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Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, writing custom components,
creating Internet Web server applications, and including support for
industry-standard specifications such as TCP/IP, OLE, and ActiveX. The Developer’s
Guide assumes you are familiar with using C++Builder and understand fundamental
C++Builder programming techniques. For an introduction to C++Builder
programming and the integrated development environment (IDE), see the Quick
Start and the online Help.

What's in this manual?

This manual contains five parts, as follows:

¢ PartI, “Programming with C++Builder,” describes how to build general-purpose
C++Builder applications. This part provides details on programming techniques
you can use in any C++Builder application. For example, it describes how to use
common Visual Component Library (VCL) objects that make user interface
programming easy such as handling strings, manipulating text, implementing the
Windows common dialog, toolbars, and cool bars. It also includes chapters on
working with graphics, error and exception handling, using DLLs, OLE
automation, and writing international applications.

Generally, it rarely matters that C++Builder’s underlying VCL is written in Object
Pascal. However, there are a few instances where it affects your C++Builder
programs. A chapter on C++ language support and the VCL details such language
issues as how C++ class instantiation differs when using VCL classes and the C++
language extensions added to support the C++Builder
“component-property-event” model of programming.

The chapter on deployment details the tasks involved in deploying your
application to your application users. For example, it includes information on
effective compiler options, using InstallShield Express, licensing issues, and how
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to determine which packages, DLLs, and other libraries to use when building the
production-quality version of your application.

e Part II, “Developing database applications,” describes how to build database
applications using database tools and components. C++Builder lets you access
many types of databases. With the forms and reports you create, you can access
local databases such as Paradox and dBASE, network SQL server databases like
InterBase and Sybase, and any data source accessible through open database
connectivity (ODBC) or ActiveX Data Objects (ADO).

e Part III, “Writing distributed applications,” describes how to create Web server
applications as CGI applications or dynamic-link libraries (DLLs). C++Builder
provides Internet-specific components that make it easy to handle events
associated with a specific Uniform Resource Identifier (URI) and to
programmatically construct HTML documents.

This part also provides a chapter on the C++Builder socket components that let
you create applications that can communicate with other systems using TCP/IP
and related protocols. Sockets provide connections based on the TCP/IP protocol,
but are sufficiently general to work with related protocols such as Xerox Network
System (XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

¢ Part IV, “Developing COM-based applications,” describes how to build
applications that can interoperate with other COM-based API objects. C++Builder
supports COM applications that are based on the Active Template Library (ATL).
Wizards and a Type Library editor ease the development of COM servers, and an
importing tool lets you quickly create client applications. Support for COM clients
is available in all editions of C++Builder. To create COM servers, you need the
Professional or Enterprise edition.

* Part V, “Creating custom components,” describes how to design and implement
your own components, and how to make them available on the Component
palette of the IDE. A component can be almost any program element that you
want to manipulate at design time. Implementing custom components entails
deriving a new class from an existing class type in the VCL class library.

Manual conventions

This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Table 1.1 Typefaces and symbols

Typeface or symbol ~ Meaning

Monospace type Monospaced text represents text as it appears on screen or in C++ code. It
also represents anything you must type.

[1 Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent C++ reserved words or
compiler options.
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Table 1.1  Typefaces and symbols (continued)

Typeface or symbol ~ Meaning

Italics  Ttalicized words in text represent C++ identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press ESc to
exit a menu.”

Contacting developer support

Inprise offers a variety of support options. These include free services on the Internet,
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of support,
ranging from support on installation of the Borland product to fee-based
consultant-level support and detailed assistance.

For more information about Inprise’s developer support services, please see our Web
site at http:/ /www.borland.com /devsupport, call Borland Assist at (800) 523-7070,
or contact our Sales Department at (831) 431-1064. For customers outside of the
United States of America, see our web site at http:/ /www.borland.com /bww /
intlcust.html.

When contacting support, be prepared to provide complete information about your
environment, the version of the product you are using, and a detailed description of
the problem.

For information about year 2000 issues and our products, see the following URL:
http:/ /www.borland.com/about/y2000/.
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The chapters in “Programming with C++Builder” present concepts and skills
necessary for creating C++Builder applications using any edition of the product.

Programming with C++Builder






Programming with C++Bulilder

Borland C++Builder is an object-oriented, visual programming environment for
rapid development of 32-bit Windows applications. Using C++Builder, you can
create highly efficient Windows applications with a minimum of manual coding.

C++Builder provides a comprehensive class library called the Visual Component
Library (VCL) and a suite of Rapid Application Development (RAD) design tools,
including application and form templates, and programming wizards. C++Builder
supports truly object-oriented programming: the class library includes objects that
encapsulate the Windows API as well as other useful programming techniques.

This chapter briefly describes the C++Builder development environment, presents a
brief overview of the Visual Component Library, and touches on many of the
components in the VCL that are available to you. The rest of this manual provides
technical details on developing general-purpose, database, Internet and intranet
applications, and includes information on writing your own components, and
creating ActiveX and COM controls.

The integrated development environment

When you start C++Builder, you are immediately placed within the integrated
development environment, also called the IDE. This environment provides all the
tools you need to design, develop, test, debug, and deploy applications.

C++Builder’s development environment includes a visual form designer, Object
Inspector, Component palette, Project Manager, source code editor, debugger, and
installation tool. You can move freely from the visual representation of an object (in
the form designer), to the Object Inspector to edit the initial runtime state of the
object, to the source code editor to edit the execution logic of the object. Changing
code-related properties, such as the name of an event handler, in the Object Inspector
automatically changes the corresponding source code. In addition, changes to the
source code, such as renaming an event handler method in a form class declaration,
is immediately reflected in the Object Inspector.
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Designing applications

C++Builder includes all the tools necessary to start designing applications:

¢ A blank window, known as a form, on which to design the UI for your application.
* An extensive class library with many reusable objects.

* An Object Inspector for examining and changing object traits.

* A Code editor that provides direct access to the underlying program logic.

¢ A Project Manager for managing the files that make up one or more projects.

* Many other tools such as an image editor on the toolbar and an integrated
debugger on menus to support application development in the IDE.

¢ Command-line tools including compilers, linkers, and other utilities.

You can use C++Builder to design any kind of 32-bit Windows application—from
general-purpose utilities to sophisticated data access programs or distributed
applications. C++Builder’s database tools and data-aware components let you quickly
develop powerful desktop database and client/server applications. Using C++Builder’s
data-aware controls, you can view live data while you design your application and
immediately see the results of database queries and changes to the application interface.

Chapter 3, “Building applications, components, and libraries” introduces
C++Builder’s support for different types of applications.

Understanding the VCL

The Visual Component Library (VCL) is based on the properties, methods, and
events (PME) model. The PME model defines the data members (properties), the
functions that operate on the data (methods), and a way to interact with users of the
class (events). The VCL is a hierarchy of objects, written in Object Pascal and tied to
the C++Builder IDE, that allows you to develop applications quickly. Using
C++Builder’s Component palette and Object Inspector, you can place VCL
components on forms and specify their properties without writing code.

Properties

Properties are characteristics of components. You can see and change properties at
design time and get immediate feedback as the components react in the IDE.
Well-designed properties make your components easier for others to use and easier
for you to maintain.

Methods

Methods are functions that are members of a class. Class methods can access all the
public, protected, and private properties and data members of the class and are
commonly referred to as member functions.
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Events

Event driven programming (EDP) means just that—programming by responding to
events. In essence, event driven means that the program does not restrict what the
user can do next. For example, in a Windows program, the programmer has no way
of knowing the sequence of actions the user will perform next. They may pick a menu
item, click a button, or mark some text. So, EDP means that you write code to handle
whatever events occur that you're interested in, rather than write code that always
executes in the same restricted order.

The kinds of events that can occur can be divided into two main categories:

¢ User events
* System events

Regardless of how the event was called, C++Builder looks to see if you have assigned
any code to handle that event. If you have, then that code is executed; otherwise,
nothing is done.

User events

User events are actions that are initiated by the user. Examples of user events are
OnClick (the user clicked the mouse), OnKeyPress (the user pressed a key on the
keyboard), and OnDbIClick (the user double-clicked a mouse button). These events
are always tied to a user’s actions.

System events

System events are events that the operating system fires for you. For example, the
OnTimer event (the Timer component issues one of these events whenever a
predefined interval has elapsed), the OnCreate event (the component is being
created), the OnPaint event (a component or window needs to be redrawn), etc.
Usually, system events are not directly initiated by a user action.

Objects, components, and controls in the VCL

Figure 2.1 is a summary of the Visual Component Library that shows the five major
branches of the inheritance tree.

Figure 2.1 A simplified hierarchy diagram

TObject Tcomponent]—b( TPerSIStent]—J TControl ]—JTWmcantrol

[ohjects]
|objects] [nbj&rts] TGraphicControl [DUJBCtS]

[objects]

| Exception i—J [abjects]

Yy
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The next few sections present a general description of the types of classes that each

branch contains. For a complete overview of the VCL object hierarchy, refer to the
VCL Object Hierarchy wall chart that is included with this product.

The TObject branch

All VCL objects descend from TObject, an abstract class whose methods define
fundamental behavior like construction, destruction, and message handling. Much of
the powerful capability of VCL objects are established by the methods that TObject
introduces. TObject encapsulates the fundamental behavior common to all objects in
the VCL, by introducing methods that provide:

¢ The ability to respond when objects are created or destroyed.

¢ (Class type and instance information on an object, and runtime type information
(RTTI) about its published properties.

¢ Support for message-handling.

TObject is the immediate ancestor of many simple classes. Classes that are contained
within this branch have one common, important characteristic, they are transitory.
What this means, is that these classes do not have a method to save the state that they
are in prior to destruction, they are not persistent.

One of the main groups of classes in this branch is the Exception class. This class
provides a large set of built-in exception classes for automatically handling
divide-by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions.

Another type of group in the TObject branch are classes that are encapsulated data
structures, such as:

* TRBits, a class that stores an “array” of Boolean values

e TList, a linked list class

e TStack, a class that maintains a last-in first-out array of pointers

* TQueue, a class that maintains a first-in first-out array of pointers

You can also find wrappers around external objects like TPrinter, which encapsulates
the Windows printer interface, and TRegistry, a low-level wrapper for the system
registry and functions that operate on the registry.

TStream is good example of another type of class in this branch. T'Stream is the base
class type for stream objects that can read from or write to various kinds of storage
media, such as disk files, dynamic memory, and so on.

So you can see, this branch includes many different types of classes that are very
useful to you as a developer.
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The TPersistent branch

Directly below TObject in the VCL hierarchy is TPersistent. TPersistent adds two very
important methods to all classes based on it—SaveToStream and LoadFromStream.
These methods supply persistence to objects.

For example, when the form designer needs to create a DFM file (a file used to store
information about the components on the form), it loops through its components
array and calls SaveToStream for all the components on the form. Each component
“knows” how to write its changed properties out to a stream (in this case, a text file).
Conversely, when the form designer needs to load the properties for components
from the DFM file, it loops through the components array and calls LoadFromStream
for each component. Thus, any class derived from TPersistent has the ability to save
its state information and restore it on demand.

The types of classes in this branch include:

o TGraphicsObject, an abstract base class for objects which encapsulate Windows
graphics objects: TBrush, TFont, and TPen.

* TGraphic, an abstract base class type for objects such as icons, bitmaps, and
metafiles that can store and display visual images: TBitmap, Tlcon, and TMetaFile.

e TStrings, a base class for objects that represent a list of strings.

e TClipboard, a wrapper for the Windows clipboard, which contains text or graphics
that have been cut or copied from an application.

e TCollection, TOwnedCollection, and TCollectionltem, maintained indexed collections
of specially defined items.

The TComponent branch

TComponent is the common ancestor of all VCL components. Components are objects
that you can manipulate on forms at design time. Despite its name, the VCL consists
mostly of nonvisual objects.

VCL components are persistent objects that have the following capabilities:

¢ The ability to appear on the Component palette and be changed in the form
designer.

* The ability to own and manage other components.
¢ Enhanced streaming and filing capabilities.

¢ The ability to be converted into an ActiveX control or other COM object by
wizards on the ActiveX page of the New Objects dialog.

TComponent acts as the standard “bus” that all components plug into. There are
several methods in TComponent that dictate how components act during design time.
This is also where the Name and Owner properties are introduced. Every component
derived from TComponent has a Name and an Owner property. The owner is
responsible for deleting the component.
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Components that do not need a visual interface are derived directly from
TComponent.
The types of classes that can be found in this branch include:

* TMainMenu, a class that provides a menu bar and its accompanying drop-down
menus for a form.

e TTimer, a class that includes the Windows API timer functions.

* TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on, the
common windows dialog boxes.

o TActionList, a class that maintains a list of actions used with components and
controls, such as menu items and buttons.

¢ TScreen, a class that keeps track of what forms and data modules have been
instantiated by the application, the active form, and the active control within that
form, the size and resolution of the screen, and the cursors and fonts available for
the application to use.

The TControl branch

All controls are visual objects, meaning the user can see them and manipulate them
at runtime. All controls have properties, methods, and events in common that are
specific to the visual aspect of controls, such as the position of the control, the cursor
or hint associated with the control’s window, methods to paint or move the control,
and events to respond to mouse actions.

Whereas TComponent defines behavior for all components, TControl defines behavior
for all visual controls. This includes drawing routines, standard Windows events,
and containership.

One group of classes in this branch is called TGraphicControls. TGraphicControls are
controls that must draw themselves and can never receive focus. The types of
controls that can be found in this group include:

* TImage, a control that displays graphical images.
® TLabel, a control that displays text on a form.
e TBevel, a control that represents a beveled outline.

e TPaintBox, a control that provides a canvas that applications can use for drawing
or rendering an image.

Notice that these include the common paint routines (Paint, RePaint, Invalidate, etc.)
but C++Builder doesn’t have to allocate a window handle for them because they
never need to receive focus.
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The TWinControl branch

TWinControl is the base class for all windowed controls. The following are features of
windowed controls:

¢ Windowed controls are controls that can receive focus while the application is
running.

¢ Other controls may display data, but the user can use the keyboard to interact with
a control only if the control is a windowed control.

¢ Windowed controls can contain other controls.

* A control that contains other controls is a parent. Only a windowed control can be
a parent of one or more other child controls.

¢ Windowed controls have a window handle.

TWinControls are like TControls except they can receive focus. This means that there
are many more standard events that apply to them and that Windows must allocate a
window handle for them.

This branch includes both controls that are drawn automatically by Windows
(including TEdit, TListBox, TComboBox, TPageControl, and so on) and custom controls
that C++Builder must draw (including TDBNavigator, TMediaPlayer, TGauge, and so
on). However, you never have to worry about any of the implementation details of
how the controls render themselves or how they respond to events—C++Builder
completely encapsulates this behavior for you.

The following sections provide an overview of controls. Refer to Chapter 5,
“Working with controls” for more information on using controls.

Properties common to TControl

All visual controls (descendants of TControl) share certain properties including:

Position, size, and alignment properties
Display properties

Parent properties

A navigation property

Drag-and-drop properties
Drag-and-dock properties

Action properties

While these properties are inherited from TControl, they are published—and hence
appear in the Object Inspector—only for components to which they are applicable.
For example, TImage does not publish the Color property, since its color is determined
by the graphic it displays.
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Action properties

Actions let you share common code for performing actions (for example, when a tool
bar button and menu item do the same thing), as well as providing a single, centralized
way to enable and disable actions depending on the state of your application.

¢ Action designates the action associated with the control.

* ActionLink contains the action link object associated with the control.

Position, size, and alignment properties
This set of properties defines the position and size of a control on the parent control:

* Height sets the vertical size.
* Width sets the horizontal size.
* Top positions the top edge.
e Left positions the left edge.

¢ AutoSize specifies whether the control sizes itself automatically to accommodate
its contents.

¢ Align determines how the control aligns within its container (parent control).
* Anchor specifies how the control is anchored to its parent.

This set of properties determine the height, width, and overall size of the control’s
client area:

¢ ClientHeight specifies the height of the control’s client area in pixels.
o CleintWidth specifies the width of the control’s client area in pixels.

These properties aren’t accessible in nonvisual components, but C++Builder does
keep track of where you place the component icons on your forms. Most of the time
you’ll set and alter these properties by manipulating the control’s image on the form
or using the Alignment palette. You can, however, alter them at runtime.

Display properties

The following properties govern the general appearance of a control:
¢ Color changes the background color of a control.

* Font changes the color, type family, style, or size of text.

e Cursor specifies the image used to represent the mouse pointer when it passes into
the region covered by the control.

¢ DesktopFont specifies whether the control uses the Windows icon font when
writing text.
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Parent properties

To maintain a consistent appearance across your application, you can make any
control look like its container—called its parent—by setting the parent properties to
true.

e ParentColor determines where a control looks for its color information.
e ParentFont determines where a control looks for its font information.

® ParentShowHint determines where a control looks to find out if its Help Hint
should be shown.

A navigation property
The following property determines how users navigate among the controls in a form:

* Caption contains the text string that labels a component. To underline a character
in a string, include an ampersand (&) before the character. This type of character is
called an accelerator key. The user can then select the control or menu item by
pressing Alt while typing the underlined character.

Drag-and-drop properties
Two component properties affect drag-and-drop behavior:

e DragMode determines how dragging starts. By default, DragMode is dmManual,
and the application must call the BeginDrag method to start dragging. When
DragMode is dmAutomatic, dragging starts as soon as the mouse button goes down.

* DragCursor determines the shape of the mouse pointer when it is over a draggable
component.

Drag-and-dock properties
The following properties control drag-and-dock behavior:

¢ Floating indicates whether the control is floating.
* DragKind specifies whether the control is being dragged normally or for docking.

* DragMode determines how the control initiates drag-and-drop or drag-and-dock
operations.

* FloatingDockSiteClass specifies the class of the temporary control that hosts the
control when it is floating.

* DragCursor is the cursor that is shown while dragging.

* DockOrientation specifies how the control is docked relative to other controls
docked in the same parent.

* HostDockSite specifies the control in which the control is docked.

For more information, see “Implementing drag-and-dock in controls” on page 5-4.
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Standard events common to TControl

The VCL defines a set of standard events for its controls. The following events are
declared as part of the TControl class, and are therefore available for all classes
derived from TControl:

e OnClick occurs when the user clicks the control.

e OnContextPopup occurs when the user right-clicks the control or otherwise invokes
the popup menu (such as using the keyboard).

* OnCanResize occurs when an attempt is made to resize the control.
* OnResize occurs immediately after the control is resized.
* OnConstrainedResize occurs immediately after OnCanResize.

e OnStartDock occurs when the user begins to drag a control with a DragKind of
dkDock.

¢ OnEndDock occurs when the dragging of an object ends, either by docking the
object or by canceling the dragging.

* OnStartDrag occurs when the user begins to drag the control or an object it
contains by left-clicking on the control and holding the mouse button down.

* OnEndDrag occurs when the dragging of an object ends, either by dropping the
object or by canceling the dragging.

* OnDragDrop occurs when the user drops an object being dragged.

* OnMouseMove occurs when the user moves the mouse pointer while the mouse
pointer is over a control.

® OnDUbIClick occurs when the user double-clicks the primary mouse button when
the mouse pointer is over the control.

* OnDragOuver occurs when the user drags an object over a control.

* OnMouseDown Occurs when the user presses a mouse button with the mouse
pointer over a control.

* OnMouseUpOccurs when the user releases a mouse button that was pressed with
the mouse pointer over a component.

Properties common to TWinControl

All windowed controls (descendants of TWinControl) share certain properties including:

¢ Information about the control
* Border style display properties
¢ Navigation properties

* Drag-and-dock properties

While these properties are inherited from TWinControl, they are published—and
hence appear in the Object Inspector—only for controls to which they are applicable.
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General information properties

The general information properties contain information about the appearance of the
TWinControl, client area size and origin, windows assigned information, and mouse
wheel information.

ClientOrigin specifies the screen coordinates (in pixels) of the top left corner of a
control’s client area. The screen coordinates of a control that is descended from
TControl and not TWinControl are the screen coordinates of the control’s parent
added to its Left and Top properties.

ClientRect returns a rectangle with its Top and Left properties set to zero, and its
Bottom and Right properties set to the control’s Height and Width, respectively.
ClientRect is equivalent to Rect(0, 0, ClientWidth, ClientHeight).

Brush determines the color and pattern used for painting the background of the
control.

Handle provides access to the window handle of the control.
WindowHandle also provides access to a window handle for the control.

HelpContext provides a context number for use in calling context-sensitive online
Help.

Controls lists all children of the windowed control.

Border style display properties

The bevel properties control the appearance of the beveled lines, boxes, or frames on
the forms and windowed controls in your application.

InnerBevel specifies whether the inner bevel has a raised, lowered, or flat look.
BevelKind specifies the type of bevel if the control has beveled edges.
BevelOuter specifies whether the outer bevel has a raised, lowered, or flat look.
BevelWidth specifies the width, in pixels, of the inner and outer bevels.
BorderWidth is used to get or set the width of the control’s border.

BevelEdges is used to get or set which edges of the control are beveled.

Navigation properties
Two additional properties determine how users navigate among the controls in a form:

TabOrder indicates the position of the control in its parent’s tab order, the order in
which controls receive focus when the user presses the Tab key. Initially, tab order
is the order in which the components are added to the form, but you can change
this by changing TabOrder. TabOrder is meaningful only if TabStop is true.

TabStop determines whether the user can tab to a control. If TabStop is true, the
control is in the tab order.
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Drag-and-dock properties
The following properties manage drag-and-dock behavior:

o UseDockManager specifies whether the dock manager is used in drag-and-dock
operations.

¢ VisibleDockClientCount specifies the number of visible controls that are docked on
the windowed control.

® DockManager specifies the control’s dock manager interface.
* DockClients lists the controls that are docked to the windowed control.
* DockSite specifies whether the control can be the target of drag-and-dock operations.

For more information, see “Implementing drag-and-dock in controls” on page 5-4.

Events common to TWinControl

The following events exist for all controls derived from TWinControl (which also
includes all the controls that Windows defines). These events are in addition to those
that exist in all controls.

* OnEnter occurs when the control is about to receive focus.

* OnKeyDown occurs on the down stroke of a key press.

* OnKeyPress occurs when a user presses a single character key.

* OnKeylUp occurs when the user releases a key that has been pressed.

¢ OnExit occurs when the input focus shifts away from one control to another.
* OnDockDrop occurs when another control is docked to the control.

® OnDockOver occurs when another control is dragged over the control.

* OnGetSitelnfo returns the control’s docking information.

* OnMouseWheel occurs when the mouse wheel is rotated.

* OnMouseWheelDown occurs when the mouse wheel is rotated downward.
e OnMouseWheelUp occurs when the mouse wheel is rotated upward.

e OnUnDock occurs when the application tries to undock a control that is docked to
a windowed control.

Creating the application user interface

All visual design work in C++Builder takes place on forms. When you open C++Builder
or create a new project, a blank form is displayed on the screen. You can use it to start
building your application interface including windows, menus, and common dialogs.

You design the look and feel of the graphical user interface for an application by
placing and arranging visual components such as buttons and list boxes on the form.
C++Builder takes care of the underlying programming details. You can also place
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invisible components on forms to capture information from databases, perform
calculations, and manage other interactions.

Chapter 4, “Developing the application user interface” provides details on using
forms such as creating modal forms dynamically, passing parameters to forms, and
retrieving data from forms.

Using components

Many visual components are provided in the development environment itself on the
Component palette. You select components from the Component palette and drop
them onto the form to design the application user interface. Once a visual component
is on the form, you can adjust its position, size, and other design-time properties.

C++Builder components are grouped functionally on the different pages of the
Component palette. For example, commonly used components such as those to
create menus, edit boxes, or buttons are located on the Standard page of the
Component palette. Handy controls such as a timer, paint box, media player, and
OLE container are on the System page.

At first glance, C++Builder’s components appear to be just like any other C++ class. But
there are differences between components in C++Builder and the standard C++ class
hierarchies that most C++ programmers work with. Some differences are described here:

¢ All C++Builder components descend from TComponent.

¢ Components are most often used as is and are changed through their properties,
rather than serving as “base classes” to be subclassed to add or change
functionality. When a component is inherited, it is usually to add specific code to
existing event handling member functions.

® VCL components can only be allocated on the heap, not on the stack (that is, they
must be created with the new operator).

* Properties of components intrinsically contain runtime type information.

¢ Components can be added to the Component palette in the C++Builder user
interface and manipulated on a form.

Components often achieve a better degree of encapsulation than is usually found in
standard C++ classes. For example, consider the use of a dialog containing a push
button. In a C++ Windows program, when a user clicks on the button, the system
generates a WM_LBUTTONDOWN message. The program must catch this message
(typically in a switch statement, a message map, or a response table) and dispatch it
to a routine that will execute in response to the message.

Most Windows messages are handled by C++Builder components. When you want
to respond to a Windows message, you only need to provide an event handler.

Chapter 9, “C++ language support for the VCL” provides details on extensions to the
C++ language that enable you to use the VCL.
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VCL standard components

The Component palette contains a selection of components that handle a wide variety
of programming tasks. You can add, remove, and rearrange components on the palette,
and you can create component templates and frames that group several components.

The components on the palette are arranged in pages according to their purpose and

functionality. Which pages appear in the default configuration depends on the
version of C++Builder you are running. Table 2.1 lists typical default pages and the
types of components they contain.

Table2.1  Component palette pages
Page name Contents
Standard Standard Windows controls, menus
Additional Additional controls
Win32 Windows 9x/NT 4.0 common controls
System Components and controls for system-level access, including timers,

Data Access
Data Controls

multimedia, and DDE
Nonvisual components for accessing database tables, queries, and reports

Visual, data-aware controls

ADO Components that provide data access through the ADO framework
InterBase Components that provide direct access to InterBase
Midas Components used for creating multi-tiered database applications

Internet Express

Internet
FastNet

Decision Cube

Components that are simultaneously a Web Server application and the client
of a multi-tiered database application

Components for internet communication protocols and Web applications
NetMasters Internet controls

Controls that let you summarize information from databases and view it
from a variety of perspectives

QReport QuickReport components for creating embedded reports
Dialogs Windows common dialog boxes

Win 3.1 Old style Win 3.1 components

Samples Sample custom components

ActiveX Sample ActiveX controls

Servers Ole Servers for Microsoft Excel, Word, and so on

The online Help provides information about the components on the default palette.
Some of the components on the ActiveX and Samples pages, however, are provided
as examples only and are not documented.
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Text controls

Many applications present text to the user or allow the user to enter text. The type of
control used for this purpose depends on the size and format of the information.

Use this component: When you want users to do this:

Edit Edit a single line of text

Memo Edit multiple lines of text

MaskEdit Adbhere to a particular format, such as a postal code or phone number
RichEdit Edit multiple lines of text using rich text format

Properties common to all text controls
All of the text controls have these properties in common:

Text determines the text that appears in the edit box or memo control.

CharCase forces the case of the text being entered to lowercase or uppercase.
ReadOnly specifies whether the user is allowed to change the text.

MaxLength limits the number of characters in the control.

PasswordChar hides the text by displaying a single character (usually an asterisk).

HideSelection specifies whether selected text remains highlighted when the control
does not have focus.

Properties shared by memo and rich text controls

Memo and rich text controls, which handle multiple lines of text, have several
properties in common:

Alignment specifies how text is aligned (left, right, or center) in the component.

The Text property contains the text in the control. Your application can tell if the
text changes by checking the Modified property.

Lines contains the text as a list of strings.

OEMConvert determines whether the text is temporarily converted from ANSI to
OEM as it is entered. This is useful for validating file names.

WordWrap determines whether the text will wrap at the right margin.
WantReturns determines whether the user can insert hard returns in the text.
WantTabs determines whether the user can insert tabs in the text.

AutoSelect determines whether the text is automatically selected (highlighted)
when the control becomes active.

SelText contains the currently selected (highlighted) part of the text.
SelStart and SelLength indicate the position and length of the selected part of the text.

At runtime, you can select all the text in the memo with the SelectAll method.
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Rich text controls

The rich edit component is a memo control that supports rich text formatting,
printing, searching, and drag-and-drop of text. It allows you to specify font
properties, alignment, tabs, indentation, and numbering.

Specialized input controls
The following components provide additional ways of capturing input.

Use this component: When you want users to do this:
ScrollBar Select values on a continuous range
TrackBar Select values on a continuous range (more visually effective than a
scroll bar)
UpDown Select a value from a spinner attached to an edit component
HotKey Enter Ctrl/ Shift/ Alt keyboard sequences
Scroll bars

The scroll bar component is a Windows scroll bar that you can use to scroll the
contents of a window, form, or other control. In the OnScroll event handler, you write
code that determines how the control behaves when the user moves the scroll bar.

The scroll bar component is not used very often, since many visual components

provide scroll bars of their own that don’t require additional coding. For example,
TForm has VertScrollBar and HorzScrollBar properties that automatically configure
scroll bars on the form. To create a scrollable region within a form, use TScrollBox.

Track bars

A track bar can set integer values on a continuous range. It is useful for adjusting
properties like color, volume and brightness. The user moves the slide indicator by
dragging it to a particular location or clicking within the bar.

e Use the Max and Min properties to set the upper and lower range of the track bar.
e Use SelEnd and SelStart to highlight a selection range. See Figure 2.2.

Figure 2.2 Three views of the track bar component

S [ [ —
* The Orientation property determines whether the track bar is vertical or horizontal.

¢ By default, a track bar has one row of ticks along the bottom. Use the TickMarks
property to change their location. To control the intervals between ticks, use the
TickStyle property and SetTicks method.

e Position sets a default position for the track bar and tracks the position at runtime.

* By default, users can move one tick up or down by pressing the up and down
arrow keys. Set LineSize to change that increment.

¢ Set PageSize to determine the number of ticks moved when the user presses Page Up
and Page Down.
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Up-down controls

An up-down control consists of a pair of arrow buttons that allow users to change an
integer value in fixed increments. The current value is given by the Position property;
the increment, which defaults to 1, is specified by the Increment property. Use the
Associate property to attach another component (such as an edit control) to the
up-down control.

Hot key controls

Use the hot key component to assign a keyboard shortcut that transfers focus to any
control. The HotKey property contains the current key combination and the Modifiers
property determines which keys are available for HotKey.

Splitter control

A splitter placed between aligned controls allows users to resize the controls. Used
with components like panels and group boxes, splitters let you divide a form into
several panes with multiple controls on each pane.

After placing a panel or other control on a form, add a splitter with the same
alignment as the control. The last control should be client-aligned, so that it fills up
the remaining space when the others are resized. For example, you can place a panel
at the left edge of a form, set its Alignment to alLeft, then place a splitter (also aligned
to alLeft) to the right of the panel, and finally place another panel (aligned to alLeft or
alClient) to the right of the splitter.

Set MinSize to specify a minimum size the splitter must leave when resizing its
neighboring control. Set Beveled to true to give the splitter’s edge a 3D look.

Buttons and similar controls

Aside from menus, buttons provide the most common way to invoke a command in
an application. C++Builder offers several button-like controls:

Use this component:  To do this:

Button Present command choices on buttons with text

BitBtn Present command choices on buttons with text and glyphs

SpeedButton Create grouped toolbar buttons

CheckBox Present on/off options

RadioButton Present a set of mutually exclusive choices

ToolBar Arrange tool buttons and other controls in rows and automatically adjust
their sizes and positions

CoolBar Display a collection of windowed controls within movable, resizable
bands

Button controls

Users click button controls to initiate actions. Double-clicking a button at design time
takes you to the button’s OnClick event handler in the Code editor.

* Set Cancel to true if you want the button to trigger its OnClick event when the user
presses ESsc.

o Set Default to true if you want the Enter key to trigger the button’s OnClick event.
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Bitmap buttons

A bitmap button (BitBtn) is a button control that presents a bitmap image on its face.
* To choose a bitmap for your button, set the Glyph property.

¢ Use Kind to automatically configure a button with a glyph and default behavior.

¢ By default, the glyph is to the left of any text. To move it, use the Layout property.

* The glyph and text are automatically centered in the button. To move their
position, use the Margin property. Margin determines the number of pixels
between the edge of the image and the edge of the button.

¢ By default, the image and the text are separated by 4 pixels. Use Spacing to increase
or decrease the distance.

¢ Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs
property to 3 to show a different bitmap for each state.

Speed buttons
Speed buttons, which usually have images on their faces, can function in groups.
They are commonly used with panels to create toolbars.

¢ To make speed buttons act as a group, give the GroupIndex property of all the
buttons the same nonzero value.

¢ By default, speed buttons appear in an up (unselected) state. To initially display a
speed button as selected, set the Down property to true.

o If AllowAllUp is true, all of the speed buttons in a group can be unselected. Set
AllowAlIUp to false if you want a group of buttons to act like a radio group.

Check boxes
A check box is a toggle that presents the user with two, or sometimes three, choices.

* Set Checked to true to make the box appear checked by default.

o Set AllowGrayed to true to give the check box three possible states: checked,
unchecked, and grayed.

e The State property indicates whether the check box is checked (cbChecked),
unchecked (cbUnchecked), or grayed (cbGrayed).

Radio buttons

Radio buttons present a set of mutually exclusive choices. You can use individual
radio buttons or the radio group component, which arranges groups of radio buttons
automatically. See “Grouping components” on page 2-21 for more information.

Toolbars

Toolbars provide an easy way to arrange and manage visual controls. You can create
a toolbar out of a panel component and speed buttons, or you can use the ToolBar
component, then right-click and choose New Button to add buttons to the toolbar.
The ToolBar component has several advantages: buttons on a toolbar automatically

2-18 Developer's Guide



Objects, components, and controls in the VCL

maintain uniform dimensions and spacing; other controls maintain their relative
position and height; controls can automatically wrap around to start a new row when
they do not fit horizontally; and the ToolBar offers display options like transparency,
pop-up borders, and spaces and dividers to group controls.

Cool bars

A cool bar contains child controls that can be moved and resized independently.
Each control resides on an individual band. The user positions the controls by
dragging the sizing grip to the left of each band.

The cool bar requires version 4.70 or later of COMCTL32.DLL (usually located in the
Windows\System or Windows\System32 directory) at both design time and
runtime.

¢ The Bands property holds a collection of TCoolBand objects. At design time, you
can add, remove, or modify bands with the Bands editor. To open the Bands
editor, select the Bands property in the Object Inspector, then double-click in the
Value column to the right, or click the ellipsis (...) button. You can also create
bands by adding new windowed controls from the palette.

¢ The FixedOrder property determines whether users can reorder the bands.

* The FixedSize property determines whether the bands maintain a uniform height.

Handling lists

Lists present the user with a collection of items to select from. Several components
display lists:

Use this component: To display:

ListBox A list of text strings

CheckListBox A list with a check box in front of each item

ComboBox An edit box with a scrollable drop-down list

TreeView A hierarchical list

ListView A list of (draggable) items with optional icons, columns, and headings
DateTimePicker A list box for entering dates or times

MonthCalendar A calendar for selecting dates

Use the nonvisual TStringList and TImageList components to manage sets of strings
and images. For more information about string lists, see “Working with string lists”
on page 2-27.

List boxes and check-list boxes
List boxes and check-list boxes display lists from which users can select items.

¢ [tems uses a TStrings object to fill the control with values.
* [temlndex indicates which item in the list is selected.

* MultiSelect specifies whether a user can select more than one item at a time.
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¢ Sorted determines whether the list is arranged alphabetically.
¢ Columns specifies the number of columns in the list control.

o [ntegralHeight specifies whether the list box shows only entries that fit completely
in the vertical space.

o [temHeight specifies the height of each item in pixels. The Style property can cause
ItemHeight to be ignored.

¢ The Style property determines how a list control displays its items. By default,
items are displayed as strings. By changing the value of Style, you can create
owner-draw list boxes that display items graphically or in varying heights. For
information on owner-draw controls, see “Adding graphics to controls” on
page 5-11.

Combo bhoxes

A combo box combines an edit box with a scrollable list. When users enter data into
the control—by typing or selecting from the list—the value of the Text property
changes.

* Use the Style property to select the type of combo box you need.

¢ Use csDropdown if you want an edit box with a drop-down list. Use
csDropDownlList to make the edit box read-only (forcing users to choose from the
list). Set the DropDownCount property to change the number of items displayed in
the list.

e Use csSimple to create a combo box with a fixed list that does not close. Be sure to
resize the combo box so that the list items are displayed.

* Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo boxes
that display items graphically or in varying heights. For information on
owner-draw controls, see “Adding graphics to controls” on page 5-11.

Tree views

A tree view displays items in an indented outline. The control provides buttons that
allow nodes to be expanded and collapsed. You can include icons with items’ text
labels and display different icons to indicate whether a node is expanded or
collapsed. You can also include graphics, such as check boxes, that reflect state
information about the items.

* [ndent sets the number of pixels horizontally separating items from their parents.

¢ ShowButtons enables the display of ‘+” and '~ buttons to indicate whether an item
can be expanded.

e ShowLines enables display of connecting lines to show hierarchical relationships.

® ShowRoot determines whether lines connecting the top-level items are displayed.
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List views

List views display lists in various formats. Use the ViewStyle property to choose the
kind of list you want:

e vslcon and vsSmalllcon display each item as an icon with a label. Users can drag
items within the list view window.

¢ vsList displays items as labeled icons that cannot be dragged.

* usReport displays items on separate lines with information arranged in columns.
The leftmost column contains a small icon and label, and subsequent columns
contain subitems specified by the application. Use the ShowColumnHeaders
property to display headers for the columns.

Date-time pickers and month calendars

The DateTimePicker component displays a list box for entering dates or times, while
the MonthCalendar component presents a calendar for entering dates or ranges of
dates. To use these components, you must have version 4.70 or later of
COMCTL32.DLL (usually located in the Windows\System or Windows\System32
directory) at both design time and runtime.

Grouping components

A graphical interface is easier to use when related controls and information are
presented in groups. C++Builder provides several components for grouping
components:

Use this component: When you want this:

GroupBox A standard group box with a title

RadioGroup A simple group of radio buttons

Panel A more visually flexible group of controls

ScrollBox A scrollable region containing controls

TabControl A set of mutually exclusive notebook-style tabs

PageControl A set of mutually exclusive notebook-style tabs with corresponding

pages, each of which may contain other controls

HeaderControl Resizable column headers

Group boxes and radio groups

A group box is a standard Windows component that arranges related controls on a
form. The most commonly grouped controls are radio buttons. After placing a group
box on a form, select components from the Component palette and place them in the
group box. The Caption property contains text that labels the group box at runtime.

The radio group component simplifies the task of assembling radio buttons and
making them work together. To add radio buttons to a radio group, edit the Items
property in the Object Inspector; each string in Items makes a radio button appear in
the group box with the string as its caption. The value of the ItemIndex property
determines which radio button is currently selected. Display the radio buttons in a
single column or in multiple columns by setting the value of the Columns property.
To respace the buttons, resize the radio group component.
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Panels

The panel component provides a generic container for other controls. Panels can be
aligned with the form to maintain the same relative position when the form is
resized. The BorderWidth property determines the width, in pixels, of the border
around a panel.

Scroll boxes

Scroll boxes create scrolling areas within a form. Applications often need to display
more information than will fit in a particular area. Some controls—such as list boxes,
memos, and forms themselves—can automatically scroll their contents. Scroll boxes
give you the additional flexibility to define arbitrary scrolling subregions of a form.

Like panels and group boxes, scroll boxes contain other controls. But a scroll box is
normally invisible. If the controls in the scroll box cannot fit in its visible area, the
scroll box automatically displays scroll bars.

Tab controls

The tab control component looks like notebook dividers. You can create tabs by
editing the Tabs property in the Object Inspector; each string in Tabs represents a tab.
The tab control is a single panel with one set of components on it. To change the
appearance of the control when the tabs are clicked, you need to write an OnChange
event handler. To create a multipage dialog box, use a page control instead.

Page controls

The page control component is a page set suitable for multipage dialog boxes. To
create a new page in a page control, right-click the control and choose New Page.

Header controls

A header control is a is a set of column headers that the user can select or resize at
runtime. Edit the control’s Sections property to add or modify headers.

Visual feedback

There are many ways to provide users with information about the state of an
application. For example, some components—including TForm—have a Caption
property that can be set at runtime. You can also create dialog boxes to display
messages. In addition, the following components are especially useful for providing
visual feedback at runtime.

Use this component or

property: To do this:

Label and StaticText Display non-editable text

StatusBar Display a status region (usually at the bottom of a window)
ProgressBar Show the amount of work completed for a particular task
Hint and ShowHint Activate fly-by or “tool-tip” help

HelpContext and HelpFile  Link context-sensitive online Help
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Labels and static-text components

Labels display text and are usually placed next to other controls. The standard label

component, TLabel, is a non-windowed control, so it cannot receive focus; when you
need a label with a window handle, use TStaticText instead. Label properties include
the following:

* Caption contains the text string for the label.

e FocusControl links the label to another control on the form. If Caption includes an
accelerator key, the control specified by FocusControl receives focus when the user
presses the accelerator key.

* ShowAccelChar determines whether the label can display an underlined accelerator
character. If ShowAccelChar is true, any character preceded by an ampersand (&)
appears underlined and enables an accelerator key.

o Transparent determines whether items under the label (such as graphics) are visible.

Status bars

Although you can use a panel to make a status bar, it is simpler to use the status-bar
component. By default, the status bar’s Align property is set to alBottom, which takes
care of both position and size.

You will usually divide a status bar into several text areas. To create text areas, edit
the Panels property in the Object Inspector, setting each panel’s Width, Alignment, and
Text properties from the Panels editor. The Text property contains the text displayed
in the panel.

Progress bars

When your application performs a time-consuming operation, you can use a
progress bar to show how much of the task is completed. A progress bar displays a
dotted line that grows from left to right.

Figure 2.3 A progress bar
elE Lo

The Position property tracks the length of the dotted line. Max and Min determine the
range of Position. To make the line grow, increment Position by calling the StepBy or
Steplt method. The Step property determines the increment used by Steplt.

Help and hint properties

Most visual controls can display context-sensitive Help as well as fly-by hints at
runtime. The HelpContext and HelpFile properties establish a Help context number
and Help file for the control.

The Hint property contains the text string that appears when the user moves the
mouse pointer over a control or menu item. To enable hints, set ShowHint to true;
setting ParentShowHint to true causes the control’s ShowHint property to have the
same value as its parent’s.
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Grids

Grids display information in rows and columns. If you're writing a database
application, use the TDBGrid or TDBCtrlGrid component described in Chapter 27,
“Using data controls”. Otherwise, use a standard draw grid or string grid.

Draw grids

A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an
OnDrawCell event handler to fill in the cells of the grid.

e The CellRect method returns the screen coordinates of a specified cell, while the
MouseToCell method returns the column and row of the cell at specified screen
coordinates. The Selection property indicates the boundaries of the currently
selected cells.

* The TopRow property determines which row is currently at the top of the grid. The
LeftCol property determines the first visible column on the left. VisibleColCount and
VisibleRowCount are the number of columns and rows visible in the grid.

* You can change the width or height of a column or row with the ColWidths and
RowHeights properties. Set the width of the grid lines with the GridLineWidth
property. Add scroll bars to the grid with the ScrollBars property.

* You can choose to have fixed or non-scrolling columns and rows with the
FixedCols and FixedRows properties. Assign a color to the fixed columns and rows
with the FixedColor property.

e The Options, DefaultColWidth, and DefaultRowHeight properties also affect the
appearance and behavior of the grid.

String grids

The string grid component is a descendant of TDrawGrid that adds specialized
functionality to simplify the display of strings. The Cells property lists the strings for
each cell in the grid; the Objects property lists objects associated with each string. All
the strings and associated objects for a particular column or row can be accessed
through the Cols or Rows property.

Graphics display

The following components make it easy to incorporate graphics into an application.
Use this component: To display:

Image Graphics files

Shape Geometric shapes

Bevel 3D lines and frames

PaintBox Graphics drawn by your program at runtime

Animate AVI files
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Images

The image component displays a graphical image, like a bitmap, icon, or metafile.
The Picture property determines the graphic to be displayed. Use Center, AutoSize,
Stretch, and Transparent to set display options. For more information, see “Overview
of graphics programming” on page 6-1.

Shapes

The shape component displays a geometric shape. It is a nonwindowed control and
cannot receive user input. The Shape property determines which shape the control
assumes. To change the shape’s color or add a pattern, use the Brush property, which
holds a TBrush object. How the shape is painted depends on the Color and Style
properties of TBrush.

Bevels

The bevel component is a line that can appear raised or lowered. Some components,
such as TPanel, have built-in properties to create beveled borders. When such
properties are unavailable, use TBevel to create beveled outlines, boxes, or frames.

Paint boxes

The paint box allows your application to draw on a form. Write an OnPaint event
handler to render an image directly on the paint box’s Canvas. Drawing outside the
boundaries of the paint box is prevented. For more information, see “Overview of
graphics programming” on page 6-1.

Animation control

The animation component is a window that silently displays an Audio Video
Interleaved (AVI) clip. An AVI clip is a series of bitmap frames, like a movie.
Although AVI clips can have sound, animation controls work only with silent AVI
clips. The files you use must be either uncompressed AVI files or AVI clips
compressed using run-length encoding (RLE). These are some of the properties of an
animation component:

* ResHandle is the Windows handle for the module that contains the AVI clip as a
resource. Set ResHandle at runtime to the instance handle or module handle of the
module that includes the animation resource. After setting ResHandle, set the
ResID or ResName property to specify which resource in the indicated module is
the AVI clip that should be displayed by the animation control.

* Set AutoSize to true to have the animation control adjust its size to the size of the
frames in the AVI clip.

e StartFrame and StopFrame specify in which frames to start and stop the clip.

* Set CommonAVI to display one of the common Windows AVI clips provided in
Shell32.DLL.
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* Specify when to start and interrupt the animation by setting the Active property to
true and false, respectively, and how many repetitions to play by setting the
Repetitions property.

e The Timers property lets you display the frames using a timer. This is useful for
synchronizing the animation sequence with other actions, such as playing a sound
track.

Windows common dialog boxes

The dialog box components on the Dialogs page of the Component palette make the
Windows “common” dialog boxes available to your applications. These dialog boxes
provide all Windows-based applications with a familiar, consistent interface that
enables the user to perform common file operations such as opening, saving, and
printing files.

Each dialog box opens when its Execute method is called. Execute returns a Boolean
value: if the user chooses OK to accept any changes made in the dialog box, Execute
returns true; if the user chooses Cancel to escape from the dialog box without making
or saving changes, Execute returns false.

Using windows common dialog boxes

One of the commonly used dialog box components is TOpenDialog. This component
is usually invoked by a New or Open menu item under the File option on the main
menu bar of a form.

The TOpenDialog component makes an Open dialog box available to your
application. The purpose of this dialog box is to let a user specify a file to open. You
use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user’s file is stored in the
TOpenDialog FileName property, which you can then process as you want.

The following code snippet can be placed in an Action and linked to the Action
property of a TMainMenu subitem or be placed in the subitem’s OnClick event:

if (OpenDialogl->Execute()) {
filename = OpenDialogl->FileName;
}i

This code will show the dialog box and if the user presses the OK button, it will copy
the name of the file into a previously declared AnsiString variable named filename.

Using helper objects

The VCL includes a variety of nonvisual objects that simplify common programming
tasks. This section describes a few Helper objects that make it easier to perform the
following tasks:

Working with lists

Working with string lists

Changing the Windows registry and .INI files
Using streams
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Working with lists

Several VCL objects provide functionality for creating and managing lists:
¢ TList maintains a list of pointers.
e TObjectList maintains a memory-managed list of instance objects.

e TComponentList maintains a memory-managed list of components (that is,
instances of classes descended from TComponent).

* TQueue maintains a first-in first-out list of pointers.

* TStack maintains a last-in first-out list of pointers.

e TObjectQueue maintains a first-in first-out list of objects.
e TObjectStack maintains a last-in first-out list of objects.

* TClassList maintains a list of class types.

e TCollection, TOwnedCollection, and TCollectionltem maintain indexed collections of
specially defined items.

e TStringList maintains a list of strings.

For more information about these objects, see the VCL Reference in the online Help.

Working with string lists

Applications often need to manage lists of character strings. Examples include items
in a combo box, lines in a memo, names of fonts, and names of rows and columns in a
string grid. The VCL provides a common interface to any list of strings through an
object called TStrings and its descendant TStringList. In addition to providing
functionality for maintaining string lists, these objects allow easy interoperability; for
example, you can edit the lines of a memo (which are an instance of TStrings) and
then use these lines as items in a combo box (also an instance of TStrings).

A string-list property appears in the Object Inspector with TStrings in the Value
column. Double-click TStrings to open the String List editor, where you can edit, add,
or delete lines.

You can also work with string-list objects at runtime to perform such tasks as

* Loading and saving string lists

¢ Creating a new string list

* Manipulating strings in a list

* Associating objects with a string list

Loading and saving string lists

String-list objects provide SaveToFile and LoadFromFile methods that let you store a
string list in a text file and load a text file into a string list. Each line in the text file
corresponds to a string in the list. Using these methods, you could, for example,
create a simple text editor by loading a file into a memo component, or save lists of
items for combo boxes.
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The following example loads a copy of the WIN.INI file into a memo field and makes
a backup copy called WIN.BAK.

void __fastcall EditWinIni()

{
AnsiString FileName = "C:\WINDOWS\WIN.INI";// set the file name
Forml->Memol->Lines->LoadFromFile (FileName); // load from file
Forml->Memol->Lines->SaveToFile (ChangeFileExt (FileName, ".BAK")); // save to backup

}

Creating a new string list

A string list is typically part of a component. There are times, however, when it is
convenient to create independent string lists, for example to store strings for a lookup
table. The way you create and manage a string list depends on whether the list is
short-term (constructed, used, and destroyed in a single routine) or long-term
(available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists

If you use a string list only for the duration of a single routine, you can create it, use it,
and destroy it all in one place. This is the safest way to work with string lists. Because
the string-list object allocates memory for itself and its strings, you should use a
try..._finally block to ensure that the memory is freed even if an exception occurs.

1 Construct the string-list object.
2 In the try part of a try..._ finally block, use the string list.
3 Inthe _ finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list,
using it, and then destroying it.

void __fastcall TForml::ButtonClickl(TObject *Sender)

{
TStringList *TempList = new TStringList; // declare the list

try{
//use the string list
}
__finally{
delete TempList; // destroy the list object
}

Long-term string lists
If a string list must be available at any time while your application runs, construct the
list at start-up and destroy it before the application terminates.

1 In the unit file for your application’s main form, add a field of type TStrings to the
form’s declaration.

2 Write an event handler for the main form’s constructor, which executes before the
form appears. It should create a string list and assign it to the field you declared in
the first step.

3 Write an event handler that frees the string list for the form’s OnDestroy event.
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This example uses a long-term string list to record the user’s mouse clicks on the
main form, then saves the list to a file before the application terminates.

#include <vcl.h>
#pragma hdrstop

#include "Unitl.h"

#pragma package(smart_init)
#pragma resource "*.dfm"
TForml *Forml;

__fastcall TForml::TForml (TComponent* Owner)
: TForm(Owner)

{
ClickList = new TStringList;

void __fastcall TForml::FormClose(TObject *Sender, TCloseAction &Action)

{
ClickList->SaveToFile (ChangeFileExt (Application->ExeName, ".LOG"));//Save the list
delete ClickList;

void __fastcall TForml::FormMouseDown (TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)
{
TVarRec v[] = {X,VY};
ClickList->Add(Format ("Click at (%d, %d)",v,ARRAYSIZE(v) - 1));//add a string to the list

Manipulating strings in a list
Operations commonly performed on string lists include:

Counting the strings in a list

Accessing a particular string

Finding the position of a string in the list
Iterating through strings in a list
Adding a string to a list

Moving a string within a list

Deleting a string from a list

Copying a complete string list

Counting the strings in a list
The read-only Count property returns the number of strings in the list. Since string
lists use zero-based indexes, Count is one more than the index of the last string.

Accessing a particular string
The Strings array property contains the strings in the list, referenced by a zero-based
index. Because Strings is the default property for string lists, you can omit the
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Strings identifier when accessing the list; thus
StringListl->Strings[0] = “This is the first string.”;
is equivalent to

StringList1[0] = “This is the first string.”

Finding the position of a string in the list

To locate a string in a string list, use the IndexOf method. IndexOf returns the index of
the first string in the list that matches the parameter passed to it, and returns -1 if the
parameter string is not found. IndexOf finds exact matches only; if you want to match
partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found
among the Items of a list box:

if (FileListBoxl->Items->IndexOf ("WIN.INI") > -1) ...

Iterating through strings in a list
To iterate through the strings in a list, use a for loop that runs from zero to Count — 1.

This example converts each string in a list box to uppercase characters.

void __fastcall TForml::ButtonlClick(TObject *Sender)
{
for (int 1 = 0; 1 < ListBoxl->Items->Count; 1++)
ListBoxl->Items->Strings[i] = UpperCase(ListBoxl->Items->Strings(i]);

}

Adding a string to a list

To add a string to the end of a string list, call the Add method, passing the new string
as the parameter. To insert a string into the list, call the Insert method, passing two
parameters: the string and the index of the position where you want it placed. For
example, to make the string “Three” the third string in a list, you would use:

StringListl->Insert (2, "Three");
To append the strings from one list onto another, call AddStrings:

StringList1->AddStrings (StringList2); // append the strings from StringList2 to StringListl

Moving a string within a list

To move a string in a string list, call the Move method, passing two parameters: the
current index of the string and the index you want assigned to it. For example, to
move the third string in a list to the fifth position, you would use:

StringListObject->Move (2, 4);

Deleting a string from a list

To delete a string from a string list, call the list’s Delete method, passing the index of
the string you want to delete. If you don’t know the index of the string you want to
delete, use the IndexOf method to locate it. To delete all the strings in a string list, use
the Clear method.
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This example uses IndexOf and Delete to find and delete a string:

int BIndex = ListBoxl->Itesm->IndexOf ("bureaucracy");
if (BIndex > -1)
ListBoxl->Items->Delete(BIndex);

Copying a complete string list

You can use the Assign method to copy strings from a source list to a destination list,
overwriting the contents of the destination list. To append strings without
overwriting the destination list, use AddStrings. For example,

Memol->Lines->Assign(ComboBoxl->Item)s; //overwrites original strings

copies the lines from a combo box into a memo (overwriting the memo), while
Memol->Lines->AddStrings (ComboBoxl->Items);//appends strings to end

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one
string-list variable to another—

StringListl = StringList2;

—the original string-list object will be lost, often with unpredictable results.

Associating objects with a string list

In addition to the strings stored in its Strings property, a string list can maintain
references to objects, which it stores in its Objects property. Like Strings, Objects is an
array with a zero-based index. The most common use for Objects is to associate
bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to
the list in a single step. IndexOfObject returns the index of the first string in the list
associated with a specified object. Methods like Delete, Clear, and Move operate on
both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property
at the same index. You cannot add an object without adding a corresponding string.

Windows registry and INI files

The Windows system registry is a hierarchical database where applications store
configuration information. The VCL class TRegistry supplies methods that read and
write to the registry.

Until Windows 95, most applications stored configuration information in initialization
files, usually named with the extension .INI. The VCL provides the following classes to
facilitate maintenance and migration of programs that use INI files:

¢ TRegistry to work with the registry.
¢ TIniFile or TMemIniFile to work with Windows 3.x style INI files.

Programming with C++Builder 2-31



Using helper objects

* TRegistryIniFile when you want to work with both the registry and INI files.
TRegistryIniFile has properties and methods similar to those of TIniFile, but it reads
and writes to the system registry. By using a variable of type TCustomIniFile (the
common ancestor of TIniFile, TMemIniFile, and TRegistrylniFile), you can write
generic code that accesses either the registry or an INI file, depending on where it
is called.

Using TINIFile

The INI file format is still popular, many of the C++Builder configuration files (such
as the DSK Desktop settings file) are in this format. Because this file format was and
is prevalent, VCL provides a class to make reading and writing these files very easy.
When you instantiate the INIFile object, you pass as a parameter to the constructor
the name of the INI file. If the file does not exist, it is automatically created. You are
then free to read values using ReadString, ReadInteger, or ReadBool. Alternatively, if
you want to read an entire section of the INI file, you can use the ReadSection method.
Similarly, you can write values using WriteBool, Writelnteger, or WriteString.

Following is an example of reading configuration information from an INI file in a
form’s constructor and writing values in the OnClose event handler.

void __fastcall TForml::TForml (TObject *Sender)
{
TIniFile *ini;
ini = new TIniFile(
ChangeFileExt ( Application->ExeName, ".INI" ) );

Top = 1ini->ReadInteger( "Form", "Top", 100 );
Left = 1ini->ReadInteger( "Form", "Left", 100 );
Caption = ini->ReadString( "Form", "Caption",
"Default Caption" );
ini->ReadBool ( "Form", "InitMax", false ) ?
WindowState = wsMaximized :
WindowState = wsNormal;

delete ini;
}

void __fastcall TForml::FormClose(TObject *Sender, TCloseAction &Action)
{

TIniFile *ini;

ini = new TIniFile(ChangeFileExt ( Application->ExeName, ".INI" ) );

ini->WriteInteger( "Form", "Top", Top );

ini->WriteInteger( "Form", "Left", Left );

ini->WriteString ( "Form", "Caption", Caption );

ini->WriteBool ( "Form", "InitMax",

WindowState == wsMaximized );

delete ini;
}

Each of the Read routines takes three parameters. The first parameter identifies the
section of the INI file. The second parameter identifies the value you want to read,
and the third is a default value in case the section or value doesn’t exist in the INI file.
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Similarly, the Write routines will create the section and/or value if they do not exist.
The example code creates an INI file the first time it is run that looks like this:

[Form]

Top=185

Left=280
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the INI values are read in during
creation of the form and written back out in the OnClose event.

Using TRegistry

Most 32-bit applications store their information in the registry instead of INI files
because the registry is hierarchical, more robust, and doesn’t suffer from the size

limitations of INI files. The TRegistry object contains methods to open, close, save,
move, copy, and delete keys.

The following example retrieves a value from a registry entry:

#include <Registry.hpp>

AnsiString GetRegistryValue(AnsiString KeyName)
{
AnsiString S;
TRegistry *Registry = new TRegistry;
try
{
Registry->RootKey = HKEY_LOCAL_MACHINE;
// False because we do not want to create it if it doesn’t exist
Registry->OpenKey (KeyName, false) ;
S = Registry->ReadString("VALUEL");
}
__finally

{

delete Registry;
}
return S;

}
For more information, see the TRegistry topic in VCL help.

Using TRegINIFile

If you are accustomed to INI files and want to move your configuration information
to the registry instead, you can use the TRegINIFile class. TRegINIFile is designed to
make registry entries look like INI file entries. All the methods from TINIFile (read
and write) exist in TRegINIFile. When you construct a TRegINIFile object, the
parameter you pass (the filename for an INIFile object) becomes a key value under
the user key in the registry, and all sections and values branch from that root. In fact,
this object simplifies the registry interface considerably, so you may want to use it
instead of the TRegistry component even if you aren’t porting existing code.

For more information, see the TRegINIFile topic in VCL help.
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Using TCanvas

The TCanvas encapsulates a Windows device context, which handles all drawing for both
forms, visual containers (such as panels) and the printer object (covered in the next
section). Using the canvas object, you no longer have to worry about allocating pens,
brushes, palettes, and so on—all the allocation and deallocation are handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes,
polygons, fonts, etc. onto any control that contains a canvas. For example, here is a
button event handler that draws a line from the upper left hand corner to the middle
of the form and outputs some raw text onto the form:

void __fastcall TForml::ButtonlClick(TObject *Sender)
{
Canvas->Pen->Color = clBlue;
Canvas->MoveTo( 10, 10 );
Canvas->LineTo( 100, 100 );
Canvas->Brush->Color = clBtnFace;
Canvas->Font->Name = "Arial";
Canvas->TextOut ( Canvas->PenPos.x, Canvas->PenPos.y,"This is the end of the line" );

}

The TCanvas object also protects you against common Windows graphics errors, such
as restoring device contexts, pens, brushes, and so on to the value they had before the
drawing operation. The TCanvas is used everywhere in C++Builder that drawing is
required or possible, and makes graphics in Windows both fail-safe and easy.

See the online help under TCanuvas for a complete listing of properties and methods.

Using TPrinter

The TPrinter object encapsulates details of Windows printers. To get a list of installed
and available printers, use the Printers property. The printer object uses a TCanuvas
(which is identical to the form’s TCanvas) which means that anything that can be
drawn on a form can be printed as well. To print an image, call the BeginDoc method
followed by whatever canvas graphics you want to print (including text through the
TextOut method) and send the job to the printer by calling the EndDoc method.

This example uses a button and a memo on a form. When the user clicks the button,
the content of the memo is printed with a 200-pixel border around the page.

To run this example successfully, include <Printers.hpp> in your unit file.

void __fastcall TForml::ButtonlClick(TObject *Sender)

{
TPrinter Prntr = Printer();
TRect r = Rect (200,200, Prntr->PageWidth - 200, Prntr->PageHeight - 200);
Prntr->BeginDoc () ;
Prntr->Canvas->TextRect (r, 200, 200, Memol->Lines->Text);
Prntr->EndDoc () ;

}

For more information on the use of the TPrinter object, look in the on-line help under
TPrinter.
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Using streams

Use specialized stream objects to read or write to storage media. Each descendant of
TStream implements methods for accessing a particular medium, such as disk files,
dynamic memory, and so on. TStream descendants include TFileStream,
TStringStream, TMemoryStream, TBlobStream, and TWinSocketStream. In addition to
methods for reading and writing, these objects permit applications to seek to an
arbitrary position in the stream. Properties of TStream provide information about the
stream, such as size and current position.

Developing applications

As you visually design the user interface for your application, C++Builder generates
the underlying C++ code to support the application. As you select and modify the
properties of components and forms, the results of those changes appear
automatically in the source code, and vice versa. You can modify the source files
directly with any text editor, including the built-in Code editor. The changes you
make are immediately reflected in the visual environment as well.

Editing code

The C++Builder Code editor is a full-featured ASCII editor. If using the visual
programming environment, a form is automatically displayed as part of a new
project. The contents of the form, all its properties, and its components and their
properties can be viewed and edited as text in the Code editor by selecting the View
as Text option in the form designer’s context menu.

The C++Builder code generation and property streaming systems are completely
open to inspection. The source code for everything that is included in your final
EXE—all of the VCL objects, RTL sources, all of the C++Builder project files can be
viewed and edited in the Code editor.

Debugging applications

C++Builder provides an integrated debugger that helps you find and fix errors in
your applications. The integrated debugger lets you control program execution,
monitor variable values and items in data structures, and modify data values while
debugging. By viewing the values of variables, the functions on the call stack, and the
program output, you can check that the area of code you are examining is performing
as designed. The debugger is described in online Help.

You can also use exception handling to recognize, locate, and deal with errors. Refer
to Chapter 8, “Exception handling” for details on exception handling.
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Deploying applications

C++Builder includes add-on tools to help with application deployment. For example,
InstallShield Express helps you to create an installation package for your application
that includes all of the files needed for running a distributed application. Refer to
Chapter 12, “Deploying applications” for specific information on deployment.

TeamSource software is also available for tracking application updates.
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and libraries

This chapter provides an overview of how to use C++Builder to create applications,
libraries, and components.

Creating applications

The main use of C++Builder is designing and building Windows applications. There
are three basic kinds of Windows application:

¢ Windows GUI applications
¢ Console applications
* Service applications

Windows applications

When you compile a project, an executable (.EXE) file is created. The executable
usually provides the basic functionality of your program, and simple programs often
consist of only an EXE. You can extend the application by calling DLLs, packages,
and other support files from the executable.

Windows offers two application UI models:

¢ Single document interface (SDI)
* Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE.
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Creating applications

User interface models

Any form can be implemented as a multiple document interface (MDI) or single
document interface (SDI) form. In an MDI application, more than one document or
child window can be opened within a single parent window. This is common in
applications such as spreadsheets or word processors. An SDI application, in
contrast, normally contains a single document view. To make your form an SDI
application, set the FormStyle property of your Form object to fsNormal.

For more information on developing the UI for an application, see Chapter 4,
“Developing the application user interface.”

SDI Applications
To create a new SDI application,

1 Select File | New to bring up the New Items dialog.
2 Click on the Projects page and select SDI Application.
3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so
C++Builder assumes that all new applications are SDI applications.

MDI applications
To create a new MDI application,

1 Select File | New to bring up the New Items dialog.
2 Click on the Projects page and select MDI Application.
3 Click OK.

MDI applications require more planning and are somewhat more complex to design
than SDI applications. MDI applications spawn child windows that reside within the
client window; the main form contains child forms. Set the FormStyle property of the
TForm object to specify whether a form is a child (fsMDIForm) or main form
(fsMDIChild). It is a good idea to define a base class for your child forms and derive
each child form from this class, to avoid having to reset the child form’s properties.

Setting IDE, project, and compilation options

Use Project | Project Options to specify various options for your project. For more
information, see the online Help.

Setting default project options

To change the default options that apply to all future projects, set the options in the
Project Options dialog box and check the Default box at the bottom right of the
window. All new projects will now have the current options selected by default.
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Programming templates

Programming templates are commonly used “skeleton” structures that you can add
to your source code and then fill in. For example, if you want to use a for loop in your
code, you could insert the following templ