of the unit that implements the methods:

void __fastcall TSampleComponent::MakeBigger()
{

Height = Height + 5;
Width = Width + 5;

}

int __fastcall TSampleComponent::CalculateArea()
{

return Width * Height;
}

U s i n g g r a p h i c s i n c o m p o n e n t s 44-1

C h a p t e r

44
Chapter44Using graphics in components

Windows provides a powerful Graphics Device Interface (GDI) for drawing
device-independent graphics. The GDI, however, imposes extra requirements on the
programmer, such as managing graphic resources. C++Builder takes care of all the
GDI drudgery, allowing you to focus on productive work instead of searching for
lost handles or unreleased resources.

As with any part of the Windows API, you can call GDI functions directly from your
C++Builder application. But you will probably find that using C++Builder’s
encapsulation of the graphic functions is faster and easier.

The topics in this section include

• Overview of graphics
• Using the canvas
• Working with pictures
• Off-screen bitmaps
• Responding to changes

Overview of graphics
C++Builder encapsulates the Windows GDI at several levels. The most important to
you as a component writer is the way components display their images on the screen.
When calling GDI functions directly, you need to have a handle to a device context,
into which you have selected various drawing tools such as pens, brushes, and fonts.
After rendering your graphic images, you must restore the device context to its
original state before disposing of it.

Instead of forcing you to deal with graphics at a detailed level, C++Builder provides
a simple yet complete interface: your component’s Canvas property. The canvas
ensures that it has a valid device context, and releases the context when you are not
using it. Similarly, the canvas has its own properties representing the current pen,
brush, and font.

44-2 D e v e l o p e r ’ s G u i d e

U s i n g t h e c a n v a s

The canvas manages all these resources for you, so you need not concern yourself
with creating, selecting, and releasing things like pen handles. You just tell the
canvas what kind of pen it should use, and it takes care of the rest.

One of the benefits of letting C++Builder manage graphic resources is that it can
cache resources for later use, which can speed up repetitive operations. For example,
if you have a program that repeatedly creates, uses, and disposes of a particular kind
of pen tool, you need to repeat those steps each time you use it. Because C++Builder
caches graphic resources, chances are good that a tool you use repeatedly is still in
the cache, so instead of having to recreate a tool, C++Builder uses an existing one.

An example of this is an application that has dozens of forms open, with hundreds of
controls. Each of these controls might have one or more TFont properties. Though
this could result in hundreds or thousands of instances of TFont objects, most
applications wind up using only two or three font handles thanks to the VCL font
cache.

Here are two examples of how simple C++Builder’s graphics code can be. The first
uses standard GDI functions to draw a yellow ellipse outlined in blue on a window,
the way you would using other development tools. The second uses a canvas to draw
the same ellipse in an application written with C++Builder.

This is the ObjectWindows code:

void TMyWindow::Paint(TDC& PaintDC, bool erase, TRect& rect)
{

HPEN PenHandle, OldPenHandle;
HBRUSH BrushHandle, OldBrushHandle;
PenHandle = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));
OldPenHandle = SelectObject(PaintDC, PenHandle);
BrushHandle = CreateSolidBrush(RGB(255, 255, 0));
OldBrushHandle = SelectObject(PaintDC, BrushHandle);
Ellipse(10, 20, 50, 50);
SelectObject(OldBrushHandle);
DeleteObject(BrushHandle);
SelectObject(OldPenHandle);
DeleteObject(PenHandle);

)

This C++Builder code accomplishes the same thing:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

Canvas->Pen->Color = clBlue;
Canvas->Brush->Color = clYellow;
Canvas->Ellipse(10, 20, 50, 50);

}

Using the canvas
The canvas class encapsulates Windows graphics at several levels, including
high-level functions for drawing individual lines, shapes, and text; intermediate

U s i n g g r a p h i c s i n c o m p o n e n t s 44-3

W o r k i n g w i t h p i c t u r e s

properties for manipulating the drawing capabilities of the canvas; and low-level
access to the Windows GDI.

Table 44.1 summarizes the capabilities of the canvas.

For detailed information on canvas classes and their methods and properties, see
online Help.

Working with pictures
Most of the graphics work you do in C++Builder is limited to drawing directly on the
canvases of components and forms. C++Builder also provides for handling
stand-alone graphic images, such as bitmaps, metafiles, and icons, including
automatic management of palettes.

There are three important aspects to working with pictures in C++Builder:

• Using a picture, graphic, or canvas
• Loading and storing graphics
• Handling palettes

Using a picture, graphic, or canvas

There are three kinds of classes in C++Builder that deal with graphics:

• A canvas represents a bitmapped drawing surface on a form, graphic control,
printer, or bitmap. A canvas is always a property of something else, never a
stand-alone class.

• A graphic represents a graphic image of the sort usually found in a file or resource,
such as a bitmap, icon, or metafile. C++Builder defines classes TBitmap, TIcon, and
TMetafile, all descended from a generic TGraphic. You can also define your own
graphic classes. By defining a minimal standard interface for all graphics, TGraphic
provides a simple mechanism for applications to use different kinds of graphics
easily.

Table 44.1 Canvas capability summary

Level Operation Tools

High Drawing lines and shapes Methods such as MoveTo, LineTo, Rectangle,
and Ellipse

Displaying and measuring text TextOut, TextHeight, TextWidth, and
TextRect methods

Filling areas FillRect and FloodFill methods

Intermediate Customizing text and graphics Pen, Brush, and Font properties

Manipulating pixels Pixels property.

Copying and merging images Draw, StretchDraw, BrushCopy, and
CopyRect methods; CopyMode property

Low Calling Windows GDI functions Handle property

44-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h p i c t u r e s

• A picture is a container for a graphic, meaning it could contain any of the graphic
classes. That is, an item of type TPicture can contain a bitmap, an icon, a metafile,
or a user-defined graphic type, and an application can access them all in the same
way through the picture class. For example, the image control has a property
called Picture, of type TPicture, enabling the control to display images from many
kinds of graphics.

Keep in mind that a picture class always has a graphic, and a graphic might have a
canvas. (The only standard graphic that has a canvas is TBitmap.) Normally, when
dealing with a picture, you work only with the parts of the graphic class exposed
through TPicture. If you need access to the specifics of the graphic class itself, you can
refer to the picture’s Graphic property.

Loading and storing graphics

All pictures and graphics in C++Builder can load their images from files and store
them back again (or into different files). You can load or store the image of a picture
at any time.

To load an image into a picture from a file, call the picture’s LoadFromFile method.

To save an image from a picture into a file, call the picture’s SaveToFile method.

LoadFromFile and SaveToFile each take the name of a file as the only parameter.
LoadFromFile uses the extension of the file name to determine what kind of graphic
object it will create and load. SaveToFile saves whatever type of file is appropriate for
the type of graphic object being saved.

To load a bitmap into an image control’s picture, for example, pass the name of a
bitmap file to the picture’s LoadFromFile method:

void __fastcall TForm1::FormCreate(TObject *Sender)
{

Image1->Picture->LoadFromFile("c:\\windows\\athena.bmp");
}

The picture recognizes .BMP as the standard extension for bitmap files, so it creates
its graphic as a TBitmap, then calls that graphic’s LoadFromFile method. Because the
graphic is a bitmap, it loads the image from the file as a bitmap.

Handling palettes

When running on a palette-based device (typically, a 256-color video mode),
C++Builder controls automatically support palette realization. That is, if you have a
control that has a palette, you can use two methods inherited from TControl to control
how Windows accommodates that palette.

Palette support for controls has these two aspects:

• Specifying a palette for a control
• Responding to palette changes

U s i n g g r a p h i c s i n c o m p o n e n t s 44-5

O f f - s c r e e n b i t m a p s

Most controls have no need for a palette, but controls that contain “rich color”
graphic images (such as the image control) might need to interact with Windows and
the screen device driver to ensure the proper appearance of the control. Windows
refers to this process as realizing palettes.

Realizing palettes is the process of ensuring that the foremost window uses its full
palette, and that windows in the background use as much of their palettes as
possible, then map any other colors to the closest available colors in the “real”
palette. As windows move in front of one another, Windows continually realizes the
palettes.

Note C++Builder itself provides no specific support for creating or maintaining palettes,
other than in bitmaps. If you have a palette handle, however, C++Builder controls
can manage it for you.

Specifying a palette for a control
To specify a palette for a control, override the control’s GetPalette method to return
the handle of the palette.

Specifying the palette for a control does these things for your application:

• It tells the application that your control’s palette needs to be realized.
• It designates the palette to use for realization.

Responding to palette changes
If your control specifies a palette by overriding GetPalette, C++Builder automatically
takes care of responding to palette messages from Windows. The method that
handles the palette messages is PaletteChanged.

The primary role of PaletteChanged is to determine whether to realize the control’s
palette in the foreground or the background. Windows handles this realization of
palettes by making the topmost window have a foreground palette, with other
windows resolved in background palettes. C++Builder goes one step further, in that
it also realizes palettes for controls within a window in tab order. The only time you
might need to override this default behavior is if you want a control that is not first in
tab order to have the foreground palette.

Off-screen bitmaps
When drawing complex graphic images, a common technique in Windows
programming is to create an off-screen bitmap, draw the image on the bitmap, and
then copy the complete image from the bitmap to the final destination onscreen.
Using an off-screen image reduces flicker caused by repeated drawing directly to the
screen.

The bitmap class in C++Builder, which represents bitmapped images in resources
and files, can also work as an off-screen image.

44-6 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c h a n g e s

There are two main aspects to working with off-screen bitmaps:

• Creating and managing off-screen bitmaps.
• Copying bitmapped images.

Creating and managing off-screen bitmaps

When creating complex graphic images, avoid drawing them directly on a canvas
that appears onscreen. Instead of drawing on the canvas for a form or control, you
can construct a bitmap object, draw on its canvas, and then copy its completed image
to the onscreen canvas. The most common use of an offscreen bitmap is in the Paint
method of a graphic control.

For an example of painting a complex image on an offscreen bitmap, see the source
code for the Gauge control from the Samples page of the Component palette. The
gauge draws its different shapes and text on an offscreen bitmap before copying
them to the screen. Source code for the gauge is in the file GAUGES.CPP in the
EXAMPLES\CONTROLS\SOURCE subdirectory.

Copying bitmapped images

C++Builder provides four different ways to copy images from one canvas to another.
Depending on the effect you want to create, you call different methods.

Table 44.2 summarizes the image-copying methods in canvas objects.

Responding to changes
All graphic objects, including canvases and their owned objects (pens, brushes, and
fonts) have events built into them for responding to changes in the object. By using
these events, you can make your components (or the applications that use them)
respond to changes by redrawing their images.

Responding to changes in graphic objects is particularly important if you publish
them as part of the design-time interface of your components. The only way to
ensure that the design-time appearance of the component matches the properties set
in the Object Inspector is to respond to changes in the objects.

To respond to changes in a graphic object, assign a method to the class’s OnChange
event.

Table 44.2 Image-copying methods

To create this effect Call this method

Copy an entire graphic. Draw

Copy and resize a graphic. StretchDraw

Copy part of a canvas. CopyRect

Copy a bitmap with raster operations. BrushCopy

U s i n g g r a p h i c s i n c o m p o n e n t s 44-7

R e s p o n d i n g t o c h a n g e s

The shape component publishes properties representing the pen and brush it uses to
draw its shape. The component’s constructor assigns a method to the OnChange
event of each, causing the component to refresh its image if either the pen or brush
changes. Although the shape component is written in Object Pascal, the following is a
C++ translation of the shape component with a new name, TMyShape.

This is the class declaration in the header file:

class PACKAGE TMyShape : public TGraphicControl
{
private:
protected:
public:

virtual __fastcall TMyShape(TComponent* Owner);
__published:

TPen *FPen;
TBrush *FBrush;
void __fastcall StyleChanged(TObject *Sender);

};

This is the code in the .CPP file:

__fastcall TMyShape::TMyShape(TComponent* Owner)
: TGraphicControl(Owner)

{
Width = 65;
Height = 65;
FPen = new TPen;
FPen->OnChange = StyleChanged;
FBrush = new TBrush;
FBrush->OnChange = StyleChanged;

}

void __fastcall TMyShape::StyleChanged(TObject *Sender)
{

Invalidate();
}

44-8 D e v e l o p e r ’ s G u i d e

H a n d l i n g m e s s a g e s 45-1

C h a p t e r

45
Chapter45Handling messages

One of the keys to traditional Windows programming is handling the messages sent
by Windows to applications. C++Builder handles most of the common ones for you.
It is possible, however, that you will need to handle messages that C++Builder does
not already handle or that you will create your own messages.

There are three aspects to working with messages:

• Understanding the message-handling system
• Changing message handling
• Creating new message handlers

Understanding the message-handling system
All C++Builder classes have a built-in mechanism for handling messages, called
message-handling methods or message handlers. The basic idea of message handlers is
that the class receives messages of some sort and dispatches them, calling one of a set
of specified methods depending on the message received. If no specific method exists
for a particular message, there is a default handler.

The following diagram shows the message-dispatch system:

The Visual Component Library defines a message-dispatching system that translates
all Windows messages (including user-defined messages) directed to a particular
class into method calls. You should never need to alter this message-dispatch
mechanism. All you will need to do is create message-handling methods. See the
section “Declaring a new message-handling method” on page 45-7 for more on this
subject.

Event MainWndProc WndProc Dispatch Handler

45-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t h e m e s s a g e - h a n d l i n g s y s t e m

What’s in a Windows message?

A Windows message can be thought of as a data structure that contains several
useful data members. The most important of these is an integer-size value that
identifies the message. Windows defines a lot of messages, and the MESSAGES.HPP
file declares identifiers for all of them.

Windows programmers are used to working with the Windows definitions that
identify a message, such as WM_COMMAND or WM_PAINT. A traditional
Windows program contains a window procedure that serves as a callback for system
generated messages. In this window procedure there is usually a large switch
statement with case labels for each message this window intends to handle.

Additional useful information is passed to this window procedure in two
parameters, wParam and lParam, for “word parameter” and “long parameter”. Often,
each parameter contains more than one piece of information and it is necessary to
pull out the relevant portions with Windows macros such as LOWORD and
HIWORD. For example, calling HIWORD(lParam) yields the high word of this
parameter.

Originally, Windows programmers had to remember or look up in the Windows API
what information each parameter contained. Windows has recently implemented
“message crackers” to simplify the syntax associated with handling a Windows
message and its associated parameters. With “message crackers,” instead of using a
large switch statement that unpacks all of the information into the parameters, you
can simply associate a handler function with the message. If you include
WINDOWSX.H into a standard Windows program, the HANDLE_MSG macro is
available to your program so you can write code like this:

void MyKeyDownHandler(HWND hwnd. UINT nVirtKey, BOOL fDown, int CRepeat, UINT flags)
{

ƒ
}

LRESULT MyWndProc(HWND hwnd, UINT Message, WPARAM wParam, LPARAM lParam)
{

switch(Message)
{

HANDLE_MSG(hwnd, WM_KEYDOWN, MyKeyDownHandler);
ƒ

}

Using this style of message cracking makes it clearer that messages are being
dispatched to a particular handler. Also, you can give significant names to the
parameter list for your handler function. It is easier to understand a function that
takes a parameter called nVirtKey, which is the value for wParam in a
WM_KEYDOWN message.

Dispatching messages

When an application creates a window, it registers a window procedure with the
Windows kernel. The window procedure is the routine that handles messages for the

H a n d l i n g m e s s a g e s 45-3

C h a n g i n g m e s s a g e h a n d l i n g

window. Traditionally, the window procedure contains a huge switch statement
with entries for each message the window has to handle. Keep in mind that
“window” in this sense means just about anything on the screen: each window, each
control, and so on. Every time you create a new type of window, you have to create a
complete window procedure.

C++Builder simplifies message dispatching in several ways:

• Each component inherits a complete message-dispatching system.

• The dispatch system has default handling. You define handlers only for messages
you need to respond to specially.

• You can modify small parts of the message handling and rely on inherited
methods for most processing.

The greatest benefit of this message dispatch system is that you can safely send any
message to any component at any time. If the component does not have a handler
defined for the message, the default handling takes care of it, usually by ignoring the
message.

Tracing the flow of messages
C++Builder registers a method called MainWndProc as the window procedure for
each type of component in an application. MainWndProc contains an
exception-handling block, passing the message structure from Windows to a virtual
method called WndProc and handling any exceptions by calling the application
class’s HandleException method.

MainWndProc is a nonvirtual method that contains no special handling for any
particular messages. Customizations take place in WndProc, since each component
type can override the method to suit its particular needs.

WndProc methods check for any special conditions that affect their processing so they
can “trap” unwanted messages. For example, while being dragged, components
ignore keyboard events, so the WndProc method of TWinControl passes along
keyboard events only if the component is not being dragged. Ultimately, WndProc
calls Dispatch, a nonvirtual method inherited from TObject, which determines which
method to call to handle the message.

Dispatch uses the Msg data member of the message structure to determine how to
dispatch a particular message. If the component defines a handler for that particular
message, Dispatch calls the method. If the component does not define a handler for
that message, Dispatch calls DefaultHandler.

Changing message handling
Before changing the message handling of your components, make sure that is what
you really want to do. C++Builder translates most Windows messages into events
that both the component writer and the component user can handle. Rather than
changing the message-handling behavior, you should probably change the
event-handling behavior.

45-4 D e v e l o p e r ’ s G u i d e

C h a n g i n g m e s s a g e h a n d l i n g

To change message handling, you override the message-handling method. You can
also prevent a component from handling a message under certain circumstances by
trapping the message.

Overriding the handler method

To change the way a component handles a particular message, you override the
message-handling method for that message. If the component does not already
handle the particular message, you need to declare a new message-handling method.

To override a message-handling method,

1 Declare a new method in your component with the same name as the method it
overrides in the protected part of the component declaration.

2 Map the method to the message it overrides by using three macros.

The macros take this form:

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(parameter1, parameter2, parameter3)

END_MESSAGE_MAP

Parameter1 is the message index as Windows defines it, parameter2 is the message
structure type, and parameter3 is the name of the message method.

You can include as many MESSAGE_HANDLER macros as you want between the
BEGIN_MESSAGE_MAP and END_MESSAGE_MAP macros.

For example, to override a component’s handling of the WM_PAINT message, you
redeclare the WMPaint method, and with three macros, map the method to the
WM_PAINT message:

class PACKAGE TMyComponent : public TComponent
{
protected:

void __fastcall WMPaint(TWMPaint* Message);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(WM_PAINT, TWMPaint, WMPaint)

END_MESSAGE_MAP(TComponent)
};

Using message parameters

Once inside a message-handling method, your component has access to all the
parameters of the message structure. Because the parameter passed to the message
handler is a pointer, the handler can change the values of the parameters if necessary.
The only parameter that changes frequently is the return value for the message: the
value returned by the SendMessage call that sends the message.

Because the type of the Message parameter in the message-handling method varies
with the message being handled, you should refer to the documentation on Windows
messages for the names and meanings of individual parameters. If for some reason

H a n d l i n g m e s s a g e s 45-5

C r e a t i n g n e w m e s s a g e h a n d l e r s

you need to refer to the message parameters by their old-style names (WParam,
LParam, and so on), you can typecast Message to the generic type TMessage, which
uses those parameter names.

Trapping messages

Under some circumstances, you might want your components to ignore messages.
That is, you want to keep the component from dispatching the message to its
handler. To trap a message, you override the virtual method WndProc.

The WndProc method screens messages before passing them to the Dispatch method,
which in turn determines which method gets to handle the message. By overriding
WndProc, your component gets a chance to filter out messages before dispatching
them. An override of WndProc for a control derived from TWinControl looks like this:

void __fastcall TMyControl::WndProc(TMessage* Message)
{

// tests to determine whether to continue processing
TWinControl->WndProc(Message);

}

The TControl component defines entire ranges of mouse messages that it filters when
a user is dragging and dropping controls. Overriding WndProc helps this in two
ways:

• It can filter ranges of messages instead of having to specify handlers for each one.

• It can preclude dispatching the message at all, so the handlers are never called.

Here is part of the WndProc method for TControl as it is implemented in VCL in
Object Pascal:

procedure TControl.WndProc(var Message: TMessage);
begin

ƒ
if (Message.Msg >= WM_MOUSEFIRST) and (Message.Msg <= WM_MOUSELAST) then

if Dragging then { handle dragging specially }
DragMouseMsg(TWMMouse(Message))

else
ƒ { handle others normally }

end;
ƒ { otherwise process normally }
end;

Creating new message handlers
Because C++Builder provides handlers for most common Windows messages, the
time you will most likely need to create new message handlers is when you define
your own messages. Working with user-defined messages has two aspects:

• Defining your own messages
• Declaring a new message-handling method

45-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g n e w m e s s a g e h a n d l e r s

Defining your own messages

A number of the standard components define messages for internal use. The most
common reasons for defining messages are broadcasting information not covered by
standard Windows messages and notification of state changes.

Defining a message is a two-step process. The steps are

1 Declaring a message identifier.
2 Declaring a message-structure type.

Declaring a message identifier
A message identifier is an integer-sized constant. Windows reserves the messages
below 1,024 for its own use, so when you declare your own messages you should
start above that level.

The constant WM_APP represents the starting number for user-defined messages.
When defining message identifiers, you should base them on WM_APP.

Be aware that some standard Windows controls use messages in the user-defined
range. These include list boxes, combo boxes, edit boxes, and command buttons. If
you derive a component from one of these and want to define a new message for it,
be sure to check the MESSAGES.HPP file to see which messages Windows already
defines for that control.

The following code shows two user-defined messages.

#define WM_MYFIRSTMESSAGE (WM_APP + 400)
#define WM_MYSECONDMESSAGE (WM_APP + 401)

Declaring a message-structure type
If you want to give useful names to the parameters of your message, you need to
declare a message-structure type for that message. The message-structure is the type
of the parameter passed to the message-handling method. If you do not use the
message’s parameters, or if you want to use the old-style parameter notation
(wParam, lParam, and so on), you can use the default message-structure, TMessage.

To declare a message-structure type, follow these conventions:

1 Name the structure type after the message, preceded by a T.

2 Call the first data member in the structure Msg, of type TMsgParam.

3 Define the next two bytes to correspond to the Word parameter, and the next two
bytes as unused.

Or

Define the next four bytes to correspond to the Longint parameter.

4 Add a final data member called Result, of type Longint.

H a n d l i n g m e s s a g e s 45-7

C r e a t i n g n e w m e s s a g e h a n d l e r s

For example, here is the message structure for all mouse messages, TWMKey:

struct TWMKey
{

Cardinal Msg; // first parameter is the message ID
Word CharCode; // this is the first wParam
Word Unused;
Longint KeyData; // this is the lParam
Longint Result; // this is the result data member

};

Declaring a new message-handling method
There are two sets of circumstances that require you to declare new
message-handling methods:

• Your component needs to handle a Windows message that is not already handled
by the standard components.

• You have defined your own message for use by your components.

To declare a message-handling method, do the following:
1 Declare the method in a protected part of the component’s class declaration using

the BEGIN_MESSAGE_MAP ... END_MESSAGE_MAP macros.
2 Be sure that the method returns void.
3 Name the method after the message it handles, but without any underline

characters.
4 Pass a pointer called Message of the type of the message structure.
5 Map the method to the message using macros.
6 Within the message method implementation, write code for any handling specific

to the component.
7 Call the inherited message handler.

Here is the declaration, for example, of a message handler for a user-defined message
called CM_CHANGECOLOR.

#define CM_CHANGECOLOR (WM_APP + 400)

class TMyControl : public TControl
{
protected:

void __fastcall CMChangeColor(TMessage &Message);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(CM_CHANGECOLOR, TMessage, CMChangeColor)

END_MESSAGE_MAP(TControl)
};

void __fastcall TMyControl::CMChangeColor(TMessage &Message)
{

Color = Message.LParam; // set color from long parameter
TControl::CMChangeColor(Message); // call the inherited message handler

}

45-8 D e v e l o p e r ’ s G u i d e

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-1

C h a p t e r

46
Chapter46Making components available

at design time
This chapter describes the steps for making the components you create available in
the IDE. Making your components available at design time requires several steps:

• Registering components
• Adding palette bitmaps
• Providing Help for your component
• Adding property editors
• Adding component editors
• Compiling components into packages

Not all these steps apply to every component. For example, if you don’t define any
new properties or events, you don’t need to provide Help for them. The only steps
that are always necessary are registration and compilation.

Once your components have been registered and compiled into packages, they can
be distributed to other developers and installed in the IDE. For information on
installing packages in the IDE, see “Installing component packages” on page 10-5.

Registering components
Registration works on a compilation unit basis, so if you create several components
in a single compilation unit, you can register them all at once.

To register a component, add a Register function to the .CPP file of the unit. Within
the Register function, you register the components and determine where to install
them on the Component palette.

Note If you create your component by choosing Component|New Component in the IDE,
the code required to register your component is added automatically.

46-2 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g c o m p o n e n t s

The steps for manually registering a component are:

• Declaring the Register function
• Writing the Register function

Declaring the Register function

Registration involves writing a single function in the .CPP file of the unit, which must
have the name Register. The Register function must exist within a namespace. The
namespace is the name of the file the component is in with all lowercase letters except
the first letter.

The following code shows how the Register function is implemented within a
namespace. The namespace is named Newcomp, where the file is named
Newcomp.CPP:

namespace Newcomp
{
 void __fastcall PACKAGE Register()
 {
 }
}

Within the Register function, call RegisterComponents for each component you want to
add to the Component palette. If the header and .CPP file combination contain
several components, you can register them all in one step. The PACKAGE macro
expands to a statement that allows classes to be imported and exported.

Writing the Register function

Inside the Register function of a unit containing components, you must register each
component you want to add to the Component palette. If the unit contains several
components, you can register them at the same time.

To register a component, call the RegisterComponents function once for each page of
the Component palette to which you want to add components. RegisterComponents
involves three important things:

1 Specifying the components
2 Specifying the palette page
3 Using the RegisterComponents function

Specifying the components
Within the Register function, declare an open array of type TComponentClass that
holds the array of components you are registering. The syntax should look like this:

TMetaClass classes[1] = {__classid(TNewComponent));

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-3

R e g i s t e r i n g c o m p o n e n t s

In this case, the array of classes contains just one component, but you can add all the
components you want to register to the array. For example, this code places two
components in the array:

TMetaClass classes[2] =
 {__classid(TNewComponent), __classid(TAnotherComponent)};

Another way to add a component to the array is to assign the component to the array
in a separate statement. These statements add the same two components to the array
as the previous example:

TMetaClass classes[2];
classes[0] = __classid(TNewComponent);
classes[1] = __classid(TAnotherComponent);

Specifying the palette page
The palette-page name is an AnsiString. If the name you give for the palette page
does not already exist, C++Builder creates a new page with that name. C++Builder
stores the names of the standard pages in string-list resources so that international
versions of the product can name the pages in their native languages. If you want to
install a component on one of the standard pages, you should obtain the string for the
page name by calling the LoadStr function, passing the constant representing the
string resource for that page, such as srSystem for the System page.

Using the RegisterComponents function
Within the Register function, call RegisterComponents to register the components in the
classes array. RegisterComponents is a function that takes three parameters: the name
of a Component palette page, the array of component classes, and the index of the
last entry in the array.

The following Register function found in the NEWCOMP.CPP file, registers a
component named TMyComponent and places it on a Component palette page called
Miscellaneous:

namespace Newcomp
{
 void __fastcall PACKAGE Register()
 {
 TMetaClass classes[1] = {__classid(TMyComponent)};
 RegisterComponents("Miscellaneous", classes, 0);
 }
}

Note that the third argument in the RegisterComponents call is 0, which is the index of
the last entry in the classes array (the size of the array minus 1).

46-4 D e v e l o p e r ’ s G u i d e

A d d i n g p a l e t t e b i t m a p s

You can also register several components on the same page at once, or register
components on different pages, as shown in the following code:

namespace Mycomps
{
 void __fastcall PACKAGE Register()
 {
 // declares an array that holds two components
 TMetaClass classes1[2] = {__classid(TFirst), __classid(TSecond)};
 // adds a new palette page with the two components in the classes1 array
 RegisterComponents("Miscellaneous", classes1, 1);
 // declares a second array
 TMetaClass classes2[1];
 // assigns a component to be the first element in the array
 classes2[0] = __classid(TThird);
 // adds the component in the classes2 array to the Samples page
 RegisterComponents("Samples", classes2, 0);
 }
}

In the example two arrays, classes1 and classes2 are declared. In the first
RegisterComponents call the classes1 array has 2 entries, so the third argument is the
index of the second entry, which is 1. In the second RegisterComponents call, the
classes2 array has one element, so the third argument is 0.

Adding palette bitmaps
Every component needs a bitmap to represent the component on the Component
palette. If you don’t specify your own bitmap, C++Builder uses a default bitmap.

Because the palette bitmaps are needed only at design time, you don’t compile them
into the component’s compilation unit. Instead, you supply them in a Windows
resource file with the same name as the .CPP file, but with the extension .DCR
(dynamic component resource). You can create this resource file using the Image
editor in C++Builder. Each bitmap should be 24 pixels square.

For each component you want to install, supply a palette bitmap file, and within each
palette bitmap file, supply a bitmap for each component you register. The bitmap
image has the same name as the component class. Keep the palette bitmap file in the
same directory with the compiled files, so C++Builder can find the bitmaps when it
installs the components on the Component palette.

For example, if you create a component named TMyControl, you need to create a
.DCR or .RES resource file that contains a bitmap called TMYCONTROL. The
resource names are not case-sensitive, but by convention, they are usually in
uppercase letters.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-5

P r o v i d i n g H e l p f o r y o u r c o m p o n e n t

Providing Help for your component
When you select a standard component on a form, or a property or event in the
Object Inspector, you can press F1 to get Help on that item. You can provide
developers with the same kind of documentation for your components if you create
the appropriate Help files.

You can provide a small Help file to describe your components, and your help file
becomes part of the user’s overall C++Builder Help system.

See the section “Creating the Help file” on page 46-5 for information on how to
compose the help file for use with a component.

Creating the Help file

You can use any tool you want to create the source file for a Windows Help file (in
.rtf format). C++Builder includes the Microsoft Help Workshop, which compiles
your Help files and provides an online help authoring guide. You can find complete
information about creating Help files in the online guide for Help Workshop.

Composing help files for components consists of the steps:

• Creating the entries
• Making component help context-sensitive
• Adding component help files

Creating the entries
To make your component’s Help integrate seamlessly with the Help for the rest of
the components in the library, observe the following conventions:

1 Each component should have a help topic.

The component topic should show which unit the component is declared in and
briefly describe the component. The component topic should link to secondary
windows that describe the component’s position in the object hierarchy and list all
of its properties, events, and methods. Application developers access this topic by
selecting the component on a form and pressing F1. For an example of a
component topic, place any component on a form and press F1.

The component topic must have a # footnote with a value unique to the topic. The
footnote uniquely identifies each topic by the Help system.

The component topic should have a K footnote for keyword searching in the help
system Index that includes the name of the component class. For example, the
keyword footnote for the TMemo component is “TMemo.”

The component topic should also have a $ footnote that provides the title of the
topic. The title appears in the Topics Found dialog box, the Bookmark dialog box,
and the History window.

46-6 D e v e l o p e r ’ s G u i d e

P r o v i d i n g H e l p f o r y o u r c o m p o n e n t

2 Each component should include the following secondary navigational topics:

• A hierarchy topic with links to every ancestor of the component in the
component hierarchy.

• A list of all properties available in the component, with links to entries
describing those properties.

• A list of all events available in the component, with links to entries describing
those events.

• A list of methods available in the component, with links to entries describing
those methods.

Links to object classes, properties, methods, or events in the C++Builder help
system can be made using Alinks. When linking to an object class, the Alink uses
the class name of the object, followed by an underscore and the string “object”. For
example, to link to the TCustomPanel object, use the following:

!AL(TCustomPanel_object,1)

When linking to a property, method, or event, precede the name of the property,
method, or event by the name of the object that implements it and an underscore.
For example, to link to the Text property which is implemented by TControl, use
the following:

!AL(TControl_Text,1)

To see an example of the secondary navigation topics, display the help for any
component and click on the links labeled hierarchy, properties, methods, or
events.

3 Each property, method, and event that is declared within the component should
have a topic.

A property, event, or method topic should show the declaration of the item and
describe its use. Application developers see these topics either by highlighting the
item in the Object Inspector and pressing F1 or by placing the cursor in the Code
editor on the name of the item and pressing F1. To see an example of a property
topic, select any item in the Object Inspector and press F1.

The property, event, and method topics should include a K footnote that lists the
name of the property, method, or event, and its name in combination with the
name of the component. Thus, the Text property of TControl has the following K
footnote:

Text,TControl;TControl,Text;Text,

The property, method, and event topics should also include a $ footnote that
indicates the title of the topic, such as TControl::Text.

All of these topics should have a topic ID that is unique to the topic, entered as a #
footnote.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-7

A d d i n g p r o p e r t y e d i t o r s

Making component help context-sensitive
Each component, property, method, and event topic must have an A footnote. The A
footnote is used to display the topic when the user selects a component and presses
F1, or when a property or event is selected in the Object Inspector and the user
presses F1. The A footnotes must follow certain naming conventions:

If the Help topic is for a component, the A footnote consists of two entries separated
by a semicolon using this syntax:

ComponentClass_Object;ComponentClass

where ComponentClass is the name of the component class.

If the Help topic is for a property or event, the A footnote consists of three entries
separated by semicolons using this syntax:

ComponentClass_Element;Element_Type;Element

where ComponentClass is the name of the component class, Element is the name of the
property, method, or event, and Type is the either Property, Method, or Event

For example, for a property named BackgroundColor of a component named TMyGrid,
the A footnote is

TMyGrid_BackgroundColor;BackgroundColor_Property;BackgroundColor

Adding component help files
To add your Help file to C++Builder, use the OpenHelp utility (called oh.exe) located
in the bin directory or accessed using Help|Customize in the IDE.

You will find information about using OpenHelp in the OpenHelp.hlp file, including
adding your Help file to the Help system.

Adding property editors
The Object Inspector provides default editing for all types of properties. You can,
however, provide an alternate editor for specific properties by writing and
registering property editors. You can register property editors that apply only to the
properties in the components you write, but you can also create editors that apply to
all properties of a certain type.

At the simplest level, a property editor can operate in either or both of two ways:
displaying and allowing the user to edit the current value as a text string, and
displaying a dialog box that permits some other kind of editing. Depending on the
property being edited, you might find it useful to provide either or both kinds.

Writing a property editor requires these five steps:

1 Deriving a property-editor class
2 Editing the property as text
3 Editing the property as a whole
4 Specifying editor attributes
5 Registering the property editor

46-8 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

Deriving a property-editor class

The DSGNINTF.HPP file defines several kinds of property editors, all of which
descend from TPropertyEditor. When you create a property editor, your
property-editor class can either descend directly from TPropertyEditor or indirectly
through one of the property-editor classes described in Table 46.1.

The DSGNINTF.HPP file also defines some very specialized property editors used by
unique properties such as the component name. The listed property editors are the
ones that are the most useful for user-defined properties.

The following example shows the declaration of a simple property editor named
TMyPropertyEditor:

class PACKAGE TMyPropertyEditor : public TPropertyEditor
{

public:
 virtual bool __fastcall AllEqual(void);
 virtual System::AnsiString __fastcall GetValue(void);
 virtual void __fastcall SetValue(const System::AnsiString Value);
 __fastcall virtual ~TMyPropertyEditor(void) { }
 __fastcall TMyPropertyEditor(void) : Dsgnintf::TPropertyEditor() { }
};

Table 46.1 Predefined property-editor types

Type Properties edited

TOrdinalProperty All ordinal-property editors (those for integer, character, and enumerated
properties) descend from TOrdinalProperty.

TIntegerProperty All integer types, including predefined and user-defined subranges.

TCharProperty Char-type and subranges of Char, such as ‘A’..’Z’.

TEnumProperty Any enumerated type.

TFloatProperty All floating-point numbers.

TStringProperty AnsiStrings.

TSetElementProperty Individual elements in sets, shown as Boolean values

TSetProperty All sets. Sets are not directly editable, but can expand into a list of
set-element properties.

TClassProperty Classes. Displays the name of the class and allows expansion of the class’s
properties.

TMethodProperty Method pointers, most notably events.

TComponentProperty Components in the same form. The user cannot edit the component’s
properties, but can point to a specific component of a compatible type.

TColorProperty Component colors. Shows color constants if applicable, otherwise
displays hexadecimal value. Drop-down list contains the color constants.
Double-click opens the color-selection dialog box.

TFontNameProperty Font names. The drop-down list displays all currently installed fonts.

TFontProperty Fonts. Allows expansion of individual font properties as well as access to
the font dialog box.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-9

A d d i n g p r o p e r t y e d i t o r s

Editing the property as text

All properties need to provide a string representation of their values for the Object
Inspector to display. Most properties also allow the user to type in a new value for
the property. Property-editor classes provide virtual methods you can override to
convert between the text representation and the actual value.

The methods you override are called GetValue and SetValue. Your property editor
also inherits a set of methods used for assigning and reading different sorts of values,
as shown in Table 46.2.

When you override a GetValue method, you will call one of the Get methods, and
when you override SetValue, you will call one of the Set methods.

Displaying the property value
The property editor’s GetValue method returns a string that represents the current
value of the property. The Object Inspector uses this string in the value column for
the property. By default, GetValue returns “unknown.”

To provide a string representation of your property, override the property editor’s
GetValue method.

If the property is not a string value, GetValue must convert the value into a string
representation.

Setting the property value
The property editor’s SetValue method takes a string typed by the user in the Object
Inspector, converts it into the appropriate type, and sets the value of the property. If
the string does not represent a proper value for the property, SetValue should throw
an exception and not use the improper value.

To read string values into properties, override the property editor’s SetValue method.

SetValue should convert the string and validate the value before calling one of the Set
methods.

Editing the property as a whole

You can optionally provide a dialog box in which the user can visually edit a
property. The most common use of property editors is for properties that are

Table 46.2 Methods for reading and writing property values

Property type Get method Set method

Floating point GetFloatValue SetFloatValue

Closure (event) GetMethodValue SetMethodValue

Ordinal type GetOrdValue SetOrdValue

String GetStrValue SetStrValue

46-10 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

themselves classes. An example is the Font property, for which the user can open a
font dialog box to choose all the attributes of the font at once.

To provide a whole-property editor dialog box, override the property-editor class’s
Edit method.

Edit methods use the same Get and Set methods used in writing GetValue and
SetValue methods. In fact, an Edit method calls both a Get method and a Set method.
Because the editor is type-specific, there is usually no need to convert the property
values to strings. The editor generally deals with the value “as retrieved.”

When the user clicks the ‘...’ button next to the property or double-clicks the value
column, the Object Inspector calls the property editor’s Edit method.

Within your implementation of the Edit method, follow these steps:

1 Construct the editor you are using for the property.

2 Read the current value and assign it to the property using a Get method.

3 When the user selects a new value, assign that value to the property using a Set
method.

4 Destroy the editor.

Specifying editor attributes

The property editor must provide information that the Object Inspector can use to
determine what tools to display. For example, the Object Inspector needs to know
whether the property has subproperties or can display a list of possible values.

To specify editor attributes, override the property editor’s GetAttributes method.

GetAttributes is a method that returns a set of values of type TPropertyAttributes that
can include any or all of the following values:

Table 46.3 Property-editor attribute flags

Flag Related method Meaning if included

paValueList GetValues The editor can give a list of enumerated values.

paSubProperties GetProperties The property has subproperties that can display.

paDialog Edit The editor can display a dialog box for editing the entire
property.

paMultiSelect N/A The property should display when the user selects more
than one component.

paAutoUpdate SetValue Updates the component after every change instead of
waiting for approval of the value.

paSortList N/A The Object Inspector should sort the value list.

paReadOnly N/A Users cannot modify the property value.

paRevertable N/A Enables the Revert to Inherited menu item on the Object
Inspector’s context menu. The menu item tells the property
editor to discard the current property value and return to
some previously established default or standard value.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-11

A d d i n g p r o p e r t y e d i t o r s

Color properties are more versatile than most, in that they allow several ways for
users to choose them in the Object Inspector: typing, selection from a list, and
customized editor. TColorProperty’s GetAttributes method, therefore, includes several
attributes in its return value:

virtual __fastcall TPropertyAttributes TColorProperty::GetAttributes()
{

return TPropertyAttributes() << paMultiSelect << paDialog << paValueList;
}

Registering the property editor

Once you create a property editor, you need to register it with C++Builder.
Registering a property editor associates a type of property with a specific property
editor. You can register the editor with all properties of a given type or just with a
particular property of a particular type of component.

To register a property editor, call the RegisterPropertyEditor function.

RegisterPropertyEditor takes four parameters:

• A type-information pointer for the type of property to edit. Specify the type
information like this:

__typeinfo(TMyComponent)

• The type of the component to which this editor applies. If this parameter is null,
the editor applies to all properties of the given type.

• The name of the property. This parameter only has meaning if the previous
parameter specifies a particular type of component. In that case, you can specify
the name of a particular property in that component type to which this editor
applies.

• The type of property editor to use for editing the specified property.

Here is an excerpt from the function that registers the editors for the standard
components on the Component palette:

namespace Newcomp
{

void __fastcall PACKAGE Register()
{

RegisterPropertyEditor(__typeinfo(TComponent), 0L, "", __classid(TComponentProperty));
RegisterPropertyEditor(__typeinfo(TComponentName), __classid(TComponent), "Name",

__classid(TComponentNameProperty));
RegisterPropertyEditor(__typeinfo(TMenuItem), __classid(TMenu), "",

__classid(TMenuItemProperty));
ƒ

}
}

46-12 D e v e l o p e r ’ s G u i d e

A d d i n g c o m p o n e n t e d i t o r s

The three statements in this function cover the different uses of RegisterPropertyEditor:

• The first statement is the most typical. It registers the property editor
TComponentProperty for all properties of type TComponent (or descendants of
TComponent that do not have their own editors registered). In general, when you
register a property editor, you have created an editor for a particular type, and you
want to use it for all properties of that type, so the second and third parameters are
NULL and an empty string, respectively.

• The second statement is the most specific kind of registration. It registers an editor
for a specific property in a specific type of component. In this case, the editor is for
the Name property (of type TComponentName) of all components.

• The third statement is more specific than the first, but not as limited as the second. It
registers an editor for all properties of type TMenuItem in components of type TMenu.

Adding component editors
Component editors determine what happens when the component is double-clicked
in the designer and add commands to the context menu that appears when the
component is right-clicked. They can also copy your component to the Windows
clipboard in custom formats.

If you do not give your components a component editor, C++Builder uses the default
component editor. The default component editor is implemented by the class
TDefaultEditor. TDefaultEditor does not add any new items to a component’s context
menu. When the component is double-clicked, TDefaultEditor searches the properties
of the component and generates (or navigates to) the first event handler it finds.

To add items to the context menu, change the behavior when the component is
double-clicked, or add new clipboard formats, derive a new class from
TComponentEditor and register its use with your component. In your overridden
methods, you can use the Component property of TComponentEditor to access the
component that is being edited.

Adding a custom component editor consists of the steps:

• Adding items to the context menu
• Changing the double-click behavior
• Adding clipboard formats
• Registering the component editor

Adding items to the context menu

When the user right-clicks the component, the GetVerbCount and GetVerb methods of
the component editor are called to build context menu. You can override these
methods to add commands (verbs) to the context menu.

Adding items to the context menu requires the steps:

• Specifying menu items
• Implementing commands

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-13

A d d i n g c o m p o n e n t e d i t o r s

Specifying menu items
Override the GetVerbCount method to return the number of commands you are
adding to the context menu. Override the GetVerb method to return the strings that
should be added for each of these commands. When overriding GetVerb, add an
ampersand (&) to a string to cause the following character to appear underlined in
the context menu and act as a shortcut key for selecting the menu item. Be sure to add
an ellipsis (...) to the end of a command if it brings up a dialog. GetVerb has a single
parameter that indicates the index of the command.

The following code overrides the GetVerbCount and GetVerb methods to add two
commands to the context menu.

int __fastcall TMyEditor::GetVerbCount(void)
{
 return 2;
}

System::AnsiString __fastcall TMyEditor::GetVerb(int Index)
{
 switch (Index)
 {
 case 0: return “&DoThis ...”; break;
 case 1: return “Do&That”; break;
 }
}

Note Be sure that your GetVerb method returns a value for every possible index indicated
by GetVerbCount.

Implementing commands
When the command provided by GetVerb is selected in the designer, the ExecuteVerb
method is called. For every command you provide in the GetVerb method, implement
an action in the ExecuteVerb method. You can access the component that is being
edited using the Component property of the editor.

For example, the following ExecuteVerb method implements the commands for the
GetVerb method in the previous example.

void __fastcall TMyEditor::ExecuteVerb(int Index)
{
 switch (Index)
 {
 case 0:
 TMyDialog *MySpecialDialog = new TMyDialog();
 MySpecialDialog->Execute();
 ((TMyComponent *)Component)->ThisProperty = MySpecialDialog->ReturnValue;
 delete MySpecialDialog;
 break;
 case 1:
 That(); // call the “That” method
 break;
 }
}

46-14 D e v e l o p e r ’ s G u i d e

A d d i n g c o m p o n e n t e d i t o r s

Changing the double-click behavior

When the component is double-clicked, the Edit method of the component editor is
called. By default, the Edit method executes the first command added to the context
menu. Thus, in the previous example, double-clicking the component executes the
DoThis command.

While executing the first command is usually a good idea, you may want to change
this default behavior. For example, you can provide an alternate behavior if

• you are not adding any commands to the context menu.

• you want to display a dialog that combines several commands when the
component is double-clicked.

Override the Edit method to specify a new behavior when the component is
double-clicked. For example, the following Edit method brings up a font dialog when
the user double-clicks the component:

void __fastcall TMyEditor::Edit(void)
{
 TFontDialog *pFontDlg = new TFontDialog(NULL);
 pFontDlg->Execute();
 ((TMyComponent *)Component)->Font = pFontDlg->Font;
 delete pFontDlg;
}

Note If you want a double-click on the component to display the Code editor for an event
handler, use TDefaultEditor as a base class for your component editor instead of
TComponentEditor. Then, instead of overriding the Edit method, override the
protected TDefaultEditor::EditProperty method instead. EditProperty scans through the
event handlers of the component, and brings up the first one it finds. You can change
this to look a particular event instead. For example:

void __fastcall TMyEditor::EditProperty(TPropertyEditor* PropertyEditor,
 bool &Continue, bool &FreeEditor)
{
 if (PropertyEditor->ClassNameis(“TMethodProperty”) &&
 CompareText(PropertyEditor->GetName, “OnSpecialEvent”) == 0)
 {
 TDefaultEditor::EditProperty(PropertyEditor, Continue, FreeEditor);
 }
}

Adding clipboard formats

By default, when a user chooses Copy while a component is selected in the IDE, the
component is copied in C++Builder’s internal format. It can then be pasted into
another form or data module. Your component can copy additional formats to the
Clipboard by overriding the Copy method.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-15

P r o p e r t y c a t e g o r i e s

For example, the following Copy method allows a TImage component to copy its
picture to the Clipboard. This picture is ignored by the C++Builder IDE, but can be
pasted into other applications.

void __fastcall TMyComponentEditor::Copy(void)
{
 WORD AFormat;
 int AData;
 HPALETTE APalette;
 ((TImage *)Component)->Picture->SaveToClipboardFormat(AFormat, AData, APalette);
 TClipboard *pClip = Clipboard(); // don’t clear the clipboard!
 pClip->SetAsHandle(AFormat, AData);
}

Registering the component editor

Once the component editor is defined, it can be registered to work with a particular
component class. A registered component editor is created for each component of
that class when it is selected in the form designer.

To create the association between a component editor and a component class, call
RegisterComponentEditor. RegisterComponentEditor takes the name of the component
class that uses the editor, and the name of the component editor class that you have
defined. For example, the following statement registers a component editor class
named TMyEditor to work with all components of type TMyComponent:

RegisterComponentEditor(__classid(TMyComponent), __classid(TMyEditor));

Place the call to RegisterComponentEditor in the namespace where you register your
component. For example, if a new component named TMyComponent and its
component editor TMyEditor are both implemented in NewComp.cpp, the following
code (in NewComp.cpp) registers the component and its association with the
component editor.

namespace Newcomp
{

void __fastcall PACKAGE Register()
{

TMetaClass classes[1] = {__classid(TMyComponent)};
RegisterComponents("Miscellaneous", classes, 0);
RegisterComponentEditor(classes[0], __classid(TMyEditor));

}
}

Property categories
In the C++Builder IDE, the Object Inspector affords the programmer the ability to
selectively hide and display properties based on property categories. The properties
of new custom components can also be fit into this scheme by registering properties
in categories. Do this at the same time the component is being registered by calling
one of the property registration functions RegisterPropertyInCategory or

46-16 D e v e l o p e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s

RegisterPropertiesInCategory. Use the former to register a single property. Use the
latter to register multiple properties in a single function call. These functions are
defined in the unit DsgnIntf.

Note that it is not mandatory that you register properties or that you register all of
the properties of a custom component when some are registered. Any property not
explicitly associated with a category is simply deemed to be in the
TMiscellaneousCategory category. These properties would be displayed or hidden in
the Object Inspector based on that default categorization.

C++Builder supplies thirteen stock property categories, in the form of property
classes. Register a property of a new custom component in one of these provided
categories or create your on property category classes based on these built-in classes.

In addition to these two functions for registering properties, there is an
IsPropertyInCategory function. This function is useful for such endeavors as creating
localization utilities, in which you must determine whether a property is registered
in a given property category.

Registering one property at a time

Register one property at a time and associate it with a property category using the
RegisterPropertyInCategory function. RegisterPropertyInCategory comes in four
overloaded variations, each providing a different set of criteria for identifying the
property in the custom component to be associated with the property category.

The first variation allows you to identify the property by the property’s name. The
line below registers a property related to visual display of the component, identifying
the property by its name, “AutoSize”.

The second variation identifies the property using the characteristics component
class type and property name. The example below registers (into the category
THelpCategory) a property named “HelpContext” of a component of the custom class
TMyButton.

The third variation uses the property’s type and the property’s name to identify the
property. The example below registers a property based on a combination of its type,
integer, and its name, “Width”.

The last variation identifies the property using only its property type. The example
below registers a property based on its type, integer.

See the section “Property category classes” on page 46-17 for a list of the available
property categories and a brief description of their uses.

Registering multiple properties at once

Register multiple properties at one time and associate them with a property category
using the RegisterPropertiesInCategory function. RegisterPropertiesInCategory comes in
three overloaded variations, each providing a different set of criteria for identifying
the property in the custom component to be associated with property categories.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-17

P r o p e r t y c a t e g o r i e s

The first variation allows you to identify properties for association with a property
category based on property name. A list of property names is passed as an array of
AnsiString. Each property identified by name in the list is registered with the
specified property category. In the example below, four properties are registered in
the category THelpCategory. These four properties are identified by name using the
strings “HelpContext”, “Hint”, “ParentShowHint”, and “ShowHint”.

The second variation identifies the properties by their type. In the example below, all
of the properties in the custom component that are of type AnsiString are registered
in the category TLocalizableCategory.

The third variation allows you to pass a list of various criteria, not all of which need be
the same type, to use to identify properties to register. The list is passed as an array of
constants. In the example below, any property that either has the name “Text” or
belongs to a class of type TEdit is registered in the category TLocalizableCategory.

See the section “Property category classes” for a list of the available property
categories and a brief description of their uses.

Property category classes

Built-in property categories
C++Builder provides a built-in set of twelve property categories with which you can
associate properties in custom components. Use one of these property category class
names for the ACategoryClass parameter of the RegisterPropertyInCategory and
RegisterPropertiesInCategory functions.:

Table 46.4 Property categories

Category Purpose

TActionCategory Properties related to runtime actions; the Enabled and Hint properties of
TEdit are in this category.

TDatabaseCategory Properties related to database operations; the DatabaseName and SQL
properties of TQuery are in this category.

TDragNDropCategory Properties related to drag-n-drop and docking operations; the
DragCursor and DragKind properties of TImage are in this category.

THelpCategory Properties related to using online help or hints; the HelpContext and Hint
properties of TMemo are in this category.

TLayoutCategory Properties related to the visual display of a control at design-time; the
Top and Left properties of TDBEdit are in this category.

TLegacyCategory Properties related to obsolete operations; the Ctl3D and ParentCtl3D
properties of TComboBox are in this category.

TLinkageCategory Properties related to associating or linking one component to another;
the DataSet property of TDataSource is in this category.

TLocaleCategory Properties related to international locales; the BiDiMode and
ParentBiDiMode properties of TMainMenu are in this category.

TLocalizableCategory Properties that may require modification in localized versions of an
application. Many string properties (such as Caption) are in this
category, as are properties that determine the size and position of
controls.

46-18 D e v e l o p e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s

Deriving new property categories
You can create new property categories of your own design by deriving a class from
either the base class TPropertyCategory or one of the built-in descendants. See the
section “Property category classes” on page 46-17 for a list of the available property
categories and a brief description of their uses.

When deriving a new property category class, override the Name method. The Name
method provides the name of the category for display in the Object Inspector. This
method must be superseded with a method that returns the name of the custom
category. The Name method may simply return an AnsiString value or it may retrieve
a value from a resource. The latter is useful for easily internationalizing a custom
component and its categories.

Given the new Name method below for a custom category class, the text “My Special”
would appear in the Object Inspector when property categories are displayed (and at
least one of the current object’s properties is registered in this property class).

Using the IsPropertyInCategory function

An application can query the existing registered properties to determine whether a
given property is already registered in a specified category. This can be especially
useful in situations like a localization utility that checks the categorization of
properties preparatory to performing its localization operations. Two overloaded
variations of the IsPropertyInCategory function are available, allowing for different
criteria in determining whether a property is in a category.

The first variation allows you to base the comparison criteria on a combination of the
class type of the owning component and the property’s name. In the command line
below, for IsPropertyInCategory to return true, the property must belong to the class
TEdit, have the name “Text”, and be in the property category TLocalizableCategory.

The second variation allows you to base the comparison criteria on a combination of
the class name of the owning component and the property’s name. In the command
line below, for IsPropertyInCategory to return true, the property must belong to the
class TEdit, have the name “Text”, and be in the property category
TLocalizableCategory.

TMiscellaneousCategory Properties that do not fit a category or do not need to be categorized
(and properties not explicitly registered to a specific category); the
AllowAllUp and Name properties of TSpeedButton are in this category.

TVisualCategory Properties related to the visual display of a control at runtime; the Align
and Visible properties of TScrollBox are in this category.

TInputCategory Properties related to the input of data (need not be related to database
operations); the Enabled and ReadOnly properties of TEdit are in this
category.

Table 46.4 Property categories (continued)

Category Purpose

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 46-19

C o m p i l i n g c o m p o n e n t s i n t o p a c k a g e s

Compiling components into packages
Once your components are registered, you must compile them as packages before
they can be installed in the IDE. A package can contain one or several components as
well as custom property editors. For more information about packages, see
Chapter 10, “Working with packages and components.”

To create and compile a package, see “Creating and editing packages” on page 10-6.
Put the source-code units for your custom components in the package’s Contains list.
If your components depend on other packages, include those packages in the
Requires list.

To install your components in the IDE, see “Installing component packages” on
page 10-5.

Troubleshooting custom components
A common problem when registering and installing custom components is that the
component does not show up in the list of components after the package is
successfully installed.

The most common causes for component not showing up in the list or on the palette:

• Missing PACKAGE modifier on the Register function

• Missing PACKAGE modifier on the class

• Missing #pragma package(smart_init) in the C++ source file

• Register function is not found in a namespace with the same name as the source
code module name.

• Register is not being successfully exported. Use tdump on the .BPL to look for the
exported function:

tdump -ebpl mypack.bpl mypack.dmp

In the exports section of the dump, you should see the Register function (within
the namespace) being exported.

46-20 D e v e l o p e r ’ s G u i d e

M o d i f y i n g a n e x i s t i n g c o m p o n e n t 47-1

C h a p t e r

47
Chapter47Modifying an existing component

The easiest way to create a component is to derive it from a component that does
nearly everything you want, then make whatever changes you need. The example in
this chapter modifies the standard memo component to create a memo that has a
yellow background. The other chapters in this part describe creating more complex
components. The basic process is always the same, but more complex components
require more steps in customizing the new class.

Modifying an existing component takes only two steps:

• Creating and registering the component
• Modifying the component class

Creating and registering the component
Creation of every component begins the same way: you create a unit, derive a
component class, register it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 39-7.

For this example, follow the general procedure for creating a component, with these
specifics:

1 Name the component’s unit YelMemo and save it, so that the header file is
YELMEMO.H and the .CPP file is YELMEMO.CPP.

2 Derive a new component class called TYellowMemo, descended from TMemo.

3 Register TYellowMemo on the Samples page of the Component palette.

47-2 D e v e l o p e r ’ s G u i d e

M o d i f y i n g t h e c o m p o n e n t c l a s s

The resulting header file should look like this:

#ifndef YelMemoH
#define YelmemoH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
#include <vcl\StdCtrls.hpp>
//---
class PACKAGE TYellowMemo : public TMemo
{
private:
protected:
public:
__published:
};
//---
#endif

The accompanying .CPP file should look like this:

#include <vcl\vcl.h>
#pragma hdrstop
#include "Yelmemo.h"
//---
#pragma package(smart_init);
//---
static inline TYellowMemo *ValidCtrCheck()
{

return new TYellowMemo(NULL);
}
//---
namespace Yelmemo
{

void __fastcall Register()
{

TComponentClass classes[1] = {__classid(TYellowMemo)};
RegisterComponents("Samples", classes, 0);

}
}

Note This example assumes you are not using the Component wizard to create this
component, but that you are creating it manually. If you use the Component wizard,
a constructor will automatically be added to TYellowMemo.

Modifying the component class
Once you have created a new component class, you can modify it in almost any way.
In this case, you will change only the initial value of one property in the memo
component. This involves two small changes to the component class:
• Overriding the constructor.
• Specifying the new default property value.

M o d i f y i n g a n e x i s t i n g c o m p o n e n t 47-3

M o d i f y i n g t h e c o m p o n e n t c l a s s

The constructor actually sets the value of the property. The default tells C++Builder
what values to store in the form (.DFM) file. C++Builder stores only values that differ
from the default, so it is important to perform both steps.

Overriding the constructor

When a component is placed on a form at design time, or when an application
constructs a component at runtime, the component’s constructor sets the property
values. When a component is loaded from a form file, the application sets any
properties changed at design time.

Note When you override a constructor, the new constructor must call the inherited
constructor before doing anything else. For more information, see “Overriding
methods” on page 40-9.

For this example, your new component needs to override the constructor inherited
from TMemo to set the Color property to clYellow. To achieve this, add the declaration
of the constructor override to the class declaration, then write the new constructor in
the .CPP part file:

class PACKAGE TYellowMemo : public TMemo
{
public:

virtual __fastcall TYellowMemo(TComponent* Owner); // the constructor declaration
__published:

__property Color;
};

__fastcall TYellowMemo::TYellowMemo(TComponent* Owner)
: TMemo(Owner) // the constructor implementation first...

// ...calls the constructor for TMemo
{

Color = clYellow; // colors the component yellow
}

Note If you used the Component wizard to create the component, all you need to do is add
Color = clYellow; to the existing constructor.

Now you can install the new component on the Component palette and add it to a
form. Note that the Color property now defaults to clYellow.

Specifying the new default property value

When C++Builder stores a description of a form in a form file, it stores the values
only of properties that differ from their defaults. Storing only the differing values
keeps the form files small and makes loading the form faster. If you create a property
or change the default value, it is a good idea to update the property declaration to
include the new default. Form files, loading, and default values are explained in
more detail in Chapter 46, “Making components available at design time.”

47-4 D e v e l o p e r ’ s G u i d e

M o d i f y i n g t h e c o m p o n e n t c l a s s

To change the default value of a property,

1 Redeclare the property name.

2 Place an equal sign (=) after the property name.

3 Type the default keyword, another equal sign, and the default value all within
braces.

Note that you do not need to redeclare the entire property, just the name and the
default value.

For the yellow memo component, you redeclare the Color property in a __published
part of the class declaration, with a default value of clYellow:

class PACKAGE TYellowMemo : public TMemo
{
public:

virutal __fastcall TYellowMemo(TComponent* Owner);
__published:

__property Color = {default=clYellow};
};

Here is TYellowMemo again, but this time it has another published property,
WordWrap, with a default value of false:

class PACKAGE TYellowMemo : public TMemo
{
public:

virtual __fastcall TYellowMemo(TComponent* Owner);
__published:

__property Color = {default=clYellow};
__property WordWrap = {default=false};

};

Specifying the default property value does not affect the workings of the component
at all. You must still explicitly set the default value in the component’s constructor.
The difference is in the inner workings of the application. For TYellowMemo,
C++Builder no longer writes WordWrap to the form file if it is false, because you have
told it that the constructor will set that value automatically. Here is the constructor:

__fastcall TYellowMemo::TYellowMemo(TComponent* AOwner) : TMemo(AOwner)
{

Color = clYellow;
WordWrap = false;

}

C r e a t i n g a g r a p h i c c o m p o n e n t 48-1

C h a p t e r

48
Chapter48Creating a graphic component

A graphic control is a simple kind of component. Because a purely graphic control
never receives focus, it does not have or need a window handle. Users can still
manipulate the control with the mouse, but there is no keyboard interface.

The graphic component presented in this chapter is TShape, the shape component is
on the Additional page of the Component palette. Although the component created
is identical to the standard shape component, you need to call it something different
to avoid duplicate identifiers. This chapter calls its shape component TSampleShape
and shows you all the steps involved in creating the shape component:

• Creating and registering the component
• Publishing inherited properties
• Adding graphic capabilities

Creating and registering the component
Creation of every component begins the same way: derive a component class, save
the component’s .CPP and .H files, derive a component class, register it, compile it,
and install it on the Component palette. This process is outlined in “Creating a new
component” on page 39-7.

Note This example assumes you are not using the Component wizard, but are creating the
component manually.

For this example, follow the general procedure for creating a component, with these
specifics:

• Derive a new component type called TSampleShape, descended from
TGraphicControl.

• Call the component’s header file SHAPES.H and the .CPP file SHAPES.CPP.

• Register TSampleShape on the Samples page of the Component palette.

48-2 D e v e l o p e r ’ s G u i d e

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

The resulting header file should look like this:

//---
#ifndef ShapesH
#define ShapesH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
//---
class PACKAGE TSampleShape : public TGraphicControl
{
private:
protected:
public:
__published:
};
//---
#endif

The .CPP file should look like this:

//---
#include <vcl\vcl.h>
#pragma hdrstop
#include "Shapes.h"
//---
#pragma package(smart_init);
//---
static inline TSampleShape *ValidCtrCheck()
{

return new TSampleShape(NULL);
}
//---
namespace Shapes
{

void __fastcall Register()
{

TComponentClass classes[1] = {__classid(TSampleShape)};
RegisterComponents("Samples", classes, 0);

}
}
//--

Publishing inherited properties
Once you derive a component type, you can decide which of the properties and
events declared in the protected parts of the ancestor class you want to surface in the
new component. TGraphicControl already publishes all the properties that enable the
component to function as a control, so all you need to publish is the ability to respond
to mouse events and handle drag-and-drop.

C r e a t i n g a g r a p h i c c o m p o n e n t 48-3

A d d i n g g r a p h i c c a p a b i l i t i e s

Publishing inherited properties and events is explained in “Publishing inherited
properties” on page 41-2 and “Making events visible” on page 42-5. Both processes
involve redeclaring just the name of the properties in the published part of the class
declaration.

For the shape control, you can publish the three mouse events, the three
drag-and-drop events, and the two drag-and-drop properties:

class PACKAGE TSampleShape : public TGraphicControl
{
private:
__published:

__property DragCursor ;
__property DragMode ;
__property OnDragDrop ;
__property OnDragOver ;
__property OnEndDrag ;
__property OnMouseDown ;
__property OnMouseMove ;
__property OnMouseUp ;

};

The sample shape control now makes mouse and drag-and-drop interactions
available to its users.

Adding graphic capabilities
Once you have declared your graphic component and published any inherited
properties you want to make available, you can add the graphic capabilities that
distinguish your component. You have two tasks to perform when creating a graphic
control:

1 Determining what to draw.
2 Drawing the component image.

In addition, for the shape control example, you will add some properties that enable
application developers to customize the appearance of the shape at design time.

Determining what to draw

A graphic control can change its appearance to reflect a dynamic condition, including
user input. A graphic control that always looks the same should probably not be a
component at all. If you want a static image, you can import the image instead of
using a control.

In general, the appearance of a graphic control depends on some combination of its
properties. The gauge control, for example, has properties that determine its shape
and orientation and whether it shows its progress numerically as well as graphically.
Similarly, the shape control has a property that determines what kind of shape it
should draw.

48-4 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

To give your control a property that determines the shape it draws, add a property
called Shape. This requires

1 Declaring the property type.
2 Declaring the property.
3 Writing the implementation method.

Creating properties is explained in more detail in Chapter 41, “Creating properties.”

Declaring the property type
When you declare a property of a user-defined type, you must declare the type first,
before the class that includes the property. The most common sort of user-defined
type for properties is enumerated.

For the shape control, you need an enumerated type with an element for each kind of
shape the control can draw.

Add the following type definition above the shape control class’s declaration.

enum TSampleShapeType { sstRectangle, sstSquare, sstRoundRect, sstRoundSquare, sstEllipse,
sstCircle };

class PACKAGE TSampleShape : public TGraphicControl // this is already there

You can now use this type to declare a new property in the class.

Declaring the property
When you declare a property, you usually need to declare a private data member to
store the data for the property, then specify methods for reading and writing the
property value. Often, you don’t need to use a method to read the value, but can just
point to the stored data instead.

For the shape control, you will declare a data member that holds the current shape,
then declare a property that reads that data member and writes to it through a
method call.

Add the following declarations to TSampleShape:

class PACKAGE TSampleShape : public TGraphicControl
{
private:

TSampleShapeType FShape;
void __fastcall SetShape(TSampleShapeType Value);

__published:
__property TSampleShapeType Shape = {read=FShape, write=SetShape, nodefault};

};

Now all that remains is to add the implementation of SetShape.

Writing the implementation method
When the read or write part of a property definition uses a method instead of directly
accessing the stored property data, you need to implement the method.

C r e a t i n g a g r a p h i c c o m p o n e n t 48-5

A d d i n g g r a p h i c c a p a b i l i t i e s

Add the implementation of the SetShape method to the SHAPES.CPP file:

void __fastcall TSampleShape::SetShape(TSampleShapeType Value)
{

if (FShape != Value) // ignore if this isn’t a change
{

FShape = Value; // store the new value
Invalidate(); // force a repaint with the new shape

}
}

Overriding the constructor and destructor

To change default property values and initialize owned classes for your component,
you must override the inherited constructor and destructor. In both cases, remember
always to call the inherited method in your new constructor or destructor.

Changing default property values
The default size of a graphic control is fairly small, so you can change the width and
height in the constructor. Changing default property values is explained in more
detail in Chapter 47, “Modifying an existing component.”

In this example, the shape control sets its size to a square 65 pixels on each side.

1 Add the overridden constructor to the declaration of the component class:

class PACKAGE TSampleShape : public TGraphicControl
{
public:

virtual __fastcall TSampleShape(TComponent *Owner);
};

If you started creating the component with the Component wizard, this step will
already be done for you.

2 Redeclare the Height and Width properties with their new default values:

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
__published:

__property Height;
__property Width;

}

3 Write the new constructor in the .CPP file:

__fastcall TSampleShape::TSampleShape(TComponent* Owner) : TGraphicControl(Owner)
{

Width = 65;
Height = 65;

}

If you used the Component wizard, all you need to do is add the new default
values to the already existing constructor.

48-6 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

Publishing the pen and brush

By default, a canvas has a thin black pen and a solid white brush. To let developers
change the pen and brush, you must provide classes for them to manipulate at design
time, then copy the classes into the canvas during painting. Classes such as an
auxiliary pen or brush are called owned classes because the component owns them
and is responsible for creating and destroying them.

Managing owned classes requires

1 Declaring the class data members.
2 Declaring the access properties.
3 Initializing owned classes.
4 Setting owned classes’ properties.

Declaring the data members
Each class a component owns must have a data member declared for it in the
component. The data member ensures that the component always has a pointer to
the owned object so that it can destroy the class before destroying itself. In general, a
component initializes owned objects in its constructor and destroys them in its
destructor.

Data members for owned objects are nearly always declared as private. If
applications (or other components) need access to the owned objects, you can declare
published or public properties for this purpose.

Add data members for a pen and brush to the shape control:

class PACKAGE TSampleShape : public TGraphicControl
{
private: // data members are always private

TPen *FPen; // a data member for the pen object
TBrush *FBrush; // a data member for the brush object
ƒ

};

Declaring the access properties
You can provide access to the owned objects of a component by declaring properties
of the type of the objects. That gives developers a way to access the objects at design
time or runtime. Usually, the read part of the property just references the data
member, but the write part calls a method that enables the component to react to
changes in the owned object.

To the shape control, add properties that provide access to the pen and brush data
members. You will also declare methods for reacting to changes to the pen or brush.

C r e a t i n g a g r a p h i c c o m p o n e n t 48-7

A d d i n g g r a p h i c c a p a b i l i t i e s

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
private:

TPen *FPen;
TBrush *FBrush;
void __fastcall SetBrush(TBrush *Value);
void __fastcall SetPen(TPen *Value);
ƒ

__published:
__property TBrush* Brush = {read=FBrush, write=SetBrush, nodefault};
__property TPen* Pen = {read=FPen, write=SetPen, nodefault};

};

Then, write the SetBrush and SetPen methods in the .CPP file:

void __fastcall TSampleShape::SetBrush(TBrush* Value)
{

FBrush->Assign(Value);
}

void __fastcall TSampleShape::SetPen(TPen* Value)
{

FPen->Assign(Value);
}

To directly assign the contents of Value to FBrush...

FBrush = Value;

...would overwrite the internal pointer for FBrush, lose memory, and create a number
of ownership problems.

Initializing owned classes
If you add classes to your component, the component’s constructor must initialize
them so that the user can interact with the objects at runtime. Similarly, the
component’s destructor must also destroy the owned objects before destroying the
component itself.

Because you have added a pen and a brush to the shape control, you need to initialize
them in the shape control’s constructor and destroy them in the control’s destructor:

1 Construct the pen and brush in the shape control constructor:

__fastcall TSampleShape::TSampleShape(TComponent* Owner) : TGraphicControl(Owner)
{

Width = 65;
Height = 65;
FBrush = new TBrush(); // construct the pen
FPen = new TPen(); // construct the brush

}

48-8 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

2 Add the overridden destructor to the declaration of the component class:

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
public: // destructors are always public

virtual __fastcall TSampleShape(TComponent* Owner);
__fastcall ~TSampleShape(); // the destructor
ƒ

};

3 Write the new destructor in the .CPP file:

__fastcall TSampleShape::~TSampleShape()
{

delete FPen; // delete the pen object
delete FBrush; // delete the brush object

}

Setting owned classes’ properties
As the final step in handling the pen and brush classes, you need to make sure that
changes in the pen and brush cause the shape control to repaint itself. Both pen and
brush classes have OnChange events, so you can create a method in the shape control
and point both OnChange events to it.

Add the following method to the shape control, and update the component’s
constructor to set the pen and brush events to the new method:

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
public:

void __fastcall StyleChanged(TObject* Owner);
ƒ

};

In the SHAPES.CPP file, assign the StyleChanged method to the OnChange events for
the pen and brush classes in the TSampleShape constructor:

__fastcall TSampleShape::TSampleShape(TComponent* Owner) : TGraphicControl(Owner)
{

Width = 65;
Height = 65;
FBrush = new TBrush();
FBrush->OnChange = StyleChanged;
FPen = new TPen();
FPen->OnChange = StyleChanged;

}

C r e a t i n g a g r a p h i c c o m p o n e n t 48-9

A d d i n g g r a p h i c c a p a b i l i t i e s

Include the implementation of the StyleChanged method:

void __fastcall TSampleShape::StyleChanged(TObject* Sender)
{

Invalidate(); // repaints the component
}

With these changes, the component redraws to reflect changes to either the pen or the
brush.

Drawing the component image

The essential element of a graphic control is the way it paints its image on the screen.
The abstract type TGraphicControl defines a method called Paint that you override to
paint the image you want on your control.

The Paint method for the shape control needs to do several things:

• Use the pen and brush selected by the user.
• Use the selected shape.
• Adjust coordinates so that squares and circles use the same width and height.

Overriding the Paint method requires two steps:

1 Add Paint to the component’s declaration.
2 Write the Paint method in the .CPP file.

For the shape control, add the following declaration to the class declaration:

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
protected:

virtual void __fastcall Paint();
ƒ

};

Then write the method in the .CPP file:

void __fastcall TSampleShape::Paint()
{

int X,Y,W,H,S;
Canvas->Pen = FPen; // copy the component’s pen
Canvas->Brush = FBrush; // copy the component’s brush
W=Width; // use the component width
H=Height; // use the component height
X=Y=0; // save smallest for circles/squares
if(W<H)

 S=W;
else
 S=H;

48-10 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

switch(FShape)
{

case sstRectangle: // draw rectangles and squares
case sstSquare:
Canvas->Rectangle(X,Y,X+W,Y+H);
break;

case sstRoundRect: // draw rounded rectangles and squares
case sstRoundSquare:
Canvas->RoundRect(X,Y,X+W,Y+H,S/4,S/4);
break;

case sstCircle: // draw circles and ellipses
case sstEllipse:
Canvas->Ellipse(X,Y,X+W,Y+H);
break;

default:
break;

}
}

Paint is called whenever the control needs to update its image. Windows tells
controls to paint when they first appear or when a window in front of them goes
away. In addition, you can force repainting by calling Invalidate, as the StyleChanged
method does.

Refining the shape drawing

The standard shape control does one more thing that your sample shape control does
not yet do: it handles squares and circles as well as rectangles and ellipses. To do that,
you need to write code that finds the shortest side and centers the image.

Here is a refined Paint method that adjusts for squares and ellipses:

void __fastcall TSampleShape::Paint(void)
{

int X,Y,W,H,S;
Canvas->Pen = FPen; // copy the component’s pen
Canvas->Brush = FBrush; // copy the component’s brush
W=Width; // use the component width
H=Height; // use the component height
X=Y=0; // save smallest for circles/squares
if(W<H)

 S=W;
else
 S=H;
switch(FShape) // adjust height, width and position
{

case sstRectangle:
case sstRoundRect:
case sstEllipse:
Y=X=0; // origin is top-left for these shapes
break;

C r e a t i n g a g r a p h i c c o m p o n e n t 48-11

A d d i n g g r a p h i c c a p a b i l i t i e s

case sstSquare:
case sstRoundSquare:
case sstCircle:
X= (W-S)/2; // center these horizontally
Y= (H-S)/2; // and vertically
break;

default:
break;

}
switch(FShape)
{

case sstSquare: // draw rectangles and squares
W=H=S; // use shortest dimension for width and height

case sstRectangle:
Canvas->Rectangle(X,Y,X+W,Y+H);
break;

case sstRoundSquare: // draw rounded rectangles and squares
W=H=S;

case sstRoundRect:
Canvas->RoundRect(X,Y,X+W,Y+H,S/4,S/4);
break;

case sstCircle: // draw circles and ellipses
W=H=S;

case sstEllipse:
Canvas->Ellipse(X,Y,X+W,Y+H);
break;

default:
break;

}
}

48-12 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g a g r i d 49-1

C h a p t e r

49
Chapter49Customizing a grid

C++Builder provides abstract components you can use as the basis for customized
components. The most important of these are grids and list boxes. In this chapter,
you will see how to create a small one-month calendar from the basic grid
component, TCustomGrid.

Creating the calendar involves these tasks:

• Creating and registering the component
• Publishing inherited properties
• Changing initial values
• Resizing the cells
• Filling in the cells
• Navigating months and years
• Navigating days

The resulting component is similar to the TCalendar component on the Samples page
of the Component palette.

Creating and registering the component
Creation of every component begins the same way: derive a component class, save
the component’s .CPP and .H files, derive a component class, register it, compile it,
and install it on the Component palette. This process is outlined in “Creating a new
component” on page 39-7.

For this example, follow the general procedure for creating a component, with these
specifics:

• Derive a new component type called TSampleCalendar, descended from
TCustomGrid.

• Call the component’s header file CALSAMP.H and its .CPP file CALSAMP.CPP.

• Register TSampleCalendar on the Samples page of the Component palette.

49-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d r e g i s t e r i n g t h e c o m p o n e n t

The resulting header file should look like this:

#ifndef CalSampH
#define CalSampH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
#include <vcl\grids.hpp>
//---
class PACKAGE TSampleCalendar : public TCustomGrid
{
private:
protected:
public:
__published:
};
//---
#endif

The CALSAMP.CPP file should resemble this:

#include <vcl\vcl.h>
#pragma hdrstop
#include "CalSamp.h"
//---
#pragma package(smart_init);
//---
static inline TSampleCalendar *ValidCtrCheck()
{

return new TSampleCalendar(NULL);
}
//---
namespace Calsamp
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TSampleCalendar)};
RegisterComponents("Samples", classes, 0);

}
}

Note If you used the Component wizard to create the component, the header file will also
declare a new constructor, and the CALSAMP.CPP file will have the beginnings of a
constructor. If the constructor is not there, you can add it later.

C u s t o m i z i n g a g r i d 49-3

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

Publishing inherited properties
The abstract grid component, TCustomGrid, provides a large number of protected
properties. You can choose which of those properties you want to make available to
users of the calendar control.

To make inherited protected properties available to users of your components,
redeclare the properties in the _published part of your component’s declaration.

For the calendar control, publish the following properties and events, as shown here:

class PACKAGE TSampleCalendar : public TCustomGrid
{
ƒ
__published:

__property Align ; // publish properties
__property BorderStyle ;
__property Color ;
__property Font ;
__property GridLineWidth ;
__property ParentColor ;
__property ParentFont ;
__property OnClick ; // publish events
__property OnDblClick ;
__property OnDragDrop ;
__property OnDragOver ;
__property OnEndDrag ;
__property OnKeyDown ;
__property OnKeyPress ;
__property OnKeyUp ;

};

There are a number of other properties you could also publish, but which do not
apply to a calendar, such as the Options property that would enable the user to
choose which grid lines to draw.

If you install the modified calendar component to the Component palette and use it
in an application, you will find many more properties and events available in the
calendar, all fully functional. You can now start adding new capabilities of your own
design.

Changing initial values
A calendar is essentially a grid with a fixed number of rows and columns, although
not all the rows always contain dates. For this reason, you have not published the
grid properties ColCount and RowCount, because it is highly unlikely that users of the
calendar will want to display anything other than seven days per week. You still
must set the initial values of those properties so that the week always has seven days,
however.

To change the initial values of the component’s properties, override the constructor
to set the desired values.

49-4 D e v e l o p e r ’ s G u i d e

R e s i z i n g t h e c e l l s

Remember that you need to add the constructor to the public part of the
component’s class declaration, then write the new constructor in the header file:

class PACKAGE TSampleCalendar : public TCustomGrid
{
protected:

virtual void __fastcall DrawCell(long ACol, long ARow, const Windows::TRect &Rect,
TGridDrawState AState);

ƒ
public:

virtual __fastcall TSampleCalendar(TComponent *Owner); // the added constructor
ƒ

};

In the CALSAMP.CPP file, write the constructor code:

__fastcall TSampleCalendar::TSampleCalendar(TComponent *Owner) : TCustomGrid(Owner)
{

ColCount = 7;
RowCount = 7;
FixedCols = 0;
FixedRows = 1;
ScrollBars = ssNone;
Options = (Options >> goRangeSelect) << goDrawFocusSelected;

}

void __fastcall TSampleCalendar::DrawCell(int ACol, int ARow, const Windows::TRect
&ARect, TGridDrawState AState)

{
}

Note You will notice that a DrawCell method was also added to the class declaration, and in the
.CPP file, the DrawCell method was started. This is not absolutely necessary now, but if
you should attempt to test TSampleCalendar before overriding DrawCell, you would
encounter a pure virtual function error. This is because TCustomGrid is an abstract class.
Overriding DrawCell is discussed later in the section “Filling in the cells” on page 49-5.

The calendar now has seven columns and seven rows, with the top row fixed, or
nonscrolling.

Resizing the cells
When a user or application changes the size of a window or control, Windows sends
a message called WM_SIZE to the affected window or control so it can adjust any
settings needed to later paint its image in the new size. Your component can respond
to that message by altering the size of the cells so they all fit inside the boundaries of
the control. To respond to the WM_SIZE message, you will add a message-handling
method to the component.

Creating a message-handling method is described in detail in “Creating new
message handlers” on page 45-5.

In this case, the calendar control needs a response to WM_SIZE, so add a protected
method called WMSize to the control, then write the method so that it calculates the

C u s t o m i z i n g a g r i d 49-5

F i l l i n g i n t h e c e l l s

proper cell size to allow all cells to be visible in the new size:

class PACKAGE TSampleCalendar : public TCustomGrid
{
ƒ
protected:

void __fastcall WMSize(TWMSize &Message);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(WM_SIZE, TWMSize, WMSize)

END_MESSAGE_MAP(TCustomGrid)
};

Here is the code for the method in the CALSAMP.CPP file:

void __fastcall TSampleCalendar::WMSize(TWMSize Message)
{

int GridLines; // temporary local variable
GridLines = 6 * GridLineWidth; // calculated combined size of all lines
DefaultColWidth = (Message.Width - GridLines) / 7; // set new default cell width
DefaultRowHeight = (Message.Height - GridLines) / 7; // and cell height

}

Now when the calendar is resized, it displays all the cells in the largest size that will
fit in the control.

Filling in the cells
A grid control fills in its contents cell-by-cell. In the case of the calendar, that means
calculating which date, if any, belongs in each cell. The default drawing for grid cells
takes place in a virtual method called DrawCell.

To fill in the contents of grid cells, override the DrawCell method.

The easiest part to fill in is the heading cells in the fixed row. The runtime library
contains an array with short day names, so for the calendar, use the appropriate one
for each column:

Here is the code for the DrawCell method:

void __fastcall TSampleCalendar::DrawCell(long ACol, long ARow, const Windows::TRect &ARect,
TGridDrawState AState)

{
String TheText;
int TempDay;
if (ARow == 0) TheText = ShortDayNames[ACol + 1];
else
{

TheText = "";
TempDay = DayNum(ACol, ARow); // DayNum is defined later
if (TempDay != -1) TheText = IntToStr(TempDay);

}
Canvas->TextRect(ARect, ARect.Left + (ARect.Right - ARect.Left
- Canvas->TextWidth(TheText)) / 2,

ARect.Top + (ARect.Bottom - ARect.Top - Canvas->TextHeight(TheText)) / 2, TheText);
}

49-6 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

Tracking the date

For the calendar control to be useful, users and applications must have a mechanism
for setting the day, month, and year. C++Builder stores dates and times in variables of
type TDateTime. TDateTime is an encoded numeric representation of the date and time,
which is useful for programmatic manipulation, but not convenient for human use.
You can therefore store the date in encoded form, providing runtime access to that
value, but also provide Day, Month, and Year properties that users of the calendar
component can set at design time.
Tracking the date in the calendar consists of the processes:

• Storing the internal date
• Accessing the day, month, and year
• Generating the day numbers
• Selecting the current day

Storing the internal date
To store the date for the calendar, you need a private data member to hold the date
and a runtime-only property that provides access to that date.

1 Declare a private data member to hold the date:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

TDateTime FDate;
ƒ

};

2 Initialize the date data member in the constructor:

__fastcall TSampleCalendar::TSampleCalendar(TComponent *Owner) : TCustomGrid(Owner)
{

ƒ
FDate = FDate.CurrentDate();

}

3 Declare a runtime property to allow access to the encoded date:

class PACKAGE TSampleCalendar : public TCustomGrid
{
public:

__property TDateTime CalendarDate = {read=FDate, write=SetCalendarDate, nodefault};
ƒ

};

C u s t o m i z i n g a g r i d 49-7

F i l l i n g i n t h e c e l l s

You will need a method for setting the date, because setting the date requires
updating the onscreen image of the control. Declare SetCalendarDate in
TSampleCalendar:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

void __fastcall SetCalendarDate(TDateTime Value);
ƒ

};

This is the SetCalendarDate method:

void __fastcall TSampleCalendar::SetCalendarDate(TDateTime Value)
{

FDate = Value; // Set the new date value
Refresh(); // Update the onscreen image

}

Accessing the day, month, and year
An encoded numeric date is fine for applications, but humans prefer to work with
days, months, and years. You can provide alternate access to those elements of the
stored, encoded date by creating properties.

Because each element of the date (day, month, and year) is an integer, and because
setting each requires encoding the date when set, you can avoid duplicating the code
each time by sharing the implementation methods for all three properties. That is,
you can write two methods, one to read an element and one to write one, and use
those methods to get and set all three properties.

To provide design-time access to the day, month, and year, you do the following:

1 Declare the three properties, assigning each a unique index number:

class PACKAGE TSampleCalendar : public TCustomGrid
{

ƒ
public:

__property int Day = {read=GetDateElement, write=SetDateElement, index=3, nodefault};
__property int Month = {read=GetDateElement, write=SetDateElement, index=2, nodefault};
__property int Year = {read=GetDateElement, write=SetDateElement, index=1, nodefault};

};

2 Declare and write the implementation methods, setting different elements for each
index value:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

int __fastcall GetDateElement(int Index); // note the Index parameter
void __fastcall SetDateElement(int Index, int Value);
ƒ

};

49-8 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

Here are the GetDateElement and SetDateElement methods:

int __fastcall TSampleCalendar::GetDateElement(int Index)
{

unsigned short AYear, AMonth, ADay;
int result;
FDate.DecodeDate(&AYear, &AMonth, &ADay); // break encoded date into elements
switch (Index)
{

case 1: result = AYear; break;
case 2: result = AMonth; break;
case 3: result = ADay; break;
default: result = -1;

}
return result;

}

void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{

unsigned short AYear, AMonth, ADay;
if (Value > 0) // all elements must be positive
{

FDate.DecodeDate(&AYear, &AMonth, &ADay); // get current date elements
switch (Index)
{
case 1: AYear = Value; break;
case 2: AMonth = Value; break;
case 3: ADay = Value; break;
default: return;

}
}
FDate = TDateTime(AYear, AMonth, ADay); // encode the modified date
Refresh(); // update the visible calendar

}

Now you can set the calendar’s day, month, and year at design time using the Object
Inspector or at runtime using code. Of course, you have not yet added the code to
paint the dates into the cells, but now you have the needed data.

Generating the day numbers
Putting numbers into the calendar involves several considerations. The number of
days in the month depends on which month it is, and whether the given year is a leap
year. In addition, months start on different days of the week, dependent on the
month and year. Use the IsLeapYear function to determine whether the year is a leap
year. Use the MonthDays array in the SysUtils header file to get the number of days in
the month.

Once you have the information on leap years and days per month, you can calculate
where in the grid the individual dates go. The calculation is based on the day of the
week the month starts on.

Because you will need the month-offset number for each cell you fill in, the best
practice is to calculate it once when you change the month or year, then refer to it

C u s t o m i z i n g a g r i d 49-9

F i l l i n g i n t h e c e l l s

each time. You can store the value in a class data member, then update that data
member each time the date changes.

To fill in the days in the proper cells, you do the following:

1 Add a month-offset data member to the class and a method that updates the data
member value:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

int FMonthOffset; // storage for the offset
ƒ

protected:
virtual void __fastcall UpdateCalendar(void);
ƒ

};

void __fastcall TSampleCalendar::UpdateCalendar(void)
{

unsigned short AYear, AMonth, ADay;
TDateTime FirstDate; // date of first day of the month
if ((int)FDate != 0) // only calculate offset if date is valid
{

FDate.DecodeDate(&AYear, &AMonth, &ADay); // get elements of date
FirstDate = TDateTime(AYear, AMonth, 1); // date of the first
FMonthOffset = 2 - FirstDate.DayOfWeek(); // generate the offset into the grid

}
Refresh(); // always repaint the control

}

2 Add statements to the constructor and the SetCalendarDate and SetDateElement
methods that call the new update method whenever the date changes:

__fastcall TSampleCalendar::TSampleCalendar(TComponent *Owner)
: TCustomGrid(Owner)

{
ƒ
UpdateCalendar();

}

void __fastcall TSampleCalendar::SetCalendarDate(TDateTime Value)
{

FDate = Value; // this was already here
UpdateCalendar(); // this previously called Refresh

}

void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{

ƒ
FDate = TDateTime(AYear, AMonth, ADay); // this was already here
UpdateCalendar(); // this previously called Refresh

}

49-10 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

3 Add a method to the calendar that returns the day number when passed the row
and column coordinates of a cell:

int __fastcall TSampleCalendar::DayNum(int ACol, int ARow)
{

int result = FMonthOffset + ACol + (ARow - 1) * 7; // calculate day for this cell
if ((result < 1)||(result > MonthDays[IsLeapYear(Year)][Month]))

result = -1; // return -1 if invalid
return result;

}

Remember to add the declaration of DayNum to the component’s type declaration.

4 Now that you can calculate where the dates go, you can update DrawCell to fill in
the dates:

void __fastcall TSampleCalendar::DrawCell(long ACol, long ARow, const TRect &ARect,
TGridDrawState AState)

{
String TheText;
int TempDay;
if (ARow == 0) // this is the header row

TheText = ShortDayNames[ACol + 1]; // just use the day name
else
{

TheText = ""; // blank cell is the default
TempDay = DayNum(ACol, ARow); // get number for this cell
if (TempDay != -1) TheText = IntToStr(TempDay); // use the number if valid

}
Canvas->TextRect(ARect, ARect.Left + (ARect.Right - ARect.Left -

Canvas->TextWidth(TheText)) / 2,
ARect.Top + (ARect.Bottom - ARect.Top - Canvas->TextHeight(TheText)) / 2, TheText);

}

Now if you reinstall the calendar component and place one on a form, you will see
the proper information for the current month.

Selecting the current day
Now that you have numbers in the calendar cells, it makes sense to move the
selection highlighting to the cell containing the current day. By default, the selection
starts on the top left cell, so you need to set the Row and Column properties both
when constructing the calendar initially and when the date changes.

To set the selection on the current day, change the UpdateCalendar method to set Row
and Column before calling Refresh:

void __fastcall TSampleCalendar::UpdateCalendar(void)
{

unsigned short AYear, AMonth, ADay;
TDateTime FirstDate;
if ((int) FDate != 0)

C u s t o m i z i n g a g r i d 49-11

N a v i g a t i n g m o n t h s a n d y e a r s

{
 ƒ // existing statements to set FMonthOffset

Row = (ADay - FMonthOffset) / 7 + 1;
Col = (ADay - FMonthOffset) % 7;

}
Refresh(); // this is already here

}

Note that you are now reusing the ADay variable previously set by decoding the
date.

Navigating months and years
Properties are useful for manipulating components, especially at design time. But
sometimes there are types of manipulations that are so common or natural, often
involving more than one property, that it makes sense to provide methods to handle
them. One example of such a natural manipulation is a “next month” feature for a
calendar. Handling the wrapping around of months and incrementing of years is
simple, but very convenient for the developer using the component.

The only drawback to encapsulating common manipulations into methods is that
methods are only available at runtime. However, such manipulations are generally
only cumbersome when performed repeatedly, and that is fairly rare at design time.

For the calendar, add the following four methods for next and previous month and
year. Each of these methods uses the IncMonth function in a slightly different manner
to increment or decrement CalendarDate, by increments of a month or a year. After
incrementing or decrementing CalendarDate, decode the date value to fill the Year,
Month, and Day properties with corresponding new values.

void __fastcall TSampleCalendar::NextMonth()
{

DecodeDate(IncMonth(CalendarDate, 1), Year, Month, Day);
}

void __fastcall TSampleCalendar::PrevMonth()
{

DecodeDate(IncMonth(CalendarDate, -1), Year, Month, Day);
}

void __fastcall TSampleCalendar::NextYear()
(

DecodeDate(IncMonth(CalendarDate, 12), Year, Month, Day);
)

void __fastcall TSampleCalendar::PrevYear()
{

DecodeDate(IncMonth(CalendarDate, -12), Year, Month, Day);
}

Be sure to add the declarations of the new methods to the class declaration.

Now when you create an application that uses the calendar component, you can
easily implement browsing through months or years.

49-12 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a y s

Navigating days
Within a given month, there are two obvious ways to navigate among the days. The
first is to use the arrow keys, and the other is to respond to clicks of the mouse. The
standard grid component handles both as if they were clicks. That is, an arrow
movement is treated like a click on an adjacent cell.

The process of navigating days consists of

• Moving the selection
• Providing an OnChange event
• Excluding blank cells

Moving the selection
The inherited behavior of a grid handles moving the selection in response to either
arrow keys or clicks, but if you want to change the selected day, you need to modify
that default behavior.

To handle movements within the calendar, override the Click method of the grid.

When you override a method such as Click that is tied in with user interactions, you
will nearly always include a call to the inherited method, so as not to lose the
standard behavior.

The following is an overridden Click method for the calendar grid. Be sure to add the
declaration of Click to TSampleCalendar.

void __fastcall TSampleCalendar::Click()
{

int TempDay = DayNum(Col, Row); // get the day number for the clicked cell
if (TempDay != -1) Day = TempDay; // change day if valid

}

Providing an OnChange event
Now that users of the calendar can change the date within the calendar, it makes
sense to allow applications to respond to those changes.

Add an OnChange event to TSampleCalendar.

1 Declare the event, a data member to store the event, and a virtual method to call
the event:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

TNotifyEvent FOnChange;
ƒ

protected:
virtual void __fastcall Change();

__published:
__property TNotifyEvent OnChange = {read=FOnChange, write=FOnChange};
ƒ

}

C u s t o m i z i n g a g r i d 49-13

N a v i g a t i n g d a y s

2 Write the Change method:

void __fastcall TSampleCalendar::Change()
{

if(FOnChange != NULL) FOnChange(this);
}

3 Add statements calling Change to the end of the SetCalendarDate and
SetDateElement methods:

void __fastcall TSampleCalendar::SetCalendarDate(TDateTime Value)
{

FDate = Value;
UpdateCalendar();
Change(); // this is the only new statement

}

void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{

ƒ // many statements setting element values
FDate = TDateTime(AYear, AMonth, ADay);
UpdateCalendar();
Change(); // this is new

}

Applications using the calendar component can now respond to changes in the date
of the component by attaching handlers to the OnChange event.

Excluding blank cells

As the calendar is written, the user can select a blank cell, but the date does not
change. It makes sense, then, to disallow selection of the blank cells.

To control whether a given cell is selectable, override the SelectCell method of the
grid.

SelectCell is a function that takes a column and row as parameters, and returns a
Boolean value indicating whether the specified cell is selectable.

You can override SelectCell to return false if the cell does not contain a valid date:

bool __fastcall TSampleCalendar::SelectCell(long ACol, long ARow)
{

if (DayNum(ACol,ARow) == -1) return false; // -1 indicates invalid date
else return TCustomGrid::SelectCell(ACol, ARow); // otherwise, use inherited value

}

Now if the user clicks a blank cell or tries to move to one with an arrow key, the
calendar leaves the current cell selected.

49-14 D e v e l o p e r ’ s G u i d e

M a k i n g a c o n t r o l d a t a a w a r e 50-1

C h a p t e r

50
Chapter50Making a control data aware

When working with database connections, it is often convenient to have controls that
are data aware. That is, the application can establish a link between the control and
some part of a database. C++Builder includes data-aware labels, edit boxes, list
boxes, combo boxes, lookup controls, and grids. You can also make your own
controls data aware. For more information about using data-aware controls, see
Chapter 27, “Using data controls.”

There are several degrees of data awareness. The simplest is read-only data
awareness, or data browsing, the ability to reflect the current state of a database. More
complicated is editable data awareness, or data editing, where the user can edit the
values in the database by manipulating the control. Note also that the degree of
involvement with the database can vary, from the simplest case, a link with a single
field, to more complex cases, such as multiple-record controls.

This chapter first illustrates the simplest case, making a read-only control that links
to a single field in a dataset. The specific control used will be the TSampleCalendar
calendar created in Chapter 49, “Customizing a grid.” You can also use the standard
calendar control on the Samples page of the Component palette, TCalendar.

The chapter then continues with an explanation of how to make the new
data-browsing control a data-editing control.

Creating a data-browsing control
Creating a data-aware calendar control, whether it is a read-only control or one in
which the user can change the underlying data in the dataset, involves the following
steps:

• Creating and registering the component
• Adding the data link
• Responding to data changes

50-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Creating and registering the component

Creation of every component begins the same way: derive a component class, save
the component’s .CPP and .H files, derive a component class, register it, compile it,
and install it on the Component palette. This process is outlined in “Creating a new
component” on page 39-7.

For this example, follow the general procedure for creating a component, with these
specifics:

• Derive a new component class called TDBCalendar, descended from
TSampleCalendar. Chapter 49, “Customizing a grid,” shows you how to create the
TSampleCalendar component.

• Name the header file DBCAL.H and the .CPP file DBCAL.CPP.

• Register TDBCalendar on the Samples page of the Component palette.

The resulting header file should look like this:

#ifndef DBCalH
#define DBCalH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
#include <vcl\grids.hpp> // include the Grids header
#include “calsamp.h” // include the header that declares TSampleCalendar
//---
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:
protected:
public:
__published:
};
//---
#endif

The .CPP file should look like this:

#pragma link “Calsamp” // link in TSampleCalendar

#include <vcl\vcl.h>
#pragma hdrstop
#include "DBCal.h"
//---
#pragma package(smart_init);
//---
static inline TDBCalendar *ValidCtrCheck()
{

return new TDBCalendar(NULL);
}
//---

M a k i n g a c o n t r o l d a t a a w a r e 50-3

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

namespace Dbcal
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TDBCalendar)};
RegisterComponents("Samples", classes, 0);

}
}

Note If you used the Component wizard to begin the TDBCalendar component, your
header file will have the constructor already declared, and the .CPP file has the
constructor’s definition.

You can now proceed with making the new calendar a data browser.

Making the control read-only
Because this data calendar will be read-only with respect to the data, it makes sense
to make the control itself read-only, so users will not make changes within the control
and expect them to be reflected in the database.

Making the calendar read-only involves,

• Adding the ReadOnly property.
• Allowing needed updates.

Note that if you started with the TCalendar component from C++Builder’s Samples
page instead of TSampleCalendar, it already has a ReadOnly property, so you can skip
these steps.

Adding the ReadOnly property
By adding a ReadOnly property, you will provide a way to make the control
read-only at design time. When that property is set to true, you can make all cells in
the control unselectable.

1 Add the property declaration and a private data member to hold the value in the
DBCAL.H file:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

bool FReadOnly; // field for internal storage
protected:
public:

virtual __fastcall TDBCalendar(TComponent* Owner);
__published:

__property ReadOnly = {read=FReadOnly, write=FReadOnly, default=true};
};

2 Write the constructor in DBCAL.CPP:

virtual __fastcall TDBCalendar::TDBCalendar(TComponent* Owner) :
TSampleCalendar(Owner)

{
FReadOnly = true; // sets the default value

}

50-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

3 Override the SelectCell method to disallow selection if the control is read-only. Use
of SelectCell is explained in “Excluding blank cells” on page 49-13.

bool __fastcall TDBCalendar::SelectCell(long ACol, long ARow)
{

if (FReadOnly) return false; // can’t select if read only
return TSampleCalendar::SelectCell(ACol, ARow); // otherwise, use inherited method

}

Remember to add the declaration of SelectCell to the class declaration of TDBCalendar.
If you now add the calendar to a form, you will find that the component ignores clicks
and keystrokes. It also fails to update the selection position when you change the date.

Allowing needed updates
The read-only calendar uses the SelectCell method for all kinds of changes, including
setting the Row and Col properties. The UpdateCalendar method sets Row and Col
every time the date changes, but because SelectCell disallows changes, the selection
remains in place, even though the date changes.

To get around this absolute prohibition on changes, you can add an internal Boolean
flag to the calendar, and permit changes when that flag is set to true:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

ƒ
bool FUpdating; // private flag for internal use

protected:
virtual bool __fastcall SelectCell(long ACol, long ARow);

public:
ƒ
virtual void __fastcall UpdateCalendar();
ƒ

};

bool __fastcall TDBCalendar::SelectCell(long ACol, long ARow)
{

if (!FUpdating && FReadOnly) return false; // can’t select if read only
return TSampleCalendar::SelectCell(ACol, ARow); // otherwise, use inherited method

}

void __fastcall TDBCalendar::UpdateCalendar()
{

FUpdating=true; // set flag to allow updates
try
{

TSampleCalendar::UpdateCalendar(); // update as usual
}
catch(...)
{

FUpdating = false;
throw;

}
FUpdating = false; // always clear the flag

}

M a k i n g a c o n t r o l d a t a a w a r e 50-5

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

The calendar still disallows user changes, but now correctly reflects changes made in
the date by changing the date properties. Now that you have a true read-only
calendar control, you are ready to add the data-browsing ability.

Adding the data link

The connection between a control and a database is handled by a class called a data
link. The datalink class that connects a control with a single data member in a
database is TFieldDataLink. There are also data links for entire tables.

A data-aware control owns its datalink class. That is, the control has the responsibility
for constructing and destroying the data link. For details on management of owned
classes, see Chapter 48, “Creating a graphic component.”

Establishing a data link as an owned class requires these three steps:

1 Declaring the class data member
2 Declaring the access properties
3 Initializing the data link

Declaring the data member
A component needs a data member for each of its owned classes, as explained in
“Declaring the data members” on page 48-6. In this case, the calendar needs a data
member of type TFieldDataLink for its data link.

Declare a field for the data link in the calendar:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

TFieldDataLink *FDataLink;
ƒ

};

Before you can compile the application, you need to include the DB.HPP and
DBTABLES.HPP files in the DBCAL.H file:

#include <DB.hpp>
#include <DBTables.hpp>

Declaring the access properties
Every data-aware control has a DataSource property that specifies which data-source
class in the application provides the data to the control. In addition, a control that
accesses a single field needs a DataField property to specify that field in the data
source.

Unlike the access properties for the owned classes in the example in Chapter 48,
“Creating a graphic component”, these access properties do not provide access to the
owned classes themselves, but rather to corresponding properties in the owned class.
That is, you will create properties that enable the control and its data link to share the
same data source and field.

50-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Declare the DataSource and DataField properties and their implementation methods,
then write the methods as “pass-through” methods to the corresponding properties
of the datalink class:

An example of declaring access properties
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

ƒ
AnsiString __fastcall GetDataField(); // methods are private
TDataSource *__fastcall GetDataSource(); // returns name of data field
void __fastcall SetDataField(AnsiString Value); // returns reference to data

// source
void __fastcall SetDataSource(TDataSource *Value); // assigns name of data field
ƒ

__published: // make properties available at design time
__property AnsiString DataField = {read=GetDataField, write=SetDataField, nodefault};
__property TDataSource * DataSource = {read=GetDataSource, write=SetDataSource,
nodefault};

ƒ
};

AnsiString __fastcall TDBCalendar::GetDataField()
{

return FDataLink->FieldName;
}

TDataSource *__fastcall TDBCalendar::GetDataSource()
{

return FDataLink->DataSource;
}

void __fastcall TDBCalendar::SetDataField(AnsiString Value)
{

FDataLink->FieldName = Value;
}

void __fastcall TDBCalendar::SetDataSource(TDataSource *Value)
{

if(Value != NULL)
Value->FreeNotification(this);

FDataLink->DataSource = Value;
}

Now that you have established the links between the calendar and its data link, there
is one more important step. You must construct the data link class when the calendar
control is constructed, and destroy the data link before destroying the calendar.

M a k i n g a c o n t r o l d a t a a w a r e 50-7

C r e a t i n g a d a t a - b r o w s i n g c o n t r o l

Initializing the data link
A data-aware control needs access to its data link throughout its existence, so it must
construct the datalink object as part of its own constructor, and destroy the datalink
object before it is itself destroyed.

Override the constructor and destructor of the calendar:

class PACKAGE TDBCalendar : public TSampleCalendar
{
public:

virtual __fastcall TDBCalendar(TComponent *Owner);
__fastcall ~TDBCalendar();

};

__fastcall TDBCalendar::TDBCalendar(TComponent* Owner) : TSampleCalendar(Owner)
{

FReadOnly = true;
FDataLink = new TFieldDataLink();
FDataLink->Control = this;

}

__fastcall TDBCalendar::~TDBCalendar()
{

FDataLink->Control = NULL;
FDataLink-OnUpdateData = NULL;
delete FDataLink;

}

Now you have a complete data link, but you have not yet told the control what data
it should read from the linked field. The next section explains how to do that.

Responding to data changes

Once a control has a data link and properties to specify the data source and data field,
it needs to respond to changes in the data in that field, either because of a move to a
different record or because of a change made to that field.

Datalink classes all have events named OnDataChange. When the data source
indicates a change in its data, the datalink object calls any event handler attached to
its OnDataChange event.

To update a control in response to data changes, attach a handler to the data link’s
OnDataChange event.

In this case, you will add a method to the calendar, then designate it as the handler
for the data link’s OnDataChange.

50-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

Declare and implement the DataChange method, then assign it to the data link’s
OnDataChange event in the constructor. In the destructor, detach the OnDataChange
handler before destroying the object.

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

void __fastcall DataChange(TObject *Sender);
ƒ

};

void __fastcall TDBCalendar::DataChange(TObject* Sender)
{

if (FDataLink->Field == NULL) // if no field is assigned ...
CalendarDate = 0; // ...set to invalid date
else CalendarDate = FDataLink->Field->AsDateTime; // otherwise, set to new data

}

__fastcall TDBCalendar::TDBCalendar(TComponent* Owner) : TSampleCalendar(AOwner)
{

FReadOnly = true;
FDataLink = new TFieldDataLink(); // construct the datalink object
FDataLink->Control = this;
FDataLink->OnDataChange = DataChange; // attach the handler

}

__fastcall TDBCalendar::~TDBCalendar()
{

FDataLink->Control = NULL;
FDataLink-OnUpdateData = NULL;
FDataLink->OnDataChange = NULL; // detach the handler before...
delete FDataLink; // ...destroying the datalink object

}

You now have a data-browsing control.

Creating a data-editing control
When you create a data-editing control, you create and register the component and
add the data link just as you do for a data-browsing control. You also respond to data
changes in the underlying field in a similar manner, but you must handle a few more
issues.

For example, you probably want your control to respond to both key and mouse
events. Your control must respond when the user changes the contents of the control.
When the user exits the control, you want the changes made in the control to be
reflected in the dataset.

The data-editing control described here is the same calendar control described in the
first part of the chapter. The control is modified so that it can edit as well as view the
data in its linked field.

M a k i n g a c o n t r o l d a t a a w a r e 50-9

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

Modifying the existing control to make it a data-editing control involves:

• Changing the default value of FReadOnly.
• Handling mouse-down and key-down messages.
• Updating the field datalink class.
• Modifying the Change method.
• Updating the dataset.

Changing the default value of FReadOnly

Because this is a data-editing control, the ReadOnly property should be set to false by
default. To make the ReadOnly property false, change the value of FReadOnly in the
constructor:

__fastcall TDBCalendar::TDBCalendar (TComponent* Owner) : TSampleCalendar(Owner)
{

FReadOnly = false; // set the default value
ƒ

}

Handling mouse-down and key-down messages

When the user of the control begins interacting with it, the control receives either
mouse-down messages (WM_LBUTTONDOWN, WM_MBUTTONDOWN, or
WM_RBUTTONDOWN) or a key-down message (WM_KEYDOWN) from Windows.
To enable a control to respond to these messages, you must write handlers that
respond to these messages.

• Responding to mouse-down messages
• Responding to key-down messages

Responding to mouse-down messages
A MouseDown method is a protected method for a control’s OnMouseDown event. The
control itself calls MouseDown in response to a Windows mouse-down message.
When you override the inherited MouseDown method, you can include code that
provides other responses in addition to calling the OnMouseDown event.

To override MouseDown, add the MouseDown method to the TDBCalendar class:

class PACKAGE TDBCalendar : public TSampleCalendar
{
ƒ
protected:

virtual void __fastcall MouseDown(TMouseButton Button, TShiftState Shift, int X,
int Y);

ƒ
};

50-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

Write the MouseDown method in the .CPP file:

void __fastcall TDBCalendar::MouseDown(TMouseButton Button, TShiftState Shift, int X,
int Y)

{
TMouseEvent MyMouseDown; // declare event type
if (!FReadOnly && FDataLink->Edit()) // if the field can be edited

TSampleCalendar::MouseDown(Button, Shift, X, Y); // call the inherited MouseDown
else
{

MyMouseDown = OnMouseDown; // assign OnMouseDown event
if (MyMouseDown != NULL) MyMouseDown(this, Button, // execute code in the...

Shift, X, Y); // ...OnMouseDown event handler
}

}

When MouseDown responds to a mouse-down message, the inherited MouseDown
method is called only if the control’s ReadOnly property is false and the datalink
object is in edit mode, which means the field can be edited. If the field cannot be
edited, the code the programmer put in the OnMouseDown event handler, if one
exists, is executed.

Responding to key-down messages
A KeyDown method is a protected method for a control’s OnKeyDown event. The
control itself calls KeyDown in response to a Windows key-down message. When
overriding the inherited KeyDown method, you can include code that provides other
responses in addition to calling the OnKeyDown event.

To override KeyDown, follow these steps:

1 Add a KeyDown method to the TDBCalendar class:

class PACKAGE TDBCalendar : public TSampleCalendar
{

ƒ
protected:

virtual void __fastcall KeyDown(unsigned short &Key, TShiftState Shift);
ƒ

};

2 Write the KeyDown method in the .CPP file:

void __fastcall TDBCalendar::KeyDown(unsigned short &Key, TShiftState Shift)
{

TKeyEvent MyKeyDown; // declare event type
Set<unsigned short,0,8> keySet;
keySet = keySet << VK_UP << VK_DOWN << VK_LEFT // assign virtual keys to set

<< VK_RIGHT << VK_END << VK_HOME << VK_PRIOR << VK_NEXT;
if (!FReadOnly && // if control is not read only...

(keySet.Contains(Key)) && // ...and key is in the set...
FDataLink->Edit()) // ...and field is in edit mode

{
TCustomGrid::KeyDown(Key, Shift); // call the inherited KeyDown method

}

M a k i n g a c o n t r o l d a t a a w a r e 50-11

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

else
{

MyKeyDown = OnKeyDown; // assign OnKeyDown event
if (MyKeyDown != NULL) MyKeyDown(this,Key,Shift); // execute code in...

} // ...OnKeyDown event handler
}

When KeyDown responds to a mouse-down message, the inherited KeyDown method
is called only if the control’s ReadOnly property is false, the key pressed is one of the
cursor control keys, and the datalink object is in edit mode, which means the field can
be edited. If the field cannot be edited or some other key is pressed, the code the
programmer put in the OnKeyDown event handler, if one exists, is executed.

Updating the field datalink class

There are two types of data changes:

• A change in a field value that must be reflected in the data-aware control.
• A change in the data-aware control that must be reflected in the field value.

The TDBCalendar component already has a DataChange method that handles a change
in the field’s value in the dataset by assigning that value to the CalendarDate property.
The DataChange method is the handler for the OnDataChange event. So the calendar
component can handle the first type of data change.

Similarly, the field datalink class also has an OnUpdateData event that occurs as the
user of the control modifies the contents of the data-aware control. The calendar
control has a UpdateData method that becomes the event handler for the
OnUpdateData event. UpdateData assigns the changed value in the data-aware control
to the field data link.

1 To reflect a change made to the value in the calendar in the field value, add an
UpdateData method to the private section of the calendar component:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

void __fastcall UpdateData(TObject *Sender);
};

2 Write the UpdateData method in the .CPP file:

void __fastcall TDBCalendar::UpdateData(TObject* Sender)
{

FDataLink->Field->AsDateTime = CalendarDate; // set field link to calendar date
}

50-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

3 Within the constructor for TDBCalendar, assign the UpdateData method to the
OnUpdateData event:

__fastcall TDBCalendar::TDBCalendar(TComponent* Owner)
: TSampleCalendar(Owner)

{
FDataLink = new TFieldDataLink(); // this was already here
FDataLink->OnDataChange = DataChange; // this was here too
FDataLink->OnUpdateData = UpdateData; // assign UpdateData to the OnUpdateData event

}

Modifying the Change method

The Change method of the TDBCalendar is called whenever a new date value is set.
Change calls the OnChange event handler, if one exists. The component user can write
code in the OnChange event handler to respond to changes in the date.

When the calendar date changes, the underlying dataset should be notified that a
change has occurred. You can do that by overriding the Change method and adding
one more line of code. These are the steps to follow:

1 Add a new Change method to the TDBCalendar component:

class PACKAGE TDBCalendar : public TSampleCalendar
{
protected:

virtual void __fastcall Change();
ƒ

};

2 Write the Change method, calling the Modified method that informs the dataset the
data has changed, then call the inherited Change method:

void __fastcall TDBCalendar::Change()
{

if (FDataLink != NULL)
FDataLink->Modified(); // call the Modified method

TSampleCalendar::Change(); // call the inherited Change method
}

Updating the dataset

So far, a change within the data-aware control has changed values in the field
datalink class. The final step in creating a data-editing control is to update the dataset
with the new value. This should happen after the person changing the value in the
data-aware control exits the control by clicking outside the control or pressing the Tab
key.

VCL has defined message control IDs for operations on controls. For example, the
CM_EXIT message is sent to the control when the user exits the control. You can
write message handlers that respond to the message. In this case, when the user exits
the control, the CMExit method, the message handler for CM_EXIT, responds by
updating the record in the dataset with the changed values in the field datalink class.

M a k i n g a c o n t r o l d a t a a w a r e 50-13

C r e a t i n g a d a t a - e d i t i n g c o n t r o l

For more information about message handlers, see Chapter 45, “Handling
messages.”

To update the dataset within a message handler, follow these steps:

1 Add the message handler to the TDBCalendar component:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

void __fastcall CMExit(TWMNoParams Message);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(CM_EXIT, TWMNoParams, CMExit)

END_MESSAGE_MAP
};

2 Write the code in the .CPP file so that it looks like this:

void __fastcall TDBCalendar::CMExit(TWMNoParams &Message)
{

try
{

FDataLink.UpdateRecord(); // tell data link to update database
}
catch(...)
{

SetFocus(); // if it failed, don’t let focus leave
throw;

}
}

50-14 D e v e l o p e r ’ s G u i d e

M a k i n g a d i a l o g b o x a c o m p o n e n t 51-1

C h a p t e r

51
Chapter51Making a dialog box a component

You will find it convenient to make a frequently used dialog box into a component
that you add to the Component palette. Your dialog box components will work just
like the components that represent the standard Windows common dialog boxes.
The goal is to create a simple component that a user can add to a project and set
properties for at design time.

Making a dialog box a component requires these steps:

1 Defining the component interface
2 Creating and registering the component
3 Creating the component interface
4 Testing the component

The C++Builder “wrapper” component associated with the dialog box creates and
executes the dialog box at runtime, passing along the data the user specified. The
dialog-box component is therefore both reusable and customizable.

In this chapter, you will see how to create a wrapper component around the generic
About Box form provided in the C++Builder Object Repository.

Note Copy the files ABOUT.H, ABOUT.CPP and ABOUT.DFM into your working
directory. Add ABOUT.CPP to your project so that an ABOUT.OBJ file is created
when your dialog wrapper component builds.

There are not many special considerations for designing a dialog box that will be
wrapped into a component. Nearly any form can operate as a dialog box in this
context.

Defining the component interface
Before you can create the component for your dialog box, you need to decide how
you want developers to use it. You create an interface between your dialog box and
applications that use it.

51-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d r e g i s t e r i n g t h e c o m p o n e n t

For example, look at the properties for the common dialog box components. They
enable the developer to set the initial state of the dialog box, such as the caption and
initial control settings, then read back any needed information after the dialog box
closes. There is no direct interaction with the individual controls in the dialog box,
just with the properties in the wrapper component.

The interface must therefore contain enough information that the dialog box form
can appear in the way the developer specifies and return any information the
application needs. You can think of the properties in the wrapper component as
being persistent data for a transient dialog box.

In the case of the About box, you do not need to return any information, so the
wrapper’s properties only have to contain the information needed to display the
About box properly. Because there are four separate fields in the About box that the
application might affect, you will provide four string-type properties to provide for
them.

Creating and registering the component
Creation of every component begins the same way: derive a component class, save
the component’s .CPP and .H files, derive a component class, register it, compile it,
and install it on the Component palette. This process is outlined in “Creating a new
component” on page 39-7.

For this example, follow the general procedure for creating a component, with these
specifics:

• Derive a new component type called TAboutBoxDlg, descended from TComponent.

• Call the component’s unit files ABOUTDLG.H and ABOUTDLG.CPP.

• Register TAboutBoxDlg on the Samples page of the Component palette.

The resulting .HPP file should look like this:

#ifndef AboutDlgH
#define AboutDlgH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
//---
class PACKAGE TAboutBoxDlg : public TComponent
{
private:
protected:
public:
__published:
};
//---
#endif

M a k i n g a d i a l o g b o x a c o m p o n e n t 51-3

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e

The .CPP file of the unit should look like this:

#include <vcl\vcl.h>
#pragma hdrstop
#include "AboutDlg.h"
//---
#pragma package(smart_init);
//---
static inline TAboutBoxDlg *ValidCtrCheck()
{

return new TAboutBoxDlg(NULL);
}
//---
namespace Aboutdlg {
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TAboutBoxDlg)};
RegisterComponents("Samples", classes, 0);

}
}

Note If you used the Component wizard to begin this component, TAboutDlg will also
have a constructor added.

The new component now has only the capabilities built into TComponent. It is the
simplest nonvisual component. In the next section, you will create the interface
between the component and the dialog box.

Creating the component interface
These are the steps to create the component interface:

1 Including the form unit files
2 Adding interface properties
3 Adding the Execute method

Including the form unit files

For your wrapper component to initialize and display the wrapped dialog box, you
must add the form’s files to the project.

Include ABOUT.HPP and link in ABOUT.OBJ in the component’s header file:

#include "About.h"
#pragma link "About.obj"

The form header file always declares an instance of the form class. In the case of the
About box, the form class is TAboutBox, and the ABOUT.H file includes the
following:

extern TAboutBox *AboutBox;

51-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e

Adding interface properties
Before proceeding, decide on the properties your wrapper needs to enable
developers to use your dialog box as a component in their applications. Then, you
can add declarations for those properties to the component’s class declaration.
Properties in wrapper components are somewhat simpler than the properties you
would create if you were writing a regular component. Remember that in this case,
you are just creating some persistent data that the wrapper can pass back and forth to
the dialog box. By putting that data in the form of properties, you enable developers
to set data at design time so that the wrapper can pass it to the dialog box at runtime.
Declaring an interface property requires two additions to the component’s class
declaration:

• A private data member, which is a variable the wrapper uses to store the value of
the property

• The published property declaration itself, which specifies the name of the
property and tells it which data member to use for storage

Interface properties of this sort do not need access methods. They use direct access to
their stored data. By convention, the data member that stores the property’s value
has the same name as the property, but with the letter F in front. The data member
and the property must be of the same type.
For example, to declare an integer-type interface property called Year, you would
declare it as follows:

class PACKAGE TWrapper : public TComponent
{
private:

int FYear; // data member to hold the Year-property data
protected:
public:
__published:

__property int Year = {read=FYear, write=FYear}; // property matched with storage
};

For this About box, you need four string-type properties—one each for the product
name, the version information, the copyright information, and any comments. This is
how the ABOUTDLG.H file should look:

class PACKAGE TAboutBoxDlg : public TComponent
{
private:

int FYear;
String FProductName, FVersion, FCopyright, FComments;

protected:
public:
__published:

__property int Year = {read=FYear, write=FYear};
__property String ProductName = {read=FProductName, write=FProductName};
__property String Version = {read=FVersion, write=FVersion};
__property String Copyright = {read=FCopyright, write=FCopyright};
__property String Comments = {read=FComments, write=FComments};

};

M a k i n g a d i a l o g b o x a c o m p o n e n t 51-5

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e

When you install the component onto the Component palette and place the
component on a form, you will be able to set the properties, and those values will
automatically stay with the form. The wrapper can then use those values when
executing the wrapped dialog box.

Adding the Execute method

The final part of the component interface is a way to open the dialog box and return a
result when it closes. As with the common-dialog-box components, you will use a
boolean function called Execute that returns true if the user clicks OK, or false if the
user cancels the dialog box.

The declaration for the Execute method always looks like this:

class PACKAGE TMyWrapper : public TComponent
{

ƒ
public:

bool __fastcall Execute();
ƒ

};

The minimum implementation for Execute needs to construct the dialog box form,
show it as a modal dialog box, and return either true or false, depending on the
return value from ShowModal.

Here is the minimal Execute method for a dialog-box form of type TMyDialogBox:

bool __fastcall TMyWrapper::Execute()
{

DialogBox = new TMyDialogBox(Application); // construct the form
bool Result;

try
{

Result = (DialogBox->ShowModal() IDOK); // execute; set result based on how closed
}
catch(...)
{

Result = false; // if it fails, set Result to false
}
DialogBox->Free(); // dispose of form

}

In practice, there will be more code inside the exception handler. Specifically, before
calling ShowModal, the wrapper will set some of the dialog box’s properties based on
the wrapper component’s interface properties. After ShowModal returns, the wrapper
will probably set some of its interface properties based on the outcome of the dialog
box execution.

In the case of the About box, you need to use the wrapper component’s four interface
properties to set the contents of the labels in the About box form. Because the About
box does not return any information to the application, there is no need to do

51-6 D e v e l o p e r ’ s G u i d e

T e s t i n g t h e c o m p o n e n t

anything after calling ShowModal. Write the About-box wrapper’s Execute method so
that it looks like this in the ABOUTDLG.CPP file:

bool __fastcall TAboutBoxDlg::Execute()
{

AboutBox = new TAboutBox(Application); // construct the About box
bool Result;
try
{

if (ProductName == ““) // if product name’s left blank ...
ProductName = Application->Title; // ... use application title instead

AboutBox->ProductName->Caption = ProductName; // copy product name
AboutBox->Version->Caption = Version; // copy version information
AboutBox->Copyright->Caption = Copyright; // copy copyright information
AboutBox->Comments->Caption = Comments; // copy comments
AboutBox->Caption = “About “ + ProductName; // set About-box caption

 Result = (AboutBox->ShowModal() == IDOK); // execute and set result
}
catch(...)
{

Result = false; // if it fails, set Result to false
ƒ

}
AboutBox->Free(); // dispose of About box
return Result == IDOK; // compare Result to IDOK and return Boolean value

}

To the ABOUTDLG.H header, add the declaration for the Execute method to the
public part of the TAboutDlg class:

class PACKAGE TAboutDlg : public TComponent
{
public:

 virtual bool __fastcall Execute();
};

Testing the component
Once you have installed the dialog-box component, you can use it as you would any
of the common dialog boxes, by placing one on a form and executing it. A quick way
to test the About box is to add a command button to a form and execute the dialog
box when the user clicks the button.

For example, if you created an About dialog box, made it a component, and added it
to the Component palette, you can test it with the following steps:

1 Create a new project.

2 Place an About-box component on the main form.

3 Place a command button on the form.

M a k i n g a d i a l o g b o x a c o m p o n e n t 51-7

T e s t i n g t h e c o m p o n e n t

4 Double-click the command button to create an empty click-event handler.

5 In the click-event handler, type the following line of code:

AboutBoxDlg1->Execute();

6 Run the application.

When the main form appears, click the command button. The About box appears
with the default project icon and the name Project1. Choose OK to close the dialog
box.

You can further test the component by setting the various properties of the
About-box component and again running the application.

51-8 D e v e l o p e r ’ s G u i d e

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-1

A p p e n d i x

A
Appendix AANSI implementation-specific

standards
Certain aspects of the ANSI C standard are not explicitly defined. Instead, each
implementor of a C compiler is free to define these aspects individually. This chapter
describes how Borland has chosen to define these implementation-specific details.
The section numbers refer to the February 1990 C ANSI/ISO Standard.

Remember that there are differences between C and C++; this topic addresses C only.
For information on C++ compliance, refer to the Borland Community Web Site at
community.borland.com/cpp.

2.1.1.3 How to identify a diagnostic.
When the compiler runs with the correct combination of options, any messages it
issues beginning with the words Fatal, Error, or Warning are diagnostics in the sense
that ANSI specifies. The options needed to ensure this interpretation are as follows:

Table A.1 Options needed for ANSI compliance

Option Action

–A Enable only ANSI keywords.

–C– No nested comments allowed.

–i32 At most 32 significant characters in identifiers.

–p– Use C calling conventions.

–w– Turn off all warnings.

–wbei Turn on warning about inappropriate initializers.

–wbig Turn on warning about constants being too large.

–wcpt Turn on warning about nonportable pointer comparisons.

–wdcl Turn on warning about declarations without type or storage class.

–wdup Turn on warning about duplicate nonidentical macro definitions.

A-2 D e v e l o p e r ’ s G u i d e

Other options not specifically mentioned here can be set to whatever you want.

2.1.2.2.1 The semantics of the arguments to main.
When the program is run on DOS, argv[0] points to the program name.

The remaining argv strings point to each component of the DOS command-line
arguments. Whitespace separating arguments is removed, and each sequence of
contiguous non-whitespace characters is treated as a single argument. Quoted strings
are handled correctly (that is, as one string containing spaces).

2.1.2.3 What constitutes an interactive device.
An interactive device is any device that looks like the console.

2.2.1 The collation sequence of the execution character set.
The collation sequence for the execution character set uses the value of the character
in ASCII.

2.2.1 Members of the source and execution character sets.
The source and execution character sets are the extended ASCII set supported by the
IBM PC. Any character other than Ctrl+Z can appear in string literals, character
constants, or comments.

2.2.1.2 Multibyte characters.
Multibyte characters are supported in C++Builder.

2.2.2 The direction of printing.
Printing is from left-to-right, the normal direction for the PC.

2.2.4.2 The number of bits in a character in the execution character set.
There are 8 bits per character in the execution character set.

3.1.2 The number of significant initial characters in identifiers.
The first 32 characters are significant, although you can use a command-line option
(–i) to change that number. Both internal and external identifiers use the same

–wext Turn on warning about variables declared both as external and as static.

–wfdt Turn on warning about function definitions using a typedef.

–wrpt Turn on warning about nonportable pointer conversion.

–wstu Turn on warning about undefined structures.

–wsus Turn on warning about suspicious pointer conversion.

–wucp Turn on warning about mixing pointers to signed and unsigned char.

–wvrt Turn on warning about void functions returning a value.

Table A.1 Options needed for ANSI compliance (continued)

Option Action

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-3

number of significant characters. (The number of significant characters in C++
identifiers is unlimited.)

3.1.2 Whether case distinctions are significant in external identifiers.
The compiler normally forces the linker to distinguish between uppercase and
lowercase. You can use a command-line option (–lc–) to turn off case sensitivity.

3.1.2.5 The representations and sets of values of the various types of integers.

All char types use one 8-bit byte for storage.

All short types use 2 bytes.

All int types use 4 bytes.

All long types use 4 bytes.

If alignment is requested (–a), all nonchar integer type objects will be aligned to even
byte boundaries. If the requested alignment is –a4, the result is 4-byte alignment.
Character types are never aligned.

3.1.2.5 The representations and sets of values of the various types of floating-point
numbers.
The IEEE floating-point formats as used by the Intel 8086 are used for all C++Builder
floating-point types. The float type uses 32-bit IEEE real format. The double type
uses 64-bit IEEE real format. The long double type uses 80-bit IEEE extended real
format.

3.1.3.4 The mapping between source and execution character sets.
Any characters in string literals or character constants remain unchanged in the
executing program. The source and execution character sets are the same.

3.1.3.4 The value of an integer character constant that contains a character or escape
sequence not represented in the basic execution character set or the extended character
set for a wide character constant.
Wide characters are supported.

Table A.2 Identifying diagnostics in C++

Type Minimum value Maximum value

signed char –128 127

unsigned char 0 255

signed short –32,768 32,767

unsigned short 0 65,535

signed int –2,147,483,648 –2,147,483,647

unsigned int 0 4,294,967,295

signed long –2,147,483,648 2,147,483,647

unsigned long 0 4,294,967,295

A-4 D e v e l o p e r ’ s G u i d e

3.1.3.4 The current locale used to convert multibyte characters into corresponding wide
characters for a wide character constant.
Wide character constants are recognized.

3.1.3.4 The value of an integer constant that contains more than one character, or a wide
character constant that contains more than one multibyte character.
Character constants can contain one or two characters. If two characters are included,
the first character occupies the low-order byte of the constant, and the second
character occupies the high-order byte.

3.2.1.2 The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot be
represented.
These conversions are performed by simply truncating the high-order bits. Signed
integers are stored as two’s complement values, so the resulting number is
interpreted as such a value. If the high-order bit of the smaller integer is nonzero, the
value is interpreted as a negative value; otherwise, it is positive.

3.2.1.3 The direction of truncation when an integral number is converted to a
floating-point number that cannot exactly represent the original value.
The integer value is rounded to the nearest representable value. Thus, for example,
the long value (231 –1) is converted to the float value 231. Ties are broken according to
the rules of IEEE standard arithmetic.

3.2.1.4 The direction of truncation or rounding when a floating-point number is converted
to a narrower floating-point number.
The value is rounded to the nearest representable value. Ties are broken according to
the rules of IEEE standard arithmetic.

3.3 The results of bitwise operations on signed integers.
The bitwise operators apply to signed integers as if they were their corresponding
unsigned types. The sign bit is treated as a normal data bit. The result is then
interpreted as a normal two’s complement signed integer.

3.3.2.3 What happens when a member of a union object is accessed using a member of a
different type.
The access is allowed and the different type member will access the bits stored there.
You’ll need a detailed understanding of the bit encodings of floating-point values to
understand how to access a floating-type member using a different member. If the
member stored is shorter than the member used to access the value, the excess bits
have the value they had before the short member was stored.

3.3.3.4 The type of integer required to hold the maximum size of an array.
For a normal array, the type is unsigned int, and for huge arrays the type is signed
long.

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-5

3.3.4 The result of casting a pointer to an integer or vice versa.
When converting between integers and pointers of the same size, no bits are
changed. When converting from a longer type to a shorter type, the high-order bits
are truncated. When converting from a shorter integer type to a longer pointer type,
the integer is first widened to an integer type the same size as the pointer type.

Thus signed integers will sign-extend to fill the new bytes. Similarly, smaller pointer
types being converted to larger integer types will first be widened to a pointer type as
wide as the integer type.

3.3.5 The sign of the remainder on integer division.
The sign of the remainder is negative when only one of the operands is negative. If
neither or both operands are negative, the remainder is positive.

3.3.6 The type of integer required to hold the difference between two pointers to elements
of the same array, ptrdiff_t.
The type is signed int.

3.3.7 The result of a right shift of a negative signed integral type.
A negative signed value is sign extended when right shifted.

3.5.1 The extent to which objects can actually be placed in registers by using the register
storage-class specifier.
Objects declared with any one, two, or four-byte integer or pointer types can be
placed in registers. At least two and as many as seven registers are available. The
number of registers actually used depends on what registers are needed for
temporary values in the function.

3.5.2.1 Whether a plain int bit-field is treated as a signed int or as an unsigned int bit field.
Plain int bit fields are treated as signed int bit fields.

3.5.2.1 The order of allocation of bit fields within an int.
Bit fields are allocated from the low-order bit position to the high-order.

3.5.2.1 The padding and alignment of members of structures.
By default, no padding is used in structures. If you use the word alignment option
(–a), structures are padded to even size, and any members that do not have character
or character array type are aligned to an even multiple offset.

3.5.2.1 Whether a bit-field can straddle a storage-unit boundary.
When alignment (–a) is not requested, bit fields can straddle dword boundaries, but
are never stored in more than four adjacent bytes.

A-6 D e v e l o p e r ’ s G u i d e

3.5.2.2 The integer type chosen to represent the values of an enumeration type.
Store all enumerators as full ints. Store the enumerations in a long or unsigned long
if the values don’t fit into an int. This is the default behavior as specified by –b
compiler option.

The –b- behavior specifies that enumerations should be stored in the smallest integer
type that can represent the values. This includes all integral types, for example,
signed char, unsigned char, signed short, unsigned short, signed int, unsigned int,
signed long, and unsigned long.

For C++ compliance, –b- must be specified because it is not correct to store all
enumerations as ints for C++.

3.5.3 What constitutes an access to an object that has volatile-qualified type.
Any reference to a volatile object will access the object. Whether accessing adjacent
memory locations will also access an object depends on how the memory is
constructed in the hardware. For special device memory, such as video display
memory, it depends on how the device is constructed. For normal PC memory,
volatile objects are used only for memory that might be accessed by asynchronous
interrupts, so accessing adjacent objects has no effect.

3.5.4 The maximum number of declarators that can modify an arithmetic, structure, or
union type.
There is no specific limit on the number of declarators. The number of declarators
allowed is fairly large, but when nested deeply within a set of blocks in a function,
the number of declarators will be reduced. The number allowed at file level is at
least 50.

3.6.4.2 The maximum number of case values in a switch statement.
There is no specific limit on the number of cases in a switch. As long as there is
enough memory to hold the case information, the compiler will accept them.

3.8.1 Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion matches the value of the same character constant in
the execution character set. Whether such a character constant can have a negative
value.
All character constants, even constants in conditional directives, use the same
character set (execution). Single-character character constants will be negative if the
character type is signed (default and –K not requested).

3.8.2 The method for locating includable source files.
For include file names in angle brackets, if include directories are given in the
command line, then the file is searched for in each of the include directories. Include
directories are searched in this order:

1 In directories specified on the command line.
2 In directories specified in BCC32.CFG.
3 If no include directories are specified, search only the current directory.

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-7

3.8.2 The support for quoted names for includable source files.
For quoted includable file names, the file is searched in the following order:

1 In the same directory of the file that contains the #include statement.
2 In the directories of files that include (#include) that file.
3 The current directory.
4 Along the path specified by the /I compiler option.
5 Along paths specified by the INCLUDE environment variable.

3.8.2 The mapping of source file name character sequences.
Backslashes in include file names are treated as distinct characters, not as escape
characters. Case differences are ignored for letters.

3.8.8 The definitions for __DATE__ and __TIME__ when they are unavailable.
The date and time are always available and will use the operating system date and
time.

4.1.1 The decimal point character.
The decimal point character is a period (.).

4.1.5 The type of the sizeof operator, size_t .
The type size_t is unsigned.

4.1.5 The null pointer constant to which the macro NULL expands.
NULL expands to an int zero or a long zero. Both are 32-bit signed numbers.

4.2 The diagnostic printed by and the termination behavior of the assert function.
The diagnostic message printed is “Assertion failed: expression, file filename, line nn”,
where expression is the asserted expression that failed, filename is the source file name,
and nn is the line number where the assertion took place.

Abort is called immediately after the assertion message is displayed.

4.3 The implementation-defined aspects of character testing and case-mapping
functions.
None, other than what is mentioned in 4.3.1.

4.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint and
isupper functions.
First 128 ASCII characters for the default C locale. Otherwise, all 256 characters.

4.5.1 The values returned by the mathematics functions on domain errors.
An IEEE NAN (not a number).

A-8 D e v e l o p e r ’ s G u i d e

4.5.1 Whether the mathematics functions set the integer expression errno to the value of
the macro ERANGE on underflow range errors.
No, only for the other errors—domain, singularity, overflow, and total loss of
precision.

4.5.6.4 Whether a domain error occurs or zero is returned when the fmod function has a
second argument of zero.
No; fmod(x,0) returns 0.

4.7.1.1 The set of signals for the signal function.
SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM.

4.7.1.1 The semantics for each signal recognized by the signal function.
See the description of signal.

4.7.1.1 The default handling and the handling at program startup for each signal
recognized by the signal function.
See the description of signal.

4.7.1.1 If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a
signal handler, the blocking of the signal that is performed.
The equivalent of signal(sig, SIG_DFL) is always executed.

4.7.1.1 Whether the default handling is reset if the SIGILL signal is received by a handler
specified to the signal function.
No, it is not.

4.9.2 Whether the last line of a text stream requires a terminating newline character.
No, none is required.

4.9.2 Whether space characters that are written out to a text stream immediately before a
newline character appear when read in.
Yes, they do.

4.9.2 The number of null characters that may be appended to data written to a binary
stream.
None.

4.9.3 Whether the file position indicator of an append mode stream is initially positioned
at the beginning or end of the file.
The file position indicator of an append-mode stream is initially placed at the
beginning of the file. It is reset to the end of the file before each write.

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-9

4.9.3 Whether a write on a text stream causes the associated file to be truncated beyond
that point.
A write of 0 bytes might or might not truncate the file, depending on how the file is
buffered. It is safest to classify a zero-length write as having indeterminate behavior.

4.9.3 The characteristics of file buffering.
Files can be fully buffered, line buffered, or unbuffered. If a file is buffered, a default
buffer of 512 bytes is created upon opening the file.

4.9.3 Whether a zero-length file actually exists.
Yes, it does.

4.9.3 Whether the same file can be open multiple times.
Yes, it can.

4.9.4.1 The effect of the remove function on an open file.
No special checking for an already open file is performed; the responsibility is left up
to the programmer.

4.9.4.2 The effect if a file with the new name exists prior to a call to rename.
Rename returns a –1 and errno is set to EEXIST.

4.9.6.1 The output for %p conversion in fprintf.
The output is eight hex digits (XXXXXXXX), zero padded, uppercase letters (the same
as %08lX).

4.9.6.2 The input for %p conversion in fscanf.
See 4.9.6.1.

4.9.6.2 The interpretation of a –(hyphen) character that is neither the first nor the last
character in the scanlist for a %[conversion in fscanf.
See the description of scanf.

4.9.9.1 The value the macro errno is set to by the fgetpos or ftell function on failure.
EBADF Bad file number.

4.9.10.4 The messages generated by perror.

Messages generated in Win32

Arg list too big Math argument

Attempted to remove current directory Memory arena trashed

Bad address Name too long

Bad file number No child processes

Block device required No more files

A-10 D e v e l o p e r ’ s G u i d e

4.10.3 The behavior of calloc, malloc, or realloc if the size requested is zero.
calloc and malloc will ignore the request and return 0. Realloc will free the block.

4.10.4.1 The behavior of the abort function with regard to open and temporary files.
The file buffers are not flushed and the files are not closed.

4.10.4.3 The status returned by exit if the value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE.
Nothing special. The status is returned exactly as it is passed. The status is a
represented as a signed char.

4.10.4.4 The set of environment names and the method for altering the environment list
used by getenv.
The environment strings are those defined in the operating system with the SET
command. putenv can be used to change the strings for the duration of the current
program, but the SET command must be used to change an environment string
permanently.

4.10.4.5 The contents and mode of execution of the string by the system function.
The string is interpreted as an operating system command. COMSPEC or CMD.EXE
is used, and the argument string is passed as a command to execute. Any operating

Broken pipe No space left on device

Cross-device link No such device

Error 0 No such device or address

Exec format error No such file or directory

Executable file in use No such process

File already exists Not a directory

File too large Not enough memory

Illegal seek Not same device

Inappropriate I/O control operation Operation not permitted

Input/output error Path not found

Interrupted function call Permission denied

Invalid access code Possible deadlock

Invalid argument Read-only file system

Invalid data Resource busy

Invalid environment Resource temporarily unavailable

Invalid format Result too large

Invalid function number Too many links

Invalid memory block address Too many open files

Is a directory

Messages generated in Win32

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-11

system built-in command, as well as batch files and executable programs, can be
executed.

4.11.6.2 The contents of the error message strings returned by strerror.
See 4.9.10.4.

4.12.1 The local time zone and Daylight Saving Time.
Defined as local PC time and date.

4.12.2.1 The era for clock.
Represented as clock ticks, with the origin being the beginning of the program
execution.

4.12.3.5 The formats for date and time.
C++Builder implements ANSI formats.

A-12 D e v e l o p e r ’ s G u i d e

I n d e x I-1

Symbols
& (ampersand) character 2-9, 4-20
... (ellipsis) buttons 27-21

Numerics
80x87 coprocessors A-3

A
-a compiler option A-5
abort function A-10
Abort method 19-26
AbortOnKeyViol property 21-24
AbortOnProblem property 21-23
About box 51-2

adding properties 51-4
adding to ActiveX controls 37-5
executing 51-5

abstract classes 39-3
accelerators 2-9, 4-20
access

memory regions A-6
unions A-4
volatile objects A-6

access rights 21-4
Access tables 14-8

isolation levels 14-8
local transactions 14-8

Acquire method 7-7
action editor

adding actions 30-9
changing actions 30-10

action items 30-7, 30-8, 30-10 to 30-13
adding 30-9
caution for changing 30-7
chaining 30-12
default 30-9, 30-11
enabling and disabling 30-11
event handlers 30-8
page producers and 30-19
responding to requests 30-12
selecting 30-10, 30-11

action lists 4-36 to 4-45
Action property 2-8, 4-38
ActionLink property 2-8
actions 4-36 to 4-45

centralizing 4-36, 4-37
clients 4-36
component writing 4-38
dataset 4-42

executing 4-38
overview 4-36
predefined 4-41
registering 4-44
standard edit 4-41
standard window 4-41, 4-42
targets 4-36
Update method 4-40
updating 4-40
using 4-37

Actions property 30-9
activation attribute

shared properties 38-6
Active Data Objects 13-1

see also ADO
Active Documents 32-10, 32-13

see also IOleDocumentSite interface
Active property

ADO stored procedures 24-23
client sockets 31-6
datasets 19-3, 19-5
queries 22-12
server sockets 31-7
sessions 17-4
tables 21-4

active record 19-9
canceling cached updates 26-8
setting 21-7
synchronizing 21-24

Active Server Object wizard 36-2 to 36-3
Active Server Objects 36-1 to 36-8

creating 36-2 to 36-7
debugging 36-8
in-process servers 36-7
out-of-process servers 36-7
registering 36-7 to 36-8

Active Server Pages 32-10, 32-12, 36-1 to 36-8
creating 36-3
HTML documents 36-1
UI design 36-1

Active Template Library (ATL) 32-20 to 32-21
ActiveFlag property 28-20
ActiveForms 37-1, 37-6 to 37-7

as MIDAS Web applications 15-26
creating 37-2
wizard 37-6 to 37-7

ActiveX 32-12 to 32-13, 37-1
comparison to ASP 36-7
comparison to InternetExpress 15-25
interfaces 32-18
Web applications 32-12, 37-1, 37-16 to 37-18

Index

I-2 D e v e l o p e r ’ s G u i d e

ActiveX controls 12-3, 32-9, 32-12, 37-1 to 37-18
adding methods 37-9 to 37-10
adding properties 37-9 to 37-10
component wrappers 34-6, 34-7, 34-8 to 34-9

_OCX unit 34-4
creating 37-2, 37-4 to 37-7
data-aware 34-8 to 34-9, 37-8, 37-11 to 37-13
debugging 37-16
designing 37-4
elements 37-2 to 37-3
embedding in HTML 30-18
event handling 37-10 to 37-11

firing events 37-11
from VCL controls 37-4 to 37-7
importing 34-4
interfaces 37-8 to 37-13
licensing 37-5, 37-7
multi-tiered applications 15-26
persistent properties 37-13
property pages 34-7, 37-3, 37-13 to 37-15
registering 37-15 to 37-16
threading model 37-5
type libraries 32-15, 37-3
using Automation-compatible types 37-4, 37-8
Web applications 32-12, 37-1, 37-16 to 37-18
Web deployment 37-16 to 37-18
wizard 37-4 to 37-5

ActiveX page (Component palette) 2-14, 34-4
activities

transactional objects 38-19 to 38-20
ActnList unit 4-37, 4-44
Add Fields dialog box 20-6
Add method

menus 4-27
persistent columns 27-19
queries 22-7
strings 2-30

Add To Repository command 3-20
AddAlias method 17-10
AddFontResource function 12-9
AddIndex method 25-7
Additional page (Component palette) 2-14
AddObject method 2-31
AddPassword method 17-13
AddRef method 32-4
Address property

client sockets 31-6
TSocketConnection 15-18

addresses
socket connections 31-3, 31-4

AddStandardAlias method 17-10
AddStrings method 2-30, 2-31
ADO

creating tables 14-12
resource dispensers 38-6

restructuring tables 14-12
SQL 24-25

ADO 2.1 14-11
ADO commands

canceling commands 24-27
executing commands 14-12, 24-26
parameters 24-17, 24-28
retrieving data 24-27

ADO components 24-1 to 24-28
command components 24-25
connection components 24-3
data-aware controls 24-12
dataset components 24-11, 24-18
general descriptions 24-2
overview 24-1
query components 24-20
recordsets 24-13
stored procedure components 24-21
table components 24-19

ADO connections 24-2 to 24-11
activating 24-4
connecting to data stores 24-2
connecting, overview 14-11
connection logins 24-7
fine-tuning a connection 24-5, 24-6
overview 24-3
stored procedures, listing 24-9
transactions 24-10

ADO databases 14-11 to 14-12
ADO datasets 13-14, 14-11, 14-12 to 14-13, 24-1,

24-11 to 24-25
common dataset features 24-11
connecting 24-3, 24-13
data files 24-14
executing commands 24-28
modifying data 24-11
navigating records 24-12
overview 24-18
retrieving data 14-12, 24-18

ADO objects
Connection object 24-4
Field object 24-1
Properties object 24-1

ADO page (Component palette) 13-1
ADO page(Component Palette) 2-14
ADO queries 13-14

overview 24-20
SQL 14-12, 24-21
using 24-20

ADO stored procedures 13-14
executing 24-22
overview 24-21

ADO tables 13-14
overview 24-19
using 24-19

I n d e x I-3

ADO-based applications 14-10
ADO-based architecture 14-10
ADT fields 20-23, 20-24 to 20-25
ADTG files 24-16
AfterApplyUpdates event 16-6
AfterClose event 19-5
AfterConnect event 15-20
AfterConstruction 9-11
AfterDisconnect event 15-21
AfterDispatch event 30-10, 30-13
AfterGetRecords event 16-5
aggregate fields 20-7, 25-12
aggregation

client datasets 25-9 to 25-12
COM 32-8 to 32-9

aliases
database connections 17-6
database engine 17-9 to 17-11
database names and 14-3
deleting 17-11
remote connections 18-8
sessions and 14-3
specifying 18-4, 18-5
Type Library editor 33-9, 33-16

AliasName property 18-4
Align property 2-8, 4-3

panels 4-29
status bars 2-23
text controls 5-6

alignment A-3
bit fields and A-5
structure members A-5
word A-5

Alignment property 2-17, 20-2
column headers 27-22
data grids 27-22
decision grids 28-13
field values 20-12
memo fields 27-10
memos 2-15
rich text controls 2-15
status bars 2-23

AllowAllUp property 2-18
speed buttons 4-31
tool buttons 4-33

AllowDelete property 27-28
AllowGrayed property 2-18
AllowInsert property 27-28
alternative indexes 21-8, 21-9
alTop constant 4-29
ampersand (&) character 2-9, 4-20
analog video 6-31
ancestor classes 40-3 to 40-4

default 40-4

Anchor property 2-8
animation controls 2-25, 6-28 to 6-30

example 6-29
ANSI C

date and time formats A-11
diagnostics A-1, A-7
hyphens, interpreting A-9
implementation specifics A-1
main function A-2
multibyte characters A-2
standards, implementing A-1

ANSI character sets 11-2
extended A-2

AnsiString 46-8
apartment threading 35-7 to 35-8
Append method 19-7, 19-23

Insert vs. 19-22
appending records

batch operations 21-19, 21-21
AppendRecord method 19-24
application servers 13-9, 15-1, 15-11 to 15-16

data providers 15-15, 16-1
remote data modules 3-19

Application variable 4-3, 30-7
applications

bi-directional 11-3
CGI 3-16
client/server 15-1, 18-2

network protocols 18-8
COM 3-16, 32-2 to 32-9, 32-17, 35-1 to 35-17
CORBA 3-17, 29-1
creating 2-12
database 13-1
deploying 12-1
distributed 3-15, 3-15 to 3-17, 38-1
files 12-2
graphical 39-7, 44-1
international 11-1
ISAPI 3-16, 30-5, 30-6
MDI 3-2
MIDAS Web applications 15-24 to 15-35
MTS 3-17
multi-threaded 7-1, 17-2, 17-16 to 17-17
multi-tiered 15-1 to 15-35

overview 15-3 to 15-4
NSAPI 3-16, 30-5, 30-6
optimizing searches 21-5
realizing palettes 44-5
SDI 3-2
service 3-4
status information 2-23
synchronizing tables 21-24
undoing changes 19-24
Web server 3-16
Win-CGI 3-16

I-4 D e v e l o p e r ’ s G u i d e

Apply method
update objects 26-18

ApplyRange method 21-15
ApplyUpdates method

cached updates 26-5, 26-6
client datasets 25-20
multi-tiered applications 25-20
sockets 19-30

AppServer property 15-8, 15-16, 15-21
Arc method 6-4
architecture

BDE-based applications 14-2
client applications 15-4
CORBA applications 29-1 to 29-4
database applications 13-6
multi-tiered 15-4

Web-based 15-24
one-tiered 14-2
two-tiered 14-2
Web server applications 30-7

arguments
fmod function and A-8

array fields 20-25 to 20-26
array of const 9-14
array properties 9-19
arrays 41-2, 41-8

as function arguments 9-19
as properties 9-19
as return types 9-19
integer types A-4

pointers to A-5
open 9-13
safe 33-12

ARRAYSIZE macro 9-13
as operator 9-18
AS_ApplyUpdates method 15-8
AS_DataRequest method 15-8
AS_Execute method 15-8
AS_GetParams method 15-8
AS_GetProviderNames method 15-9
AS_GetRecords method 15-9
AS_RowRequest method 15-9
AsBoolean function 20-19
ASCII codes A-2
ASCII tables 17-10, 21-3
AsCurrency function 20-19
AsDateTime function 20-19
AsFloat function 20-19
AsInteger function 20-19
ASP 32-10, 32-12, 36-1 to 36-8

comparison to ActiveX 36-7
comparison to Web broker 36-1
generating pages 36-3
HTML documents 36-1
performance limitations 36-1

scripting language 32-12, 36-3
UI design 36-1

ASP intrinsics 36-3 to 36-6
accessing 36-2 to 36-3
Application object 36-3 to 36-4
Request object 36-4
Response object 36-4 to 36-5
Server object 36-6
Session object 36-5 to 36-6

assert function A-7
Assign Local Data command 14-16, 25-12
Assign method

string lists 2-31
AssignedValues property 27-19
assignment operators 9-3
assignment statements 41-2
AssignValue method 20-18
Associate property 2-17
as-soon-as-possible deactivation 15-6, 38-4
AsString function 20-19
AsVariant function 20-19
ATL 32-20 to 32-21

header files 32-20
options 35-8
tracing calls 35-8, 35-17

atomicity
transactions 38-10

attributes
property editors 46-10

Attributes property 24-6
audio clips 6-30
AutoCalcFields property 19-26
AutoComplete property 15-7
AutoDisplay property 27-10

graphics 27-11
rich edit controls 27-10

AutoEdit property 27-3, 27-7
AutoHotKeys property 4-20
Automation

Active Server Objects 36-2
early binding 32-16
IDispatch interface 35-13
interfaces 35-11 to 35-14
late binding 35-13
optimizing 32-16
type compatibility 33-11, 35-14 to 35-15
type descriptions 32-11

Automation controllers 32-11, 34-1, 34-12 to 34-16,
35-13

creating objects 34-12 to 34-13
dispatch interfaces 34-13 to 34-14
dual interfaces 34-13
events 34-14 to 34-16
example 34-10 to 34-12

I n d e x I-5

Automation objects 32-11
 see also COM objects
component wrappers 34-7 to 34-8

example 34-10 to 34-12
wizard 35-4 to 35-8

Automation servers 32-9, 32-11 to 32-12
 see also COM objects
accessing objects 35-13
type libraries 32-15

AutoPopup property 4-35
AutoSelect property 2-15
AutoSessionName property 17-17, 30-22
AutoSize property 2-8, 4-4, 12-8, 27-9
.AVI files 6-31
AVI clips 2-25, 6-28, 6-31
axes values 28-15

B
backgrounds 11-8
backslash characters (\)

include files A-7
Bands property 2-19, 4-34
base classes

constructors 9-7
base clients 38-2
Basic Object Adaptor (BOA) 29-2
batAppend constant 21-19, 21-21
batAppendUpdate constant 21-19, 21-21
batch files

executing A-10
batch operations 21-19, 21-21

appending data 21-21, 21-22
copying datasets 21-22
deleting records 21-22
error handling 21-23
import modes 21-19
mapping data types 21-22
modes 21-21
running 21-23
setting up 21-20 to 21-21
updating data 21-21, 21-22

BatchMove method 21-19
batCopy constant 21-19, 21-21

caution 21-19
batDelete constant 21-19, 21-21
batUpdate constant 21-19, 21-21
BDE32.HLP 22-3
BeforeApplyUpdates event 16-6
BeforeClose event 19-5, 19-24
BeforeConnect event 15-20
BeforeDestruction method 9-11
BeforeDisconnect event 15-21
BeforeDispatch event 30-9, 30-11
BeforeGetRecords event 15-24, 16-5
BeforeUpdateRecord event 16-9

BEGIN_MESSAGE_MAP 45-7
BEGIN_MESSAGE_MAP macro 45-4
BeginDrag method 5-1
BeginRead method 7-8
BeginTrans method 24-10
BeginWrite method 7-8
Beveled 2-17
beveled panels 2-25
BevelKind property 2-11
bevels 2-25
bi-directional applications 11-3

methods 11-6 to 11-7
properties 11-5

bi-directional cursors 22-15
binary streams

null characters and A-8
Bind method

TAutoDriver 34-13
bit fields A-5

alignment A-5
order of allocation A-5
straddling word boundaries A-5

bitmap buttons 2-18
bitmap objects 6-3
bitmaps 2-25, 6-17 to 6-18, 44-3, 44-4

adding scrollable 6-16
adding to components 46-4
associating with strings 2-31, 5-12
blank 6-17
brushes 6-9
brushes property 6-7, 6-9
destroying 6-20
drawing on 6-17
drawing surfaces 44-3
draw-item events 5-15
freeing memory 6-20
graphical controls vs. 48-3
in frames 4-15
internationalizing 11-9
loading 44-4
offscreen 44-5 to 44-6
replacing 6-19
scrolling 6-17
setting initial size 6-17
temporary 6-16, 6-17
toolbars 4-32
when they appear in application 6-1

bitwise operators
signed integers and A-4

BLOB fields 27-2
displaying values 27-9, 27-10
fetch on demand 16-3, 25-17
getting values 19-30
updating 26-4
viewing graphics 27-10

I-6 D e v e l o p e r ’ s G u i d e

BLOBs 27-9, 27-10
caching 19-30

blocking connections 31-11 to 31-14
event handling 31-10
non-blocking vs. 31-10

BMPDlg unit 6-20
BOA 29-2
Bof property 19-10, 19-12
Bookmark property 19-13
bookmarks 19-13 to 19-14
BookmarkValid method 19-14
Boolean fields 27-2, 27-14
Boolean values 41-2, 41-10, 50-4
borders

panels 2-22
BorderWidth property 2-22
Borland Database Engine 3-14, 13-1, 17-1, 19-28

aliases 17-9 to 17-11
remote connections 18-8
specifying 18-4, 18-5

API calls 14-2
batch moves 21-22, 21-23
closing database connections 17-7
connecting to databases 14-4
deploying 12-4, 12-10
determining table types 21-3
direct calls 19-29
driver names 18-5
help documentation 22-3
multi-table queries 22-14
one- and two-tiered applications 14-2 to 14-10
opening database connections 17-6
private directories 17-13
remote servers and 18-8
resource dispensers 38-6
retrieving data 19-27, 22-3, 22-13, 22-16
testing associations 17-8
updating data 26-21, 26-23
Web applications and 12-6

boundaries
data ranges 21-15

bounding rectangles 6-11
.BPI files 10-12, 10-13
.BPK files 10-6, 10-7
.BPL files 10-1, 10-12, 10-13, 12-3
briefcase model 14-16
brokering connections 15-19
Brush property 2-25, 6-3, 6-7, 44-3
BrushCopy method 44-3, 44-6
brushes 6-7 to 6-9, 48-6

bitmap property 6-9
changing 48-8
colors 6-7
styles 6-8

buffered files A-9

business rules 15-2
ASP 36-1
data modules 3-18
transactional objects 38-2

ButtonAutoSize property 28-10
buttons 2-17 to 2-18

adding to toolbars 4-29 to 4-31, 4-32
assigning glyphs to 4-30
disabling on toolbars 4-32
grid columns and 27-21
navigator 27-29
toolbars and 4-28

ButtonStyle property 27-20, 27-21, 27-22
By Reference Only

COM interface properties 33-8

C
C++ exception handling 8-1
C++ object models 9-1
C++ vs Object Pascal

assignment 9-3
bool types 9-15
calling virtual methods 9-6, 9-11
constructors 9-17
copy constructors 9-3
copying objects 9-2
differences 9-11, 9-15
function arguments 9-3, 9-15, 9-19
initialization of classes 9-8
language counterparts 9-12
object construction 9-4
object destruction 9-9
pass by reference 9-12
references 9-2
RTTI 9-18
untyped parameters 9-13

.CAB files 37-17
cabinets 37-17
CacheBlobs property 19-30
cached updates 19-29, 19-30, 26-1

applying 26-4
Borland Database Engine support 14-9
canceling 26-7 to 26-8
checking status 26-10 to 26-11
client datasets and 26-3
enabling/disabling 26-3
error handling 26-23 to 26-27

caution 26-24
fetching records 26-4
overview 26-1 to 26-3, 26-22
pending 26-3
queries and 22-17
record type constants 26-9
undeleting records 26-9 to 26-10

I n d e x I-7

CachedUpdates property 19-30, 26-3
caching resources 44-2
caching threads 31-14
calculated fields 19-8, 19-26, 20-6

assigning values 20-9
client datasets 25-8 to 25-9
defining 20-8
lookup fields and 20-10

calendar components 2-21
calendars 49-1 to 49-13

adding dates 49-5 to 49-11
defining properties and events 49-3, 49-7, 49-12
making read-only 50-3 to 50-5
moving through 49-11 to 49-13
resizing 49-4
selecting current day 49-10

call synchronization 38-20
callbacks

multi-tiered applications 15-16
limits 15-11

transactional objects 38-23
calloc function A-10
CanBePooled method 38-9
Cancel method 19-6, 19-7, 19-24, 24-5, 24-27
Cancel property 2-17
canceling cached updates 26-7 to 26-8
CancelRange method 21-15
CancelUpdates method 19-30, 26-8
CanModify property

data grids 27-25
data-aware controls 27-4
datasets 19-7
queries 22-16
tables 21-4

Canvas property 2-25, 39-7
canvases 39-7, 44-1, 44-2

adding shapes 6-10 to 6-11, 6-13
common properties, methods 6-3
copying images 44-6
default drawing tools 48-6
displaying text 6-23
drawing lines 6-5, 6-9 to 6-10, 6-26 to 6-28

changing pen width 6-5
event handlers 6-25

drawing vs. painting 6-4
overview 6-1 to 6-3
palettes 44-4 to 44-5
refreshing the screen 6-2

Caption property 2-9
column headers 27-22
decision grids 28-13
group boxes and radio groups 2-21
invalid entries 4-18
labels 2-23
TForm 2-22

cascaded deletes 16-3
cascaded updates 16-3
case sensitivity

comparisons 19-19
external identifiers and A-3
indexes 14-15, 25-7
suppressing A-3

CaseInsFields property 14-15
case-sensitive sorts 21-11, 25-7
catch statement 8-2, 8-6, 8-21
C-based exception handling 8-11
cbsAuto constant 27-20
CComCoClass 32-21, 35-2, 35-4, 36-2
CComModule 32-20
CComObjectRootEx 32-21, 35-2, 35-4, 36-2
CDaudio disks 6-31
CellDrawState function 28-13
CellRect method 2-24
cells (grids) 2-24
Cells function 28-13
Cells property 2-24
CellValueArray function 28-13
CGI programs 3-16, 30-4, 30-5

creating 30-6
debugging 30-29

change log 25-4, 25-20, 25-25
saving changes 25-5
undoing changes 25-5

Change method 50-12
ChangedTableName property 21-24
CHANGEINDEX 25-6
changes

canceling 19-24
changing

project files 2-35
Char data type 11-2
character sets 11-2, 11-2 to 11-3, A-2, A-3

2-byte conversions 11-2
ANSI 11-2
constants A-6
default 11-2
double byte 11-2
extended A-2
international sort orders 11-9
mapping A-3
OEM 11-2
testing for A-7

character types 11-2
characters 41-2

decimal point A-7
multibyte A-2
newline A-8
null A-8
queries and special 22-6
wide A-3, A-4

I-8 D e v e l o p e r ’ s G u i d e

CharCase property 2-15
Chart Editing dialog box 28-17
Chart FX 12-3
check boxes 2-18, 27-2

checking 27-15
data-aware 27-14

CHECK constraint 16-10
Checked property 2-18
check-list boxes 2-19
CheckOpen method 19-28
child controls 2-9
Chord method 6-4
circles, drawing 48-10
circular references 4-2
class factories 32-5, 32-6

ATL support 32-21
class fields 48-4

declaring 48-6
class pointers 40-10
classes 39-2, 39-3, 40-1, 41-2

abstract 39-3
accessing 40-4 to 40-7, 48-6
ancestor 40-3 to 40-4
creating 40-1
default 40-4
defining 39-11, 40-2
deriving new 40-2
descendant 40-3 to 40-4
hierarchy 40-3
instantiating 40-2, 42-2
Object Pascal support 9-12
passing as parameters 40-10
private part 40-4
properties as 41-2
property editors as 46-8
protected part 40-6
public part 40-6
published part 40-7
restricting access 40-4

__classid operator 9-19
ClassInfo method 9-18
ClassName method 9-18
ClassNameIs method 9-18
ClassParent method 9-18
ClassType method 9-18
Clear method 20-18, 22-7

string lists 2-30, 2-31
ClearSelection method 5-9
click events 6-23, 6-24, 42-1, 42-2, 42-7
Click method 42-2

overriding 42-6, 49-12
client applications

architecture 15-4
as Web server applications 15-24
cached updates and 26-1

COM 32-3, 32-9, 34-1 to 34-16
CORBA 29-2, 29-13 to 29-16
creating 15-16 to 15-21, 34-1 to 34-16
database 18-2
interfaces 31-2
multi-tiered 15-1, 15-2, 15-4

reconciling updates 25-21 to 25-22
updating records 25-20 to 25-22

network protocols 18-8
refreshing records 25-22 to 25-23
retrieving data 22-1, 22-3
sockets and 31-1
supplying queries 16-4, 25-17
thin 15-2, 15-25
transactional objects 38-2
transactions 14-8
type libraries 33-13, 34-2 to 34-6
user interfaces 13-9, 15-1

client connections 31-2, 31-3
accepting requests 31-7
opening 31-6
port numbers 31-5

client datasets 13-15, 15-3, 25-1 to 25-25
aggregating data 25-9 to 25-12
cached updates and 26-3
calculated fields 25-8 to 25-9
constraints 25-3
copying data 25-12
copying existing tables 14-15
creating 14-14
creating tables 14-14, 25-24
deleting indexes 25-7
editing 25-4
flat-file data 25-24 to 25-25
grouping data 25-7
indexes 14-16, 25-6 to 25-8

adding 25-6
limiting records 25-2, 25-16
loading data 14-16
master/detail relationships 25-3
merging changes 25-25
navigation 25-2
parameters 25-15 to 25-16
providers and 25-14 to 25-23
reading and writing 25-1
read-only 25-4
saving changes 25-5
saving data 14-16
saving edits 14-16
sharing data 25-13
specifying providers 25-14
switching indexes 25-7
undoing changes 25-5

client requests 30-3 to 30-5

I n d e x I-9

client sockets 31-3, 31-5 to 31-6
assigning hosts 31-4
connecting to servers 31-9
error messages 31-8
event handling 31-9
identifying servers 31-6
properties 31-6
requesting services 31-5
using threads 31-11
Windows socket objects 31-5

client/server applications 3-14
ClientExecute method

TServerClientThread 31-13
clients see client applications
ClientType property 31-10, 31-11
Clipboard 5-7, 5-8, 27-10

clearing selection 5-9
formats

adding 46-12, 46-14
graphics and 6-20 to 6-22
graphics objects 6-3, 27-10
testing contents 5-9
testing for images 6-21

Clipbrd unit 5-7, 6-20
clock function A-11
CloneCursor method 25-13
cloning cursors 25-13
Close method

database connections 17-7
datasets 19-5
queries 22-7
sessions 17-5
tables 21-4

CloseDatabase method 17-7
__closure keyword 9-19
closures 42-2, 42-7
CLSIDs 32-5, 32-6, 32-15, 34-5

license package file 37-7
CM_EXIT message 50-12
CMExit method 50-12
CoClasses 32-6

ActiveX controls 37-4
CLSIDs 32-6
component wrappers 34-1, 34-3

_OCX unit 34-2
limitations 34-2

creating 32-6, 33-12, 34-5, 34-12 to 34-13
declarations 34-5
naming 35-3, 35-4
Type Library editor 33-9, 33-15
updating 33-14

code 43-3
Code editor

displaying 46-14
overview 2-35

Code Insight
templates 3-3

code pages 11-2
COInit flags 35-8
ColCount property 27-28
collation sequence A-2
color depths 12-7

programming for 12-8
color grids 6-5
Color property 2-8, 2-25

brushes 6-7
column headers 27-22
data grids 27-22
decision grids 28-13
pens 6-5

colors
internationalization and 11-8
pens 6-5

Cols property 2-24
column headers 2-22, 27-18, 27-22
columns 2-24, 27-17

accessing 20-2
assigning values 27-19, 27-20, 27-21
changing values 27-25
decision grids 28-12
default state 27-17, 27-22, 27-23
including in HTML tables 30-24
persistent 27-16, 27-18

adding buttons 27-21
creating 27-19 to 27-22
deleting 27-17, 27-19, 27-20
inserting 27-19
reordering 27-20, 27-26

properties 27-17, 27-18, 27-21
resetting 27-22

Columns editor
creating persistent columns 27-19
defining pick lists 27-21
deleting columns 27-20
reordering columns 27-20

Columns property 2-20, 27-19
grids 27-16
radio groups 2-21

ColWidths property 2-24, 5-14
COM

aggregation 32-8 to 32-9
applications 32-17

distributed 3-16
parts 32-2 to 32-9

clients 32-3, 32-9, 33-13, 34-1 to 34-16
containers 32-9, 34-1
controllers 32-9, 34-1
CORBA vs. 29-1
definition 32-1 to 32-2
early binding 32-15

I-10 D e v e l o p e r ’ s G u i d e

extensions 32-2, 32-9 to 32-17
dependencies 32-10

interfaces 32-2, 32-3 to 32-4, 35-3
adding to type libraries 33-13
Automation 35-11 to 35-14
dispatch identifiers 35-13
dual interfaces 35-12 to 35-13
implementing 32-6, 32-21
interface pointer 32-4
IUnknown 32-4
marshaling 32-8
modifying 33-13 to 33-15, 35-9 to 35-11
optimizing 32-16
type information 32-14

overview 32-1 to 32-17
proxy 32-7, 32-8
specification 32-1
stubs 32-8
technologies 32-10
wizards 32-17 to 32-21, 35-1

COM library 32-2
COM objects 32-3, 32-5 to 32-8, 35-1 to 35-17

aggregating 32-8 to 32-9
component wrappers 34-1, 34-2, 34-3, 34-4, 34-6

to 34-12
creating 35-1 to 35-15
debugging 35-8, 35-17
designing 35-2
interfaces 32-3, 35-9 to 35-14
registering 35-16
threading models 35-5 to 35-8
wizard 35-2 to 35-4, 35-5 to 35-8

COM servers 32-3, 32-5 to 32-8, 35-1 to 35-17
designing 35-2
in-process 32-6
instancing 35-8
optimizing 32-16
out-of-process 32-6
remote 32-6

COM+ 3-17, 32-10, 32-13, 38-1
 see also transactional objects
call synchronization 38-20
configuring activities 38-20
event objects 38-20

creating 38-21
wizard 38-20 to 38-21

events 34-15 to 34-16, 38-20 to 38-21
firing 38-21

in-process servers 32-7
object pooling 38-9
transactional objects 32-13 to 32-14
vs. MTS 38-1

COM+ applications 38-6, 38-24
COM+ Component Manager 38-25

combo boxes 2-20, 27-2, 27-11, 27-12
data-aware 27-12
owner-draw 5-11

measure-item events 5-14
COMCTL32.DLL 4-29
CommandCount property 24-8
Commands property 24-8
CommandText property 24-18, 24-26, 25-17
CommandTimeout property 24-7, 24-27
CommandType property 24-19, 24-26
comments

ANSI compliant A-2
Commit method 14-6
committing transactions 14-6, 14-7
CommitTrans method 24-10
CommitUpdates method 19-30, 26-6
common dialog boxes 2-26, 51-1

creating 51-2
executing 51-5

Common Object Request Broker Architecture see
CORBA

communication between tiers 15-4, 15-9 to 15-11,
15-17

DCOM 15-9, 15-18
HTTP 15-10, 15-19
TCP/IP 15-9, 15-18

communications 31-1
protocols 30-1, 31-2

connection components 13-10
networks 18-8
UDP vs. TCP 29-3

standards 30-1
OMG 29-1

CompareBookmarks method 19-14
comparison operators 19-18
compiler options 3-2

alignment A-5
compiling projects

packages 10-12
compliance A-1
component editors 46-12 to 46-15

default 46-12
registering 46-15

component interfaces
creating 51-3
properties, declaring 51-4

component libraries
adding components 39-17

Component palette 2-14
adding components 10-5, 46-1, 46-4
adding database sessions 17-16
creating databases 18-2
data-aware controls 27-2
frames 4-14
installing components 39-16

I n d e x I-11

moving components 39-17
pages listed 2-14
specifying page 39-13

component templates 4-12, 40-2
and frames 4-14, 4-15

Component wizard 39-8
component wrappers 39-4, 51-2

ActiveX controls 34-4, 34-7, 34-8 to 34-9
Automation objects 34-7 to 34-8

example 34-10 to 34-12
COM objects 34-1, 34-2, 34-3, 34-6 to 34-12
initializing 51-3

components 2-3 to 2-10, 39-1, 40-1, 41-2
abstract 39-3
adding to Component Palette 46-1
adding to existing unit 39-11
adding to units 39-11
changing 47-1 to 47-4
common properties 2-7 to 2-9, 2-10 to 2-12
context menus 46-12, 46-12 to 46-13
creating 39-2, 39-7
custom 4-12
customizing 39-3, 41-1, 42-1
data-aware 50-1
data-browsing 50-1 to 50-8
data-editing 50-8 to 50-13
decision support 28-1
dependencies 39-5
derived classes 39-3, 39-11, 48-2
double-click 46-12, 46-14
grouping 2-21 to 2-22
initializing 41-12, 48-7, 50-7
installing 10-5 to 10-6, 39-16, 46-19
interfaces 40-4, 40-6, 51-1

design-time 40-7
runtime 40-6

moving 39-17
nonvisual 2-26, 39-4, 39-12, 51-3
online help 46-5
packages 10-8, 46-19
palette bitmaps 46-4
problems installing 46-19
registering 39-12
registration 46-2
resizing 2-17
responding to events 42-5, 42-7, 42-8, 50-7
standard 2-14
testing 39-14, 39-16, 51-6 to 51-7

ComputerName property 15-18
ConfigMode property 17-10
configuration modes

database sessions 17-10
connected line segments 6-9, 6-10
Connected property

ADO connection components 24-3, 24-4

database components 18-7
ConnectEvents method 34-14
connection components 13-10, 15-3, 15-4, 15-17 to

15-21
Connection Points map 35-10
Connection property 24-13, 24-18, 24-19, 24-20,

24-21
ConnectionObject property 24-4
connections 3-14

 See also communication between tiers
client 31-3
database 18-1, 18-4 to 18-9, 19-28

pooling 15-6, 38-5 to 38-6
database servers 18-7, 18-9
disabling 17-5
disconnecting 17-7, 18-9

temporary components and 17-6
dropping 15-20

temporary database 17-7
managing 15-20
network protocols 18-8
opening 15-17, 15-20, 17-5, 17-6, 31-6
parameters 18-6
persistent 17-6, 17-7
remote servers 18-8

unauthorized access 18-6
sending/receiving information 31-1 to 31-14
session 19-28
setting default behavior 17-6
setting parameters 18-5, 18-6
TCP/IP 31-2 to 31-3
terminating 31-8

ConnectionString property 24-3, 24-7, 24-18, 24-19,
24-20, 24-21

ConnectionTimeout property 24-7
ConnectOptions property 24-5
consistency

transactions 38-10
console applications 3-3

CGI 30-5
VCL and 3-3

Console Wizard 3-3
constants

assigning sequential values 6-12
character A-6

values A-4
wide A-3, A-4

naming 6-12
null pointer A-7
wide character A-3

CONSTRAINT constraint 16-10
ConstraintErrorMessage property 20-12, 20-22,

20-23
constraints 16-10, 20-22 to 20-23, 25-18 to 25-20

client datasets 25-3

I-12 D e v e l o p e r ’ s G u i d e

controls 4-3 to 4-4
creating 20-22
custom 25-19
disabling 25-19
importing 16-11

Constraints property 4-4, 16-11
constructors 8-10, 8-20, 39-14, 41-11, 43-3, 49-4,

50-7
base class 9-4, 9-9
C++ vs Object Pascal 9-17
copy 9-3
declaring 39-12
multiple 4-8
overriding 47-3
owned objects and 48-6, 48-7

contacting Borland 1-3
contained objects 32-8
Contains list (packages) 10-6, 10-8, 10-10, 46-19
Content method

page producers 30-19
content producers 30-8, 30-17

event handling 30-19, 30-20, 30-21
Content property

Web response objects 30-17
ContentFromStream method

page producers 30-19
ContentFromString method

page producers 30-19
ContentStream property

Web response objects 30-17
context menus

adding items 46-12 to 46-13
Menu designer 4-23
toolbars 4-35

context numbers (Help) 2-23
controls 2-3 to 2-10

as ActiveX control implementation 37-3
changing 39-3
custom 39-4
data-browsing 50-1 to 50-8
data-editing 50-8 to 50-13
display options 2-8
generating ActiveX controls 37-2, 37-4 to 37-7
graphical 44-3, 48-1 to 48-11

creating 39-4, 48-3
drawing 48-3 to 48-5
events 44-6

grouping 2-21 to 2-22
moving through 2-9, 2-11
owner-draw 5-11, 5-13

declaring 5-12
palettes and 44-4 to 44-5
position 2-8
receiving focus 39-4

repainting 48-8, 48-10, 49-4
resizing 44-6, 49-4
shape 48-8
size 2-8
windowed 39-3

ControlType property 28-9, 28-16
conversions 20-17, 20-19

data types A-4
floating-point A-4
integers A-4, A-5
wide character constants A-4

floating-point A-4
integers A-4, A-5
pointers to integers A-5
rounding rules A-4
values not represented A-4

cool bars 2-19, 4-28, 4-29
adding 4-34
configuring 4-34
designing 4-28 to 4-35
hiding 4-35

coordinates
current drawing position 6-24

Copy (Object Repository) 3-20
copy constructors 9-3
copying

bitmapped images 44-6
datasets 21-22
objects 9-2

CopyMode property 44-3
CopyRect method 6-4, 44-3, 44-6
CopyToClipboard method 5-8, 27-10

graphics 27-10
CORBA 29-1 to 29-18

accepting client requests 29-6, 29-8
automatically generated code 29-9
COM vs. 29-1
delegation model 29-8 to 29-9
IDL files 29-5
implementing objects 29-6, 29-9 to 29-12
instantiating objects 29-7
overview 29-1 to 29-4
standards 29-1
testing 29-16 to 29-18
threads 29-11 to 29-12
VCL and 29-8, 29-13

CORBA applications 3-17, 29-1
clients 29-13 to 29-16
overview 29-1 to 29-4
servers 29-4 to 29-13
using the VCL 29-8, 29-13

CORBA Client wizard 29-13
CORBA Object wizard 29-6 to 29-7, 29-13

I n d e x I-13

CORBA objects
binding 29-15
defining interfaces 29-5 to 29-12
generic 29-15

CORBA Server wizard 29-5
Count property 2-29

TSessionList 17-17
Create DataSet command 14-14
Create Submenu command (Menu designer) 4-21,

4-23
CreateDataSet method 14-14
CreateObject method 36-3
CreateSharedPropertyGroup 38-6
CreateSuspended parameter 7-10
CreateTable method 21-17
CreateTransactionContextEx

example 38-13 to 38-14
creating

applications 2-12
databases 18-3
datasets 14-14, 25-24
tables 14-10, 14-14

creator classes
CoClasses 34-5, 34-13

critical sections 7-7
warning about use 7-7, 7-8

crosstabs 28-2 to 28-3, 28-11
defined 28-2
multidimensional 28-3
one-dimensional 28-3
summary values 28-3

currency
formats 11-8
internationalizing 11-8

Currency property 20-12
current record 19-9

canceling cached updates 26-8
setting 21-7
synchronizing 21-24

cursor 19-9
moving 19-10, 19-11, 21-6, 21-7, 27-7

to first row 19-10, 19-11
to last row 19-10, 19-12
with conditions 19-15

queries and 22-15
CurValue property 20-21, 26-26
custom controls 39-4

libraries 39-4
custom data formats 20-17
custom datasets 13-15
Custom property 15-34
CustomConstraint property 20-12, 20-22, 20-23
customizing components 41-1
CutToClipboard method 5-8, 27-10

graphics 27-10

D
-D linker option 10-12
data

accessing 50-1
analyzing 13-12
changing 19-21, 19-24, 27-4

transactions and 14-8
default values 20-21, 27-11
displaying 20-18

current values 27-9
disabling display 27-4
in grids 27-16, 27-17, 27-21, 27-28
multiple datasets 27-31
refresh intervals 27-4, 27-5

display-only 27-8
entering 19-22, 19-23
formats, internationalizing 11-8
graphing 13-12
predefined values 27-12
printing 13-15
reporting 13-15
saving 19-23
synchronizing 21-24

on multiple forms 27-6, 27-7
data access components 13-1

isolating 13-6
threads 7-4

Data Access page (Component palette) 2-14, 13-1
data binding 37-11
Data Bindings editor 34-8
data brokers 15-1, 25-14
data compression

TSocketConnection 15-19
data constraints See constraints
Data Controls page (Component palette) 2-14,

13-11, 27-1
Data Dictionary 13-4 to 13-5, 15-2, 20-14 to 20-15

constraints 16-11
data filters 19-9, 19-17 to 19-20, 21-11

enabling/disabling 19-17
queries vs. 19-17, 22-2
setting at runtime 19-19

data formats
assigning 20-14, 20-15
customizing 20-17
default 20-16

data grids 13-12, 27-2, 27-16, 27-28
customizing 27-17 to 27-19
default state 27-17

restoring 27-22
displaying ADT fields 27-23
displaying array fields 27-23
displaying data 27-16, 27-17, 27-21, 27-28
drawing 27-26

I-14 D e v e l o p e r ’ s G u i d e

editing 27-25
editing data 27-4
entering data 27-20, 27-21
event handling 27-27
getting values 27-17, 27-18

at runtime 27-19
inserting columns 27-19
properties 27-17, 27-28
removing columns 27-17, 27-19, 27-20
reordering columns 27-20, 27-26
runtime options 27-24

data integrity 13-5, 16-10
data links 21-25, 50-5 to 50-7

initializing 50-7
data members

initializing 9-8
message structures 45-4
naming 42-2

Data Module Designer 3-17 to 3-19
data modules 3-17 to 3-19

accessing from forms 3-19
business rules 3-18
creating 3-18
databases 18-10
editing 3-18
remote vs. standard 3-17
session components and 17-17
Web applications and 30-6, 30-7, 30-8

data packets 15-15, 16-1
application-defined information 16-4, 25-12
contents 16-1
controlling fields 16-2
editing 16-5
ensuring unique records 16-3
fetching 16-5, 25-17
including field properties 16-3
limiting client edits 16-4
read-only 16-3
refreshing updated records 16-4
XML 15-25, 15-27, 15-30

fetching 15-30
Data property

client datasets 25-12
data sources 13-11, 27-5 to 27-8

adding 27-6
associating with datasets 27-6, 27-7
binding to queries 22-10
defined 27-5
naming 27-6
remote servers 18-8
updating 27-7

data state constants 19-3
data store 24-2
data types 20-7

mapping 21-22

data/time fields 20-15
data-aware controls 13-11, 20-18, 27-1, 50-1

adding 27-1 to 27-2
creating 50-1 to 50-13
data-browsing 50-1 to 50-8
data-editing 50-8 to 50-13
destroying 50-7
disabling 19-12
disabling display 27-4
displaying data 22-16, 27-4 to 27-5

current values 27-9
in grids 27-16, 27-17, 27-21, 27-28
multiple datasets 27-31

displaying graphics 27-10
editing 19-7, 19-21, 27-3
entering data 20-15, 27-11 to 27-14, 27-15
grids 13-12
inserting records 19-22
listed 27-2
representing fields 13-11, 27-8
responding to changes 50-7

database applications 13-1
architecture 13-6, 15-24
BDE-based vs. flat-file 14-13
deploying 12-4
distributed 3-17
flat-file 14-13 to 14-16
multi-tiered 15-3 to 15-4
scaling 13-7, 14-17

database components 18-1 to 18-9
iterating 17-12
temporary 17-7, 18-2

database connections 3-14
limiting 15-7
pooling 15-6, 38-5 to 38-6
warning when using transactional data

modules 15-7
database drivers 13-2
database engines

third-party 12-5
Database Explorer 3-14
database management systems 15-1
database navigator 19-9, 19-10, 19-11, 27-2, 27-29

to 27-32
buttons 27-29
deleting data 19-23
editing and 19-22
enabling/disabling buttons 27-30
help hints 27-31

Database Properties editor 18-5
viewing connection parameters 18-6

Database property 19-28
database servers 3-14, 18-7, 22-3
DatabaseCount property 17-12

I n d e x I-15

DatabaseName property 14-3, 18-4, 19-28, 19-29,
21-2

databases 3-14, 13-1 to 13-6, 14-3, 18-1, 18-9, 50-1
access properties 50-5 to 50-6
accessing 17-1, 17-6, 21-2, 22-4
adding data 19-22 to 19-23, 19-25
adding tables 21-17
aliases and 18-4, 21-2
applying cached updates 26-5
associating with sessions 17-2, 17-8, 18-4
BDE and 14-4
changing data 14-8, 19-21, 19-24
choosing 13-2
closing 17-5
connecting 14-4
counting 17-12
creating 17-2, 18-2

at runtime 18-3
data sources and 27-5
DatabaseName property and 14-3
deleting tables 21-16
file-based 13-2
generating HTML responses 30-21 to 30-25
importing data 21-19
in multi-threaded applications 14-4
limiting data retrieval 21-11
local 13-2
logging in 13-3
logging into 18-6
marking records 19-13 to 19-14
multi-tiered models 15-2
naming 18-4, 21-2
relational 13-1
remote 13-2
renaming tables 21-17
resorting fields 21-11
retrieving data 19-17, 20-18, 26-1
saving data 19-23
security 13-3
tables 13-13
testing associations 17-8
testing status 17-4
transactions 13-3 to 13-4, 14-6
types 13-2
unauthorized access 18-6
Web applications and 30-21

Databases property 17-12
DataChange method 50-11
data-entry validation 20-17
DataField property 27-12, 27-14, 50-5, 50-6
DataSet component 19-2
dataset fields 13-13, 20-26 to 20-27

client datasets 25-3
dataset page producers 30-22

converting field values 30-23

DataSet property 27-6
data grids 27-17
providers 16-1

DataSetCount property 18-9, 24-8
DataSetField property

client datasets 25-3
datasets 13-13, 19-1, 19-2

accessing 19-27, 27-7
adding records 19-7, 19-22 to 19-23, 19-25
ADO-based 13-14
applying cached updates 26-5, 26-6
associating with sessions 17-2, 18-4
BDE-based 13-13 to 13-14, 19-27
browsing 19-6
changing data 19-21, 19-24, 27-4
closing 17-5, 18-9, 19-3, 19-5

on remote servers 17-6
closing w/o disconnecting 18-9
copying 21-22
creating 14-14
current value 26-26
custom 13-15
data sources and 27-5
decision components 28-5 to 28-7
default state 19-4
deleting records 19-23
editing 19-7, 19-21, 27-7
event handling 19-26
filtering records 19-9, 19-17 to 19-20
getting active 18-9
HTML documents 30-24
InterBase direct 13-14 to 13-15
modes 19-3
moving through 19-9 to 19-13, 19-20, 27-29
nested 13-13
opening 19-3

on remote servers 17-6
posting records 19-23
previous values 26-11, 26-26
providers and 16-2
referencing 26-24
searching 19-8, 19-15 to 19-16
states 19-3

changing 27-7
testing status 17-4
updating 26-11, 26-20, 26-21, 26-24
updating multiple 26-5
viewing multiple 27-31

DataSets property 18-9, 24-8
DataSource component

adding 27-6
events 27-7
properties 27-6 to 27-7

DataSource property 27-2, 27-14, 27-31
ActiveX controls 34-8

I-16 D e v e l o p e r ’ s G u i d e

data grids 27-17
data-aware controls 50-5, 50-6
queries 22-10

date fields 20-15
formatting values 20-16

date formats A-11
__DATE__ macro

availability A-7
dates

calendar components 2-21
entering 2-21
internationalizing 11-8
local A-11
setting A-7

DateTimePicker component 2-21
Day property 49-6
DB/2 driver

deploying 12-5
dBASE 14-10
dBASE tables 21-2, 21-3

accessing data 21-5, 22-4
adding records 19-23
creating aliases 17-10
DatabaseName 14-3
indexes 21-8, 21-9
isolation levels 14-8
local transactions 14-8
memo fields 27-9, 27-10
opening connections 17-6
queries 22-16
searching 21-5, 21-8

DBChart component 13-12
DBCheckBox component 27-2, 27-14
DBComboBox component 27-2, 27-12
DBCtrlGrid component 27-2, 27-28 to 27-29

properties 27-28
DBEdit component 27-2, 27-9
DBGrid component 27-2, 27-16

events 27-27
properties 27-21, 27-24

DBGridColumns component 27-16
DBHandle property 19-28
DBImage component 27-2, 27-10
DBListBox component 27-2, 27-11
DBLocale property 19-28
DBLookupComboBox component 27-2, 27-12 to

27-14
DBLookupListBox component 27-2, 27-12 to 27-14
DBMemo component 27-2, 27-9
DBMS 15-1
DBNavigator component 27-2, 27-29 to 27-32
DBRadioGroup component 27-2, 27-15
DBRichEdit component 27-10
DBSession property 19-28
DBText component 27-2, 27-8

DCOM 32-6, 32-7 to 32-8
connecting to application server 15-18
distributing applications 3-16
InternetExpress applications 15-29
multi-tiered applications 15-9

DCOMCnfg.exe 15-29
.DCR files 46-4
DDL 24-20, 24-25, 24-26
debugging

Active Server Objects 36-8
ActiveX controls 37-16
COM objects 35-8, 35-17
CORBA 29-16 to 29-18
Microsoft IIS server 30-25
Netscape servers 30-28
Personal Web server 30-27
transactional objects 38-23 to 38-24
Web server applications 30-25 to 30-29

decimal points A-7
Decision Cube editor 28-8
Decision Cube page (Component palette) 2-14,

13-12
decision cubes 28-7 to 28-9

design options 28-9
dimension settings 28-8, 28-9, 28-20
dimensions, opening/closing 28-10
displaying data 28-11
getting values 28-5
paged dimensions 28-21

decision datasets 28-5, 28-6
decision graphs 28-13 to 28-18

changing graph type 28-17
creating 28-14
current pivot states 28-9
customizing 28-16 to 28-17
display options 28-15
overview 28-14
runtime behaviors 28-19
setting data series 28-17 to 28-18
templates 28-17

decision grids 28-11 to 28-13
creating 28-11
current pivot states 28-9
events 28-13
overview 28-11
properties 28-12
reordering columns/rows 28-12
runtime behaviors 28-19
viewing data 28-12

decision pivots 28-10
properties 28-10
runtime behaviors 28-19

decision queries
getting values 28-6
properties 28-7

I n d e x I-17

Decision Query editor 28-6
starting 28-6

decision sources 28-9
events 28-9
properties 28-9

decision support components 13-12, 28-1, 28-18
adding 28-3 to 28-4
allocating memory 28-20
design options 28-9
getting values 28-5 to 28-7
overview 28-1 to 28-2

declarations
classes 40-10, 48-6

private 40-4
protected 40-6
public 40-6
published 40-7

event handlers 42-5, 42-7, 49-12
exception 8-2
message handlers 45-4, 45-6, 45-7
methods 6-14, 40-9, 43-4

public 43-3
new component types 40-3
properties 41-3, 41-3 to 41-7, 41-11, 42-7, 48-4

user-defined types 48-4
declarators

nesting A-6
number of A-6

__declspec keyword 3-10, 9-21
DECnet protocol (Digital) 31-1
default

ancestor class 40-4
data formats 20-16
handlers

events 42-8
message 45-3
overriding 42-8

keyword 41-7
parameters 9-17
project options 3-2
property values 41-7

changing 47-2, 47-3
specifying 41-10 to 41-11

values 20-21, 27-11
Default property

action items 30-11
DEFAULT_ORDER 25-6
DefaultColWidth property 2-24
DefaultDrawing property 5-11, 27-26, 27-27
DefaultExpression property 20-21
DefaultHandler method 45-3
DefaultRowHeight property 2-24
delegation 42-1
Delete command (Menu designer) 4-23

Delete method 19-7, 19-23
string lists 2-30, 2-31

DELETE statements 22-12, 22-13, 26-11
Delete Templates command (Menu designer) 4-23,

4-25
Delete Templates dialog box 4-25
DeleteAlias method 17-11
DeleteFontResource function 12-9
DeleteSQL property 26-11
DeleteTable method 21-16
delphiclass argument 9-21
delphireturn argument 9-22
delta packets 16-6

editing 16-6, 16-6 to 16-7
XML 15-30, 15-31 to 15-32

Delta property 25-20
DEPLOY.TXT 12-4, 12-5, 12-10
deploying

ActiveX controls 12-3
applications 12-1
Borland Database Engine 12-4
database applications 12-4
DLL files 12-3
fonts 12-9
general applications 12-1
MIDAS applications 12-6
package files 12-3
SQL Links 12-5
Web applications 12-6

dereferenced pointers 9-3
descendant classes 40-3 to 40-4
DescFields property 14-15
design tools 2-2
designing

applications 2-2
design-time interfaces 40-7
design-time packages 10-1, 10-4 to 10-6
destination datasets, defined 21-20
destructors 8-10, 43-3, 50-7

owned objects and 48-6, 48-7
VCL implications 9-9, 9-10 to 9-11

detail datasets 21-25 to 21-27
fetch on demand 16-3

detail forms
cached updates and 26-6

developer support 1-3
device contexts 6-1, 39-7, 44-1
device-independent graphics 44-1
devices, interactive A-2
DeviceType property 6-30
.DFM files 11-9, 41-9

generating 11-12
diacritical marks 11-9
diagnostic messages (ANSI) A-1

I-18 D e v e l o p e r ’ s G u i d e

dialog boxes 51-1 to 51-7
common 2-26
creating 51-1
DLL example of 3-11
internationalizing 11-8, 11-9
multipage 2-22
property editors as 46-9
setting initial state 51-1
Windows common 51-1

creating 51-2
executing 51-5

Dialogs page (Component palette) 2-14
.DIB files 27-10
digital audio tapes 6-31
DII 29-13, 29-15

Interface Repository 29-12
DimensionMap property 28-7
Dimensions property 28-13
directives

protected 42-5
published 41-3, 51-4

directories
include files and A-7
temporary files 17-13

directory service 29-3
dirty reads 14-7
DisableCommit method 38-13
DisableConstraints method 25-19
DisableControls method 27-4
DisabledImages property 4-32
disconnected model 14-16
DisconnectEvents method 34-15
dispatch interfaces 35-11, 35-13

calling methods 34-13 to 34-14
identifiers 35-13
type compatibility 35-14
type libraries 33-9

Dispatch method 45-3, 45-5
dispIDs 32-15, 34-14, 35-13

binding to 35-14
dispinterfaces 35-11, 35-12, 35-13

dynamic binding 33-9
type libraries 33-9

DisplayFormat property 20-2, 20-12, 20-16, 27-26
DisplayLabel property 20-12, 27-18
display-only data 27-8
DisplayWidth property 20-2, 20-13, 27-17
distributed applications 3-15, 3-15 to 3-17

COM 3-16
CORBA 3-17, 29-1
database 3-17
MTS and COM+ 3-17, 38-1

distributed COM 32-6, 32-7 to 32-8
distributed data processing 15-2

distributed objects
COM 3-16
CORBA 3-17, 29-1

distributing project files 2-36
division

sign of remainder A-5
dllexport 3-10, 3-11
DllGetClassObject 38-3
dllimport 3-10
DllRegisterServer 38-3
DLLs 3-11

COM servers 32-6
threading models 35-6

creating 3-9, 3-10
embedding in HTML 30-18
HTTP servers 30-4
installing 12-3
internationalizing 11-10, 11-12
linking 3-14
MTS 38-2
packages 10-1, 10-2, 10-11

DML 24-20, 24-25
.DMT files 4-24, 4-25
docking 5-4
domain errors A-7
double byte character set 11-2
double-clicks

components 46-12
responding to 46-14

Down property 2-18
speed buttons 4-31

drag cursors 5-2
drag object 5-3
drag-and-dock 2-9, 2-12, 5-4 to 5-6
drag-and-drop 2-9, 5-1 to 5-4

customizing 5-3
DLLs 5-4
events 48-3
getting state information 5-3
mouse pointer 5-4

DragCursor property 2-9
DragMode property 2-9, 5-1

grids 27-26
draw grids 2-24
Draw method 6-4, 44-3, 44-6
drawing modes 6-28
drawing tools 44-1, 44-7, 48-6

assigning as default 4-31
changing 6-12, 48-8
handling multiple in an application 6-11
testing for 6-12

DrawShape 6-15
drill-down forms 13-12
driver names 18-5
DriverName property 18-4

I n d e x I-19

DropConnections method 17-7
drop-down lists 27-12, 27-18

assigning values 27-20
drop-down menus 4-20 to 4-21
DropDownCount property 2-20
DropDownMenu property 4-35
DropDownRows property 27-14, 27-22
dropped connections

temporary databases 17-7
DsgnIntf unit 46-8
dsSetKey constant 19-8
dual interfaces 35-12 to 35-13

Active Server Objects 36-3
calling methods 34-13
parameters 35-15
transactional objects 38-3, 38-18
type compatibility 35-14

durability
resource dispensers 38-5
transactions 38-10

dynamic argument 9-22
dynamic binding 29-13

CORBA 29-4, 29-15
DII 29-4

dynamic invocation interface See DII
dynamic linking 3-10, 3-11
dynamic memory 2-35

E
early binding

Automation 32-16, 35-12
COM 32-15

EDBEngineError type 26-26
edit controls 2-15 to 2-16, 5-6, 27-2, 27-9

multi-line 27-9
rich edit formats 27-10
selecting text 5-8

Edit method 19-7, 19-21, 46-10
edit mode 19-21

canceling 19-22
EditFormat property 20-2, 20-13, 20-16, 27-26
editing code 2-35
EditKey method 21-6, 21-8
EditMask property 20-13, 20-15
EditRangeEnd method 21-15, 21-16
EditRangeStart method 21-15, 21-16
Ellipse method 6-4, 6-11, 44-3
ellipses

drawing 6-10, 48-10
ellipsis (...)

buttons in grids 27-21
Embed HTML tag (<EMBED>) 30-18
EmptyTable method 21-16
EnableCommit method 38-13

EnableConstraints method 25-19
EnableControls method 27-4
Enabled property

action items 30-11
data sources 27-7
data-aware controls 27-3, 27-5
menus 4-27, 5-9
speed buttons 4-31

encryption
TSocketConnection 15-19

END_MESSAGE_MAP 45-7
END_MESSAGE_MAP macro 45-4
endpoints

socket connections 31-5
EndRead method 7-8
EndWrite method 7-8
enumerated types 41-2, 48-4

constants vs. 6-12
declaring 6-12
Type Library editor 33-9, 33-15 to 33-16

enumerations A-6
environments A-10
Eof property 19-10, 19-11
era, clock function and A-11
error messages 26-26, A-7, A-9, A-11

internationalizing 11-9
errors

batch moves 21-23
cached updates 26-23 to 26-27

caution 26-24
data providers 16-9
domain A-7
sockets 31-8
underflow range A-8

escape sequences
source files A-7

event handlers 20-17, 39-6, 42-2, 42-7, 50-7
declarations 42-5, 42-7, 49-12
default, overriding 42-8
displaying the Code editor 46-14
drawing lines 6-25
empty 42-8
menus 5-10

as templates 4-26
methods 42-4, 42-5

overriding 42-5
parameters 42-7, 42-8

notification events 42-7
passing parameters by reference 42-9
responding to button clicks 6-12
return type 42-3
shared 6-14
types 42-3, 42-7

event objects 7-9
COM+ 38-20

I-20 D e v e l o p e r ’ s G u i d e

event sinks 35-11
defining 34-14 to 34-15

Events
system 2-3
types 2-3
user 2-3

events 27-5, 39-6, 42-1 to 42-9
accessing 42-5
ActiveX controls 37-10 to 37-11

firing 37-11
application-level 4-3
Automation controllers 34-10, 34-14 to 34-16
Automation objects 35-4
COM 35-10, 35-11

firing 35-11
COM objects 35-3, 35-10 to 35-11

component wrappers 34-2
COM+ 34-15 to 34-16, 38-20 to 38-21

firing 38-21
data grids 27-27
data sources 27-7
datasets 19-26
decision cubes 28-7
decision grids 28-13
decision sources 28-9
defining new 42-6 to 42-9
field objects 20-17
graphical controls 44-6
implementing 42-2, 42-4
inherited 42-4
interfaces 35-10
message handling 45-3, 45-6
mouse 6-22 to 6-25

testing for 6-25
naming 42-8
providing help 46-5
responding to 42-5, 42-7, 42-8, 50-7
signalling 7-9
standard 42-4
timeout 7-10
update objects 26-22 to 26-23
waiting for 7-9
XML brokers 15-31

__except keyword 8-12, 8-13
Exception class 8-21
exception handling 8-1 to 8-23

ANSI requirements 8-1
C++ examples 8-3 to 8-10
C++ syntax 8-2
compiler options 8-11
constructors and destructors 8-10
exception specification 8-9
filters 8-13
helper functions 8-12
structured exception syntax 8-12

structured exceptions 8-11
structured exceptions example 8-16
VCL 8-19

__except keyword 8-15
exceptions 43-2, 45-3

bit format 8-17
constructors 9-10
datasets 26-26
declarations 8-2
definition 8-1
specifications 8-9

exclusive locks 21-5
Exclusive property 21-5
ExecProc method 23-5, 24-22
ExecProc property 24-23
ExecSQL method 22-12, 22-13

update objects 26-19
executable files

COM servers 32-6
threading models 35-6, 35-8

internationalizing 11-10, 11-12
Execute method 2-26, 7-3, 24-26, 24-27, 51-5

TBatchMove 21-23
threads 31-12

ExecuteTarget method 4-41
EXISTINGARRAY macro 9-13, 9-15
exit functions A-10
Expanded property 27-22

TColumn 27-23
exported functions 3-10, 3-11
expressions 20-21
extended character sets A-2

F
FastNet(Component Palette) 2-14
Fetch Params command 25-15
FetchAll method 19-30, 26-4
fetch-on-demand 25-18
FetchParams method 25-15
fgetpos function A-9
field attributes 13-4 to 13-5, 20-14 to 20-15

removing 20-15
field definitions 21-18
field lists 20-4, 21-11

viewing 20-5, 20-6
field names 20-7
field objects 20-1

adding 20-1 to 20-5, 20-6
assigning values 20-20, 20-21
deleting 20-12
display-only 20-7
dynamic vs. persistent 20-3, 20-4
editing properties 20-12
events 20-17
properties 20-3, 20-12 to 20-16

I n d e x I-21

runtime 20-14
field types 20-1, 20-2

converting 20-17, 20-19
overriding 20-16
specifying 20-7

FieldAddress method 9-18
FieldByName method 20-21, 21-13
FieldCount property

persistent fields 27-18
FieldKind property 20-13
FieldName property 15-33, 20-7, 20-13

data grids 27-20, 27-22
decision grids 28-13
persistent fields 27-18

fields 20-1
abstract data types 20-23 to 20-27
activating 20-17
adding to forms 6-25 to 6-26
assigning values 19-25
changing values 27-4
checking current values 20-21
current value 26-26
databases 50-5, 50-7
default values 20-21
defining 20-7, 20-8, 20-9
displaying values 20-18, 20-21, 27-12
entering data 19-22, 19-23, 20-15, 27-11 to 27-14,

27-15
getting 20-4, 20-5
message records 45-6
mutually-exclusive options 27-2
persistent columns and 27-18
previous values 26-11, 26-26
read-only 27-3
representing 27-8
resorting 21-11
searching specific 21-8
setting data limits 20-22 to 20-23
sharing properties 20-14
updating values 27-3

Fields editor 3-19, 20-4
applying field attributes 20-15
creating persistent fields 20-5
defining attribute sets 20-14
deleting field objects 20-12
removing attribute sets 20-15
reordering columns 27-26

Fields property 20-20
file lists

dragging items 5-2, 5-3
dropping items 5-3

file names
changing A-9
searching for A-6

FileName property
client datasets 14-16

file-position indicator A-8
files

appending A-8
buffering A-9
graphics 6-18 to 6-20, 44-4
opening

abort function and A-10
multiple times A-9
remove function and A-9

renaming A-9
resource 4-28
sending over the Web 30-17
temporary 17-13, A-10
truncation while writing to A-9
zero-length A-9

fill patterns 6-7, 6-8
FillRect method 6-4, 44-3
Filter property 19-17, 19-18
Filtered property 19-17
FilterOptions property 19-19
filters 19-9, 19-17 to 19-20, 21-11

client datasets 25-2
enabling/disabling 19-17
exception handling 8-13
queries vs. 19-17, 22-2
setting at runtime 19-19

__finally keyword 8-12, 8-18
FindDatabase method 17-8
FindFirst method 19-20
FindKey method 19-8, 21-6, 21-7

caution for using 21-5
EditKey vs. 21-8

FindLast method 19-20
FindNearest method 19-8, 21-6, 21-7

caution for using 21-5
FindNext method 19-20
FindPrior method 19-20
FindResourceHInstance function 11-11
FindSession method 17-17
FireOnChanged 37-12
FireOnRequestEdit 37-12
First Impression 12-3
First method 19-10
FixedColor property 2-24
FixedCols property 2-24
FixedOrder property 2-19, 4-34
FixedRows property 2-24
FixedSize property 2-19
flags 50-4
flat files 25-24 to 25-25

loading 14-16, 25-24
nested tables and 25-3
saving 14-16, 25-25

I-22 D e v e l o p e r ’ s G u i d e

flat-file applications 14-13 to 14-16
memory 14-13

FlipChildren method 11-6
floating-point values A-4

decimal point character A-7
format specifiers A-3

FloodFill method 6-4, 44-3
fly-by help 2-23
fly-over help 27-31
fmod function A-8
focus 20-17, 39-4

moving 2-17
FocusControl method 20-17
FocusControl property 2-23
Font property 2-8, 6-3, 44-3

column headers 27-22
data grids 27-22
memo fields 27-10

fonts 12-9
height of 6-4

Footer property 30-24
FOREIGN KEY constraint 16-11
foreign translations 11-1
form linking 4-2
Format property 28-13
FormatCurr function 20-16
FormatDateTime function 20-16
FormatFloat function 20-16
formats A-11
formatting data 20-14, 20-15, 20-16

custom formats 20-17
international applications 11-8

forms 2-12
adding fields to 6-25 to 6-26
adding to projects 4-1 to 4-2
adding unit references 4-2
as components 51-1
creating at runtime 4-6
displaying 4-5
display-only data 27-8
drill down 13-12
global variable for 4-5
linking 4-2
main 4-1
master/detail tables 13-12, 21-25 to 21-26
memory management 4-5
modal 4-5
modeless 4-5, 4-6
navigating among controls 2-9, 2-11
passing arguments to 4-7 to 4-8
querying properties

example 4-9
referencing 4-2
retrieving data from 4-8 to 4-12
scrolling regions 2-22

sharing event handlers 6-14
synchronizing data 21-24

on multiple 27-6, 27-7
using local variables to create 4-7

Forms unit
Web applications and 30-7

Formula One 12-3
FoxPro 14-10
FoxPro tables 14-8, 21-5

isolation levels 14-8
local transactions 14-8

fprintf function A-9
FrameRect method 6-4
frames 4-12, 4-13 to 4-15

and component templates 4-14, 4-15
graphics 4-15
resources 4-15
sharing and distributing 4-15

free threading 35-6 to 35-7
FreeBookmark method 19-14
free-threaded marshaler 35-7
fscanf function A-9
ftell function A-9
functions 39-6

arguments 9-3
C++ vs Object Pascal 9-19
graphics 44-1
math A-7
naming 43-2
property settings 46-11
reading properties 41-6, 46-9, 46-10
return type 43-2
virtual 9-8
Windows API 39-3, 44-1

G
GDI applications 39-7, 44-1
Generate event support code 35-10
geometric shapes

drawing 48-10
GetAliasDriverName method 17-8
GetAliasNames method 17-8
GetAliasParams method 17-8
GetAttributes method 46-10
GetBookmark method 19-13
GetConfigParams method 17-8
GetData method 20-18
GetDatabaseNames method 17-9
GetDriverNames method 17-9
GetDriverParams method 17-9
getenv function A-10
GetExceptionCode function 8-12
GetExceptionInformation function 8-12, 8-13
GetFieldByName method 30-13
GetFloatValue method 46-9

I n d e x I-23

GetIDsOfNames method 34-14, 35-13
GetIndexNames method 21-9
GetMethodValue method 46-9
GetOptionalParam method 16-4
GetOrdValue method 46-9
GetPalette method 44-5
GetPassword method 17-14
GetProcAddress 3-10
GetProcedureNames method 24-10, 24-22
GetProperties method 46-10
GetSessionNames method 17-17
GetStoredProcNames method 17-9
GetStrValue method 46-9
GetTableNames method 17-9, 24-9, 24-20
GetValue method 46-9
GetVersionEx function 12-9
-Gi linker option 10-12
-Gl linker option 10-12
Glyph property 2-18, 4-30
goto statement 8-7
GotoBookmark method 19-14
GotoCurrent method 21-24
GotoKey method 19-8, 21-6

caution for using 21-5
GotoNearest method 19-8, 21-6, 21-7

caution for using 21-5
-Gpd linker option 10-12
-Gpr linker option 10-12
Graph Custom Control 12-3
Graphic property 6-17, 6-20, 44-4
graphical controls 39-4, 44-3, 48-1 to 48-11

bitmaps vs. 48-3
creating 39-4, 48-3
drawing 48-3 to 48-5
events 44-6
saving system resources 39-4

graphics 27-10, 39-7, 44-1 to 44-7
adding controls 6-16
adding to HTML 30-18
associating with strings 2-31
changing images 6-19
complex 44-5
containers 44-4
copying 6-21
deleting 6-21
displaying 2-24
drawing lines 6-5, 6-9 to 6-10, 6-26 to 6-28

changing pen width 6-5
event handlers 6-25

drawing tools 44-1, 44-7, 48-6
changing 48-8

drawing vs. painting 6-4
file formats 6-3
files 6-18 to 6-20
functions, calling 44-1

in frames 4-15
internationalizing 11-8
loading 6-18, 44-4
methods 44-3, 44-4

copying images 44-6
palettes 44-5

owner-draw controls 5-11
pasting 6-21
programming overview 6-1 to 6-3
redrawing images 44-6
replacing 6-19
resizing 6-20, 27-11, 44-6
rubber banding example 6-22 to 6-28
saving 6-19, 44-4
standalone 44-3
storing 44-4
string lists 5-12 to 5-13
types of objects 6-2 to 6-3

graphics boxes 27-2
graphics methods 44-6

palettes 44-5
graphics objects

threads 7-5
GridLineWidth property 2-24
grids 2-24, 27-2, 49-1, 49-3, 49-5, 49-12

adding rows 19-22
color 6-5
customizing 27-17 to 27-19
data-aware 13-12, 27-28
default state 27-17

restoring 27-22
displaying data 27-16, 27-17, 27-21, 27-28
drawing 27-26
editing 27-25
editing data 27-4
entering data 27-20, 27-21
event handling 27-27
getting values 27-17, 27-18

at runtime 27-19
inserting columns 27-19
properties 27-17, 27-28
removing columns 27-17, 27-19, 27-20
reordering columns 27-20, 27-26
runtime options 27-24

group boxes 2-21
Grouped property

tool buttons 4-33
GroupIndex property 2-18

menus 4-27
speed buttons 4-31

grouping components 2-21 to 2-22
GroupLayout property 28-11
Groups property 28-10
GUI applications 2-12
GUIDs 32-3, 33-8, 34-5

I-24 D e v e l o p e r ’ s G u i d e

H
Handle property 39-3, 39-5, 44-3

device context 6-1
sockets 31-6, 31-7

HANDLE_MSG macro 45-2
HandleException method 45-3
handles

resource modules 11-11
socket connections 31-6, 31-7

HandlesTarget method 4-41
HasConstraints property 20-13
HasFormat method 5-9, 6-21
HAT_Topic 8-3
header controls 2-22
Header property 30-24
headers

HTTP requests 30-3
owner-draw 5-11

Height property 2-8, 2-11, 4-3, 27-11
Help 46-5

context sensitive 2-23
hints 2-23
tool-tip 2-23
type information 33-8

Help Hints 27-31
Help systems 46-5

database engine 22-3
files 46-5
keywords 46-5
tool buttons 4-35

HelpContext property 2-23
HelpFile property 2-23
heterogenous joins 22-14
heterogenous queries 22-14
hidden fields 16-3
hidesbase argument 9-22
HideSelection property 2-15
hierarchy (classes) 40-3
Hint property 2-23
hints 2-23
Hints property 27-31
horizontal track bars 2-16
HorzScrollBar 2-16
host names 31-4

IP addresses vs. 31-4
Host property

client sockets 31-6
TSocketConnection 15-18

hosts 15-18, 31-4
addresses 31-4
URLs 30-2

hot keys 2-17
HotImages property 4-32
HotKey property 2-17

HTML commands 30-18
database information 30-22
generating 30-19

HTML documents 30-3
ASP and 36-1
databases and 30-21
dataset page producers 30-22
datasets 30-24
embedded ActiveX controls 37-1
embedding tables 30-24
generated for ActiveForms 37-6
HTTP response messages 30-4
InternetExpress applications 15-27
page producers 30-18 to 30-21
stylesheets 15-33
table producers 30-23 to 30-25
templates 15-32, 15-34 to 15-35, 30-18 to 30-19

HTML forms 15-33
HTML tables 30-18, 30-24

captions 30-24
creating 30-23 to 30-25
setting properties 30-23

HTML templates 15-34 to 15-35, 30-18
default 15-32, 15-34

HTMLDoc property 15-32, 30-19
HTMLFile property 30-19
HTML-transparent tags

converting 30-18, 30-19
parameters 30-18
predefined 15-34 to 15-35, 30-18
syntax 30-18

HTTP 30-2
application servers and 15-12
connecting to application server 15-19
message headers 30-1
multi-tiered applications 15-10
overview 30-3 to 30-5
request headers 30-3, 30-13, 36-4
request messages see request messages
response headers 30-16, 36-5
response messages see response messages
status codes 30-15

httpsrvr.dll 15-10, 15-19
hypertext links

adding to HTML 30-18

I
IApplicationObject interface 36-3
IAppServer interface 15-8 to 15-9, 15-15 to 15-16,

15-23
IB datasets 13-14
IB queries 13-14
IB stored procedures 13-14
IB tables 13-14
IClassFactory interface 32-5

I n d e x I-25

IClassFactory2 interface 32-5
IConnectionPoint interface 34-14, 35-11
IConnectionPointContainer interface 34-14, 35-11
IConnectionPointContainerImpl 35-11
icons 2-25, 44-3, 44-4

graphics object 6-3
toolbars 4-32
tree views 2-20

IDataIntercept interface 15-19
identifiers

 see also GUIDs
case sensitivity A-3
constants 6-12
data members 42-2
events 42-8
external A-3
invalid 4-18
length A-2
message-record types 45-6
methods 43-2
property settings 41-6
resources 46-4
significant characters in A-2
types 6-12

ideographic characters 11-2
abbreviations and 11-8
wide characters and 11-3

IDispatch interface 32-8, 32-18, 35-11, 35-13
Automation 32-11, 34-13
identifiers 35-13, 35-14

IDL (Interface Definition Language) 29-5, 32-15,
32-17, 33-1

Type Library editor 33-7
IDL compiler 32-17
IDL files 29-5

compiling 29-6
CORBA clients 29-13
CORBA Server Wizard 29-5
exporting from type library 33-18

IEEE
floating-point formats A-3
rounding A-4

IETF protocols and standards 30-1
IIDs 32-3, 34-5
IIS 36-1

debugging 30-25
version 36-2

Image HTML tag () 30-18
ImageIndex property 4-32, 4-34, 4-38
ImageMap HTML tag (<MAP>) 30-18
images 2-25, 27-2, 44-3

adding 6-16
adding control for 5-12
adding to menus 4-22
brushes 6-9

changing 6-19
controls for 6-1, 6-16
copying 44-6
displaying 2-24
drawing 48-9
erasing 6-21
in frames 4-15
internationalizing 11-8
redrawing 44-6
reducing flicker 44-5
regenerating 6-2
saving 6-19
scrolling 6-17
tool buttons 4-32

Images property
tool buttons 4-32

IMarshal interface 35-14, 35-15
IME 11-7
ImeMode property 11-7
ImeName property 11-7
Implementation Repository 29-4
implicit transactions 14-5
Import ActiveX Control command 34-2, 34-4
import libraries 3-10, 3-14
import library 3-10
Import Type Library command 34-2, 34-3
imported functions 3-10
ImportedConstraint property 20-13, 20-22
include files

searching for A-7
Include Unit Hdr command 4-2
incremental fetching 15-23, 25-18
incremental searches 27-14
Indent property 2-20, 4-31, 4-33, 4-34
index definitions 21-18

client datasets 14-15
index files 21-9
Index Files editor 21-9
Index property 20-13
index reserved word 49-7
index-based searches 19-8, 19-15, 19-16, 21-5
indexes 21-8 to 21-11, 41-8

alternative 21-8, 21-9
batch moves and 21-22
client datasets 14-15, 25-6 to 25-8
getting 21-9
grouping data 25-7
searching on partial keys 21-7
sorting on ranges 21-13, 21-14
using 21-9

IndexFieldCount property 21-11
IndexFieldNames property 21-8, 21-11, 25-6

IndexName vs. 21-10
IndexFields property 21-11
IndexFiles property 21-9

I-26 D e v e l o p e r ’ s G u i d e

IndexName property 21-8, 21-9
IndexFieldNames vs. 21-10

IndexOf method 2-30
INFINITE constant 7-10
Informix drivers

deploying 12-5
Informix servers 22-4
Inherit (Object Repository) 3-21
inherited

events 42-4
methods 42-5
properties 48-2, 49-3

publishing 41-2
inherited keyword 9-4, 9-6, 9-8, 9-10
InheritsFrom method 9-18
INI files

Win-CGI programs 30-5
InitializeControl method 37-11
inner objects 32-8
in-process servers 32-6

ActiveX 32-12
ASP 36-7
MTS 38-2

input controls 2-16
input focus 20-17, 39-4
Input Mask editor 20-15
input method editor 11-7
input parameters 23-10
Insert command (Menu designer) 4-23
Insert From Resource command (Menu

designer) 4-23, 4-28
Insert from Resource dialog box 4-28
Insert From Template command (Menu

designer) 4-23, 4-25
Insert method 19-7, 19-23

Append vs. 19-22
menus 4-27
strings 2-30

INSERT statements 22-12, 22-13, 26-11
Insert Template dialog box 4-25
InsertObject method 2-31
InsertRecord method 19-24
InsertSQL property 26-11
Install COM+ objects command 38-24
Install command (Component) 39-17
Install Components dialog box 39-17
Install MTS objects command 38-24
installation programs 12-2
installation support 1-3
InstallShield Express 2-36, 12-1

deploying
applications 12-2
BDE 12-4
packages 12-3
SQL Links 12-5

instances 42-2
instancing

COM servers 35-8
instantiation 9-1
int types A-3
integer types A-3
integers A-6

arrays and A-4
casting to pointer A-5
dividing A-5
enumerations and A-6
pointers and A-5
right shifted A-5
signed A-4

IntegralHeight property 2-20, 27-11
Integrated Translation Environment 11-1
integrity violations 21-23
InterBase driver

deploying 12-5
InterBase page (Component palette) 13-1
InterBase tables 22-4
InterBase(Component Palette) 2-14
Interface Definition Language (IDL) 29-5, 33-1
interface maps 32-21
Interface Repository 29-4

registering CORBA interfaces 29-12
interfaces 3-11, 40-4, 40-6, 51-1, 51-3

ActiveX 32-18
customizing 37-8 to 37-13

adding methods 35-10
adding properties 35-9
Automation 35-11 to 35-14
COM 32-1, 32-2, 32-3 to 32-4, 33-8 to 33-9, 34-1,

35-3, 35-9 to 35-14
declarations 34-5
events 35-10
wrappers 34-5

COM+ event objects 38-21
CORBA 29-2, 29-5 to 29-12
custom 35-14
design-time 40-7
dispatch 35-13
dynamic binding 29-4, 33-9, 35-11
implementing 32-6, 35-3
internationalizing 11-8, 11-9, 11-12
multi-tiered applications 15-8

calling 15-21
nonvisual program elements 39-4
outgoing 35-10, 35-11
properties, declaring 51-4
registering 29-12 to 29-13
remote data modules 15-15 to 15-16
runtime 40-6
skeletons and 29-3
stubs and 29-2, 29-3

I n d e x I-27

type libraries 32-11, 32-16, 34-5, 35-9
Type Library editor 33-8 to 33-9, 33-13, 35-9

internal caches 26-1
InternalCalc fields 20-7, 25-8 to 25-9
international applications 11-1

abbreviations and 11-8
converting keyboard input 11-7
localizing 11-11

internationalization 11-1
Internet Engineering Task Force 30-1
Internet Express(Component Palette) 2-14
Internet Information Server (IIS) 36-1

version 36-2
Internet page (Component palette) 2-14
Internet standards and protocols 30-1
InternetExpress 15-25, 15-27 to 15-35

comparison to ActiveX 15-25
InternetExpress page (component palette) 15-27
intranets

 see also local networks
host names 31-4

InTransaction property 14-6, 24-10
Invalidate method 48-10
Invoke method 35-13
IObjectContext interface 32-14, 36-3, 38-3 to 38-4

methods to end transactions 38-12
IObjectControl interface 32-14, 38-2
IOleClientSite interface 34-16
IOleDocumentSite interface 34-16
iostreams A-8
IP addresses 31-4, 31-6

host names 31-4
host names vs. 31-4
hosts 31-4

IProvideClassInfo 32-15
IProviderSupport interface 16-1
IPX/SPX protocols 31-1
IRequest interface 36-4
IResponse interface 36-4
is operator 9-18
isalnum function A-7
isalpha function A-7
ISAPI applications 3-16, 12-6, 30-5

creating 30-6
debugging 30-25
request messages 30-7

IsCallerInRole 38-16
iscntrl function A-7
IScriptingContext interface 36-2
ISecurityProperty interface 38-16
IServer interface 36-6
ISessionObject interface 36-5
islower function A-7

isolation
transactions 38-10

isolation levels 14-7 to 14-8
ODBC drivers 14-8

isprint function A-7
IsSecurityEnabled 38-16
isupper function A-7
IsValidChar method 20-18
ITE 11-1
ItemHeight property 2-20

combo boxes 27-12
list boxes 27-12

ItemIndex property 2-19
radio groups 2-21

Items property 2-19
combo boxes 27-12
list boxes 27-11
radio controls 27-15
radio groups 2-21

ITypeComp 32-16
ITypeInfo 32-16
ITypeInfo2 32-16
ITypeLib 32-16
ITypeLib2 32-16
IUnknown interface 32-3, 32-4, 32-17

ATL support 32-21
Automation controllers 35-13
tracing calls 35-8

J
javascript libraries 15-27, 15-28 to 15-29

locating 15-28, 15-29
joins 22-14

cached updates and 26-22
just-in-time activation 15-6, 38-4 to 38-5

enabling 38-5

K
K footnotes (Help systems) 46-5
KeepConnection property 17-6, 18-7
KeepConnections property 17-6

TSession component 14-4
key fields 21-14

multiple 21-7, 21-13, 21-14
searching on alternative 21-8

key violations 21-24
keyboard events 27-5

internationalization 11-7
keyboard mappings 11-7, 11-9
keyboard shortcuts 2-17

adding to menus 4-20

I-28 D e v e l o p e r ’ s G u i d e

key-down messages 50-9
KeyDown method 50-10
KeyExclusive property 21-7, 21-15
KeyField property 27-14
KeyFieldCount property 21-7
key-press events 42-3, 42-9
keys

searching on 21-7
setting ranges 21-14

KeyViolTableName property 21-24
keyword extensions 9-19
keywords 46-5

protected 42-5
Kind property

bitmap buttons 2-18

L
labels 2-23, 11-8, 27-2, 39-4

columns 27-18
language extensions 9-21
Last method 19-10
late binding 29-13

Automation 35-11, 35-13
Layout property 2-18
leap years 49-8
Left property 2-8, 2-11, 4-3
LeftCol property 2-24
.LIB files

packages 10-13
libraries

custom controls 39-4
.LIC file 37-7
license agreement 12-10
license keys 37-7
license package file 37-7
licensing

ActiveX controls 37-5, 37-7
Internet Explorer 37-7

lines
drawing 6-5, 6-9, 6-9 to 6-10, 6-26 to 6-28

changing pen width 6-5
event handlers 6-25

erasing 6-27
Lines property 2-15, 41-8
LineSize property 2-16
LineTo method 6-4, 6-7, 6-9, 44-3
Link HTML tag (<A>) 30-18
linker switches

packages 10-12
linking 3-10
links 21-25
list boxes 2-19, 27-2, 27-11, 27-12, 49-1

data-aware 27-11
dragging items 5-2, 5-3
dropping items 5-3

owner-draw 5-11
draw-item events 5-15
measure-item events 5-14

storing properties
example 4-8

list controls 2-19 to 2-21
List property 17-17
list views

owner draw 5-11
listening connections 31-2, 31-3, 31-7, 31-9

closing 31-8
port numbers 31-5

ListField property 27-14
lists

string 2-27 to 2-31
using in threads 7-5

ListSource property 27-14
literals 20-21
live result sets 22-16, 22-16 to 22-17

restrictions 22-17
updating 26-21

Loaded method 41-12
LoadFromFile method 22-8, 24-16, 44-4

client datasets 14-16, 25-24
graphics 6-19
strings 2-27

LoadFromStream method
client datasets 25-24

LoadLibrary 3-10
local databases 13-2
local dates A-11
local networks 29-3
Local SQL 22-4, 22-14
local time A-11
local transactions 14-8
locales 11-1

data formats and 11-8
resource modules 11-9

localization 11-12
overview 11-1

localizing applications 11-12
localizing resources 11-9, 11-10, 11-12
Locate method 19-8, 19-15, 21-5
Lock method 7-7
locking objects

nesting calls 7-7
threads 7-6

LockList method 7-7
locks 21-5
logging in

databases 13-3
SQL servers 13-3

logical operators 19-18
logical values 27-2, 27-14
Login dialog box 18-6

I n d e x I-29

login scripts 18-6
LoginPrompt property 18-6, 24-7
lookup combo boxes 27-2, 27-12 to 27-14

getting values 27-13, 27-14
setting properties 27-14

lookup fields 20-7, 27-13
caching values 20-10
defining 20-9, 27-20
naming 27-20

lookup list boxes 27-2, 27-12 to 27-14
getting values 27-13, 27-14
setting properties 27-14

Lookup method 19-8, 19-16, 21-5
lookup values 27-18
LookupCache property 20-10
LookupDataSet property 20-11, 20-13
LookupKeyFields property 20-10, 20-13
LookupResultField property 20-13
.LPK file 37-7
LPK_TOOL.EXE 37-7

M
m_spObjectContext 38-4
m_VclCtl 37-10
macros 9-13, 9-16, 9-21, 45-4

expansion A-7
HANDLE_MSG 45-2

main form 4-1
main function A-2
main VCL thread 7-4

OnTerminate event 7-6
MainMenu component 4-16
maintained aggregates 13-13, 25-9 to 25-12

subtotals 25-11
MainWndProc method 45-3
malloc function A-10
mapping data types 21-22
Mappings property 21-22
Margin property 2-18
marshaling 32-7

COM interfaces 32-8, 35-3, 35-14 to 35-15
CORBA interfaces 29-3
custom 35-15
IDispatch interface 32-12, 35-14
transactional objects 38-3

mask edit controls 2-15
masks

editing data 20-15
master/detail forms 13-12, 21-25 to 21-26

cached updates and 26-6
master/detail relationships 13-12

cascaded deletes 16-3
cascaded updates 16-3
client datasets 15-23, 25-3
multi-tiered applications 15-22, 25-3

nested tables 15-23, 25-3
referential integrity 13-5

MasterFields property 21-25
MasterSource property 21-25
math functions

domain errors and A-7
underflow range errors and A-8

Max property
progress bars 2-23
track bars 2-16

MaxDimensions property 28-20
MaxLength property 2-15

memo fields 27-9
rich edit controls 27-10

MaxRecords property 15-30
MaxRows property 30-24
MaxSummaries property 28-20
MaxValue property 20-13
MDI applications 3-1 to 3-2

creating 3-2
menus

merging 4-27 to 4-28
specifying active 4-27

media devices 6-30
media players 2-13, 6-30 to 6-32

example 6-32
member functions

property settings 41-6
Memo control 2-15
memo controls 5-6, 41-8

modifying 47-1
properties 2-15

memo fields 27-2, 27-9
rich edit 27-10

memory
decision components 28-20
freeing bitmap 6-20
leaks in forms 4-5

menu bars
moving items 4-21

menu components 4-16
Menu designer 4-16 to 4-17

context menu 4-23
menu items 4-19 to 4-20

adding 4-19, 4-27
defined 4-16
deleting 4-19, 4-23
editing 4-23
grouping 4-19
moving 4-21
naming 4-18, 4-26
nesting 4-20
placeholders 4-23
separator bars 4-19
setting properties 4-22

I-30 D e v e l o p e r ’ s G u i d e

underlining letters 4-20
Menu property 4-27
menus 4-15 to 4-26

accessing commands 4-20
adding 4-17 to 4-22

drop-down 4-20 to 4-21
from other applications 4-28

adding images 4-22
disabling items 5-9
displaying 4-22, 4-23
handling events 4-26
internationalizing 11-8, 11-9
moving among 4-24
naming 4-18
owner-draw 5-11
pop-up 5-10
reusing 4-23
saving as templates 4-24, 4-25 to 4-26
templates 4-17, 4-23, 4-24 to 4-26

deleting 4-25
loading 4-25

message headers (HTTP) 30-1, 30-3
message loop

threads 7-4
MESSAGE_HANDLER macro 45-4
MESSAGE_MAP 45-7
message-based servers

see Web server applications
messages 4-4, 45-1, 49-4, A-9

dispatching 45-2
handlers 45-1, 45-3, 49-4

creating 45-5
declarations 45-4, 45-6, 45-7
default 45-3
methods, redefining 45-7
overriding 45-4

handling 45-3 to 45-5
identifiers 45-6
key 50-9
mouse 50-9
record

types, declaring 45-6
structures 45-4
trapping 45-5
user-defined 45-5, 45-7

MESSAGES.HPP file 45-2
metadata 21-22

obtaining from providers 25-18
metafiles 2-25, 6-1, 6-16, 6-18, 44-3, 44-4

when to use 6-3
Method property 30-14
MethodAddress method 9-18
methods 6-14, 39-6, 43-1, 49-11

adding to ActiveX controls 37-9 to 37-10
adding to interfaces 35-10

calling 42-5, 43-3, 48-4
declaring 6-14, 40-9, 43-4

public 43-3
drawing 48-9, 48-10
event handlers 42-4, 42-5

overriding 42-5
field objects 20-17
graphics 44-3, 44-4, 44-6

palettes 44-5
inherited 42-5
initialization 41-12
message-handling 45-1, 45-3, 45-5
naming 43-2
overriding 45-4, 45-5, 49-12
properties and 41-5 to 41-7, 43-1, 43-2, 48-4
protected 43-3
public 43-3
redefining 45-7
terminating 19-26
virtual 40-9, 43-3

MethodType property 30-10, 30-14
Microsoft Data Access SDK 24-4
Microsoft IIS server

see IIS
Microsoft Server DLLs 30-5

creating 30-6
request messages 30-7

Microsoft SQL Server 14-10, 14-11
deploying driver 12-5

Microsoft Transaction Server 3-17, 32-13, 38-1
MIDAS 15-1, 15-2

deploying 12-6, 12-10
server licenses 15-2
Web applications 15-24

building 15-26 to 15-27, 15-27 to 15-35
MIDAS page (Component palette) 2-14, 15-2,

15-17
MIDAS.DLL 13-15, 14-13, 15-2, 25-1
MIDI files 6-31
MIDL 32-17

See also IDL
MIME messages 30-4
Min property

progress bars 2-23
track bars 2-16

MinSize property 2-17
MinValue property 20-13
MKTYPLIB 32-17
MM film 6-31
mobile computing 14-16
modal forms 4-5
Mode property 21-21

pens 6-5

I n d e x I-31

modeless forms 4-5, 4-6
Modified method 50-12
Modified property 2-15
Modifiers property 2-17
ModifyAlias method 17-11
modifying records 21-21
ModifySQL property 26-11
modules

Type Library editor 33-10, 33-16 to 33-17
Month property 49-6
MonthCalendar component 2-21
months, returning current 49-8
mouse buttons 6-23

clicking 6-23, 6-24
mouse-move events and 6-25

mouse events 6-22 to 6-25, 27-5, 48-3
defined 6-22
dragging and dropping 5-1 to 5-4
parameters 6-23
state information 6-23
testing for 6-25

mouse messages 50-9
mouse pointer

drag-and-drop 5-4
MouseDown method 50-9
MouseToCell method 2-24
.MOV files 6-31
Move method

string lists 2-30, 2-31
MoveBy method 19-11
MoveCount property 21-23
MovePt 6-27
MoveTo method 6-4, 6-7, 44-3
.MPG files 6-31
Msg parameter 45-3
MTS 3-17, 32-10, 32-13, 38-1

 see also transactional objects
debugging Web server applications 30-26 to

30-27
in-process servers 38-2
object references 38-22 to 38-23
requirements 38-3
runtime environment 38-2
transactional objects 32-13 to 32-14
vs. COM+ 38-1

MTS executive 38-2
MTS Explorer 38-25
MTS packages 38-6, 38-24
multibyte characters A-2, A-4
multidimensional crosstabs 28-3
multi-line text controls 27-9, 27-10
multimedia 6-32
multipage dialog boxes 2-22
multiple document interface 3-1 to 3-2
multiple forms 27-6, 27-7

multiprocessing
threads 7-1

multi-read exclusive-write synchronizer 7-7
warning about use 7-8

MultiSelect property 2-19
multi-table queries 22-14
multi-threaded applications 7-1, 17-2, 17-16 to

17-17
Multi-tier Distributed Application Services Suite

(MIDAS) 15-1, 15-2
Multitier page (New Items dialog) 15-3
multi-tiered applications 13-3, 13-6, 13-9, 15-1

advantages 15-2
architecture 15-4
building 15-11 to 15-21
callbacks 15-16
client-generated events 16-10, 25-23
data constraints 16-10
data providers 15-15, 16-1
deploying 12-6
master/detail relationships 15-22
MIDAS Web applications 15-24 to 15-35
overview 15-3 to 15-4
passing parameters 25-15 to 25-16
updating records 25-20 to 25-22

multi-tiered architecture 15-4
Web-based 15-24

mutexes
CORBA 29-11

mutually exclusive options 4-31

N
Name property 20-13, 27-6
namespaces 39-13
naming conventions

data members 42-2
events 42-8
message-record types 45-6
methods 43-2
properties 41-6
resources 46-4

navigating datasets 19-9 to 19-13, 19-20
navigator 19-9, 19-10, 19-11, 27-2, 27-29 to 27-32

buttons 27-29
deleting data 19-23
editing and 19-22
enabling/disabling buttons 27-30
help hints 27-31

NDX indexes 21-9
nested declarators A-6
nested details 20-26 to 20-27, 21-26

fetch on demand 16-3, 25-17
nested tables 13-13, 20-26 to 20-27, 21-26

client datasets 15-23
flat files 25-3

I-32 D e v e l o p e r ’ s G u i d e

master/detail relationships 15-23
NetBEUI protocol 18-8
NetFileDir property 17-12, 17-13
Netscape Server DLLs 30-5

creating 30-6
request messages 30-7

Netscape servers
debugging 30-28

network control files 17-12
networks

accessing data 26-1
communication layer 29-2
connecting to 18-8
temporary tables and 17-13

neutral threading 35-8
New command 39-11
New Field dialog box 20-7

defining fields 20-8, 20-10, 20-11
New Items dialog 3-19, 3-20, 3-21
New Thread Object dialog 7-2
New Unit command 39-11
newline characters A-8
NewValue property 26-26
Next method 19-10
nodefault keyword 41-7
non-blocking connections 31-10 to 31-11

blocking vs. 31-10
nonindexed fields

searching on 21-6
no-nonsense license agreement 12-10
non-production index files 21-9
nonvisual components 20-2, 27-5, 39-4, 39-12, 51-3
NOT NULL constraint 16-10
NOT NULL UNIQUE constraint 16-10
notebook dividers 2-22
notification events 42-7
NSAPI applications 3-16, 30-5

creating 30-6
debugging 30-25
request messages 30-7

null characters A-8
NULL macro A-7
NULL pointers A-7
null values 19-25

ranges and 21-13
numbers 41-2

formatting 20-16
internationalizing 11-8
property values 41-10

numeric coprocessors
floating-point format A-3

numeric fields 20-16
NumGlyphs property 2-18

O
OAD 29-3 to 29-4, 29-13
OBJ files

packages 10-12, 10-13
Object Activation Daemon (OAD) 29-3 to 29-4,

29-13
Object Broker 15-19
object contexts 38-3 to 38-4

ASP 36-3
transactions 38-10

object fields 20-23 to 20-27
types 20-23

Object HTML tag (<OBJECT>) 30-18
Object Inspector 41-2, 46-7

editing array properties 41-2
help with 46-5
selecting menus 4-24

Object Management Group (OMG) 29-1
object maps 32-20
object models 9-1
Object Pascal

object models 9-1
object pooling 38-9

disabling 38-9
remote data modules 15-7 to 15-8

object reference 9-2
Object Repository 3-19 to 3-22, 4-12

adding items 3-20
converting Web server applications 30-29
specifying shared directory 3-20
using items from 3-20 to 3-21

Object Request Broker (ORB) 29-1
ObjectContext property

Active Server Objects 36-3
example 38-14 to 38-15

object-oriented programming 40-1 to 40-10
declarations 40-3, 40-10

classes 40-4, 40-6, 40-7
methods 40-9

distributed applications 29-1
objects

 see also COM objects
construction 9-4
copying 9-2
distributed 29-1
dragging and dropping 5-1
function arguments 9-3
helper 2-26
initializing 6-12
owned 48-6 to 48-9

initializing 48-7
temporary 44-6
volatile, accessing A-6

I n d e x I-33

Objects property 2-24
string lists 2-31, 5-14

.OCX files 12-3
ODBC drivers 18-8

isolation levels 14-8
using with ADO 14-11, 24-2

ODL (Object Description Language) 32-15, 32-17
OEM character sets 11-2
OEMConvert property 2-15
offscreen bitmaps 44-5 to 44-6
OldValue property 26-11, 26-26
OLE

containers 2-13
merging menus 4-27

OLE Automation see Automation
OLE DB 14-11, 24-2
OLE32.dll 32-2
OLEAut32.dll 32-2
OleFunction method 34-14
OleObject property 37-14, 37-15
OleProcedure method 34-14
OlePropertyGet method 34-14
OlePropertyPut method 34-14
OLEView 32-17
OMG 29-1
OnAccept event

server sockets 31-10
OnAction event 30-12
OnAfterPivot event 28-10
OnBeforePivot event 28-10
OnBeginTransComplete event 24-11
OnCalcFields event 19-8, 19-26, 20-8, 20-9, 25-9
OnCellClick event 27-27
OnChange event 20-17, 44-6, 48-8, 49-12, 50-12
OnClick event 2-17, 42-1, 42-2, 42-4
OnClientConnect event 31-7

server sockets 31-10
OnClientDisconnect event 31-8
OnClientRead event

server sockets 31-11
OnClientWrite event

server sockets 31-11
OnColEnter event 27-27
OnColExit event 27-27
OnColumnMoved event 27-26, 27-27
OnCommitTransComplete event 24-11
OnConnect event

client sockets 31-9
OnConnectComplete event 24-4
OnConnecting event

client sockets 31-9
OnConstrainedResize event 4-4
OnDataChange event 27-7, 50-7, 50-11
OnDataRequest event 16-10, 25-23
OnDblClick event 27-27, 42-4

OnDecisionDrawCell event 28-13
OnDecisionExamineCell event 28-13
OnDisconnect event 24-5

client sockets 31-6
OnDragDrop event 5-2, 27-27, 42-4
OnDragOver event 5-2, 27-27, 42-4
OnDrawCell event 2-24
OnDrawColumnCell event 27-26, 27-27
OnDrawDataCell event 27-27
OnDrawItem event 5-15
OnEditButtonClick event 27-27
OnEndDrag event 5-3, 27-27, 42-4
OnEndPage method 36-2
OnEnter event 27-27, 27-31, 27-32, 42-5
OnError event

sockets 31-8
one-to-many relationships 21-25
OnExit event 27-27
OnFilterRecord event 19-9, 19-17, 19-19
OnGetData event 16-5
OnGetdataSetProperties event 16-4
OnGetSocket event

server sockets 31-9
OnGetTableName event 16-10
OnGetText event 20-16, 20-17
OnGetThread event 31-10
OnHTMLTag event 15-35, 30-19, 30-20, 30-21
OnKeyDown event 27-27, 42-5, 50-10
OnKeyPress event 27-27, 42-5
OnKeyUp event 27-27, 42-5
OnLayoutChange event 28-9
online help 46-5
OnListen event

server sockets 31-9
OnLogin event 18-2, 18-6, 24-7
OnLookup event

client sockets 31-9
OnMeasureItem event 5-14
OnMouseDown event 6-23, 42-4, 50-9

parameters passed to 6-23
OnMouseMove event 6-23, 6-24, 42-4

parameters passed to 6-23
OnMouseUp event 6-13, 6-23, 6-24, 42-4

parameters passed to 6-23
OnNewDimensions event 28-9
OnPaint event 2-25, 6-2
OnPassword event 17-14, 18-2
OnPopup event 5-10
OnRead event

client sockets 31-10
OnReconcileError event 25-21
OnRefresh event 28-7
OnResize event 6-2
OnRollbackTransComplete event 24-11
OnScroll event 2-16

I-34 D e v e l o p e r ’ s G u i d e

OnSetText event 20-16, 20-17
OnStartDrag event 27-27
OnStartPage method 36-2
OnStartup event 17-5
OnStateChange event 19-5, 27-7
OnSummaryChange event 28-9
OnTerminate event 7-6
OnThreadStart event

server sockets 31-10
OnTitleClick event 27-27
OnUpdateData event 16-6, 16-7, 27-7
OnUpdateError event 16-9, 19-30, 26-9, 26-24
OnUpdateRecord event 19-30, 26-24, 26-26

cached updates 26-22
update objects 26-11, 26-18, 26-20, 26-22

OnValidate event 20-17
OnWillConnect event 24-4
OnWrite event

client sockets 31-10
open arrays 9-13

temporary 9-14
Open method 24-22, 24-23

ADO connection components 24-4
databases 18-7
datasets 19-3
queries 22-12, 22-13
server sockets 31-7
sessions 17-5
tables 21-4

OPENARRAY macro 9-15
OpenDatabase method 17-5, 17-6
OpenSession method 17-16, 17-17
operating system environment

strings, changing permanently A-10
operators

assignment 9-3
bitwise

signed integers A-4
data filters 19-18

optimizing system resources 39-4
optional parameters 16-4, 25-12
Options property 2-24

data grids 27-24, 27-25
decision grids 28-13
providers 16-3

Oracle 14-11
Oracle drivers

deploying 12-5
Oracle tables 23-16
Oracle8 tables 13-13

limits on creating 14-10
ORB 29-1
ORDER BY clause 21-10
Orientation property

data grids 27-29

track bars 2-16
Origin property 6-26, 20-13
osagent 29-2, 29-3
outer objects 32-8
outlines, drawing 6-5
out-of-process servers 32-6

ASP 36-7
output parameters 23-10
Overload property 23-16
overloaded stored procedures 23-16
overriding

methods 45-4, 45-5, 49-12
virtual methods 9-7

owned objects 48-6 to 48-9
initializing 48-7

Owner property 39-14
owner-draw controls 2-31, 5-11

declaring 5-12
drawing 5-13, 5-14
list boxes 2-20
sizing 5-14

OwnerDraw property 5-11

P
package argument 9-23
Package Collection Editor 10-13
package collection files 10-13
package files 12-3
packages 10-1 to 10-15, 46-19

collections 10-13
compiler directives 10-10
compiling 10-10 to 10-12
components 10-8, 46-19
Contains list 10-6, 10-8, 10-10, 46-19
creating 3-9, 10-6 to 10-11
custom 10-4
default settings 10-7
deploying applications 10-2, 10-13
design-only option 10-7
design-time 10-1, 10-4 to 10-6
distributing to other developers 10-13
DLLs 10-1, 10-2, 10-11
duplicate references 10-9, 10-10
editing 10-7
file-name extensions 10-1, 10-7, 10-12
installing 10-5 to 10-6
internationalizing 11-10, 11-12
linker switches 10-12
naming 10-9
options 10-7
project option files 10-8
Requires list 10-6, 10-8, 10-9, 46-19
runtime 10-1, 10-2 to 10-4, 10-7
source files 10-7
using 3-9

I n d e x I-35

using in applications 10-2 to 10-4
weak packaging 10-11

page controls 2-22
page producers 30-18 to 30-21

chaining 30-20
converting templates 30-19
data-aware 15-32 to 15-35, 30-22
event handling 30-19, 30-20, 30-21

PageSize property 2-16
paint boxes 2-25
Paint method 44-6, 48-9, 48-10
paintboxes 2-13
palette bitmap files 46-4
PaletteChanged method 44-5
palettes 44-4 to 44-5

default behavior 44-5
specifying 44-5

PanelHeight property 27-29
panels 2-22

adding speed buttons 4-30
attaching to form tops 4-29
beveled 2-25
speed buttons 2-18

Panels property 2-23
PanelWidth property 27-29
panes 2-17

resizing 2-17
Paradox tables 17-2, 21-2, 21-3

accessing data 21-5, 22-4
adding records 19-23
batch moves 21-24
creating aliases 17-10
DatabaseName 14-3
directories 14-4
isolation levels 14-8
local transactions 14-8
memo fields 27-9, 27-10
network control files 17-12
opening connections 17-6
password protecting 17-13
queries 22-16
retrieving indexes 21-9
searching 21-5, 21-8
temporary files 17-13

parallel processes
threads 7-1

ParamBindMode property 23-15
ParamByName method 22-10, 24-17, 24-28
parameter substitution (SQL) 26-14, 26-19
parameterized queries 22-6

creating 22-8 to 22-11
at runtime 22-10

defined 22-2
running from text files 22-8

parameters
classes as 40-10
client datasets 25-15 to 25-16
dual interfaces 35-15
event handlers 42-7, 42-8
HTML tags 30-18
messages 45-3, 45-4, 45-6
mouse events 6-23
multi-tiered applications 25-16
property settings 41-6

array properties 41-8
Parameters property 24-17, 24-28
ParamName property 15-33
Params property 18-5, 18-6

queries 22-10
XML brokers 15-30

parent controls 2-9
parent properties 2-9
Parent property 39-14
ParentShowHint property 2-23
partial keys

searching on 21-7
setting ranges 21-14

pascalimplementation argument 9-23
passing parameters

by reference 42-3
passthrough SQL 14-5, 14-8, 22-17
PasswordChar property 2-15
passwords 18-2

Paradox tables 17-13
sessions and 14-4

PasteFromClipboard method 5-8, 27-10
graphics 27-11

PathInfo property 30-10
paths (URLs) 30-2
patterns 6-9
pbmByName const 23-15
pbmByNumber const 23-15
.PCE files 10-13
PDOXUSRS.NET 17-12
Pen property 6-3, 6-5, 44-3
PenPos property 6-3, 6-7
pens 6-5, 48-6

brushes 6-4
changing 48-8
colors 6-5
default settings 6-5
drawing modes 6-28
getting position of 6-7
position, setting 6-7, 6-24
style 6-6
width 6-5

PENWIN.DLL 10-11
perror function A-9

I-36 D e v e l o p e r ’ s G u i d e

persistent columns 27-16, 27-18
adding buttons 27-21
creating 27-19 to 27-22
deleting 27-17, 27-19, 27-20
inserting 27-19
reordering 27-20, 27-26

persistent connections 17-6, 17-7
persistent field lists 20-4

viewing 20-5, 20-6
persistent fields 20-4, 27-16

creating 20-5, 20-6
creating client datasets 14-14
data packets and 16-2
deleting 20-12
ordering 20-6

persistent subscriptions 34-15
Personal Web server

debugging 30-27
per-user subscriptions 34-15
pick lists 27-21
PickList property 27-21, 27-22
picture objects 6-3, 44-4
Picture property 2-25, 6-17

in frames 4-15
pictures 6-16, 44-3 to 44-5

changing 6-19
loading 6-18
replacing 6-19
saving 6-19

Pie method 6-4
Pixel property 6-3, 44-3
pixels

reading and setting 6-9
Pixels property 6-4, 6-9
pmCopy constant 6-28
pmNotXor constant 6-28
pointers

casting to integer A-5
class 40-10
default property values 41-10
dereferenced 9-3
integer types A-5
NULL A-7
VCL implications 9-2

Polygon method 6-4, 6-11
polygons 6-11

drawing 6-11
PolyLine method 6-4, 6-10
polylines 6-9, 6-10

drawing 6-9
pop-up menus 5-10 to 5-11

displaying 4-22
drop-down menus and 4-20

PopupMenu component 4-16
PopupMenu property 5-10

Port property
client sockets 31-6
server sockets 31-7
TSocketConnection 15-18

ports 31-5
client sockets 31-6
multiple connections 31-5
server sockets 31-7
services and 31-2

Position property 2-16, 2-23
Post method 19-6, 19-7, 19-23

Edit and 19-22
Precision property 20-13
preexisting controls 39-4
Prepare method 22-7, 22-13, 23-5
preparing queries 22-14
primary indexes 21-8

batch moves and 21-22
PRIMARY KEY constraint 16-11
printers A-2
Prior method 19-10
priorities

using threads 7-1, 7-2
Priority property 7-3
private directories 17-13
private properties 41-5
PrivateDir property 17-12, 17-13
privileges 21-4
problem tables 21-24
ProblemCount property 21-24
ProblemTableName property 21-24
ProcedureName property 24-21, 24-22
procedures

naming 43-2
progress bars 2-23
project files

changing 2-35
distributing 2-36

Project Manager 4-2
project options 3-2

default 3-2
Project Options dialog box 3-2
project templates 3-21
Project Updates dialog 29-9
projects

adding forms 4-1 to 4-2
PROP_PAGE macro 37-15
properties 41-1 to 41-12

accessing 41-5 to 41-7
adding to ActiveX controls 37-9 to 37-10
adding to interfaces 35-9
array 41-2, 41-8
as classes 41-2
BDE-enabled datasets 19-28
changing 46-7 to 46-12, 47-2, 47-3

I n d e x I-37

columns 27-17, 27-18, 27-21
resetting 27-22

COM 32-2, 33-8
By Reference Only 33-8
Write By Reference 33-8

common dialog boxes 51-2
data sources 27-6 to 27-7
decision cubes 28-7
decision grids 28-12
decision pivots 28-10
decision sources 28-9
declaring 41-3, 41-3 to 41-7, 41-11, 42-7, 48-4

user-defined types 48-4
default values 41-7, 41-10 to 41-11

redefining 47-2, 47-3
editing

as text 46-9
events and 42-1, 42-2
field objects 20-3, 20-12 to 20-16
grids 27-17, 27-28
HTML tables 30-23
inherited 41-2, 48-2, 49-3
internal data storage 41-4, 41-6
loading 41-12
lookup combo boxes 27-14
lookup list boxes 27-14
nodefault 41-7
overview 39-6
providing help 46-5
published 49-3
read and write 41-5
reading values 46-9
read-only 40-7, 41-7, 50-3
redeclaring 41-10, 42-5
rich text controls 2-15
specifying values 41-10, 46-9
storing 41-11
storing and loading unpublished 41-12 to 41-14
types 41-2, 41-8, 46-9, 48-4
updating 39-7
viewing 46-9
wrapper components 51-4
write-only 41-6
writing values 41-6, 46-9

property editors 41-2, 46-7 to 46-12
as derived classes 46-8
attributes 46-10
dialog boxes as 46-9
registering 46-11 to 46-12

__property keyword 9-20
property page wizard 37-13 to 37-14
property pages 37-13 to 37-15

ActiveX controls 34-7, 37-3, 37-15
adding controls 37-14 to 37-15

associating with ActiveX control
properties 37-14

creating 37-13 to 37-15
imported controls 34-4
updating 37-14
updating ActiveX controls 37-15

property settings
reading 41-8
writing 41-8

PROPERTYPAGE_IMPL macro 37-13
protected

directive 42-5
events 42-5
keyword 41-3, 42-5
part of classes 40-6

protocols
choosing 15-9 to 15-11
connection components 15-17
Internet 30-1, 31-1
network connections 18-8

ProviderFlags property 16-8
ProviderName property 15-17, 15-30
providers 13-10, 15-3, 15-15, 16-1 to 16-11

associating with datasets 16-1
client datasets and 25-14 to 25-23
controlling data packets 16-1
data constraints 16-10
error handling 16-9

proxy 32-7, 32-8
event interfaces 34-5
transactional objects 38-2

public
keyword 42-5
part of classes 40-6
properties 41-10

published 41-3
directive 41-3, 51-4
keyword 42-5
part of classes 40-7
properties 41-10, 41-11

example 48-2, 49-3
__published keyword 9-21
putenv function A-10
PVCS Version Manager 2-36

Q
QReport page (Component palette) 2-14
queries 13-13, 19-3, 22-1

ADO-based 13-14
cached updates and 26-22
creating 22-4, 22-6

at runtime 22-7
defining statements 22-5 to 22-8

I-38 D e v e l o p e r ’ s G u i d e

filtering vs. 19-17
heterogenous 22-14
HTML tables 30-24
InterBase 13-14
multi-table 22-14
named sessions and 17-2
optimizing 22-12, 22-15 to 22-16
overview 22-1 to 22-5
parameter substitution 26-14, 26-19
preparing 22-13, 22-14
result sets 22-13, 22-16 to 22-17

cursors and 22-15
getting at runtime 22-12
updating 22-17, 26-21

running 22-12 to 22-13
from text files 22-8
update objects 26-19

setting parameters 22-8 to 22-11
at runtime 22-10

special characters and 22-6
submitting statements 22-13
update objects and 26-11, 26-13
Web applications 30-24
whitespace characters and 22-6

Query Builder 22-7
query components 13-13, 22-1

adding 22-4
Query Parameters editor 22-9
query part (URLs) 30-2
Query property

update objects 26-16
QueryInterface method 32-4

aggregation 32-8

R
radio buttons 2-18, 27-2

data-aware 27-15
grouping 2-21
selecting 27-15, 27-16

radio groups 2-21
RaiseException function 8-17
raising exceptions 8-17
ranges 21-11 to 21-16

applying 21-15
boundaries 21-15
changing 21-15
filters vs. 21-11
specifying 21-13

raster operations 44-6
.RC files 4-28
RDBMS 13-2, 15-1
read method 41-6
read reserved word 41-8, 48-4
reading property settings 41-6
README.TXT 12-10

read-only data
client datasets 25-4

read-only fields 27-3
read-only properties 40-7, 41-7, 50-3
ReadOnly property 2-15, 50-3, 50-10

data grids 27-22, 27-25
data-aware controls 20-13, 27-3
memo fields 27-9
rich edit controls 27-10
tables 21-5

read-only records 19-7
read-only result sets 22-17

updating 26-21
read-only tables 21-5
Real type 9-18
Real48 type 9-18
realizing palettes 44-5
realloc function A-10
ReasonString property 30-16
rebars 4-28, 4-34
RecNo property

client datasets 25-2
reconciling data 25-21
RecordCount property 21-23
records

adding 19-7, 19-22 to 19-23, 19-25
appending 19-23

batch operations 21-19, 21-21
cached updates and 26-3
changing 19-24
deleting 19-23, 21-16

batch operations 21-22
caution 21-16

displaying 27-28
refresh intervals 27-4, 27-5

fetching 26-4
filtering 19-9, 19-17 to 19-20
finding 19-8, 19-15 to 19-16, 21-5 to 21-8

specific ranges 21-12 to 21-16
getting subsets 21-11 to 21-16
inserting 21-21
iterating through 19-11
marking 19-13 to 19-14
moving through 19-9 to 19-13, 19-20, 27-7, 27-29
posting 19-23, 27-4

data grids 27-25
read-only 19-7
reconciling updates 25-21
refreshing 25-22 to 25-23
repeating searches 21-8
restoring deleted 26-9
setting current 21-7
sorting 21-8 to 21-11

with alternative indexes 21-9
synchronizing current 21-24

I n d e x I-39

tracking moves 21-23
Type Library editor 33-9 to 33-10, 33-16
undeleting 26-9 to 26-10
updating 15-31 to 15-32, 16-6, 19-25, 27-7

batch operations 21-21
delta packets 16-6
identifying tables 16-9
multiple datasets 26-5
multi-tiered applications 16-7 to 16-9
multi-tiered clients 25-20 to 25-22
queries and 22-17
screening updates 16-9

updating multiple 16-4
RecordSet property 24-13, 24-27
RecordSetState property 24-13
Rectangle method 6-4, 6-11, 44-3
rectangles

drawing 6-10, 48-10
redrawing images 44-6
reference counting

COM objects 32-4
reference fields 20-27
references

C++ vs Object Pascal 9-2
forms 4-2

referential integrity 13-5
refresh intervals 27-4, 27-5
Refresh method 27-5
RefreshLookupList property 20-11
RefreshRecord method 25-22
Register method 6-3
Register procedure 46-2
RegisterComponents function 39-13
RegisterComponents procedure 10-5, 46-2
registering

Active Server Objects 36-7 to 36-8
ActiveX controls 37-15 to 37-16
COM objects 35-16
component editors 46-15
components 39-12, 39-13
CORBA interfaces 29-12
property editors 46-11 to 46-12

RegisterNonActiveX procedure 37-3
RegisterPooled flag 15-7
RegisterPropertyEditor function 46-11
registers

objects and A-5
RegisterTypeLib function 32-16
Registry 11-8
REGSERV32.EXE 12-3
relational databases 13-1, 16-10, 22-1
Release method 32-4

TCriticalSection 7-7
release notes 12-10
releasing mouse buttons 6-24

remote applications
batch operations 21-22
cached updates and 26-1
retrieving data 22-1, 22-3, 22-14, 22-17
TCP/IP 31-1

remote connections 18-8, 19-29, 31-2 to 31-3
changing 15-20
dropping 15-20
multiple 31-5
opening 15-17, 31-6, 31-7
sending/receiving information 31-1 to 31-14
terminating 31-8
unauthorized access 18-6

Remote Data Module wizard 15-13 to 15-14
remote data modules 3-19, 15-3, 15-12, 15-13 to

15-15
implementation class 15-13
implementation object 15-4
interfaces 15-15 to 15-16
pooling 15-7 to 15-8
stateless 15-6, 15-8, 15-23 to 15-24
threading models 15-13, 15-14

remote database management systems 13-2
remote database servers See remote servers
remote servers 13-2, 17-6, 17-10, 22-4, 32-6

accessing data 26-1
attaching 18-8
names 15-18
unauthorized access 18-6

REMOTEDATAMODULE_IMPL macro 15-4
RemoteServer property 15-17, 15-30
remove function A-9
RemovePassword method 17-14
rename function A-9
renaming files A-9
repainting controls 48-8, 48-10, 49-4
reports 13-15
Repository 3-19 to 3-22, 4-12

adding items 3-20
using items from 3-20 to 3-21

Repository dialog 3-19
Request for Comment (RFC) documents 30-1
request headers 30-13
request messages 30-7, 36-4

action items and 30-10
contents 30-15
dispatching 30-9
header information 30-13 to 30-15
HTTP overview 30-3 to 30-5
processing 30-9
responding to 30-12 to 30-13, 30-16
types 30-14

request objects
header information 30-8

RequestLive property 22-16, 26-21

I-40 D e v e l o p e r ’ s G u i d e

Requires list (packages) 10-6, 10-8, 10-9, 46-19
ResetEvent method 7-9
resizing controls 2-17, 12-7, 49-4

graphics 44-6
resolvers 16-1, 16-6
resorting fields 21-11
resource dispensers 38-5

ADO 38-6
BDE 38-6

Resource DLLs
dynamic switching 11-11
wizard 11-9

resource files 4-28
loading 4-28

resource modules 11-9, 11-10
resource pooling 38-5 to 38-9
resource strings 9-16
resources 39-7, 44-1

caching 44-2
isolating 11-9
localizing 11-9, 11-10, 11-12
naming 46-4
strings 11-9
system, optimizing 39-4

resourcestring macro 9-16
response headers 30-16
response messages 30-7, 36-4

contents 30-16, 30-17 to 30-25
creating 30-15 to 30-17, 30-17 to 30-25
database information 30-21 to 30-25
header information 30-15 to 30-16
sending 30-12, 30-17
status information 30-15

response templates 30-18
RestoreDefaults method 27-19
restrictions A-1
Result data packet 25-20
Result parameter 23-10, 45-6
result sets 22-13, 22-16 to 22-17

cursors and 22-15
editing 22-16
getting at runtime 22-12
read-only 26-21
updating 22-17, 26-21

Resume method 7-10, 7-11
ReturnValue property 7-9
RevertRecord method 19-30, 26-8, 26-9
RFC documents 30-1
rich text controls 2-16, 5-6, 27-10

properties 2-15
rich text edit controls 2-15

properties 2-15
role-based security 38-16
Rollback method 14-6
RollbackTrans method 24-10

rounded rectangles 6-11
rounding rules A-4
RoundRect method 6-4, 6-11
RowAttributes property 30-23
RowCount property 27-14, 27-29
RowHeights property 2-24, 5-14
rows 2-24, 19-22

decision grids 28-12
Rows property 2-24
RPC 32-8
rtDeleted constant 26-9
rtInserted constant 26-9
rtModified constant 26-9
RTTI 40-7

C++ vs Object Pascal 9-18
rtUnmodified constant 26-9
rubber banding example 6-22 to 6-28
runtime interfaces 40-6
runtime packages 10-1, 10-2 to 10-4
runtime type information 40-7

S
safe arrays 33-12
safe references 38-22
SafeArray 33-12
SafeRef method 38-22
Samples page (Component palette) 2-14
Save as Template command (Menu designer) 4-23,

4-26
Save Attributes command 20-14
Save Template dialog box 4-26
Save To File command 14-14
SaveConfigFile method 17-10
SaveToFile method 6-19, 24-16, 44-4

client datasets 14-16, 25-25
strings 2-27

SaveToStream method
client datasets 25-25

scalability 13-7, 14-17
ScanLine property

bitmap example 6-18
ScktSrvr.exe 15-10, 15-12, 15-18
SCM 3-4
screen

refreshing 6-2
resolution 12-7

programming for 12-7
Screen variable 4-3, 11-7
scripts (URLs) 30-2
scroll bars 2-16

text windows 5-7
scroll boxes 2-22
scrollable bitmaps 6-16
scrollable lists 27-11

I n d e x I-41

ScrollBars property 2-24, 5-7
memo fields 27-9

SDI applications 3-1 to 3-2
search criteria 19-15, 19-16
search lists (Help systems) 46-5
searching for files A-6
secondary indexes

searching with 21-7
Sections property 2-22
security 18-6

databases 13-3
dBase tables 14-4
DCOM 15-29
multi-tiered applications 15-2
Paradox tables 14-4
registering socket connections 15-10
scalability and 13-7
transactional data modules 15-5, 15-9
transactional objects 38-16
Web connections 15-10, 15-19

Select Menu command (Menu designer) 4-23, 4-24
Select Menu dialog box 4-24
SELECT statements 22-13, 22-16
SelectAll method 2-15
SelectCell method 49-13, 50-4
Selection property 2-24
SelEnd property 2-16
SelLength property 2-15, 5-8
SelStart property 2-15, 2-16, 5-8
SelText property 2-15, 5-8
Sender parameter

example 6-6
separator bars (menus) 4-19
sequential values, assigning to constants 6-12
server applications

COM 32-5 to 32-8, 35-1 to 35-17
CORBA 29-2, 29-4 to 29-13
data constraints 16-10
interfaces 31-2
multi-tiered 15-11 to 15-16

data providers 15-15, 16-1
overview 15-1

registering 15-11, 15-12, 29-12 to 29-13
OAD 29-4

retrieving data 22-3, 22-14, 22-17
services 31-1
transactions 14-8

server connections 31-2, 31-3
port numbers 31-5

server sockets 31-6 to 31-8
accepting client requests 31-6
accepting clients 31-9
error messages 31-8
event handling 31-9
specifying 31-5, 31-6

using threads 31-11
Windows socket objects 31-7

Server(Component Palette) 2-14
ServerType property 31-10, 31-11
service applications 3-4 to 3-8

example 3-6
example code 3-4, 3-6

Service Control Manager 3-4
Service property

client sockets 31-6
server sockets 31-7

Service Start name 3-8
service threads 3-6
services 3-4 to 3-8

CORBA 29-1
directory 29-2, 29-3
example 3-6
example code 3-4, 3-6
implementing 31-1 to 31-2, 31-6, 31-7
installing 3-4
name properties 3-8
network servers 31-1
ports and 31-2
requesting 31-5
uninstalling 3-4

Session component 17-1, 17-2
Session property 18-4
SessionName property 17-4, 18-4, 19-28, 19-29,

30-22
sessions 14-3, 17-1, 18-9

activating 17-4, 17-5
alias names and 17-10
configuration modes 17-10
counting 17-17
creating 17-3, 17-16, 17-17
current state 17-4
default 17-2
disabling connections 17-5
getting information 17-8
managing aliases 14-3
multiple 17-1, 17-3, 17-16
naming 17-4, 30-22
restarting 17-5
testing associations 17-8, 17-12
Web applications 30-22

Sessions property 17-17
set types 41-2
set_terminate function 8-3
SetAbort method 38-5, 38-9, 38-12
SetBrushStyle method 6-8
SetComplete method 38-5, 38-9, 38-12

transactional data modules 15-16
SetData method 20-18
SetEvent method 7-9
SetFields method 19-24

I-42 D e v e l o p e r ’ s G u i d e

SetFloatValue method 46-9
SetKey method 19-8, 21-6

EditKey vs. 21-8
SetMethodValue method 46-9
SetOrdValue method 46-9
SetParams method 26-19
SetPenStyle method 6-6
SetRange method 21-14
SetRangeEnd method 21-13

SetRange vs. 21-14
SetRangeStart method 21-12

SetRange vs. 21-14
sets 41-2
SetStrValue method 46-9
SetUnhandledExceptionFilter function 8-12
SetValue method 46-9
Shape property 2-25
shapes 2-25, 6-10 to 6-11, 6-13

drawing 6-10, 6-13
filling 6-7, 6-8
filling with bitmap property 6-9
outlining 6-5

shared property groups 38-6
Shared Property Manager 38-6 to 38-8

example 38-7 to 38-8
sharing forms and dialogs 3-19 to 3-22
Shift states 6-23
ShortCut property 4-20
shortcuts

adding to menus 4-20
Show method 4-6, 4-7
ShowAccelChar property 2-23
ShowButtons property 2-20
ShowColumnHeaders property 2-21
ShowFocus property 27-29
ShowHint property 2-23
ShowHints property 27-31
ShowLines property 2-20
ShowModal method 4-5
ShowRoot property 2-20
signal function A-8
signalling events 7-9
simple types 41-2
single document interface 3-1 to 3-2
single-tiered applications 13-2, 13-6, 13-8, 14-1 to

14-16
BDE-based vs. flat-file 14-13
flat-file 14-13 to 14-16
vs. two-tiered applications 14-3

Size property 20-13
sizeof operator 9-13, A-7
skeletons 29-2, 29-2, 29-6

delegation and 29-8
marshaling 29-3

slow processes
using threads 7-1

Smart Agents 29-2, 29-3
locating 29-3

socket components 31-5 to 31-8
socket connections 31-2 to 31-3

closing 31-6, 31-8
endpoints 31-3, 31-5
multiple 31-5
opening 31-6, 31-7
sending/receiving information 31-1 to 31-14
types 31-2

socket dispatcher application 15-12, 15-18
socket streams 31-12
SocketHandle property 31-6, 31-7
sockets 3-15, 31-1 to 31-14

accepting client requests 31-3
assigning hosts 31-4
describing 31-3
error handling 31-8
event handling 31-8 to 31-10, 31-11, 31-12
implementing services 31-1 to 31-2, 31-6, 31-7
network addresses 31-3, 31-4
providing information 31-4
reading from 31-11
reading/writing 31-10 to 31-14
writing to 31-11

software license requirements 12-10
sort order 11-9

indexes 14-15, 25-6
setting 21-8, 21-10, 21-11

Sorted property 2-20, 27-12
sorting data 21-8 to 21-11

with alternative indexes 21-9
source code

editing 2-35
optimizing 6-14
reusing 4-12

source datasets, defined 21-20
source files A-7

changing 2-35
Spacing property 2-18
SparseCols property 28-9
SparseRows property 28-9
speed buttons 2-18

adding to toolbars 4-29 to 4-31
assigning glyphs 4-30
centering 4-30
engaging as toggles 4-31
event handlers 6-12
for drawing tools 6-12
grouping 4-31
initial state, setting 4-30
operational modes 4-30

I n d e x I-43

splitters 2-17
SPX/IPX protocol 18-8
SQL 13-2

ADO 24-20
SQL applications

accessing tables 21-2
appending records 19-23
batch moves 21-23
data constraints 20-22
deleting records 21-16
editing data 19-7
inserting records 19-8, 19-23
locating data 21-5, 21-8
sorting data 21-10

SQL Builder 22-7
SQL Explorer 15-2, 23-15

defining attribute sets 20-14
SQL Links 12-4, 14-4

deploying 12-5, 12-10
driver files 12-5
drivers 18-8

installing 14-8
SQL parser 22-16
SQL property 22-5, 22-7, 22-8

changing 22-14
SQL queries 22-1

creating 22-4, 22-6
at runtime 22-7

defining statements 22-5 to 22-8
multi-table 22-14
optimizing 22-12, 22-15 to 22-16
overview 22-1 to 22-5
parameter substitution 26-14, 26-19
preparing 22-13, 22-14
remote servers 22-17
result sets 22-13, 22-16 to 22-17

cursors and 22-15
getting at runtime 22-12
updating 22-17, 26-21

running 22-12 to 22-13
from text files 22-8
update objects 26-19

setting parameters 22-8 to 22-11
at runtime 22-10

special characters and 22-6
submitting statements 22-13
update objects and 26-11, 26-13
whitespace characters and 22-6

SQL servers 13-2, 17-10
constraints 20-22

SQL standards 16-10, 22-4
remote servers 22-17

SQL statements
ADO 14-12, 24-25
client-supplied 16-4, 25-17

decision datasets and 28-5
passthrough SQL 14-8

SQLPASSTHRUMODE 14-8
squares, drawing 48-10
stack unwinding 8-10
standard components 2-14
standard events 42-4

customizing 42-5
Standard page (Component palette) 2-14
StartTransaction method 14-6
state information

communicating 15-23 to 15-24, 16-5, 16-6
managing 38-5
mouse events 6-23
shared properties 38-6
transactional objects 38-12
transactions 38-12

State property 2-18, 24-5, 24-13
grid columns 27-17
grids 27-17, 27-19

stateless objects 38-12
static binding

COM 32-15
CORBA 29-13

static text 2-23
static text component 2-23
status bars 2-23

internationalizing 11-8
owner draw 5-11

status constants
cached updates 26-10

status information 2-23
StatusCode property 30-15
Step property 2-23
StepBy method 2-23
StepIt method 2-23
storage class specifiers

register A-5
storage media 2-35
stored procedures 13-5, 13-13

adding 23-3
ADO-based 13-14
creating 23-4
InterBase 13-14
overloaded 23-16
parameters 23-10
preparing 23-5
running 23-5

StoreDefs property 21-18
StoredProc Parameters editor 23-4

activating 23-16
setting parameters 23-13
viewing parameters 23-12

StoredProcName property 23-3
streams 2-35

I-44 D e v e l o p e r ’ s G u i d e

strerror function A-11
Stretch property 27-11
StretchDraw method 6-4, 44-3, 44-6
string fields

entering data 20-15
size 20-7

string grids 2-24
String List editor 22-6
string lists 2-27 to 2-31

adding objects 5-12 to 5-13
adding to 2-30
associated objects 2-31
copying 2-31
creating 2-28
deleting strings 2-30
finding strings 2-30
iterating through 2-30
loading from files 2-27
long-term 2-28
moving strings 2-30
owner-draw controls 5-12 to 5-13
position in 2-29, 2-30
saving to files 2-27
short-term 2-28
sorting 2-30
substrings 2-30

strings 41-2, 41-8
2-byte conversions 11-2
associating graphics 5-12
changing permanently A-10
comparing 19-19
HTML templates 30-19
returning 41-9
size 5-8
sorting 11-9
starting position 5-8
translating 11-2, 11-7, 11-9
truncating 11-2

Strings property 2-29
structured exceptions 8-11
Structured Query Language

 See SQL
structures A-5
stThreadBlocking constant 31-10
stubs 29-2, 29-6, 29-14 to 29-15

COM 32-8
global variables and 29-15
marshaling 29-3
transactional objects 38-2

Style property 2-20, 2-25, 5-11, 15-34
brushes 6-8
combo boxes 27-12
pens 6-5
tool buttons 4-33

StyleRule property 15-34

Styles property 15-34
StylesFile property 15-34
stylesheets 15-33
subclassing Windows controls 39-4
submenus 4-20
subscriber objects 34-15 to 34-16

persistent subscriptions 34-15
per-user subscriptions 34-15
transient subscriptions 34-15

Subtotals property 28-13
summary values 28-20

crosstabs 28-3
decision graphs 28-15
maintained aggregates 25-11

support options 1-3
Suspend method 7-11
switch statements

case values A-6
Sybase driver

deploying 12-5
Synchronize method 7-4
synchronizing data 21-24

on multiple forms 27-6, 27-7
System page (Component palette) 2-14
system resources, conserving 39-4

T
tab controls 2-22

owner-draw 5-11
tab order 2-11
tab sets 2-22
table components 13-13, 21-2
Table HTML tag (<TABLE>) 30-18
table producers 30-23 to 30-25

setting properties 30-23
TableAttributes property 30-23
TableName property 21-3, 24-19
tables 13-13, 21-1

access rights 21-4
adding 21-2 to 21-4
ADO-based 13-14
closing 21-4
creating 14-10, 14-14, 21-17
decision support components and 28-3
deleting 21-16
displaying in grids 27-17
emptying 21-16
field and index definitions 21-18
inserting records 19-22 to 19-23, 19-25
InterBase 13-14
master/detail relationships 21-25 to 21-26
naming 21-3
non-database grids 2-24
opening 21-4
read-only 21-5

I n d e x I-45

removing records 21-16
caution 21-16

renaming 21-17
restructuring 14-10
retrieving data 21-11 to 21-16, 21-19, 22-1
searching 21-5 to 21-8
sorting data 21-8 to 21-11

with alternative indexes 21-9
specifying type 21-3
synchronizing 21-24
updating data 26-20

TableType property 21-3
TabOrder property 2-11
tabs

draw-item events 5-15
Tabs property 2-22
TabStop property 2-11
tabular display (grids) 2-24
tabular grids 27-28
TAction 4-36
TActionLink 4-36
TActionList 4-36
TActiveForm 37-3, 37-6
TADOCommand 24-1, 24-21, 24-25, 24-27
TADOConnection 24-1, 24-3, 24-5, 24-10, 24-13,

24-18, 24-19, 24-20, 24-21, 24-22
connecting to a data store 24-3

TADODataSet 14-12, 24-11, 24-18
TADOQuery 14-12, 24-11, 24-20, 24-25
TADOStoredProc 14-12, 24-11, 24-21
TADOTable 14-12, 24-11, 24-19
TADTField 20-1
Tag property 20-13
TApplicationEvents 4-3
TArrayField 20-1
TASPObject 36-2
TAutoDriver 34-5, 34-13
TAutoIncField 20-1
TBatchMove

error handling 21-23
TBCDField 20-1
TBDEDataSet 19-27, 19-29
TBitmap 44-3
TBlobField 20-1
TBlobStream 2-35
TBooleanField 20-1
TBrush 2-25
tbsCheck constant 4-33
TBytesField 20-1, 20-2
TCalendar 49-1
TCanvas

using 2-34
TCGIApplication 30-5
TCGIRequest 30-5
TCGIResponse 30-5

TCharProperty type 46-8
TClassProperty type 46-8
TClientDataSet 25-1

flat-file applications 14-13
TClientSocket 31-5
TClientWinSocket 31-5
TColorProperty type 46-8
TComInterface 34-5, 34-13
TComponent 39-5
TComponentClass 39-13
TComponentProperty type 46-8
TControl 2-7, 39-4, 42-4, 42-5

common events 2-10
common properties 2-7

TCoolBand 2-19
TCoolBar 4-29
TCP/IP 31-1

application servers and 15-12
clients 31-5
connecting to application server 15-18
multi-tiered applications 15-9
protocol 18-8
servers 31-6

TCRemoteDataModule 15-13, 15-14
TCurrencyField 20-1
TCustomContentProducer 30-17
TCustomControl 39-4
TCustomGrid 49-1, 49-3
TCustomIniFile 2-32
TCustomListBox 39-3
TDatabase 18-1, 18-9

DatabaseName property and 14-3
temporary instances 17-7, 18-2

TDataSet 4-42, 19-2, 19-28
TDataSetAction 4-42
TDataSetCancel 4-42
TDataSetDelete 4-42
TDataSetEdit 4-42
TDataSetFirst 4-42
TDataSetInsert 4-42
TDataSetLast 4-42
TDataSetNext 4-42
TDataSetPost 4-42
TDataSetPrior 4-42
TDataSetProvider 15-15, 16-1
TDataSetTableProducer 30-24
TDataSource 27-5 to 27-8

properties 27-6 to 27-7
TDateField 20-1, 20-15
TDateTime type 49-6
TDateTimeField 20-1, 20-15
TDBChart 13-12
TDBCheckBox 27-2, 27-14
TDBComboBox 27-2, 27-12

I-46 D e v e l o p e r ’ s G u i d e

TDBCtrlGrid 27-2, 27-28 to 27-29
properties 27-28

TDBDataSet 19-27
properties 19-28

TDBEdit 27-2, 27-9
TDBGrid 27-2, 27-16

events 27-27
properties 27-21, 27-24

TDBGridColumns 27-16
TDBImage 27-2, 27-10
TDBListBox 27-2, 27-11
TDBLookupComboBox 27-2, 27-12 to 27-14
TDBLookupListBox 27-2, 27-12 to 27-14
TDBMemo 27-2, 27-9
TDBNavigator 19-9, 19-10, 19-11, 27-2, 27-29 to

27-32
TDBRadioGroup 27-2, 27-15
TDBRichEdit 27-10
TDBText 27-2, 27-8
TDCOMConnection 15-18
TDecisionCube 28-5, 28-7 to 28-9

events 28-7
TDecisionDrawState 28-13
TDecisionGraph 28-2, 28-13

instantiating 28-14
TDecisionGrid 28-2, 28-11

events 28-13
instantiating 28-11
properties 28-12

TDecisionPivot 28-2, 28-3, 28-10
properties 28-10

TDecisionQuery 28-5, 28-6
properties 28-7

TDecisionSource 28-9
events 28-9
properties 28-9

TDefaultEditor 46-12
TDependency_object 3-8
TDragObject 5-3
TDrawingTool 6-12
technical support 1-3
TEditAction 4-41
TEditCopy 4-41
TEditCut 4-41
TEditPaste 4-41
templates 3-19, 3-21

component 4-12
decision graphs 28-17
menus 4-17, 4-23, 4-24 to 4-26

loading 4-25
programming 3-3
Web applications 30-7

temporary files 17-13, A-10
temporary objects 44-6
TEnumProperty type 46-8

terminate function 8-3, 8-10
Terminate method 7-5
Terminated property 7-5
termination block 8-18
testing

components 39-14, 39-16, 51-6 to 51-7
values 41-7

TEvent 7-9
TEventDispatcher 34-14
text 27-9, 27-10

copying, cutting, pasting 5-8
deleting 5-9
drawing on canvases 6-23
in controls 5-6
internationalizing 11-8
owner-draw controls 5-11
printing 2-16
reading right to left 11-5
searching for 2-16
selecting 5-8, 5-8
truncated 27-9
working with 5-6 to 5-11

text controls 2-15 to 2-16
text files

running queries from 22-8
Text property 2-15, 2-20, 2-23
text streams A-9
TextHeight method 6-4, 44-3
TextOut method 6-4, 6-23, 44-3
TextRect method 6-4, 44-3
TextWidth method 6-4, 44-3
TField 20-1

adding 20-1 to 20-5
events 20-17
methods 20-17
properties 20-3, 20-12 to 20-16

runtime 20-14
TFieldDataLink 50-5
TFileStream 2-35
TFloatField 20-2
TFloatProperty type 46-8
TFontNameProperty type 46-8
TFontProperty type 46-8
TForm

scroll-bar properties 2-16
TFrame 4-13
TGraphic 44-3
TGraphicControl 39-4, 48-2
thin client applications 15-2, 15-25
this argument 39-14
thread function 7-3
__thread modifier 7-5
thread objects 7-1

defining 7-2
initializing 7-2

I n d e x I-47

limitations 7-1
Thread Status box 7-11
thread variables 7-5

CORBA 29-11
thread-aware objects 7-4
ThreadID property 7-11
threading models 35-5 to 35-8

ActiveX controls 37-5
Automation objects 35-4
COM objects 35-3
remote data modules 15-13
system registry 35-6
transactional data modules 15-14
transactional objects 38-18 to 38-19

thread-local variables 7-5
OnTerminate event 7-6

threads 7-1 to 7-11
activities 38-19
avoiding simultaneous access 7-6
blocking execution 7-6
caching 31-14
client sockets 31-11, 31-12 to 31-13
coordinating 7-4, 7-6 to 7-10
CORBA 29-11 to 29-12
creating 7-10
critical sections 7-7
data access components 7-4
database sessions and 14-4, 17-2
executing 7-10
freeing 7-2, 7-3
graphics objects 7-5
ids 7-11
initializing 7-2
ISAPI/NSAPI programs 30-7, 30-22
limits on number 7-10
locking objects 7-6
message loop and 7-4
priorities 7-1, 7-2

overriding 7-10
process space 7-3
returning values 7-8
server sockets 31-11, 31-13 to 31-14
service 3-6
stopping 7-11
terminating 7-5
using lists 7-5
using with client sockets 31-13
using with server sockets 31-14
VCL thread 7-4
waiting for 7-8

multiple 7-9
waiting for events 7-9

thread-safe objects 7-4
three-tiered applications See multi-tiered

applications

throw statement 8-2, 8-21
THTMLTableAttributes 30-23
THTMLTableColumn 30-24
TickMarks property 2-16
TickStyle property 2-16
TIcon 44-3
tiDirtyRead constant 14-7
tie classes 29-8 to 29-9

VCL and 29-8
tiers 15-1
TImage

in frames 4-15
TImageList 4-32
time A-11

internationalizing 11-8
time fields 20-15

formatting values 20-16
time formats A-11
__TIME__ macro A-7
timeout events 7-10
timer events 27-5
timers 2-13
times

entering 2-21
TIniFile 2-31
TIntegerField 20-2
TIntegerProperty type 46-8
tiReadCommitted constant 14-7
tiRepeatableRead constant 14-7
TISAPIApplication 30-5
TISAPIRequest 30-5
TISAPIResponse 30-5
Title property

data grids 27-22
TKeyPressEvent 42-3
TLabel 39-4
.TLB files 32-16, 33-2, 33-19
TLIBIMP 32-17, 34-6, 35-14
TListBox 39-3
TMemIniFile 2-31
TMemoField 20-2
TMemoryStream 2-35
TMessage 45-5, 45-6
TMetafile 44-3
TMethodProperty type 46-8
TMsg 4-4
TMTSASPObject 36-2
TMtsDll 38-4, 38-22
TMultiReadExclusiveWriteSynchronizer 7-8
TNotifyEvent 42-7
TNumericField 20-2
TObject 9-5, 9-18, 9-21, 40-4
toggles 4-31, 4-33
TOleContainer 34-16

Active Documents 32-13

I-48 D e v e l o p e r ’ s G u i d e

TOleControl 34-6, 34-7
TOleServer 34-6
tool buttons 4-32

adding images 4-32
disabling 4-32
engaging as toggles 4-33
getting help with 4-35
grouping/ungrouping 4-33
in multiple rows 4-33
initial state, setting 4-33
wrapping 4-33

toolbars 2-18, 4-28
adding 4-31 to 4-33
adding panels as 4-29 to 4-31
context menus 4-35
default drawing tool 4-31
designing 4-28 to 4-35
disabling buttons 4-32
hiding 4-35
inserting buttons 4-29 to 4-31, 4-32
owner-draw 5-11
setting margins 4-31
speed buttons 2-18
transparent 4-33, 4-34

tool-tip help 2-23
Top property 2-8, 2-11, 4-3, 4-30
TopRow property 2-24
TOrdinalProperty type 46-8
TPageProducer 30-18
TPanel 4-29
TParameter 24-17, 24-28
TPersistent 9-3
TPersistFormat type 24-16
tpHigher constant 7-3
tpHighest constant 7-3
TPicture type 44-4
tpIdle constant 7-3
tpLower constant 7-3
tpLowest constant 7-3
tpNormal constant 7-3
TPopupMenu 4-35
-Tpp linker option 10-12
TPrinter

using 2-34
TPropertyAttributes 46-10
TPropertyEditor class 46-8
TPropertyPage 37-13
tpTimeCritical constant 7-3
TQuery 3-19, 22-1

adding 22-4
decision datasets and 28-5

TQueryTableProducer 30-24
track bars 2-16
transaction attributes 38-10 to 38-12

setting 38-11

transactional data modules 15-14
Transactional Data Module wizard 15-14 to 15-15
transactional data modules 15-5 to 15-7

implementation class 15-14
interface 15-16
pooling database connections 15-6
threading models 15-14
transaction attributes 15-14

Transactional Object wizard 38-17 to 38-20
transactional objects 32-10, 32-13 to 32-14, 38-1 to

38-25
activities 38-19 to 38-20
administering 32-14, 38-25
callbacks 38-23
characteristics 38-2 to 38-3
creating 38-17 to 38-20
database connections 15-7
debugging 38-23 to 38-24
dual interfaces 38-3
installing 38-24
managing resources 38-3 to 38-9
marshaling 38-3
object contexts 38-3 to 38-4
pooling database connections 38-5 to 38-6
releasing resources 38-9
requirements 38-2 to 38-3
security 38-16
sharing properties 38-6 to 38-8
stateless 38-12
transactions 38-5, 38-9 to 38-16

attributes 38-10 to 38-12
automatic 38-13
client-controlled 38-13, 38-13 to 38-14
server-controlled 38-13, 38-14 to 38-15
timeouts 38-15 to 38-16, 38-23

type libraries 38-3
transactions 13-3 to 13-4, 14-5 to 14-9

atomicity 38-10
automatic 38-13
cached updates and 26-1, 26-4
client-controlled 38-13, 38-13 to 38-14
committing 14-6, 14-7
composed of multiple objects 38-10
consistency 38-10
controlling 14-5 to 14-8
durability 38-10
duration 14-6
ending 38-12 to 38-13
implicit 14-5
isolation 38-10
isolation levels 14-7 to 14-8
local 14-8
MTS and COM+ 38-9 to 38-16
multi-tiered applications 15-21
object contexts 38-10

I n d e x I-49

rolling back 14-6
server-controlled 38-13, 38-14 to 38-15
spanning multiple databases 38-10
starting 14-6
timeouts 38-15 to 38-16, 38-23
transactional data modules 15-6, 15-14, 15-21
transactional objects 38-5
uncommitted changes and 14-7
using databases 14-6

transfer records 51-2
transient subscriptions 34-15
TransIsolation property 14-7
translating character strings 11-2, 11-7, 11-9

2-byte conversions 11-2
translation 11-8
Transliterate property 20-13, 21-20
transparent backgrounds 11-8
Transparent property 2-23
transparent toolbars 4-33, 4-34
tree views 2-20

owner-draw 5-11
TReferenceField 20-2
TRegistry 2-31
TRegistryIniFile 2-32
TRegSvr 12-3, 32-17
TRemoteDataModuleRegistrar 15-7
triangles 6-11
triggers 13-5
truncated text 27-9
__try keyword 8-12
try statement 8-2, 8-15
TScrollBox 2-16
TServerClientThread 31-12
TServerClientWinSocket 31-7
TServerSocket 31-6
TServerWinSocket 31-7
TService_object 3-8
TSession 17-1, 18-9

adding 17-3, 17-16
TSessionList 17-1
TSessions component 17-1
TSetElementProperty type 46-8
TSetProperty type 46-8
TSmallintField 20-2
TSocketConnection 15-18
TStoredProc 23-3
TStream 2-35
TStringField 20-2, 20-15
TStringList 2-27 to 2-31
TStringProperty type 46-8
TStrings 2-27 to 2-31
TStringStream 2-35
TTable 3-19, 21-1

decision datasets and 28-6
TThread 7-2

TThreadList 7-5, 7-7
TTimeField 20-2, 20-15
TToolBar 4-29, 4-31
TToolButton 4-29
TUpdateAction type 26-25
TUpdateKind type 26-24
TUpdateSQL 22-17, 26-11

events 26-22 to 26-23
TVarBytesField 20-2
TWebActionItem 30-7
TWebApplication 30-5
TWebRequest 30-5
TWebResponse 30-5, 30-7
TWinCGIRequest 30-5
TWinCGIResponse 30-5
TWinControl 9-4, 9-7, 11-7, 39-3, 42-5

common events 2-12
common properties 2-10

TWindowAction 4-41, 4-42
TWindowArrange 4-41, 4-42
TWindowCascade 4-41, 4-42
TWindowClose 4-41, 4-42
TWindowMinimizeAll 4-41, 4-42
TWindowTileHorizontal 4-41, 4-42
TWindowTileVertical 4-41, 4-42
TWinSocketStream 2-35, 31-12
TWMMouse type 45-7
two-byte character codes 11-2
two-phase commit 15-22
TWordField 20-2
two-tiered applications 13-3, 13-6, 13-9, 14-1 to

14-10
vs. one-tiered applications 14-3

type declarations
enumerated types 6-12
properties 48-4

type definitions
Type Library editor 33-9 to 33-10

type information 32-14, 33-1
dispinterfaces 35-12
Help 33-8
IDispatch interface 35-13
importing 34-2 to 34-6

type libraries 32-10, 32-11, 32-14 to 32-17, 33-1 to
33-19

_TLB unit 32-21, 33-2, 33-13, 34-2, 34-5 to 34-6,
35-14

accessing 32-16, 33-12 to 33-13, 34-2 to 34-6
Active Server Objects 36-3
ActiveX controls 37-3
adding

interfaces 33-13
methods 33-14 to 33-15
properties 33-14 to 33-15

benefits 32-16

I-50 D e v e l o p e r ’ s G u i d e

browsers 32-16
browsing 32-17
contents 32-14, 33-1, 34-5 to 34-6
creating 32-15, 33-12
deploying 33-18 to 33-19
exporting as IDL 33-18
generated by wizards 33-1
IDL and ODL 32-15
importing 34-2 to 34-6
including as resources 33-18 to 33-19, 37-3
interfaces 32-16
modifying interfaces 33-13 to 33-15
opening 33-12 to 33-13
optimizing performance 33-8
registering 32-17, 33-18
registering objects 32-16
saving 33-17
tools 32-17
transactional objects 38-3
uninstalling 32-16
unregistering 32-17
valid types 33-11 to 33-12
when to use 32-15

Type Library Editor
COM+ page 38-5

Type Library editor 32-15, 33-2 to 33-18
aliases 33-9

adding 33-16
binding attributes 37-12
CoClasses 33-9

adding 33-15
COM+ page 38-9
dispinterfaces 33-9
elements 33-7 to 33-10

common characteristics 33-7 to 33-8
enumerated types 33-9

adding 33-15 to 33-16
error messages 33-5, 33-7
interfaces 33-8 to 33-9

adding 33-13
modifying 33-13 to 33-15

methods
adding 33-14 to 33-15

modules 33-10
adding 33-16 to 33-17

Object list pane 33-4 to 33-5
opening libraries 33-12 to 33-13
parts 33-2 to 33-7
properties

adding 33-14 to 33-15
records and unions 33-9 to 33-10

adding 33-16
saving and registering type information 33-17

to 33-18
selecting elements 33-4

status bar 33-5
text page 33-7, 33-14
toolbar 33-3 to 33-4
type definitions 33-9 to 33-10
type information pages 33-5 to 33-7

for aliases 33-6
for CoClasses 33-5 to 33-6
for consts 33-7
for dispinterfaces 33-5
for enumerations 33-6
for fields 33-7
for interfaces 33-5
for methods 33-6
for modules 33-6
for properties 33-6 to 33-7
for records 33-6
for type libraries 33-5
for unions 33-6

updating 33-18
type reserved word 6-12
typedef, Object Pascal to C++ 9-12
types

Automation 35-14 to 35-15
C++ vs Object Pascal 9-15
Char 11-2
event handlers 42-3
mapping to database tables 21-22
message-record 45-6
naming 6-12
properties 41-2, 41-8, 46-9
type libraries 33-11 to 33-12
unspecified 9-13
user-defined 48-4

U
Unassociate Attributes command 20-15
uncommitted changes 14-7
unDeleted constant 26-10
undeleting cached records 26-9 to 26-10
underflow range errors

math functions and A-8
unexpected function 8-10
unhandled exceptions 8-10
UnhandledExceptionFilter function 8-12
Unicode characters 11-3
UniDirectional property 22-15
unindexed tables 19-23, 19-25

searching 21-6
unions

accessing A-4
members with different types A-4
Type Library editor 33-9 to 33-10, 33-16

units
adding components 39-11
C++Builder 39-11

I n d e x I-51

existing
adding a component 39-11

property editors 46-8
Unlock method 7-7
UnlockList method 7-7
unmapped types 9-18
UnPrepare method 22-14
unpreparing queries 22-14
UnRegisterTypeLib function 32-16
update errors

resolving 16-6, 16-9, 25-21, 25-21 to 25-22
response messages 15-32

Update method
actions 4-40

update objects 26-11
applying 26-18
event handling 26-22 to 26-23
executing statements 26-19
preparing SQL statements 26-13

Update SQL editor 26-14
UPDATE statements 22-12, 22-13, 26-11
UpdateCalendar method 50-4
UpdateMode property 16-8
UpdateObject method 37-14, 37-15
UpdateObject property 19-30, 26-12

typecasting 26-17
UpdatePropertyPage method 37-14
UpdateRecordTypes property 19-30, 26-9
UpdateRegistry method 15-7
UpdatesPending property 19-30, 26-3
UpdateStatus property 19-30, 26-10
UpdateTarget method 4-41
updating records

reconciling updates 25-21
up-down controls 2-17
URIs

URLs vs. 30-2
URL property 30-13
URLs 30-2

host names 31-4
IP addresses 31-4
javascript libraries 15-28, 15-29
URIs vs. 30-2
Web browsers 30-3
Web connections 15-19

Use CORBA Object wizard 29-14
USEPACKAGE macro 10-6
user commands 4-36, 4-37
user interfaces 2-12, 13-11 to 13-15

forms 4-1 to 4-2
isolating 13-7
layout 4-3 to 4-4
multi-record 13-12
single record 13-11

user-defined messages 45-5, 45-7

user-defined types 48-4
usInserted constant 26-10
usModified constant 26-10
usUnmodified constant 26-10

V
validating data entry 20-17
value expressions 20-21
Value property 20-18
ValueChecked property 27-15
values 41-2

Boolean 41-2, 41-10, 50-4
default data 20-21, 27-11
default property 41-7, 41-10 to 41-11

redefining 47-2, 47-3
null 19-25, 21-13
sequential 6-12
testing 41-7

Values property 27-16
ValueUnchecked property 27-15
var parameters 9-12
variables 22-6
variants 19-15, 19-16, 20-20
VCL 3-11, 39-1 to 39-2

C++ language support for 9-1 to 9-23
exception classes 8-21
exception handling 8-19
main thread 7-4
object construction 9-5
overview 2-2 to 2-12
PME model 2-2
TComponent branch 2-5
TControl branch 2-6
TObject branch 2-4
TPersistent branch 2-5
TWinControl branch 2-7

VCL style classes 9-1
VCL40 package 10-1, 10-9

PENWIN.DLL 10-11
VCLCONTROL_IMPL macro 37-3, 37-5
version control 2-36
version information

ActiveX controls 37-5
type information 33-8

vertical track bars 2-16
VertScrollBar 2-16
video casettes 6-31
video clips 6-28, 6-30
ViewStyle property 2-21
virtual

class methods 9-11
functions 9-8
keyword 40-9
method table 40-9
methods 43-3

I-52 D e v e l o p e r ’ s G u i d e

properties as 41-2
property editors 46-9

Visible property 20-13
cool bars 4-35
menus 4-27
toolbars 4-35

VisibleButtons property 27-30, 27-31
VisibleColCount property 2-24
VisibleRowCount property 2-24
VisualSpeller Control 12-3
vtables 32-4

COM interface pointer 32-4
component wrappers 34-6
creator classes and 34-5, 34-13
dual interfaces 35-12
type libraries and 32-15
vs dispinterfaces 33-9

W
WaitFor method 7-8, 7-9
WaitForData method 31-12
WantReturns property 2-15
WantTabs property 2-15

memo fields 27-9
rich edit controls 27-10

.WAV files 6-31
wchar_t character constant A-3
weak packaging 10-11
Web applications

ActiveX 32-12, 37-1, 37-16 to 37-18
multi-tiered clients 15-26

ASP 32-12, 36-1
database 15-24 to 15-35
deploying 12-6
object 30-7

Web browsers 30-3
URLs 30-3

Web connections 15-10, 15-19
Web deployment 37-16 to 37-18

multi-tiered applications 15-26
Web Deployment Options dialog box 37-17
Web dispatcher 30-6, 30-8 to 30-10

auto-dispatching objects 15-31, 30-9
DLL-based applications and 30-7
handling requests 30-7, 30-12
selecting action items 30-10, 30-11

Web items 15-32
properties 15-33 to 15-34

Web modules 30-6 to 30-7, 30-8
adding database sessions 30-22
DLLs and, caution 30-7

Web page editor 15-32 to 15-33
Web pages 30-3

MIDAS page producer 15-32 to 15-35

Web server applications 3-16, 30-1 to 30-29
accessing databases 30-21
adding to projects 30-7
ASP 36-1
converting 30-29
creating 30-6
creating responses 30-12
debugging 30-25 to 30-29
event handling 30-9, 30-11, 30-12
managing database connections 30-22
MIDAS 15-27 to 15-35
overview 30-5 to 30-8
posting data to 30-14
querying tables 30-24
resource locations 30-2
response templates 30-18
sending files 30-17
standards 30-1
templates 30-7
types 30-5
using MTS for debugging 30-26 to 30-27
Web dispatcher and 30-8

Web servers 15-26, 36-6
client requests and 30-4

WebBroker 30-1
WebDispatch property 15-31
WebPageItems property 15-32
whitespace characters

running queries on 22-6
wide character constants A-3, A-4
wide characters 11-3
Width property 2-8, 2-23, 4-3, 27-17, 27-22

pens 6-5
Win 3.1 page (Component palette) 2-14
Win32 exception handling 8-11
Win32 page (Component palette) 2-14
Win-CGI programs 3-16, 30-4, 30-5

creating 30-6
debugging 30-29
INI files 30-5

window
class 39-4
controls 39-3
handles 39-3, 39-5
message handling 49-4
procedures 45-2, 45-3

Windows
API functions 39-3, 44-1, 45-2
common dialog boxes 51-1

creating 51-2
executing 51-5

controls, subclassing 39-4
device contexts 39-7, 44-1
events 42-4
Graphics Device Interface (GDI) 6-1

I n d e x I-53

messages 4-4, 45-2
pen width support 6-6

windows
resizing 2-17

Windows NT
debugging Web server applications 30-25

Windows socket objects 31-5
client sockets 31-5
clients 31-6
server sockets 31-7

wizards 3-19
Active Server Object 32-19, 36-2 to 36-3
ActiveForm 32-19, 37-6 to 37-7
ActiveX controls 32-19, 37-4 to 37-5
ActiveX library 32-19
Automation object 32-19, 35-4 to 35-8
COM 32-17 to 32-21, 35-1
COM object 32-18, 33-12, 35-2 to 35-4, 35-5 to

35-8
COM+ Event object 32-19, 38-20 to 38-21
Component 39-8
Console Wizard 3-3
CORBA client 29-13
CORBA Object 29-6, 29-13
CORBA Server 29-5
property page 32-19, 37-13 to 37-14
Remote Data Module 15-13 to 15-14
Resource DLL 11-9
Transactional Data Module 15-14 to 15-15
transactional object 32-19, 38-17 to 38-20
Type Library 32-19, 33-12
Use CORBA Object 29-14

WM_APP constant 45-6
WM_KEYDOWN message 50-9
WM_LBUTTONBUTTON message 50-9
WM_MBUTTONDOWN message 50-9
WM_PAINT messages 6-2
WM_RBUTTONDOWN message 50-9

WM_SIZE message 49-4
WndProc method 45-3, 45-5
word alignment A-5
word wrapping 5-7
WordWrap property 2-15, 5-6

memo fields 27-10
wrAbandoned constant 7-9
Wrap property 4-33
Wrapable property 4-33
wrappers 39-4, 51-2

 see also component wrappers
initializing 51-3

wrError constant 7-9
Write By Reference

COM interface properties 33-8
write method 41-6
write reserved word 41-8, 48-4
write-only properties 41-6
wrSignaled constant 7-9
wrTimeout constant 7-9

X
Xerox Network System (XNS) 31-1
XML brokers 15-30 to 15-32
XML files 24-16
XMLBroker property 15-33
XMLDataSetField property 15-33

Y
Y2K issues 1-3
year 2000 issues 1-3
Year property 49-6

Z
zero-length files A-9

I-54 D e v e l o p e r ’ s G u i d e

	Developer’s Guide
	Contents
	Tables
	Figures
	Ch 1: Introduction
	What’s in this manual?
	Manual conventions
	Contacting developer support

	Part I: Programming with C++Builder
	Ch 2: Programming with C++Builder
	The integrated development environment
	Designing applications
	Understanding the VCL
	Properties
	Methods
	Events
	User events
	System events

	Objects, components, and controls in the VCL
	The TObject branch
	The TPersistent branch
	The TComponent branch
	The TControl branch
	The TWinControl branch
	Properties common to TControl
	Action properties
	Position, size, and alignment properties
	Display properties
	Parent properties
	A navigation property
	Drag-and-drop properties
	Drag-and-dock properties

	Standard events common to TControl
	Properties common to TWinControl
	General information properties
	Border style display properties
	Navigation properties
	Drag-and-dock properties

	Events common to TWinControl
	Creating the application user interface
	Using components
	VCL standard components
	Text controls
	Specialized input controls
	Buttons and similar controls
	Button controls
	Bitmap buttons
	Speed buttons
	Check boxes
	Radio buttons
	Toolbars
	Cool bars
	Handling lists
	List boxes and check-list boxes
	Combo boxes
	Tree views
	List views
	Date-time pickers and month calendars
	Grouping components
	Group boxes and radio groups
	Panels
	Scroll boxes
	Tab controls
	Page controls
	Header controls
	Visual feedback
	Labels and static-text components
	Status bars
	Progress bars
	Help and hint properties
	Grids
	Draw grids
	String grids
	Graphics display
	Images
	Shapes
	Bevels
	Paint boxes
	Animation control
	Windows common dialog boxes
	Using windows common dialog boxes

	Using helper objects
	Working with lists
	Working with string lists
	Loading and saving string lists
	Creating a new string list
	Manipulating strings in a list
	Associating objects with a string list

	Windows registry and INI files
	Using TINIFile
	Using TRegistry
	Using TRegINIFile
	Using TCanvas
	Using TPrinter

	Using streams

	Developing applications
	Editing code
	Debugging applications
	Deploying applications

	Ch 3: Building applications, components, and libraries
	Creating applications
	Windows applications
	User interface models
	Setting IDE, project, and compilation options

	Programming templates
	Console applications
	Using the VCL in console applications

	Service applications
	Service threads
	Service name properties
	Debugging services

	Creating packages and DLLs
	When to use packages and DLLs

	Using DLLs in C++Builder
	Creating DLLs in C++Builder
	Creating DLLs containing VCL components
	Linking DLLs
	Writing database applications
	Building distributed applications
	Distributing applications using TCP/IP
	Using sockets in applications
	Creating Web server applications

	Distributing applications using COM and DCOM
	COM and DCOM
	MTS and COM+

	Distributing applications using CORBA
	Distributing database applications

	Using data modules and remote data modules
	Creating and editing data modules
	Creating business rules in a data module

	Accessing a data module from a form
	Adding a remote data module to an application server project

	Using the Object Repository
	Sharing items within a project
	Adding items to the Object Repository
	Sharing objects in a team environment
	Using an Object Repository item in a project
	Copying an item
	Inheriting an item
	Using an item

	Using project templates
	Modifying shared items
	Specifying a default project, new form, and main form

	Ch 4: Developing the application user interface
	Understanding TApplication, TScreen, and TForm
	Using the main form
	Adding additional forms
	Linking forms

	Hiding the main form
	Working at the application level
	Handling the screen
	Managing layout

	Working with messages
	More details on forms
	Controlling when forms reside in memory
	Displaying an auto-created form
	Creating forms dynamically
	Creating modeless forms such as windows
	Using a local variable to create a form instance

	Passing additional arguments to forms
	Retrieving data from forms
	Retrieving data from modeless forms
	Retrieving data from modal forms

	Reusing components and groups of components
	Creating and using component templates
	Working with frames
	Creating frames
	Adding frames to the Component palette

	Using and modifying frames
	Sharing frames

	Creating and managing menus
	Opening the Menu Designer
	Building menus
	Naming menus
	Naming the menu items
	Adding, inserting, and deleting menu items
	Creating submenus
	Adding images to menu items
	Viewing the menu

	Editing menu items in the Object Inspector
	Using the Menu Designer context menu
	Commands on the context menu
	Switching between menus at design time

	Using menu templates
	Saving a menu as a template
	Naming conventions for template menu items and event handlers

	Manipulating menu items at runtime
	Merging menus
	Specifying the active menu: Menu property
	Determining the order of merged menu items: GroupIndex property

	Importing resource files

	Designing toolbars and cool bars
	Adding a toolbar using a panel component
	Adding a speed button to a panel
	Assigning a speed button’s glyph
	Setting the initial condition of a speed button
	Creating a group of speed buttons
	Allowing toggle buttons

	Adding a toolbar using the toolbar component
	Adding a tool button
	Assigning images to tool buttons
	Setting tool button appearance and initial conditions
	Creating groups of tool buttons
	Allowing toggled tool buttons

	Adding a cool bar component
	Setting the appearance of the cool bar

	Responding to clicks
	Assigning a menu to a tool button

	Adding hidden toolbars
	Hiding and showing toolbars

	Using action lists
	Action objects
	Using Actions
	Centralizing code
	Linking properties
	Executing actions
	Updating actions

	Pre-defined action classes
	Standard edit actions
	Standard Window actions
	Standard Help actions
	DataSet actions

	Writing action components
	How actions find their targets
	Registering actions
	Writing action list editors

	Ch 5: Working with controls
	Implementing drag-and-drop in controls
	Starting a drag operation
	Accepting dragged items
	Dropping items
	Ending a drag operation
	Customizing drag and drop with a drag object
	Changing the drag mouse pointer

	Implementing drag-and-dock in controls
	Making a windowed control a docking site
	Making a control a dockable child
	Controlling how child controls are docked
	Controlling how child controls are undocked
	Controlling how child controls respond to drag-and-dock operations

	Working with text in controls
	Setting text alignment
	Adding scroll bars at runtime
	Adding the Clipboard object
	Selecting text
	Selecting all text
	Cutting, copying, and pasting text
	Deleting selected text
	Disabling menu items
	Providing a pop-up menu
	Handling the OnPopup event

	Adding graphics to controls
	Indicating that a control is owner-drawn
	Adding graphical objects to a string list
	Adding images to an application
	Adding images to a string list
	Drawing owner-drawn items

	Sizing owner-draw items
	Drawing each owner-draw item

	Ch 6: Working with graphics and multimedia
	Overview of graphics programming
	Refreshing the screen
	Types of graphic objects
	Common properties and methods of Canvas
	Using the properties of the Canvas object
	Using pens
	Using brushes
	Reading and setting pixels

	Using Canvas methods to draw graphic objects
	Drawing lines and polylines
	Drawing shapes

	Handling multiple drawing objects in your application
	Keeping track of which drawing tool to use
	Changing the tool with speed buttons
	Using drawing tools

	Drawing on a graphic
	Making scrollable graphics
	Adding an image control

	Loading and saving graphics files
	Loading a picture from a file
	Saving a picture to a file
	Replacing the picture

	Using the Clipboard with graphics
	Copying graphics to the Clipboard
	Cutting graphics to the Clipboard
	Pasting graphics from the Clipboard

	Rubber banding example
	Responding to the mouse
	Adding a field to a form object to track mouse actions
	Refining line drawing

	Working with multimedia
	Adding silent video clips to an application
	Example of adding silent video clips

	Adding audio and/or video clips to an application
	Example of adding audio and/or video clips

	Ch 7: Writing multi-threaded applications
	Defining thread objects
	Initializing the thread
	Assigning a default priority
	Indicating when threads are freed

	Writing the thread function
	Using the main VCL thread
	Using thread-local variables
	Checking for termination by other threads

	Writing clean-up code

	Coordinating threads
	Avoiding simultaneous access
	Locking objects
	Using critical sections
	Using the multi-read exclusive-write synchronizer
	Other techniques for sharing memory

	Waiting for other threads
	Waiting for a thread to finish executing
	Waiting for a task to be completed

	Executing thread objects
	Overriding the default priority
	Starting and stopping threads

	Debugging multi-threaded applications

	Ch 8: Exception handling
	C++ exception handling
	ANSI requirements for exception handling
	Exception handling syntax
	Exception declarations
	Throwing an exception
	Examples

	Handling an exception
	Exception specifications
	Constructors and destructors in exception handling
	Unhandled exceptions
	Setting exception handling options

	Structured exceptions under Win32
	Syntax of structured exceptions
	Handling structured exceptions
	Exception filters
	Mixing C++ with structured exceptions
	C-based exceptions in C++ program example

	Defining exceptions
	Raising exceptions
	Termination blocks

	VCL exception handling
	Differences between C++ and VCL exception handling
	Handling operating system exceptions
	Handling VCL exceptions
	VCL exception classes
	Portability considerations

	Ch 9: C++ language support for the VCL
	C++ and Object Pascal object models
	Object identity and instantiation
	Distinguishing C++ and Object Pascal references
	Copying objects
	Objects as function arguments

	Object construction for C++Builder VCL classes
	C++ object construction
	Object Pascal object construction
	C++Builder object construction

	Calling virtual methods in base class constructors
	Object Pascal model
	C++ model
	C++Builder model
	Example: calling virtual methods
	Constructor initialization of data members for virtual functions

	Object destruction
	Exceptions thrown from constructors
	Virtual methods called from destructors

	AfterConstruction and BeforeDestruction
	Class virtual functions

	Support for Object Pascal data types and language concepts
	Typedefs
	Classes that support the Object Pascal language
	C++ language counterparts to the Object Pascal language
	Var parameters
	Untyped parameters

	Open arrays
	Calculating the number of elements
	Temporaries
	array of const
	OPENARRAY macro
	EXISTINGARRAY macro
	C++ functions that take open array arguments

	Types defined differently
	Boolean data types
	Char data types

	Resource strings
	Default parameters
	Runtime type information
	Unmapped types
	6-byte Real types
	Arrays as return types of functions

	Keyword extensions
	__classid
	__closure
	__property
	__published

	The __declspec keyword extension
	__declspec(delphiclass)
	__declspec(delphireturn)
	__declspec(dynamic)
	__declspec(hidesbase)
	__declspec(package)
	__declspec(pascalimplementation)

	Ch 10: Working with packages and components
	Why use packages?
	Packages and standard DLLs

	Runtime packages
	Using packages in an application
	Dynamically loading packages
	Deciding which runtime packages to use
	Custom packages

	Design-time packages
	Installing component packages

	Creating and editing packages
	Creating a package
	Editing an existing package
	Package source files and project option files
	Packaging components

	Understanding the structure of a package
	Naming packages
	The Requires list
	The Contains list

	Compiling packages
	Package-specific compiler directives
	Using the command-line compiler and linker
	Package files created by a successful compilation

	Deploying packages
	Deploying applications that use packages
	Distributing packages to other developers
	Package collection files

	Ch 11: Creating international applications
	Internationalization and localization
	Internationalization
	Localization

	Internationalizing applications
	Enabling application code
	Character sets
	OEM and ANSI character sets
	Double byte character sets
	Wide characters
	Including bi-directional functionality in applications
	BiDiMode property
	Locale-specific features

	Designing the user interface
	Text
	Graphic images
	Formats and sort order
	Keyboard mappings

	Isolating resources
	Creating resource DLLs
	Using resource DLLs
	Dynamic switching of resource DLLs

	Localizing applications
	Localizing resources

	Ch 12: Deploying applications
	Deploying general applications
	Using installation programs
	Identifying application files
	Application files
	Package files
	ActiveX controls
	Helper applications
	DLL locations

	Deploying database applications
	Providing the database engine
	Borland Database Engine
	Third-party database engines
	SQL Links

	Multi-tiered Distributed Application Services (MIDAS)

	Deploying Web applications
	Programming for varying host environments
	Screen resolutions and color depths
	Considerations when not dynamically resizing
	Considerations when dynamically resizing forms and controls
	Accommodating varying color depths

	Fonts
	Windows versions

	Software license requirements
	DEPLOY.TXT
	README.TXT
	No-nonsense license agreement
	Third-party product documentation

	Part II: Developing database applications
	Ch 13: Designing database applications
	Using databases
	Types of databases
	Local databases
	Remote database servers

	Database security
	Transactions
	Data Dictionary
	Referential integrity, stored procedures, and triggers

	Database architecture
	Planning for scalability
	Single-tiered database applications
	Two-tiered database applications
	Multi-tiered database applications

	Designing the user interface
	Displaying a single record
	Displaying multiple records
	Analyzing data
	Selecting what data to show
	Writing reports

	Ch 14: Building one- and two-tiered applications
	BDE-based applications
	BDE-based architecture
	Understanding databases and datasets
	Using sessions

	Connecting to databases
	Using transactions
	Explicitly controlling transactions
	Using a database component for transactions
	Using the TransIsolation property
	Using passthrough SQL
	Using local transactions

	Caching updates
	Creating and restructuring database tables

	ADO-based applications
	ADO-based architecture
	Understanding ADO databases and datasets

	Connecting to ADO databases
	Retrieving data
	Creating and restructuring ADO database tables

	Flat-file database applications
	Creating the datasets
	Creating a new dataset using persistent fields
	Creating a dataset using field and index definitions
	Creating a dataset based on an existing table

	Loading and saving data
	Using the briefcase model

	Scaling up to a three-tiered application

	Ch 15: Creating multi-tiered applications
	Advantages of the multi-tiered database model
	Understanding MIDAS technology
	Overview of a MIDAS-based multi-tiered application
	The structure of the client application
	The structure of the application server
	Using transactional data modules
	Pooling remote data modules
	Using the IAppServer interface

	Choosing a connection protocol
	Using DCOM connections
	Using Socket connections
	Using Web connections

	Building a multi-tiered application
	Creating the application server
	Setting up the remote data module
	Configuring the remote data module when it is not transactional
	Configuring a transactional remote data module

	Creating a data provider for the application server
	Extending the application server’s interface
	Adding callbacks to the application server’s interface
	Extending a transactional application server’s interface

	Creating the client application
	Connecting to the application server
	Specifying a connection using DCOM
	Specifying a connection using sockets
	Specifying a connection using HTTP
	Brokering connections

	Managing server connections
	Connecting to the server
	Dropping or changing a server connection

	Calling server interfaces

	Managing transactions in multi-tiered applications
	Supporting master/detail relationships
	Supporting state information in remote data modules
	Writing MIDAS Web applications
	Distributing a client application as an ActiveX control
	Creating an Active Form for the client application

	Building Web applications using InternetExpress
	Building an InternetExpress application
	Using the javascript libraries
	Granting permission to access and launch the application server

	Using an XML broker
	Fetching XML data packets
	Applying updates from XML delta packets

	Creating Web pages with a MIDAS page producer
	Using the Web page editor
	Setting Web item properties
	Customizing the MIDAS page producer template

	Ch 16: Using provider components
	Determining the source of data
	Choosing how to apply updates
	Controlling what information is included in data packets
	Specifying what fields appear in data packets
	Setting options that influence the data packets
	Adding custom information to data packets

	Responding to client data requests
	Responding to client update requests
	Editing delta packets before updating the database
	Influencing how updates are applied
	Screening individual updates
	Resolving update errors on the provider
	Applying updates to datasets that do not represent a single table

	Responding to client-generated events
	Handling server constraints

	Ch 17: Managing database sessions
	Working with a session component
	Using the default session
	Creating additional sessions
	Naming a session
	Activating a session
	Customizing session start-up
	Specifying default database connection behavior
	Creating, opening, and closing database connections
	Closing a single database connection
	Closing all database connections

	Dropping temporary database connections
	Searching for a database connection
	Retrieving information about a session
	Working with BDE aliases
	Specifying alias visibility
	Making session aliases visible to other sessions and applications
	Determining known aliases, drivers, and parameters
	Creating, modifying, and deleting aliases

	Iterating through a session’s database components
	Specifying Paradox directory locations
	Specifying the control file location
	Specifying a temporary files location

	Working with password-protected Paradox and dBASE tables
	Using the AddPassword method
	Using the RemovePassword and RemoveAllPasswords methods
	Using the GetPassword method and OnPassword event

	Managing multiple sessions
	Using a session component in data modules

	Ch 18: Connecting to databases
	Understanding persistent and temporary database components
	Using temporary database components
	Creating database components at design time
	Creating database components at runtime

	Controlling connections
	Associating a database component with a session
	Specifying a BDE alias
	Setting BDE alias parameters
	Controlling server login
	Connecting to a database server
	Special considerations when connecting to a remote server
	Working with network protocols
	Using ODBC

	Disconnecting from a database server
	Closing datasets without disconnecting from a server
	Iterating through a database component’s datasets

	Understanding database and session component interactions
	Using database components in data modules
	Executing SQL statements from a TDatabase component
	Executing SQL statements from TDatabase
	Executing parameterized SQL statements

	Ch 19: Understanding datasets
	What is TDataSet?
	Types of datasets
	Opening and closing datasets
	Determining and setting dataset states
	Inactivating a dataset
	Browsing a dataset
	Enabling dataset editing
	Enabling insertion of new records
	Enabling index-based searches and ranges on tables
	Calculating fields
	Filtering records
	Updating records

	Navigating datasets
	Using the First and Last methods
	Using the Next and Prior methods
	Using the MoveBy method
	Using the Eof and Bof properties
	Eof
	Bof

	Marking and returning to records

	Searching datasets
	Using Locate
	Using Lookup

	Displaying and editing a subset of data using filters
	Enabling and disabling filtering
	Creating filters
	Setting the Filter property
	Writing an OnFilterRecord event handler
	Switching filter event handlers at runtime

	Setting filter options
	Navigating records in a filtered dataset

	Modifying data
	Editing records
	Adding new records
	Inserting records
	Appending records

	Deleting records
	Posting data to the database
	Canceling changes
	Modifying entire records

	Using dataset events
	Aborting a method
	Using OnCalcFields

	Using BDE-enabled datasets
	Overview of BDE-enablement
	Handling database and session connections
	Using the DatabaseName and SessionName properties
	Working with BDE handle properties

	Using cached updates
	Caching BLOBs

	Ch 20: Working with field components
	Understanding field components
	Dynamic field components
	Persistent field components

	Creating persistent fields
	Arranging persistent fields
	Defining new persistent fields
	Defining a data field
	Defining a calculated field
	Programming a calculated field
	Defining a lookup field
	Defining an aggregate field
	Deleting persistent field components

	Setting persistent field properties and events
	Setting display and edit properties at design time
	Setting field component properties at runtime
	Creating attribute sets for field components
	Associating attribute sets with field components
	Removing attribute associations
	Controlling and masking user input
	Using default formatting for numeric, date, and time fields
	Handling events

	Working with field component methods at runtime
	Displaying, converting, and accessing field values
	Displaying field component values in standard controls
	Converting field values
	Accessing field values with the default dataset property
	Accessing field values with a dataset’s Fields property
	Accessing field values with a dataset’s FieldByName method

	Checking a field’s current value
	Setting a default value for a field
	Working with constraints
	Creating a custom constraint
	Using server constraints

	Using object fields
	Displaying ADT and array fields
	Working with ADT fields
	Accessing ADT field values

	Working with array fields
	Accessing array field values

	Working with dataset fields
	Displaying dataset fields
	Accessing data in a nested dataset

	Working with reference fields
	Displaying reference fields
	Accessing data in a reference field

	Ch 21: Working with tables
	Using table components
	Setting up a table component
	Specifying a database location
	Specifying a table name
	Specifying the table type for local tables
	Opening and closing a table

	Controlling read/write access to a table
	Searching for records
	Searching for records based on indexed fields
	Executing a search with Goto methods
	Executing a search with Find methods
	Specifying the current record after a successful search
	Searching on partial keys
	Searching on alternate indexes
	Repeating or extending a search

	Sorting records
	Retrieving a list of available indexes with GetIndexNames
	Specifying an index with IndexName
	Specifying a dBASE index file

	Specifying sort order for SQL tables
	Specifying fields with IndexFieldNames

	Examining the field list for an index

	Working with a subset of data
	Understanding the differences between ranges and filters
	Creating and applying a new range
	Setting the beginning of a range
	Setting the end of a range
	Setting start- and end-range values
	Specifying a range based on partial keys
	Including or excluding records that match boundary values
	Applying a range
	Canceling a range

	Modifying a range
	Editing the start of a range
	Editing the end of a range

	Deleting all records in a table
	Deleting a table
	Renaming a table
	Creating a table
	Importing data from another table
	Using TBatchMove
	Creating a batch move component
	Specifying a batch move mode
	Appending records
	Updating records
	Appending and updating records
	Copying datasets
	Deleting records

	Mapping data types
	Executing a batch move
	Handling batch move errors

	Synchronizing tables linked to the same database table
	Creating master/detail forms
	Building an example master/detail form

	Working with nested tables
	Setting up a nested table component

	Ch 22: Working with queries
	Using queries effectively
	Queries for desktop developers
	Queries for server developers

	What databases can you access with a query component?
	Using a query component: an overview
	Specifying the SQL statement to execute
	Specifying the SQL property at design time
	Specifying an SQL statement at runtime
	Setting the SQL property directly
	Loading the SQL property from a file
	Loading the SQL property from string list object

	Setting parameters
	Supplying parameters at design time
	Supplying parameters at runtime
	Using a data source to bind parameters

	Executing a query
	Executing a query at design time
	Executing a query at runtime
	Executing a query that returns a result set
	Executing a query without a result set

	Preparing a query
	Unpreparing a query to release resources
	Creating heterogeneous queries
	Improving query performance
	Disabling bi-directional cursors

	Working with result sets
	Enabling editing of a result set
	Local SQL requirements for a live result set
	Restrictions on live queries

	Remote server SQL requirements for a live result set
	Restrictions on updating a live result set
	Updating a read-only result set

	Ch 23: Working with stored procedures
	When should you use stored procedures?
	Using a stored procedure
	Creating a stored procedure component
	Creating a stored procedure
	Preparing and executing a stored procedure
	Using stored procedures that return result sets
	Retrieving a result set with a TQuery
	Retrieving a result set with a TStoredProc

	Using stored procedures that return data using parameters
	Retrieving individual values with a TQuery
	Retrieving individual values with a TStoredProc

	Using stored procedures that perform actions on data
	Executing an action stored procedure with a TQuery
	Executing an action stored procedure with a TStoredProc

	Understanding stored procedure parameters
	Using input parameters
	Using output parameters
	Using input/output parameters
	Using the result parameter
	Accessing parameters at design time
	Setting parameter information at design time
	Creating parameters at runtime
	Binding parameters

	Viewing parameter information at design time
	Working with Oracle overloaded stored procedures

	Ch 24: Working with ADO components
	Overview of ADO components
	Connecting to ADO data stores
	Connecting to a data store using TADOConnection
	Using a TADOConnection versus a dataset’s ConnectionString
	Specifying the connection
	Accessing the connection object
	Activating and deactivating the connection
	Determining what a connection component is doing

	Fine-tuning a connection
	Specifying connection attributes
	Controlling timeouts
	Controlling the connection login

	Listing tables and stored procedures
	Accessing the connection’s datasets
	Accessing the connection’s commands
	Listing available tables
	Listing available stored procedures

	Working with (connection) transactions
	Using transaction methods
	Using transaction events

	Using ADO datasets
	Features common to all ADO dataset components
	Modifying data
	Navigating in a dataset
	Using visual data-aware controls
	Connecting to a data store using ADO dataset components
	Working with record sets
	Using batch updates
	Loading data from and saving data to files
	Using parameters in commands

	Using TADODataSet
	Retrieving a dataset using a command

	Using TADOTable
	Specifying the table to use

	Using TADOQuery
	Specifying SQL statements
	Executing SQL statements

	Using TADOStoredProc
	Specifying the stored procedure
	Executing the stored procedure
	Using parameters with stored procedures

	Executing commands
	Specifying the command
	Using the Execute method
	Canceling commands
	Retrieving result sets with commands
	Handling command parameters

	Ch 25: Creating and using a client dataset
	Working with data using a client dataset
	Navigating data in client datasets
	Limiting what records appear
	Representing master/detail relationships
	Constraining data values
	Making data read-only
	Editing data
	Undoing changes
	Saving changes

	Sorting and indexing
	Adding a new index
	Deleting and switching indexes
	Using indexes to group data

	Representing calculated values
	Using internally calculated fields in client datasets

	Using maintained aggregates
	Specifying aggregates
	Aggregating over groups of records
	Obtaining aggregate values

	Adding application-specific information to the data

	Copying data from another dataset
	Assigning data directly
	Cloning a client dataset cursor

	Using a client dataset with a data provider
	Specifying a data provider
	Getting parameters from the application server
	Passing parameters to the application server
	Sending query or stored procedure parameters
	Limiting records with parameters

	Overriding the dataset on the application server
	Requesting data from an application server
	Handling constraints
	Handling constraints from the server
	Adding custom constraints

	Updating records
	Applying updates
	Reconciling update errors

	Refreshing records
	Communicating with providers using custom events

	Using a client dataset with flat-file data
	Creating a new dataset
	Loading data from a file or stream
	Merging changes into data
	Saving data to a file or stream

	Ch 26: Working with cached updates
	Deciding when to use cached updates
	Using cached updates
	Enabling and disabling cached updates
	Fetching records
	Applying cached updates
	Applying cached updates with a database component method
	Applying cached updates with dataset component methods
	Applying updates for master/detail tables

	Canceling pending cached updates
	Canceling pending updates and disabling further cached updates
	Canceling pending cached updates
	Canceling updates to the current record

	Undeleting cached records
	Specifying visible records in the cache
	Checking update status

	Using update objects to update a dataset
	Specifying the UpdateObject property for a dataset
	Using a single update object
	Using multiple update objects

	Creating SQL statements for update components
	Creating SQL statements at design time
	Understanding parameter substitution in update SQL statements
	Composing update SQL statements
	Using an update component’s Query property
	Using the DeleteSQL, InsertSQL, and ModifySQL properties

	Executing update statements
	Calling the Apply method
	Calling the SetParams method
	Calling the ExecSQL method

	Using dataset components to update a dataset

	Updating a read-only result set
	Controlling the update process
	Determining if you need to control the updating process
	Creating an OnUpdateRecord event handler

	Handling cached update errors
	Referencing the dataset to which to apply updates
	Indicating the type of update that generated an error
	Specifying the action to take
	Working with error message text
	Accessing a field’s OldValue, NewValue, and CurValue properties

	Ch 27: Using data controls
	Using common data control features
	Associating a data control with a dataset
	Editing and updating data
	Enabling editing in controls on user entry
	Editing data in a control

	Disabling and enabling data display
	Refreshing data display
	Enabling mouse, keyboard, and timer events

	Using data sources
	Using TDataSource properties
	Setting the DataSet property
	Setting the Name property
	Setting the Enabled property
	Setting the AutoEdit property

	Using TDataSource events
	Using the OnDataChange event
	Using the OnUpdateData event
	Using the OnStateChange event

	Controls that represent a single field
	Displaying data as labels
	Displaying and editing fields in an edit box
	Displaying and editing text in a memo control
	Displaying and editing text in a rich edit memo control
	Displaying and editing graphics fields in an image control
	Displaying and editing data in list and combo boxes
	Displaying and editing data in a list box
	Displaying and editing data in a combo box

	Displaying and editing data in lookup list and combo boxes
	Specifying a list based on a lookup field
	Specifying a list based on a secondary data source
	Setting lookup list and combo box properties
	Searching incrementally for list item values

	Handling Boolean field values with check boxes
	Restricting field values with radio controls

	Viewing and editing data with TDBGrid
	Using a grid control in its default state
	Creating a customized grid
	Understanding persistent columns
	Determining the source of a column property at runtime
	Creating persistent columns
	Deleting persistent columns
	Arranging the order of persistent columns
	Defining a lookup list column
	Defining a pick list column
	Putting a button in a column
	Setting column properties at design time
	Restoring default values to a column

	Displaying ADT and array fields
	Setting grid options
	Editing in the grid
	Rearranging column order at design time
	Rearranging column order at runtime
	Controlling grid drawing

	Responding to user actions at runtime

	Creating a grid that contains other data-aware controls
	Navigating and manipulating records
	Choosing navigator buttons to display
	Hiding and showing navigator buttons at design time
	Hiding and showing navigator buttons at runtime

	Displaying fly-over help
	Using a single navigator for multiple datasets

	Ch 28: Using decision support components
	Overview
	About crosstabs
	One-dimensional crosstabs
	Multidimensional crosstabs

	Guidelines for using decision support components
	Using datasets with decision support components
	Creating decision datasets with TQuery or TTable
	Creating decision datasets with the Decision Query editor
	Using the Decision Query editor

	Decision query properties

	Using decision cubes
	Decision cube properties and events
	Using the Decision Cube editor
	Viewing and changing dimension settings
	Setting the maximum available dimensions and summaries
	Viewing and changing design options

	Using decision sources
	Properties and events

	Using decision pivots
	Decision pivot properties

	Creating and using decision grids
	Creating decision grids
	Using decision grids
	Opening and closing decision grid fields
	Reorganizing rows and columns in decision grids
	Drilling down for detail in decision grids
	Limiting dimension selection in decision grids

	Decision grid properties

	Creating and using decision graphs
	Creating decision graphs
	Using decision graphs
	The decision graph display
	Customizing decision graphs
	Setting decision graph template defaults
	Customizing decision graph series

	Decision support components at runtime
	Decision pivots at runtime
	Decision grids at runtime
	Decision graphs at runtime

	Decision support components and memory control
	Setting maximum dimensions, summaries, and cells
	Setting dimension state
	Using paged dimensions

	Part III: Writing distributed applications
	Ch 29: Writing CORBA applications
	Overview of a CORBA application
	Understanding stubs and skeletons
	Using Smart Agents
	Activating server applications
	Binding interface calls dynamically

	Writing CORBA servers
	Defining object interfaces
	Using the CORBA Server Wizard
	Generating stubs and skeletons from an IDL file
	Using the CORBA Object Implementation Wizard
	Instantiating CORBA objects
	Using the delegation model
	Viewing and editing changes

	Implementing CORBA Objects
	Guarding against thread conflicts

	Changing CORBA interfaces
	Registering server interfaces

	Writing CORBA clients
	Using stubs
	Using the dynamic invocation interface

	Testing CORBA servers
	Setting up the testing tool
	Recording and running test scripts

	Ch 30: Creating Internet server applications
	Terminology and standards
	Parts of a Uniform Resource Locator
	URI vs. URL

	HTTP request header information

	HTTP server activity
	Composing client requests
	Serving client requests
	Responding to client requests

	Web server applications
	Types of Web server applications
	ISAPI and NSAPI
	CGI stand-alone
	Win-CGI stand-alone

	Creating Web server applications
	The Web module
	The Web Application object

	The structure of a Web server application
	The Web dispatcher
	Adding actions to the dispatcher
	Dispatching request messages

	Action items
	Determining when action items fire
	The target URL
	The request method type
	Enabling and disabling action items
	Choosing a default action item

	Responding to request messages with action items
	Sending the response
	Using multiple action items

	Accessing client request information
	Properties that contain request header information
	Properties that identify the target
	Properties that describe the Web client
	Properties that identify the purpose of the request
	Properties that describe the expected response
	Properties that describe the content

	The content of HTTP request messages

	Creating HTTP response messages
	Filling in the response header
	Indicating the response status
	Indicating the need for client action
	Describing the server application
	Describing the content

	Setting the response content
	Sending the response

	Generating the content of response messages
	Using page producer components
	HTML templates
	Specifying the HTML template
	Converting HTML-transparent tags
	Using page producers from an action item
	Chaining page producers together

	Using database information in responses
	Adding a session to the Web module
	Representing database information in HTML
	Using dataset page producers
	Using table producers
	Specifying the table attributes
	Specifying the row attributes
	Specifying the columns
	Embedding tables in HTML documents
	Setting up a dataset table producer
	Setting up a query table producer

	Debugging server applications
	Debugging ISAPI and NSAPI applications
	Debugging under Windows NT
	Debugging with a Microsoft IIS server
	Debugging under MTS
	Debugging with a Windows 95 Personal Web Server
	Debugging with Netscape Server Version 2.0

	Debugging CGI and Win-CGI applications
	Simulating the server
	Debugging as a DLL

	Ch 31: Working with sockets
	Implementing services
	Understanding service protocols
	Communicating with applications

	Services and ports

	Types of socket connections
	Client connections
	Listening connections
	Server connections

	Describing sockets
	Describing the host
	Choosing between a host name and an IP address

	Using ports

	Using socket components
	Using client sockets
	Specifying the desired server
	Forming the connection
	Getting information about the connection
	Closing the connection

	Using server sockets
	Specifying the port
	Listening for client requests
	Connecting to clients
	Getting information about connections
	Closing server connections

	Responding to socket events
	Error events
	Client events
	Server events
	Events when listening
	Events with client connections

	Reading and writing over socket connections
	Non-blocking connections
	Reading and writing events

	Blocking connections
	Using threads with blocking connections
	Using TWinSocketStream
	Writing client threads
	Writing server threads

	Part IV: Developing COM-based applications
	Ch 32: Overview of COM technologies
	COM as a specification and implementation
	COM extensions
	Parts of a COM application
	COM interfaces
	The fundamental COM interface, IUnknown
	COM interface pointers

	COM servers
	CoClasses and class factories
	In-process, out-of-process, and remote servers
	The marshaling mechanism
	Aggregation

	COM clients

	COM extensions
	Automation servers
	Active Server Pages
	ActiveX controls
	Active Documents
	Transactional objects
	Type libraries
	The content of type libraries
	Creating type libraries
	When to use type libraries
	Accessing type libraries
	Benefits of using type libraries
	Using type library tools

	Implementing COM objects with wizards
	Code generated by wizards

	Ch 33: Working with type libraries
	Type Library editor
	Parts of the Type Library editor
	Toolbar
	Object list pane
	Status bar
	Pages of type information

	Type library elements
	Interfaces
	Dispinterfaces
	CoClasses
	Type definitions
	Modules

	Using the Type Library editor
	Valid types
	Creating a new type library
	Opening an existing type library
	Adding an interface to the type library
	Modifying an interface using the type library
	Adding properties and methods to an interface or dispinterface
	Adding a CoClass to the type library
	Adding an interface to a CoClass
	Adding an enumeration to the type library
	Adding an alias to the type library
	Adding a record or union to the type library
	Adding a module to the type library
	Saving and registering type library information
	Saving a type library
	Refreshing the type library
	Registering the type library
	Exporting an IDL file

	Deploying type libraries

	Ch 34: Creating COM clients
	Importing type library information
	Using the Import Type Library dialog
	Using the Import ActiveX dialog
	Code generated when you import type library information

	Controlling an imported object
	Using component wrappers
	ActiveX wrappers
	Automation object wrappers

	Using data-aware ActiveX controls
	Example: Printing a document with Microsoft Word
	Step 1: Prepare C++Builder for this example
	Step 2: Import the Word type library
	Step 3: Use a VTable or dispatch interface object to control Microsoft Word
	Step 4: Clean up the example

	Writing client code based on type library definitions
	Connecting to a server
	Controlling an Automation server using a dual interface
	Controlling an Automation server using a dispatch interface
	Handling events in an automation controller

	Creating Clients for servers that do not have a type library

	Ch 35: Creating simple COM servers
	Overview of creating a COM object
	Designing a COM object
	Using the COM object wizard
	Using the Automation object wizard
	Choosing a threading model
	Writing an object that supports the free threading model
	Writing an object that supports the apartment threading model
	Writing an object that supports the neutral threading model

	Specifying ATL options
	Defining a COM object’s interface
	Adding a property to the object’s interface
	Adding a method to the object’s interface
	Exposing events to clients
	Managing events in your Automation object

	Automation interfaces
	Dual interfaces
	Dispatch interfaces
	Custom interfaces

	Marshaling data
	Automation compatible types
	Type restrictions for automatic marshaling
	Custom marshaling

	Registering a COM object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the application

	Ch 36: Creating an Active Server Page
	Creating an Active Server Object
	Using the ASP intrinsics
	Application
	Request
	Response
	Session
	Server

	Creating ASPs for in-process or out-of-process servers

	Registering an Active Server Object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the Active Server Page application

	Ch 37: Creating an ActiveX control
	Overview of ActiveX control creation
	Elements of an ActiveX control
	VCL control
	ActiveX wrapper
	Type library
	Property page

	Designing an ActiveX control
	Generating an ActiveX control from a VCL control
	Generating an ActiveX control based on a VCL form
	Licensing ActiveX controls
	Customizing the ActiveX control’s interface
	Adding additional properties, methods, and events
	Adding properties and methods
	Adding events

	Enabling simple data binding with the type library

	Creating a property page for an ActiveX control
	Creating a new property page
	Adding controls to a property page
	Associating property page controls with ActiveX control properties
	Updating the property page
	Updating the object

	Connecting a property page to an ActiveX control

	Registering an ActiveX control
	Testing an ActiveX control
	Deploying an ActiveX control on the Web
	Setting options

	Ch 38: Creating MTS or COM+ objects
	Understanding transactional objects
	Requirements for a transactional object

	Managing resources
	Accessing the object context
	Just-in-time activation
	Resource pooling
	Database resource dispensers
	Shared property manager
	Releasing resources

	Object pooling

	MTS and COM+ transaction support
	Transaction attributes
	Setting the transaction attribute

	Stateful and stateless objects
	Influencing how transactions end
	Initiating transactions
	Setting up a transaction object on the client side
	Setting up a transaction object on the server side

	Transaction timeout

	Role-based security
	Overview of creating transactional objects
	Using the Transactional Object wizard
	Choosing a threading model for a transactional object
	Activities

	Generating events under COM+
	Using the Event Object wizard
	Firing events using a COM+ event object

	Passing object references
	Using the SafeRef method
	Callbacks

	Debugging and testing transactional objects
	Installing transactional objects
	Administering transactional objects

	Part V: Creating custom components
	Ch 39: Overview of component creation
	Visual Component Library
	Components and classes
	How do you create components?
	Modifying existing controls
	Creating windowed controls
	Creating graphic controls
	Subclassing Windows controls
	Creating nonvisual components

	What goes into a component?
	Removing dependencies
	Properties, methods, and events
	Properties
	Events
	Methods

	Graphics encapsulation
	Registration

	Creating a new component
	Using the Component wizard
	Creating a component manually
	Creating a unit file
	Deriving the component
	Declaring a new constructor
	Registering the component

	Testing uninstalled components
	Testing installed components
	Installing a component on the Component palette
	Component file locations
	Adding the component

	Ch 40: Object-oriented programming for component writers
	Defining new classes
	Deriving new classes
	To change class defaults to avoid repetition
	To add new capabilities to a class

	Declaring a new component class

	Ancestors, descendants, and class hierarchies
	Controlling access
	Hiding implementation details
	Defining the component writer’s interface
	Defining the runtime interface
	Defining the design-time interface

	Dispatching methods
	Regular methods
	Virtual methods
	Overriding methods

	Abstract class members
	Classes and pointers

	Ch 41: Creating properties
	Why create properties?
	Types of properties
	Publishing inherited properties
	Defining properties
	The property declaration
	Internal data storage
	Direct access
	Access methods
	The read method
	The write method

	Default property values
	Specifying no default value

	Creating array properties
	Storing and loading properties
	Using the store-and-load mechanism
	Specifying default values
	Determining what to store
	Initializing after loading
	Storing and loading unpublished properties
	Creating methods to store and load property values
	Overriding the DefineProperties method

	Ch 42: Creating events
	What are events?
	Events are closures
	Events are properties
	Event types are closure types
	Event handlers have a return type of void

	Event handlers are optional

	Implementing the standard events
	Identifying standard events
	Standard events for all controls
	Standard events for standard controls

	Making events visible
	Changing the standard event handling

	Defining your own events
	Triggering the event
	Two kinds of events

	Defining the handler type
	Simple notifications
	Event-specific handlers
	Returning information from the handler

	Declaring the event
	Event names start with “On”

	Calling the event

	Ch 43: Creating methods
	Avoiding dependencies
	Naming methods
	Protecting methods
	Methods that should be public
	Methods that should be protected

	Making methods virtual
	Declaring methods

	Ch 44: Using graphics in components
	Overview of graphics
	Using the canvas
	Working with pictures
	Using a picture, graphic, or canvas
	Loading and storing graphics
	Handling palettes
	Specifying a palette for a control

	Off-screen bitmaps
	Creating and managing off-screen bitmaps
	Copying bitmapped images

	Responding to changes

	Ch 45: Handling messages
	Understanding the message-handling system
	What’s in a Windows message?
	Dispatching messages
	Tracing the flow of messages

	Changing message handling
	Overriding the handler method
	Using message parameters
	Trapping messages

	Creating new message handlers
	Defining your own messages
	Declaring a message identifier
	Declaring a message-structure type

	Declaring a new message-handling method

	Ch 46: Making components available at design time
	Registering components
	Declaring the Register function
	Writing the Register function
	Specifying the components
	Specifying the palette page
	Using the RegisterComponents function

	Adding palette bitmaps
	Providing Help for your component
	Creating the Help file
	Creating the entries
	Making component help context-sensitive
	Adding component help files

	Adding property editors
	Deriving a property-editor class
	Editing the property as text
	Displaying the property value
	Setting the property value

	Editing the property as a whole
	Specifying editor attributes
	Registering the property editor

	Adding component editors
	Adding items to the context menu
	Specifying menu items
	Implementing commands

	Changing the double-click behavior
	Adding clipboard formats
	Registering the component editor

	Property categories
	Registering one property at a time
	Registering multiple properties at once
	Property category classes
	Built-in property categories
	Deriving new property categories

	Using the IsPropertyInCategory function

	Compiling components into packages
	Troubleshooting custom components

	Ch 47: Modifying an existing component
	Creating and registering the component
	Modifying the component class
	Overriding the constructor
	Specifying the new default property value

	Ch 48: Creating a graphic component
	Creating and registering the component
	Publishing inherited properties
	Adding graphic capabilities
	Determining what to draw
	Declaring the property type
	Declaring the property
	Writing the implementation method

	Overriding the constructor and destructor
	Changing default property values

	Publishing the pen and brush
	Declaring the data members
	Declaring the access properties
	Initializing owned classes
	Setting owned classes’ properties

	Drawing the component image
	Refining the shape drawing

	Ch 49: Customizing a grid
	Creating and registering the component
	Publishing inherited properties
	Changing initial values
	Resizing the cells
	Filling in the cells
	Tracking the date
	Storing the internal date
	Accessing the day, month, and year
	Generating the day numbers
	Selecting the current day

	Navigating months and years
	Navigating days
	Moving the selection
	Providing an OnChange event
	Excluding blank cells

	Ch 50: Making a control data aware
	Creating a data-browsing control
	Creating and registering the component
	Making the control read-only
	Adding the ReadOnly property
	Allowing needed updates

	Adding the data link
	Declaring the data member
	Declaring the access properties
	An example of declaring access properties
	Initializing the data link

	Responding to data changes

	Creating a data-editing control
	Changing the default value of FReadOnly
	Handling mouse-down and key-down messages
	Responding to mouse-down messages
	Responding to key-down messages

	Updating the field datalink class
	Modifying the Change method
	Updating the dataset

	Ch 51: Making a dialog box a component
	Defining the component interface
	Creating and registering the component
	Creating the component interface
	Including the form unit files
	Adding interface properties
	Adding the Execute method

	Testing the component

	App A: ANSI implementation-specific standards
	Index
	A
	B
	C
	D
	E
	F
	G
	H - I
	J - K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X - Z

