Quick Start

Borland @

C+Builder 5
for Windows 2000/98 /95 / NT

Inprise Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Refer to the file DEPLOY.TXT located in the root directory of your C++Builder product for a complete list of files that
you can distribute in accordance with the C++Builder License Statement and Limited Warranty.

Inprise may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

CoPYRIGHT © 1983, 2000 Inprise Corporation. All rights reserved. All Inprise and Borland brands and product names
are trademarks or registered trademarks of Inprise Corporation. Other product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

CPE1350WW21000 2E1R0100
0001020304-98765432 1
PDF

Contents

Chapter 1
Introduction 1-1
What is C++Builder? 11
Where to find information 1-1
OnlineHelp. 1-2
Printed documentation 1-4
Developer support services 1-4
Typographic conventions 1-4
Chapter 2
A tour of the environment 2-1
Starting C++Builder 2-1
Using toolbars, menus, and keyboard shortcuts 2-2
Placing componentsonaform. 2-3
Changing component appearance and behavior 2-4
Working withevents. 2-5
Viewing and editingcode. 2-5
Viewing formfiles 2-6
Browsing with the editor 2-6
Exploringcode 2-7
Managing projects 2-7
Creating to-dolists. 2-8
Designing datamodules 2-8
Setting project and environment options 2-9
Gettinghelp, 2-10
Help withcoding. 2-11
Debugging applications. 2-12
Exploring databases 2-13
Templates and the Object Repository 2-14
Chapter 3
Creating a text editor—a tutorial 31
Starting a new application 3-1
Setting property values 3-3
Adding objects totheform 3-3
Adding support for a menu and a toolbar . . . 3-6
Adding actions to the actionlist 3-8
Adding standard actions to the action list. .3-10
Adding images to the imagelist 3-11
Addingamenu. 3-13
Clearing the text area (optional) 3-15
Addingatoolbar. 3-16
Writing eventhandlers 3-17
Creating an event handler for the New
command oL 3-17

Creating an event handler for the Open

command. L L 3-19
Creating an event handler for the Save
command. 3-21
Creating an event handler for the Save As
command. 3-22
Creating an event handler for the Exit
command. L. 3-23
Creatinga Helpfile. 3-24
Creating an event handler for the Help Contents
command. 3-25
Creating an event handler for the Help Index
command. 3-26
Creating an Aboutbox 3-27
Completing your application 3-29
Chapter 4
Creating a database application—

a tutorial 4-1
Starting a new application. 4-1
Setting property values. 4-2
Adding objects to the form. 4-2
Connecting to a database. 4-4
Adding support for a menu and a toolbar4-6
Addingamenu 4-7
Addingatoolbar 4-9
Displaying images 4-10
Adding text and memo objects 4-12
Writing an event handler. 4-13
Chapter 5
Customizing the environment 51
Organizing your workarea 5-1

Docking tool windows 5-1
Arranging menus and toolbars 5-4
Customizing desktop settings. 5-5
Setting default project options. 5-5
Specifying default projects and forms 5-5
Setting tool preferences. 5-6
Customizing the Code editor 5-6
Customizing the Form Designer. 5-6
Setting ClassExplorer options 5-7
Customizing the Component palette 5-7
Arranging the Component palette. 5-8
Installing components 5-8

Adding ActiveX controls 5-8

Creating component templates 5-8
Customizing the Help system 5-9
Chapter 6
Programming with C++Builder 6-1
Development tools and features 6-1

Usingthe VCL 6-1

Exceptionhandling. 6-2
Database connectivity and utilities. 6-3
BDE Administrator. 6-3
SQL Explorer (Database Explorer) 6-3
Database Desktop. 6-4

ii

Data Dictionary 6-4
Types of development projects 6-4
Applicationsand servers. 6-4
DLLs 6-4
Custom components and packages 6-5
Frames 6-5
COM and ActiveX. 6-5
Typelibraries. 6-6
Deploying applications. 6-6
Internationalizing applications 6-6
Index -1

Introduction

This Quick Start provides an overview of the C++Builder development environment
to get you started using the product right away. It also tells you where to look for
details about the tools and features available in C++Builder.

What is C++Builder?

C++Builder is an object-oriented, visual programming environment for rapid
application development (RAD). Using C++Builder, you can create highly efficient
32-bit Windows applications with a minimum of manual coding. C++Builder
provides all the tools you need to develop, test, debug, and deploy applications,
including a large library of reusable components, a suite of design tools, application
and form templates, and programming wizards. These tools simplify prototyping
and shorten development time.

Where to find information

Information on C++Builder is available in a variety of forms:

Online Help

Printed documentation

Inprise developer support services
Inprise and borland.com Web sites

For information about new features in this release, refer to What’s New in the online
Help and to the borland.com Web site.

Introduction 1-1

Where to find information

Online Help

The online Help system provides detailed information about user-interface features,
language implementation, programming tasks, and the components in the Visual
Component Library (VCL). It includes the core Help files listed in Table 1.1

Table 1.1 Online Help files

Help file Contents Audience
What's New Introduces new features and enhancements to Developers who
(BCB5new.hlp) C++Builder for the current release and includes upgraded to this
links to detailed information. Includes details on release
upgrading from a previous release.
Using C++Builder Introduces the development environment and New C++Builder
(Bcb5.hlp) explains how to work with forms, projects, and developers, people

packages. Discusses basic concepts of component- ~ with questions about
based object-oriented programming. Includes two the IDE
step-by-step tutorials to help you learn

C++Builder.
Visual Component Library Presents a detailed reference on VCL classes, global ~ All C++Builder
Reference routines, types, and variables. Entries show the developers
(Bcb5vcl.hlp) unit where each class is declared; its position in the

hierarchy; a list of available properties, methods,
and events; and code examples.

Standard C++ Library Presents a detailed reference on the Standard C++ All C++Builder
Reference (Bcb5scl.hlp) Library. developers
C Runtime Library Reference Presents a detailed reference on the C Runtime All C++Builder
(Bcbrtlhlp) Library. developers

Programming with C++Builder Provides details about using the VCL components ~ All C++Builder
(Bcb5prog.hlp) and illustrates common programming tasks suchas developers
handling exceptions, creating toolbars and drag-
and-drop controls, and using graphics.

Developing Database Explains design of single- and multi-tiered Database developers
Applications database applications, including database
(Bcb5dbd.hlp) architecture, datasets, fields, tables, queries, and

decision support.
Developing Distributed Explains how to create distributed applications. Developers writing
Applications Includes information on CORBA, DCOM, MTS, client/server
(Bcb5dap.hlp) HTTP, and sockets. applications
Creating Custom Components Provides information on writing custom Developers writing
(Bcb5cw .hlp) C++Builder components. Explains how to design, =~ C++Builder

build, test, and install a component. components
Developing COM-based Explains how to build distributed applications Developers writing
Applications using COM. Topics include COM objects, MTS client/server
(Bcb5com.hlp) components, Automation servers and controllers, applications

ActiveX controls, and type libraries. Explains how
to modify generated type libraries using
C++Builder’s Type Library Editor.

1-2 Quick Start

Table 1.1
Help file

C++Builder Language Guide

(BcbSlang.hlp)

Command-line tools
(Bcb5tool.hlp)

Object Pascal Reference
(Del50p.hlp)

Borland OpenHelp
(OpenHelp.hlp)

Where to find information

Online Help files (continued)

Contents

Describes the C++ programming language
including lexical elements, language structure,
preprocessing directives, keywords, and C++
topics such as namespaces, polymorphism, and
scope.

Provides information about using many tools that
are included with C++Builder such as the C++
compiler, the incremental linker, the resource

linker, MAKE, GREP, and several conversion tools.

Provides a formal definition of the Object Pascal
language and includes topics on file I/O, string

manipulation, program control, data types, and

language extensions.

Explains how to configure the C++Builder Help
system. The OpenHelp utility lets you add or
remove any Windows Help (.HLP) file.

Audience

All C++Builder
developers

Developers who want
to use additional tools
from the command
line

Developers who need
Object Pascal
language details

Developers wanting
to customize the
C++Builder Help
system

You will also find Help on additional products that are supplied with some versions
of C++Builder, such as:

¢ Integrated Translation Environment (ITE) Help

¢ InterBase Express Reference Help

¢ Borland Database Engine (BDE) Help

¢ BDE Administrator Help

¢ Database Explorer Help

* Local SQL, SQL Builder, and SQL Monitor Help
¢ TeamSource Help

¢ CodeGuard Help

* TurboAssembler Help

¢ Package Collection Editor Help
* Help Author’s Guide (Help Workshop)
* QuickReport Help

¢ TeeChart Help

¢ InterBase and InterBase Express Help

* CORBA Component Library Reference Help

¢ Help for miscellaneous components (FastNet Time, DayTime, Echo, Finger, HTTP,
NNTP, POP3, Powersock, SMTP, UDP, URL Encode/Decode, UUprocessor,
Stream and Msg components)

All Help files are located in the Help directory under the main C++Builder directory.

Introduction 1-3

Typographic conventions

For information on customizing your Help system, see “Customizing the Help
system” on page 5-9.

Printed documentation

This Quick Start is an introduction to C++Builder. To order additional printed
documentation, refer to the Web site at shop.borland.com.

Developer support services

Inprise also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support offerings, refer to
http:/ /www .borland.com/devsupport/.

From the Web site, you can access many newsgroups where C++Builder developers
exchange information, tips, and techniques. The site also includes a list of books
about C++Builder.

Typographic conventions

This manual uses the typefaces described below to indicate special text.

Table 1.2 Typographic conventions

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Italicized words in text represent C++Builder identifiers, such as variable or
type names. Italics are also used to emphasize certain words, such as new
terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit
a menu.”

1-4 Quick Start

A tour of the environment

Starting C++Builder

You can start C++Builder in several ways:

Double-click the C++Builder icon (if you've created a shortcut).
Choose Programs | Borland C++Builder from the Windows Start menu.
Choose Run from the Windows Start menu, then enter Bcb.
Double-click Bcb.exe in the CBuilder\Bin directory.

Right away, you'll see some of the major tools in C++Builder’s integrated
development environment (IDE).

&7 Ce+Builder 5 - Project] P[] B
Fie Edl Seach Vew Prect Bun Component Dalbsse Took hep | EXY
- H | @ 33| @|| Sordad | adsions] wikz] Sitem | Datsocess | Dats Conols] 400 | nteBse] it 1> Palette of ready-

Sanols-nls o Iy BF A AM PR & mljle'g‘D made components
to use in your

.

[I x|
Formnl TFnrlmI | e A= applications.
Properties Events| ————— = @ A
-] Praject? - Classes e | SR
Aetion . o]
ActiveControl
R ineluce <vel.n> Code editor for viewing
Auckool [t #pragme_hdrstop and editing code.
Atk |falss

BiDitode | bdlenToRioht
HBoderlcons | [biystembleny

. —{— The Form Designer
Cepton | Fom| contains a blank form
Conin |16 on which to start
Do [CJeBiface designing the Ul for
ElConshaints | [TSizeConshaint your application. An

application can
include many forms.

11 \Modiied

The Object Inspector is used
to change objects’ properties The ClassExplorer shows you the classes, variables, and
and select event handlers. routines in your unit and lets you navigate quickly.

A tour of the environment 2-1

Using toolbars, menus, and keyboard shortcuts

C++Builder’s development model is based on two-way tools. This means that you can
move back and forth between visual design tools and text-based editing. For
example, after using the Form Designer to arrange buttons and other elements in a
graphical interface, you can immediately view the form ((DFM) file that contains the
textual description of your form. You can also manually edit any code generated by
C++Builder without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can manage
projects, design graphical interfaces, write code, search databases, compile, test,
debug, and browse through class libraries without leaving the IDE.

To learn about organizing and configuring the IDE, see Chapter 5, “Customizing the
environment”.

Using toolbars, menus, and keyboard shortcuts

C++Builder’s toolbars, located in the main window, provide quick access to
frequently used operations and commands. All toolbar operations are duplicated in
the drop-down menus.

Standard toolbar View toolbar Desktops toolbar
Remove
Open file from View Toggle Name of saved ~ Save current
N‘ew Save project project units forr|n/unit deskto|p deskto|p
\ | |
ST i “ +. | - T & & |
o ale=igs [PIWIT| P /80
Open Save all Adc_i fileto View New Set debug
project forms form desktop
Debug toolbar
List of projects Trace To find out what a button does, point to it for a moment
you can run into and a hint is displayed. The button’s keyboard shortcut, if
| it has one, is displayed as well.
“ - “ | G d You can use the right-click menu to hide any toolbar. To
| \ display a toolbar if it's not showing, choose View|Toolbars
Run Pause Step and check the one you want.
over

Many operations have keyboard shortcuts as well as toolbar buttons. When a
keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

The toolbar is also customizable. You can add commands you want to it or move the
parts of the toolbar to different locations. For more information, see “Arranging
menus and toolbars” on page 5-4.

You can name and save desktop arrangements using the Desktop toolbar.

2-2 Quick Start

Placing components on a form

Placing components on a form

To build an application interface, you place components on a form, set their
properties, and code their event handlers.

Many components are provided on the Component palette, grouped by function.

C++Builder 5 - Project]

Eil= Edit Search Miew Project Bun Component Database Tools Help <Mone> = @
O - = ﬁ E == =T @ Standard]Addlllunal] Wwin3z | Sustem | DataAiczess | Data Contrals | ADO | InterBase | Mld_l_‘ G

wla= R

h EES 8 AR g owk)e S &as] E o

Wiew Project Bun Component De
Projectbanager Cil+vAlF11
Object Inspector F11
Alignment Palette

Or choose

ClassExplorer

Whdincow List..

Debug Windows o |

T8 Toggle Fam/Unit - Search by name:

(3 Units
= Forrs..
jl Frames
MNew EditWindow §§‘ TActionList
Toolbars #'% 1 TADOCommand

Aol

% TADOConnection

:-’[E TADOD staGet

[lton |

= |

You can also rearrange the palette and
add new pages. Choose Environment
Options, then the Palette page.

]

<

i

Editor Options.

‘& Debugger Dptions...
Translation Tooks Options.

[Zz Repository...

Tranzlation Repository.

3

VigBroker Smartigent

3 1DL Repositary.
6 Configure Toals.

Database Desktop

Package Callection Editar

Wisual C++ Project Conversion Utility
LCodeGuard Configuration

Image Editar

component froman - L
alphabetical list. 1. [CheckBoxl B

Click a component on the Component palette.

Then click where you want to place it on the form.

a

7 Labell

[" CheckBox2

= G Button2 |- oo ieiisiiiiiiiii

p— You can install new components on
e G, the Component palete.

(€] Install Componant
"A Import Activex Contral...

@ Install Component m

{Imo eising packaga | i new package |

Search path: "S[BEB]\le,'S[BEB]\E\n,t[BEE]\\mpwts

Package file name: | =] | Browse

Package description ‘

oK Cancel ‘ Help ‘

A tour of the environment 2-3

Changing component appearance and behavior

Changing component appearance and behavior

You can change the way a component appears and behaves in your application by
using the Object Inspector. When a component is selected on a form, its properties
and events are displayed in the Object Inspector.

Button2: TButton
P . .
e [t /]\ji Or use this drop-down list to select an

MaxHeigh 0
Medictth 0
MinHeight 0
MinWidth |0
Cursar crDefault
Default False

object. Here, Button2 is selected, and its
properties are displayed.

DragCursor crDrag
Dragkind | dkDrag
Dragiode dmbanual
Enshled | True
= Font J

Height 25
HelpCantexd 0 /I\

Hint

Left 264
ModalFiesul mrNone
Mame Button2
ParentBiDik True
ParentFont True
ParentShow True
PopuphMenu |

All shown

You can also double-click a plus sign to open a detail list.

Select a property
and change its
value in the right
column.

Click an ellipsis to open
a dialog where you can
change the properties
of a helper object.

You can select an object on the form by clicking on it.

Form1

Labs\'l

[~ CheckBoxl

Buttoni

[CheckBox2

[CheckBox3 Ceeeaoom Button2

Many properties have simple values—such as names of colors, true or false, and
integers. For Boolean properties, you can double-click the word to toggle between
true and false. Some properties have associated property editors to set more complex
values. When you click on such a property value, you'll see an ellipsis.

Puosition

poD ezigned
FrintScale roportlonal
Scaled
ShowHint False
Tan n
Laption ranell
Caolar

CH3D

Click on the down
arrow to select from a
list of valid values.

2-4 Quick Start

change the value from

‘ ‘ Double-click here to

true to false.

Click any ellipsis to
display a property
editor for that property.

Enabled ITuE

+Font [TFaht)

FullR eoaint True

Font 2]

Font style:

|Hegu|ar 8 |
0 Cancel
MewCenturySchibk
T Mews Gothic MT

T OCR A Extended 18 Heln

Palating 24
T Plapbil =l =l

=
x|

ffects Sample

™ Stikeout

™ Underling ’T\r}z:
Calor:

G ack = Scrpt:

Westein @

Viewing and editing code

Working with events

[tor ﬁ

mnonz TEution | Click the Events tab in the Object Inspector to see the _

Propertes Everts | events that each component can handle. Here, Button2 is

- selected and its type is displayed: TButton.

OnClick | 4|
OnContextPopup /[\ o
OnDragDrop — Select an existing event
OnDragOver handler from the drop-
GnEndDosk down list.
OnEndDrag o - et
OnEnter Lo Ll
OrEsit OTIdOUb||e-C||Ck 'ndthe pool CheckBord ot Baont [rriiiiiiiiin
OnKeyDown Vauecoumn,an <+ [CheckBax2 gnoonooaoooioneYRoEroocooaaca0oa0G
OnKeyPress C++Builder generates CU[CheckBogd oiiiiiilim Button2 Eii Gaionnaonaa
OnkeylUp skeleton code for a new SO A S S S SR SR SRS
OiltiEEsiEn event handler.

OnkdouseMowe

OnbdougeUp

OnStartDock

OnStartDrag

All shown 7

Viewing and editing code

As you design the user interface for your application, C++Builder generates the
underlying code. When you select and modify the properties of forms and
components, your changes are automatically reflected in the source files.

You can also add code to your source files directly using the built-in Code editor. The
Code editor is a full-featured ASCII editor. Choose Tools | Editor Options to
customize your editing environment. You can set options such as tabbing, key
mapping, color, and automatic features.

E C:\Test\Unitl.h

Unitl cpp Uit h | -2 -| Components added
% =| tothe form are
#ifndef UnitlH .
fdefine UnitiH reflected in the code.
Iz
#include <Classes.hpps T
finclude <Controls.npp> I — O]
#include <StdCtrls.hpps . D S S N S D S K
Gednerated e cpom 217 Laben S
coae. $include <ExtCtrls.hpps .
o - [CheckBosl il Eutton LLiiiiiiiiil
class TForml : public TForm A [~ CheckBox2 o el R
{ I CheckBard o m Button2 E Ll
__published: /4 IDE-managed | o Liiiiiiiiil

TLebel *Labeli:;
TChewkBox *CheckBoxl:
TCheckBox *CheckBoxZ:
TCheckBox *CheckBox3:
TButton/NButtonl;
TEutton [tBubton;

[S TPanel *Paneli;

11 [Indert

Click on any language keyword or VCL element, and
press F1to get Help.

A tour of the environment 2-5

Viewing and editing code

Viewing form files

Forms are a very visible part of most C++Builder projects—they are where you
design the user interface of an application. Normally, you design forms using
C++Builder’s visual tools, and C++Builder stores the forms in form files. Form files
(extension .DFM) describe each component in your form, including the values of all
persistent properties.

To view a form (.DFM) file in the editor, right-click on the form and select View as
Text. Form files can be edited. To return to the pictorial view of your form, right-click
and choose View as Form.

You can save form files in either text (the default) or binary format. The Environment
Options dialog lets you indicate which format to use for newly created forms.

For more information...
Search for “form files” in the Help index.

Browsing with the editor

The Code editor has Forward and Back buttons like the ones you've seen on Web
browsers. You can use them to navigate through source code. Click the left arrow to
return to the last place you were working in your code. Then click the right arrow to
move forward again.

Use the editor like a Web

Uril cpp UnitLh | -
o = browser.
#ifndef UnitiH
fidefine UnitlH
£
#include <clesses.app> Press Ctrland point to any
#include <Controls.hpp> d tf Th t . t
#include <StdCtrls.hpps laentter. ne CUII'SOr .l:“'ns Into
#include <Forms.hpn> a hand, and the identifier turns
#include <ExtCtrls.hpp> bl d . d | d
i ue ana Is unaeriined.

class TForml : public TForm

—|— Click to jump to the definition of

¢
__publisnea: /W the identifier.

TPaintBox ZQuickSo:

TPaintBox “SelectionSortBox: After navigating, click the Back

TLakel *Labell;

TCheckBox *CheckBox1; arrow to return to your previous
TCheckBox *CheckBox2 i
TCheckBox *CheckBox3: location.
TButton *Buttonl:
TButton *ButtonZ;
TPanel *Panell:
void _ fastcall SelectionSortBoxClick(TObject Sender):
i atas S5 Tmmn Anndamabdnnn ;'J
26: 46 [Modified |Insert v

For more information...
Search for “Code editor” in the Help index.

2-6 Quick Start

Managing projects

Exploring code

When a source file is open in the Code editor, you can use the ClassExplorer to see a
structured table of contents for the code. The ClassExplorer contains a tree diagram
showing the types, classes, properties, methods, global variables, and routines
defined in your unit.

B ThSoith [_ 0] %]

= wir = Thsoree Thatth |saithdops | sotih | e
& void DuickSortlint * &, canst in class TThreadSorcForm : public TForm =
d void Sortfint * A, constint A_5i 1
& TQuickSotTPaintBox * Bax, i __published:

=-w TSelectionSort TEutton *StartBtn;
& vaid Sartfint ® A, constint A_Si TPaintBox *BubbleSortBox;
du TSelectionSot{TPaintBox *Bo TPaintBox *SelectionSortBox:

-y ThonThread t————> TPaintBox #*QuickSorcBox:

=-w TThreadSortFom TLabel *Labeli:
@ TBevel *Bevell TBevel *Bevell;

(9 TEBevel*Bevel?
(9 TBevel*Bevel3
(9 TPaintBox * BubbleS otBiax
P TLabel * Labell
(9 TLabel* Label2

TEewvel *BevelZ;
TEewvel *Beveli:
TLabel *Labelz;
TLabel *Labeli:

O TLabe! * Labeld void _ fastcall BubbleSortBoxPaint (TOhject
9 TPaintBos * QuickSertBex void _ fastocall SelectionSortBoxPaint {TOhJ
9 TPaniBox * SelectionS onBax void _ fastcall QuickSortBoxPaint(TOhject
3 TButon * StartBin void _ fasteall FormCreate (TObject *Sender
P int ThreadsRunning void _ fastecall 3tartBtnClick({ToObject *Zer
 void BubbleSartBoxPaint(TObj—
& void FormCreate{TObject * Ser private:
dbu void Paintéurap] T PaintBios ~ B int ThreadsBunnings
< void QuickSartBoxPaint(T Obje void _ fastcall Randomizelhrrays(void):
& void RandomizeAnays(void] void _ fastcall Threadbone|TObject *Sender
PPORPIT-SIR - S-S, —

T e i s

45 26 Insert
For more information...

Search for “ClassExplorer” in the Help index.

Managing projects

Use the Project Manager to organize the form and unit files that make up an
application. To display the Project Manager, choose View | Project Manager.

I imagview. exe j [Eﬁ X @

Mew Remaove | Actvaie

Files |_Path
I@ ProjectGroupl C:\Program Files\Borland\ T hunder\Projects
E|-- imagview.exe C:\Program Files\BorlandThunder\E xamplesiépps
E| =i imagewn C:\Program Files\BorlandThunder\E xamplesiépps

- @ imagewn. cpp C:\Program FileshBorland T hunderE xamples‘\Apps*

=l ImageFom C:\Program FileshBorland T hunderE xamples‘\Apps*
@ imagview.cpp C:\Program FileshBorland T hunderE xamples‘\Apps*
@ readme. bt C:\Program FileshBorland T hunderE xamples‘\Apps*

WiewFm C:\Program FileshBorland T hunderE xamples‘\Apps*
- @ WiewFm.cpp C:\Program FileshBorland T hunderE xamples‘\Apps*
. C:\Program FileshBorland T hunderE xamples‘\Apps*

wF

A tour of the environment 2-7

Creating to-do lists

The Project Manager shows you the form, unit, resource, object, library, and other

files contained in a project. You can use the Project Manager to add and remove files,
and you can open any file by double-clicking it.

You can combine related projects into a single project group. For example, you might

use project groups to organize a multi-tiered application or to keep DLLs with
executables that use them.

For more information...
Search for “Project Manager” in the Help index.

Creating to-do lists

To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items

directly in the source code. Choose View | To-Do list to add or view information
associated with a project.

To-Do List-Froject]

Actian ltem
(W] 2.0 Help button to

Module Chwner | Categary

L E Fix bug #4230 3 Jerry Beta
O] & Tell writers about nes option on P... 1 Jemy Alpha
Click here when you're Add G+
done with an item. Edit Fz
Delete Del
Action [tem
3 itemns (0 hidden) 3 items pending Eilter =
- ¥ Show Completed tems Type
Right-click on a to-do list to ¥ Show ToolTips when Clipped Eriority
display commands that let ComA , Module
you sort and filter the list. =Ry A8 BTG
Tahble Broperties... -
| Category
v Dockahle
For more information...
Search for “To-Do Lists” in the Help index.
Designing data modules

A data module is a special form that contains nonvisual components. All the
components in a data module could be placed on ordinary forms alongside visual
controls. But if you plan on reusing groups of database and system objects, or if you

want to isolate the parts of your application that handle database connectivity and
business rules, data modules provide a convenient organizational tool.

2-8 Quick Start

Setting project and environment options

The Data Module Designer makes it easy to create data modules. To create a data
module, choose File | New and double-click on Data Module.

DataModulel [_ (O]
w3 Datatodulel Compohents l Data Diagram] This tab ShQWS a graphic)
&3 DataSource A representation of relationships
= /\ﬁ Default [Sezzion] among Components, SUCh as
- <75 [Alias] =am master-detail and lookup fields.
S &Y <P [Table] =y =k
&y Constraints DataSoucel Tablel
o FieldDefs The Components tab
& Fields (displayed here) shows
&y IndexDefs components as they would
| appear on a form.
\ This pane shows a hierarchical
T tree view of the components in
the module.

C++Builder opens an empty data module in the Data Module Designer, displays the
unit file for the new module in the Code editor, and adds the module to the current
project. When you reopen an existing data module, C++Builder displays its
components in the Data Module Designer.

For more information...
Search for “Data Module Designer” or “data module” in the Help index.

Setting project and environment options

The Project Options dialog, accessed by choosing Project | Options, controls compiler
and linker switches, some search paths and output directories, project version
information, and other settings that are maintained separately for each application.
When you make changes in the Project Options dialog, your changes affect only the
current project; but if the Default check box is selected, your selections are also saved
as the default settings for new projects. (See “Setting default project options” on
page 5-5.)

The Environment Options dialog, accessed by choosing Tools | Environment Options,
controls global IDE settings for all projects. These include many settings that affect
the appearance and behavior of the IDE, as well as some search paths and output
directories. You'll find more information about some of these options in “Setting tool
preferences” on page 5-6.

For more information...

For details about the options on any page of the Project Options or Environment
Options dialogs, click the Help button on that page. Or search for “Project Options
dialog box” or “Environment Options dialog box” in the Help index.

A tour of the environment 2-9

Getting help

Getting help

The online Help system provides extensive documentation on the VCL and other
parts of C++Builder. Here are some of the ways you can display Help:

IEuttUnZ:TEluttDn i

Properties |E\;em5 |

Press F1 on a property
or event name in the

& C++Builder Help
File Edit Bookmark Options Help

[O]]

| History I

Press F1 on a language

MaxHeigh'o | O_bject Inspector to HepTopics] fack [Pt [Dptins [<« [2
MedAich display VCL Help. TControl::Font
MinHeight 0 TControl See also Example
Mirficlth |0 Controls the attributes of text written on or in the control
gmfsuit ;r[l)efauh __broperty Graphics::TFont* Font = {read=FFont,
Etal ase write=%etFont, stored=IzFontStored}:
DragCursor | crhrag
Diragkind derag/ Description
Draghiode | dmigfiual To change to & new font, specify a new TFont object. To modify 2
Enabled Tr font, change the value of the Charset, Color, Height, Mame, Pitch,
Font (Size, or Style of the TFont object
Height 25
HelpContex 0
Hint
Left 264
WL = unitih (o]]
Unitt.cpp UnitLh | -
¢ =l
__publishea: 7
TListBox "ListBox1 [EEer e !Elﬂ the Code editor.
TLahel *Labell: File Edt Bookmak Options Help
TLabel *FontLabel;
void Tastoall Fo HepTopics| Back | Pt | Options | << | > | Histow
void _ fasteall Li TListBox
void _ fasteall Dr .
TRect sRect, Tow |_Hierarchy Propertiss Methods Events
void _ fasteall Li| TListBoxis awrapper for a YWindows list box control ﬂ
int Index, int & i
private: ¢4 User de| Unit
public: A4 User de| stdcirls
__ fasteall TFormili
3z Description
L — TListBox implements the generic behavior introduced in
j’/‘t"“ PACRAGE TForml "For) 0 crmm| jsthox, TLIStBox publishes many of the
eenaie | properties parent class's from TCustomListBox, but does
k] not introduce any new behavior,
EF B insert Use TListBox to display a scrollable list of iterns that users
can select, add, or delete. For specialized list boxes, use |
it Forml 9 [=]
D wim] Press F1 on an object in
the Form Designer.
2 C++Builder Help 19 [=]
Fie Edi Bookmak Options Help
Help Topics] Back | Fin | Dpions | ¢ | 3> | Hstoy |
TBitBtn /
hy Propetties tethods Events See also

2-10 Quick Start

TBitBtn is a push button control that can include a bitmap on 3‘

its button face
Unit

buttons
Description

Bitmap buttons exhibit the same behavior as button controls
Use them ta initiate actions from forms and dialog boxes

keyword or VCL element in

Getting help

You can get Help on any part of the development environment, including menu
items, dialog boxes, windows, toolbars, and components.

++Builder 5 - Project]

File Edit Search ¥iew Pigject Bun Component Database Tools Help

0O&E - n ﬂ E @ﬂddtuprcﬂsct

<Mone> | &

ShiltsF11 fional | Win32 | Sustem | DataAccess | DataControks | ADD | InterBase | Mid 41>

3980, St PR AW G R e A B
8} Add to Repository... @ — ﬂ
Press Fl on any menu %‘EWSEU'CE , File Edit Bookmark Options Help
Anguages
command dlaloyg box, or ¢ Edit Option Source H:I’DIU_DICSLB i | - E':l ‘ | |
’ ’
i H Export Makefile: roject|sulld projec

window to display Help on oo o

that item.

0 Wake &)l Projects

Two

L) Build &1l Projects

o

DOptions.

‘% Add New Project.
W
—

ampile Unit

Information for Project]

Choose Project|Build profect to rebuild all the cormponents i‘
of a project regardless of whether they have changed. This
cormand is useful when you've changed global compiler
directives or compiler options, to ensure that all code

compiles in the proper state

Alt+F9
Chil+F3

This option is identical to Project|Make project except that
it rebuilds everything, whereas ProjectiMake rebuilds only
those files that have changed since the last build. When
you choose Build project, precompiled headers and files
yenerated by the incremental linker are deleted and
regenerated

You can also irvoke this command frorm the Project
Manager. Right click and choose Build

ShiftsChi+F11 nag e P e =

Pressing the Help button in any dialog box also displays context-sensitive online

documentation.

Error messages from the compiler and linker appear in a special window below the
Code editor. To get Help with compilation errors, select a message from the list and

press F1.

Help with coding

C++Builder provides various aids to help you write code. The Code Insight tools
display context-sensitive pop-up windows in the Code editor.

Table 2.1

Tool

Code Insight tools

Code Completion

Code Parameters

Code Templates

Tooltip Expression Evaluation

Tooltip Symbol Insight

How it works

Type the name of a variable that represents a pointer to an object
followed by an arrow (->) or that represents a non-VCL object
followed by a dot. Type the beginning of an assignment
statement and press Cirl+space to display a list of valid values for
the variable. Type a procedure, function, or method name to
bring up a list of arguments.

Type a method name and an open parenthesis to display the
syntax for the method’s arguments.

Press Ctrl+J to see a list of common programming statements that
you can insert into your code. You can create your own
templates in addition to the ones supplied with C++Builder.

While your program has paused during debugging, point to any
variable to display its current value.

While editing code, point to any identifier to display its
declaration.

A tour of the environment 2-11

Debugging applications

To configure these tools, choose Tools | Editor Options and click the Code Insight tab.

Tt C++Builder 4 - Projectl M =1E3
File Edit Search Wiew Praoject Rum Component Database Toals Workgroups Help ‘
D -d ‘ = s ‘ =] EHJ & || Standad | Addtional | win32] Sustem | Intemet | Data Access | Data Cantrols | Midas | Decision cube 1 *
98B0 -llaw|k FEAWMSmr o 3@ B[F |
0 nitl_cpp [O[]
—
——= nitl - -
=[] Classes MALES | -
Froperties |Events| & ¥ TFomi void _ fastcall TFormi::ButtonlClick|[TObject *Sender.+|
ACUDI’\ TS P —— - TButton * Bulto !
“AstiveCortrel vaid ButtonCli Burtonl->] When you type Buttonl->,
Align alMone - TFomi1[T Comp. } function Chck. i i . N
stnchors | laLeft kTop (2 outines funeion U seightT o itAlignmeni C++Builder displays a list of
AutoScroll true property Action 1
AutaSize fabe popey Anchars propertles, methods, and
[Sich propetty BiiMode events for the class.
en piopeity Cancel 5))
Eosnls s Select an item on the list and
Borderwidth |0 .
Eaption] o1 press Enterto add it to your
LlientHleight | 1303 ...
Clientiw/idth 595 COde .
Calor cBinFace
+Constaints (TSizeConstia
3D tue
4 2l v =
1812 [Modified [Insert v

For more information...
Search for “Code Insight” in the Help index.

Debugging applications

The IDE includes an integrated debugger that helps you locate and fix errors in your
code. The debugger lets you control program execution, watch variables, and modify
data values while your application is running. You can step through your code line
by line, examining the state of the program at each breakpoint.

e -

o2 Attach to Progess...

51 Parameters
¢ £ Register fictive Server
Run button P Urregister Activex Server
o Step Over F8
& TraceInto F7
‘Bl Trace to Newt Source Line Shift+F7
"I Run ta Cursor F4
& Run UntilRetum ShifteF8

WE Show Evecution Paint

Choose any of the debugging 1] FrapamiPscs

commands from the Run Proaen Heset Bil+£2
menu. Some commands are 8, jrspect.

also available on the toolbar. Buleaeiital Bk

oo Add Watch... Cul+F5

Add Breakpaint 3

To use the debugger, you must compile your program with debug information.
Choose Project | Options, select the Compiler page, and check Debug Information.
Then you can begin a debugging session by running the program from the IDE. To
set debugger options, choose Tools | Debugger Options.

Many debugging windows are available, including Breakpoints, Call Stack, Watches,
Local Variables, Threads, Modules, CPU, and Event Log. Display them by choosing

2-12 Quick Start

Exploring databases

View | Debug Windows. To learn how to combine debugging windows for more
convenient use, see “Docking tool windows” on page 5-1.

You can attach or overlay hre . Breakpoint Li h
several debugging windows Thread Status Breakpoint List | all Stack | Watch List | Modules | Event Log
for easier use. Filename/Address | Line/Length | Condition | Action Fass Count | Group
B CheckBoxmpll... 4 Braak i
E}CheckBoxlmpl1... 20
B CheckBoximpl1... 24 Break i
B Projectl dpr 13 Break i
4] |

Once you set up your desktop as you like it for debugging, you can save the settings
as the debugging or runtime desktop. This desktop layout will be used whenever
you are debugging any application. For details, see “Customizing desktop settings”
on page 5-5.

Some versions of C++Builder support multiprocess and remote debugging of
distributed applications from either the client or the server. To turn on remote
debugging, choose Run | Parameters, click the Remote tab, and check “Debug Project
on remote machine”.

For more information...

See “Using C++Builder” in the Help contents or search for “debugging” in the Help
index.

Exploring databases

The SQL Explorer (or Database Explorer in some editions of C++Builder) lets you
work directly with a remote database server during application development. For
example, you can create, delete, or restructure tables, and you can import constraints
while you are developing a database application.

SAL Explorer [_ O] %]
Object Dictionary Edit Yiew Options Help
> ok o = A (]
All Database Aliases Cantents of hiolife.db Cho_ose DatabaselEXplOre
to display the Explorer.
Databases lD\:tiUnary} Definition Data lEmerSQL} You can see and change
=38 Databases o Species ND|CﬁlEgDry ‘Cummun_NamE = the data in a table.
=% DEDEMOS : 90020 Triggerfish Clown Triggerfish
- Eme_s 90030 Snapper Bled Empera And you can query a
: el 90050 Wrasse Giant Maori \Wrasse [database dlreCtly'
b 90070 Angelfish Blue Angelfish
+-f country.db 90080 | Cod Lunartail Rockead
- custoly.dh L 90090 | Scorpionfish Firefish
+-[8 customer.db 90100 Butteriyfish Omate Butterfyfish
: g emp"”y;be clo a0110 Shark Swell Shark
+ eyents
. holdings.dit 0720 Ry Bat Rey
al +1-f induste dhf i ’ﬂ ; L’j

6 items in biolife.db.

A tour of the environment 2-13

Templates and the Object Repository

For more information...

Choose Database | Explore to open the Explorer; then press F1. Or search for
“Database Explorer” in the main Help index.

Templates and the Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,
sample applications, and other items that can simplify development. Choose File |
New to display the New Items dialog when you begin a project. Check the
Repository to see if it contains an object that resembles one you want to create.

The Object Repository
contains many tabbed
pages, which include objects
like forms, frames, units, and
batch files, and wizards to
create specialized items.

You can copy, inherit, or
reference an existing object

—>

=

c,;' New Items

Projects I Data Modules 1 Business]
New l Activel I Multitier I Project] I Foims I Dialogs]
& B8 -
Batch File CFile Campanent Conzole
Wizard
- - " - L
R B x|
Control Panel Control Panel Cpp File DataModule DLL 'Wizard
Application Module
-
& =5 ®
Foim Frame Header File Library Package
5|
(o (o (o
oK Cancel | Help |

You can add your own objects to the Repository to facilitate reusing them and
sharing them with other developers. Reusing objects lets you build families of
applications with common user interfaces and functionality; building on an existing
foundation also reduces development time and improves quality. The Object
Repository provides a central location for tools that members of a development team

can access over a netw

ork.

To add objects to the Repository, right-click in the New Items dialog and choose
Properties, or choose Tools | Repository from the main menu.

Object Repository [x]

Pages
Dialogs
Projects

Data Modules
Business

[Ohject Repository]

2 s

Add Page.
Delete Page
Rename Page.

B
[[wsaesa |

=]

Objects:
B About box

T Dual list box

r

Cancel

DA Tabbed pages

[E QuickReport List
[QuickRepart Master/ Detail
[QuickReport Labels

Help

2-14 Quick Start

Templates and the Object Repository

For more information...

See “Using C++Builder” in the Help contents or search for “Object Repository” in the
Help index. Also choose File | New and browse in the Object Repository to see the
types of templates and wizards you can use as starting points for your applications.
The objects available to you will depend on the version of C++Builder you
purchased.

A tour of the environment 2-15

2-16 Quick Start

Creating a text editor—a tutorial

This tutorial takes you through the creation of a text editor complete with menus, a
toolbar, and a status bar. It includes a simple help file accessible from the application.

Note This tutorial is for all versions of C++Builder.

Starting a new application

Before beginning a new application, create a folder to hold the source files:

1

2

Create a folder called TextEditor in the Projects directory off the main C++Builder
directory.

Create a new project.

Each application is represented by a project. When you start C++Builder, it creates
a blank project by default. If another project is already open, choose File | New
Application to create a new project.

When you open a new project, C++Builder automatically creates the following
files:

* Project1.cpp: a source-code file associated with the project.

¢ Unitl.cpp: a source-code file associated with the main project form. This is
called a unit file.

e Unitl.h: a header file associated with the main project form. This is called a unit
header file.

e Unitl.dfm: a resource file that stores information about the main project form.
This is called a form file.

Each form has its own unit (Unit1.cpp), header (Unit1.h), and form (Unit1.dfm) files.
If you create a second form, a second unit (Unit2.cpp), header (Unit2.h), and form
(Unit2.dfm) file are automatically created.

Creating a text editor—a tutorial 3-1

Starting a new application

3 Choose File | Save All to save your files to disk. When the Save dialog appears:
* Navigate to your TextEditor folder.
® Save Unitl using the default name Unitl.pas.

* Save the project using the name TextEditor.bpr. (The executable will be named
the same as the project name with an exe extension.)

Later, you can resave your work by choosing File | Save AlL

When you save your project, C++Builder creates additional files in your project
directory. These files include TextEditor.bpr, which is the project options or
makefile, and TextEditor.res, which is the Windows resource file. You don’t need
to worry about these files but don’t delete them.

When you open a new project, C++Builder displays the project’s main form, named
Form1 by default. You'll create the user interface and other parts of your application
by placing components on this form.

¢ Form1 M= E
= The default form has Maximize
and Minimize buttons, a Close

button, and a Control menu.
EEEEH IS IR G If you run the form now by

pressing F9, you'll see that

these buttons all work.

i ST S To return to design mode, click
the X to close the form.

Next to the form, you’ll see the Object Inspector, which you can use to set property
values for the form and components you place on it.

Object Inspectar

The drop-down list at the top of the Object Inspector

Fomi Tromi = o the currently selected object. In this case, the
Properies | Events | objectis Form1 and its type is TForm1.

BorderStyle bsSizeahles]

Eorderwidth 0

Caption Faorrmil

g::z:w;?: 2;; When an object is selected, the Object Inspector shows

Caolaor 1A ciu ol Its propertles.
E Constraints |(TSizeCaons

Cursar crDefault

Defaulttoni drActivelt
DockSite |False
Dragkind | dkDrag
Draghode | drmbdanual
Enabled | True

mFant [TFan)
Form3tle |fsMormal -

2 hidden 4

3-2 Quick Start

Setting property values

Setting property values

When you use the Object Inspector to set properties, C++Builder maintains your
source code for you. The values you set in the Object Inspector are called design-time
settings.

You can change the caption of Form1 right away:

¢ Find the form’s Caption property in the Object Inspector and type “Text Editor
Tutorial” replacing the default caption “Form1.” Notice that the caption in the
heading of the form changes as you type.

Adding objects to the form

Before you start adding objects to the form, you need to think about the best way to
create the user interface (UI) for your application. The Ul is what allows the user of
your application to interact with it and should be designed for ease of use. The text
editor application requires an editing area, a status bar for displaying information
such as the name of the file being edited, menus, and perhaps a toolbar with icons for
easy access to commands. The beauty of designing the interface using C++Builder is
that you can experiment with different components and see the results right away.
This way, you can quickly prototype an application interface.

C++Builder includes many objects that represent parts of an application. For
example, there are objects (also called components) that make it easy to program
menus, toolbars, dialog boxes, and hundreds of other visual (and nonvisual)
program elements.

The Component palette represents VCL components using icons grouped onto
tabbed pages. Add a component to a form by selecting the component on the palette,
then clicking on the form where you want to place it. You can also double-click a
component to place it in the middle of the form. To get help on the components,
select the component (either in the Component palette or on the form) and press F1.

%¥ C++Builder 5 - TextEditor

File Edt Search Yiew Pmject Bun Comporent Database Took Help |”|DESK[UD setting 'I| & %|

ODE-J ‘ e | =2 g”] &L Standard |Additi0nal| win32 | Swstem | DataAccess | Data Controls | AD0 | InterBase | Midas | pdlr
Sl ll= s Y S AP Ewr b TE] F
\ |

Component palette tabs Components

Creating a text editor—a tutorial 3-3

Adding objects to the form

To start designing the text editor, add a RichEdit and a StatusBar component to the
form:

1 To create a text area, drop a RichEdit component onto the form.

Click the Win32 page on the Component palette. To find the RichEdit component,
point to an icon on the palette for a moment; C++Builder displays a Help hint
showing the name of the component.

% C++Builder 5 - TextEditor

File Edit Search View Projst Bun Component Database Tools Help | |||Ceskiop setting || &

OeE--" o8| 2T & Standard | Addiional #in32 I Sustem | Data Access | Data Contals | ADO | InterBase | Midas | pdlr

BEDO]F -l c =gl = A P B B e ol
RitHE it

When you find the RichEdit component, double-click it to place it on the form.

S¥ Text Editor Tutorial

Each C++Builder component is a class; placing a component on a form creates an
instance of that class. Once the component is on the form, C++Builder generates
the code necessary to construct an instance object when your application is
running.

3-4 Quick Start

Adding objects to the form

2 Set the Align property of RichEdit] to alClient.

To do this, click on RichEdit] to select it on the form, then choose the Align
property in the Object Inspector. Select alClient from the drop-down list.

Obiect Inspector L] Select the RichEdit1 component on the
[RichEditi: TRichE it -] form.

Propetties | Events | Look for Align in the Object Inspector.
Click the down arrow to display the
property drop-down list.

———Select alClient.

EiDiMode
BorderStyle alNone

Barderwfidth | 2IFioht
alT o

Calar -
Constraints [TSizeConstrain

Cursor crDefault

DragCursor | ciDrag |
|2 hidden v

The RichEdit component now fills the form so you have a large text editing area.
By choosing the alClient value for the Align property, the size of the RichEdit
control will vary to fill whatever size window is displayed even if the form is
resized.

3 Double-click the StatusBar component on the Win32 page of the Component
palette. This adds a status bar to the bottom of the form.

€7 C++Builder 5 - TextEditor

File Edit Search ¥iew Project Fun Compoment Database Tools Help HIIDESHDD setling i ‘ & %|

DEe--d | = = | e HJ & Standard | Additional Win32 | Sustem | Data Access | DataContials | ADD | InterBase | Midas | IntemetExoress | Alv

ms@ol|y -nis SE IFRICET |
stsfusDar

Next we want to create a place to display the name of the file being edited. You
can do this in two ways. The easiest way is to set the SimplePanel property of the
StatusBar1 object to true and assign any text that you want to display to the
SimpleText property. This provides only one panel in the status bar. You can assign
its value as follows:

StatusBarl->SimpleText = "untitled.txt";

However, many times you will want to include more than one panel in the status
bar so you can include more than one piece of information. You can specify more
than one panel by using the Panels property of the TStatusBar component as
explained in the next few steps.

Creating a text editor—a tutorial 3-5

Adding support for a menu and a toolbar

4 Double-click the status bar to display the Editing StatusBar1->Panels dialog box.

T Text Editor Tutorial

RichEdit1

c; liting StatusBar1->Panels |

¥

@m
& Delete! =]

4+ Hove llp [+l
¥ fioye Do Ehlbovm
Select Al
‘ |7 Toolbar

Right-click on here to display a
context menu. Choose Add to
create a panel on the status bar
that can hold persistent text.

o A

5 Right-click on the dialog box and choose Add to add the panel to the status bar.

% Editing StatusBar1->Panels

This shows the panel you
created. It has an index
number of 0.

The Panels property is a zero-based array that allows you to access each Panel that
you create based on its unique index value (by default, it is O for this panel). Use
the default property values for the panel. Click the X in the upper right corner to
close the dialog box. Now the main editing area of the user interface for the text
editor is set up.

Adding support for a menu and a toolbar

For the application to do anything, it needs a menu, commands, and, for
convenience, a toolbar. Because some of the same commands will appear on the
menu and the toolbar, you can centralize the code by creating an action list. Action
lists help to centralize the code for the commands.

3-6 Quick Start

Following are the kinds of actions our sample text editor application needs:

Table 3.1

Command
New
Open
Save
Save As

Exit
Cut
Copy
Paste

Contents

Index
About

Adding support for a menu and a toolbar

Planning Text Editor commands

Menu
File
File
File
File

File
Edit
Edit
Edit
Help

Help
Help

On Toolbar? Description

Yes
Yes
Yes
No

Yes
Yes
Yes
Yes
Yes

No
No

Creates a new file.

Opens an existing file for editing.

Stores the current file to

disk.

Stores a file using a new name (also lets you store a new file

using a specified name).

Quits the editor program.

Deletes text and stores it
Copies text and stores it

Inserts text from the clip

Displays the Help contents screen from which you can

access Help topics.
Displays the Help index

Displays information about the application in a box.

in the clipboard.
in the clipboard.
board.

screen.

You can also centralize images to use for your toolbar and menus in an ImageList.

To add an ActionList and an ImageList to your form:

1 From the Standard page of the Component palette, drop an ActionList component
onto the form. The ActionList component is nonvisual, so it doesn’t matter where
you put it on the form. It won’t appear at runtime.

2 From the Win32 page, choose the ImageList component and drop it onto your form.
It’s also nonvisual so you can put it anywhere.

Your form should now resemble the following figure.

£ Text Editor Tutorial

FichE ditl

[O[]

EE

<

The ActionList
and ImageList
—— objects don't
show when the
application is
running.

— Editing area

<— Status bar

Creating a text editor—a tutorial

3-7

Adding suppor

t for a menu and a toolbar

Adding actions to the action list

Next we’ll add the actions to the action list.

Tip

By convention, we’ll name actions that are connected to menu items the name of the

top-level menu and the item name. For example, the FileExit action refers to the Exit
command on the File menu.

1 Double-click the ActionList icon.

The Editing Form1->ActionList]l dialog box is displayed. This is also called the
Action List editor.

2 Right-click on the Action List editor and choose New Action.

§#Editing Form1->ActionList1

Right-click on the Action
List editor and choose

i~ i | + ¥ New Action to create an
action for the action list.
Categories: Actions:
Betonls __—
Mew Action
Mew Standard Action... Chil+lne
+ hiove g [t
¥ hiove Down [ty
Cut Chrl+
Capy Ctrl+C
Paste Chrl+t
¥ Delete [el
Select Al
|7 Panel Descriptions
’7 Toolbar

3 In

the Object Inspector, set the following properties for the action:

After Caption, type &New. Note that typing an ampersand before one of the letters
makes that letter a shortcut to accessing the command.

After Category, type File. This organizes the File commands in one place.
After Hint, type Create file (this will be the Help hint).

After Imagelndex, type 0 (this will associate image number 0 in your ImageList
with this action).

After Name, type FileNew (for the File | New command).

4 Right-click on the Action List editor and choose New Action.

5 In

3-8 Quick Start

the Object Inspector, set the following properties:

After Caption, type &0Open.

Make sure the Category says File.

After Hint, type Open file.

After Imagelndex, type 1.

After Name, type FileOpen (for the File | Open command).

Adding support for a menu and a toolbar

6 Right-click on the Action List editor and choose New Action.
7 In the Object Inspector, set the following properties:

After Caption, type &Save.

Make sure the Category says File.

After Hint, type Save file.

After Imagelndex, type 2.

After Name, type FileSave (for the File | Save command).

8 Right-click on the Action List editor and choose New Action.
9 In the Object Inspector, set the following properties:

o After Caption, type Save &&s.

Make sure the Category says File.

After Hint, type Save file as.

No Imagelndex is needed. Leave the default value.

After Name, type FileSaveAs (for the File | Save As command).

10 Right-click on the Action List editor and choose New Action.

11 In the Object Inspector, set the following properties:

¢ After Caption, type Eexit.

* Make sure the Category says File.

e After Hint, type Exit application.

o After Imagelndex, type 3.

o After Name, type FileExit (for the File | Exit command).

12 Right-click on the Action List editor and choose New Action to create a
customized Help | Contents command.

13 In the Object Inspector, set the following properties:

After Caption, type &Contents.

After Category, type Help.

After Hint, type Display Help.

After Imagelndex, type 7.

After Name, type HelpContents (for the Help | Contents command).

14 Right-click on the Action List editor and choose New Action.

15 In the Object Inspector, set the following properties:

o After Caption, type &Index.
¢ Make sure the Category says Help.
o After Name, type HelpIndex (for the Help | Index command).

16 Right-click on the Action List editor and choose New Action.
17 In the Object Inspector, set the following properties:

¢ After Caption, type &About.
* Make sure the Category says Help.
e After Name, type Helpabout (for the Help | About command).

Keep the Action List editor on the screen.

Creating a text editor—a tutorial

39

Adding support for a menu and a toolbar

Note

Note

When you were adding actions to the action list, you might have noticed a standard
Help | Contents command is provided. We added a custom Help | Contents
command that will display the Help Contents tab at all times. The standard Help |
Contents command brings up the last tabbed page that was displayed, either the
Contents or the Index.

Adding standard actions to the action list

C++Builder provides several standard actions that are often used when developing
applications. Next we’ll add the standard actions (cut, copy, and paste) to the action
list.

The Action List editor should still be displayed. If it's not, double-click the ActionList
icon on the form.

To add standard actions to the action list:
1 Right-click on the Action List editor and choose New Standard Action.
The Standard Actions dialog is displayed.

£ Editing Form1->ActionList1

Right-click on the Action List editor and

choose New Standard Action. 3 -
The available standard actions are then Categories: Actions:
displayed. To pick one, double-click an [Norie] HelpContents
action ile Helplndex
: _ Helpdbout
[&ll Actions \ ﬁ e St Ins
% Standard Actions \ : \ Clil+lns
Action \ | Categan =] ol |
TEditCopy Edit Cancel Cut Chisx
TEdiDelete Capy ik
TEditPaste Edit Help Paste Ctl
TEditSelectal Edit
TEditdnda Edit Select All
THelpContents Help
THelpOnHelp Help v Panel Descriptions
THelpTopicSearch Help v Toolbar
Twindowarangs Winidow
TwindowCascade Window
TwindowClose Window
TwindowMinimizedl| Window
TwindowT ileHaorizontal Window
TwindowT ileVertical Window =]
Il | v

2 Double-click TEditCut. The action is created along with a new category called
Edit. EditCutl should be selected.

3 In the Object Inspector, set the following property for EditCutl:
o After Imagelndex, type 4.
The other properties are set automatically.

4 Right-click on the Action List editor and choose New Standard Action.

3-10 Quick Start

Adding support for a menu and a toolbar

5 Double-click TEditCopy.
6 In the Object Inspector, set the following properties:
o After Imagelndex, type 5.
7 Right-click on the Action List editor and choose New Standard Action.
8 Double-click TEditPaste.

9 In the Object Inspector, set the following properties:
* After Imagelndex, type 6.

10 Now you’ve got all the actions that you’ll need for the menus and toolbar. If you
click on the category All Actions, you can see all the actions in the list:

11 Click on the X to close the Action List editor.

12 With the Action List still selected on the form, set its Images property to
ImageList1.

Object Inspector Text Editor Tutorial

IActionList‘I: TactionList 5 l RichE dit1
Froperties | Events] =k
| | Ty
Images 'l
Mame ImageList!
Tag 1]
[0 shown [A

Click on the Images property, then on the down arrow next to Images.
ImagelListl is listed for you. Select it. This associates the images that we'll add
to the image list with the actions in the action list.

Adding images to the image list

Previously, you added an ImageList object to your form. In this section, you'll add
images to that list for use on the toolbar and on menus. Following are the images to
use for each command:

Command Icon image name Imagelndex property
File | Open Fileopen.bmp 0
File | New Filenew.bmp 1
File | Save Filesave.bmp 2
File | Exit Doorshut.bmp 3
Edit | Cut Cut.bmp 4
Edit| Copy Copy.bmp 5
Edit | Paste Paste.bmp 6
Help | Contents Help.bmp 7

Creating a text editor—a tutorial 3-11

Adding support for a menu and a toolbar

Note

To add the images to the image list:
1 Double-click on the ImageList object on the form to display the Image List editor.
2 Click on the Add button and navigate to the Buttons directory provided with the

product. The default location is C:\Program Files\Common Files\Borland
Shared \Images\Buttons.

Select fileopen.bmp.

When a message asks if you want to separate the bitmap into two separate ones,
click Yes each time. Each of the icons includes an active and a grayed out version
of the image. You'll see both images. Delete the grayed out (second) image.

Click Add and select filenew.bmp. Delete the grayed out image.
Click Add and select filesave.bmp. Delete the grayed out image.
Click Add and select doorshut.bmp. Delete the grayed out image.
Click Add and select cut.bmp. Delete the grayed out image.

Click Add and select copy.bmp. Delete the grayed out image.
Click Add and select paste.bmp. Delete the grayed out image.
Click Add and select help.bmp. Delete the grayed out image.

Click OK to close the Image List editor.

You've added 8 images to the image list and they’re numbered 0-7 consistent with
the Imagelndex numbers on each of the actions.

If you get them out of order, you can drag and drop them into their correct
positions in the image list editor.

To see the associated icons on the action list, double-click the ActionList object
then select the All Actions category.

£ Editing Form1->ActionList1

- *
Categories: Actions:
[Mone] Filaaw When you display the Action List editor
[FileOpen now, you'll see the icons associated with
FileGave the actions.
FileZavets We didn't select icons for three of the
B FieEsit commands because they will not be on the
? HelpContents toolbar.
Helplndex
Helpabout
EditCutl
EditCopyl
TR E ditPasted

When you're done close the Action List editor. Now you're ready to add the menu
and toolbar.

3-12 Quick Start

Adding a menu

Adding a menu

In this section, you'll add a main menu bar with three drop-down menus—TFile, Edit,
and Help—and you'll add menu items to each one using the actions in the action list.

1 From the Standard page of the Component palette, drop a MainMenu component
onto the form. It doesn’t matter where you place it.

2 Set the main menu’s Images property to ImageList1. This will allow you to add the
images to the menu items.

3 Double-click the menu component to display the Menu Designer.

r’l Form1->MainMenu1

IH[= E3

4 In the Object Inspector, type &File to set the Caption property of the first top-level
menu item and press Enter.

Object Inspector

|File1: Thenultem j
Froperties l Events] When you type
Actian 2| &File and focus on

AutoHotkeys | maParent
AutoLineRedud maParent

the Menu Designer,
the top-level File

Bitmap [Maone]

Break mbMone command appears
Caption LFil ready for you to add
Checked |Fake the first menu item.
Default False

Enabled True

Grouplndex |0

HelpContext |0
All shown

Creating a text editor—a tutorial

3-13

Adding a menu

5 In the Menu Designer, select the File item you just created. You'll notice an empty
item under it: select the empty item. In the Object Inspector, choose the Action
property. The Actions from the action list are all listed there. Select FileNew.

INew‘]; Thenultemn o l | Form1->MainMenu !E
v el | s sl

Action Filetew > . .
AutoHotkeys [EditCopyl =] Action DFODerty list,
AutaLineRed|EditCut] the New command
iR EditPastel appears with the
....... Break [EleEs correct Caption
Caption - | and Imagelndex.
Checked FileOpen
Diefault FileSave
Enshled Ileavehs
Grouplndex |0
HelpContext |0 |
|AII shown v

¢ Focus on the item under New and choose FileOpen from its Action property.
¢ Focus on the item under Open and choose FileSave from its Action property.
¢ Focus on the item under Save and choose FileSaveAs from its Action property.

¢ Focus on the item under Save As and type a hyphen as the Caption of the next
item under the File menu and press Enter to create a separator bar on the menu.

* Focus on the item under the separator bar and choose FileExit from its Action
property.
6 Next create the Edit menu:

¢ Point to the item to the right of the File command and set its Caption property
to &Edit and press Enter.

¢ Focus is now on the item under Edit; choose EditCutl from its Action property.
¢ Select the item under Cut and choose EditCopy1 from its Action property.
¢ Select the item under Copy and choose EditPastel from its Action property.

Obiject Inspector v/ FormA1-=MainMenu1 =10 x|
IPaste'I: ThMenultem ‘l File Edit
Fropertiez I E\,len[gl Cut Clrl+
Action E ditP zste JIRAIE Copy CikC
AutoHotkeys | maParent
AutoLineRedud maP arent
Bitmap [MNone]
Brealk mbMone
Caption tPaste
Checked falze
Default falze R
|.QII shown i

7 Next create the Help menu:

e Point to the item to the right of the Edit command and type &Help as its caption.

3-14 Quick Start

Adding a menu
¢ Focus on the Menu Designer to select the item under Help and choose
HelpContents from its Action property.
¢ Select the item under Contents and choose HelpIndex from its Action property.

* Select the item under Index and type a hyphen its Caption and press Enter to
create a separator bar on the Help menu.

¢ Select the item under the separator bar and choose HelpAbout from its Action
property.
8 Click on the X to close the Menu Designer.
9 Choose File | Save to save your project.

10 Press F9 to compile and run the project. (You can also run the project by clicking
the Run button on the Debug toolbar, or by choosing Run from the Run menu.)

JlLi; Text Editor Tutorial [_ O] x]
Fie Edt Help N When you press F9to run your
RichEdit project, the application interface

is displayed. The menus, text
area, and status bar all appear
on the form.

To return to design mode, click
the X to close the form.

| 4

When you run your project, C++Builder opens the program in a window like the
one you designed on the form. The program is a full-fledged Windows
application, complete with Minimize, Maximize, and Close buttons and a Control
menu. The menus all work although most of the commands are grayed out. The
images are displayed next to menu items with which we associated icons.

Though your program already has a great deal of functionality, there’s still more
to do to activate the commands. And we want to add a toolbar to provide easy
access to the commands.

11 Click the X in the upper right corner to close the application and return to the
design-time view of the form.

Clearing the text area (optional)

When you ran your program, the name of the RichEdit control appeared in the text
area. You can remove that text using the Strings editor. This is optional because in a
later step, the text will be removed when initializing the main form.

To clear the text area:
1 On the main form, click on the RichEdit component.

2 In the Object Inspector, double-click on the value (TStrings) next to the Lines
property to display the String List editor.

Creating a text editor—a tutorial 3-15

Adding a toolbar

3 Select the text you want to remove in the String List editor, press the Delete key,
and click OK.

4 Save your changes and trying running the program again.

The text editing area is now cleared when the main form is displayed.

Adding a toolbar

Since we’ve set up actions in an action list, we can add some of the same actions that
were used on the menus onto a toolbar.

Ql—Br 1 On the Win32 page of the Component palette, double-click the ToolBar to add it to
the form.

A blank toolbar is added under the main menu. With the toolbar still selected,

change the following properties in the Object Inspector:

* Set the toolbar’s Indent property to 4. (This indents the icons 4 pixels from the
left of the toolbar.)

® Set its Images property to ImageList].

e Set ShowHint to true. (Tip: Double-click on false to change it to true.)

2 Add buttons and separators to the toolbar:

With the toolbar selected, right-click and choose New Button four times.
Right-click and choose New Separator.

Right-click and choose New Button three more times.

Right-click and choose New Separator.

Right-click and choose New Button once again.

Note Don’t worry if the icons aren’t correct yet. The correct icons will be selected when
you assign actions to the buttons.

%4 Text Editor Tutorial

File Edit Help
@ o |E B sB|ER(eR 2 < .| The toolbar object is added
0 2 n Mew Buttan = under the menus by default.
_ MewSeparator X To add buttons or separators,
Align to Grid select the toolbar, right-click,
L Bring to Front and choose New Button or
% Sendto Back New Separator. Then assign
Revert to Inherted actions from the action list.
55 Align...
i Size...
imly Scale...
[Tab Drder... —
éE Creation Order...
Flip Children L4
Add to Bepository...
Wiew as Text
| TestDFM

3-16 Quick Start

Writing event handlers

3 Assign actions from the action list to the first set of buttons.

Select the first button and set its Action to FileExit.
Select the second button and set its Action to FileNew.
Select the third button and set its Action to FileOpen.
Select the fourth button and set its Action to FileSave.

4 Assign actions to the second set of buttons.

® Select the first button and set its Action to EditCutl1.
¢ Select the second button and set its Action to EditCopy1.
¢ Select the third button and set its Action to EditPastel.

5 Assign an action to the last button.
¢ Select the last button and set its Action to HelpContents.

6 Press F9to compile and run the project.

Your text editor already has lots of functionality. You can type in the text area.
Check out the toolbar. If you select text in the text area, the Cut, Copy, and Paste
buttons work.

7 Click the X in the upper right corner to close the application and return to the
design-time view.

Writing event handlers

Up to this point, you've developed your application without writing a single line of
code. By using the Object Inspector to set property values at design time, you've
taken full advantage of C++Builder’s RAD environment. In this section, you’ll write
functions called event handlers that respond to user input while the application is
running. You'll connect the event handlers to the items on the menus and toolbar, so
that when an item is selected your application executes the code in the handler.

Because all the menu items and toolbar actions are consolidated in the action list, you
can create the event handlers from there.

For more information about events and event handlers, see “Developing the
application user interface” in the Developer’s Guide or online Help.

Creating an event handler for the New command

To create an event handler for the New command:
1 Choose View | Units and select Unitl to display the code associated with Form1.

2 You need to declare a FileName that will be used in the event handler. Add a
custom property for the file name to make it globally accessible. Open the Unitl.h
file by right-clicking in the Unitl.cpp file in the code editor and choosing Open
Source/Header File. In the header file, locate the public declarations section for
the class TForm1 and on the line after public: // User declarations, type:

AnsiString FileName;

Creating a text editor—a tutorial 3-17

Writing event handlers

Your screen should look like this:

2 Unitl.h M=l E3

4 Unitl.cpp Unit‘l.hl = = -
TToolButton *ToolButtonS: =
TToolButton *ToolButtong:
TToolButton *ToolButton?:
TToolButton *ToolButtond:
TToolButton *ToolButtond:
TToolButton *ToolButtonld:

private: A4 User declarations

public: /4 User declarations This line defines FileName
3‘ SRR < as a string which is globally
_ fastcall TForml|TComponent?® ot accessible from Othel'

b methods.

A

extern PALCKALAGE TForml *Forml;

A

#endif

[#-[#] Classes

K1
65 30 Modified |Insert

3 Press F12to go back to the main form.

s

Tip F12is a toggle which takes you back and forth from a form to the associated code.
4 Double-click the ActionList icon on the form to display the Action List editor.

5 Inthe Action List editor, select the File category and then double-click the FileNew
action.

The Code editor opens with the cursor inside the event handler.

First, double-click the Action List object to display
the Action List editor.

5 ting Form1->ActionLi__ Text Editor Trorial

ﬁ'&|*" Ee Edit Hgtf
N [] B N
Categories: Actions: H Bk E} ll — —y—
iNane] FileMew L/ | et
E dit [FileOpen
[&ll Actians) Filghav... Bl). . . .
B Filet i &3] Classes nerR | Unlt].hl R
=
roid _ fastcall TForml::FileNewExecute(l
i
I
il
A J
Then, double-click the actian to i o
create an empty eventhandler 7 55: 2 [Modified [Insent 4

where you can specify what will
happen when users execute the
command.

3-18 Quick Start

Writing event handlers

6 Right where the cursor is positioned in the text editor (between { and }), type the
following lines:

RichEditl->Clear();
FileName = "Untitled.txt";
StatusBarl->Panels->Items[0]->Text = FileName;

Your event handler should look like this when you're done:

B Unit1.cpp [_ (O] <]
Uritl.cpp | Uritt.h | - =
7 =l
void _ fastcall TForml::FileNewExecute (TChject *Sender) | ThIS ”ne clears the text

{
RichEditl-»>Clear () / area _Nhen you create a
new file.

FileName = "Untitled.txt'™;
This line calls the new file

SGtatusBarl->Panels->Items[0] ->Text = FilelName:
} \ “Untitled.txt".
// J This line puts the file name
into the status bar.
T ;l;l
| 44 3 |Modified |IFsert i

Save your work and that’s it for the File | New command.

Tip You can resize the code portion of the window to reduce horizontal scrolling.

Creating an event handler for the Open command

When you open a file, a File Open dialog is automatically displayed. To attach it to
the Open command, drop a TOpenDialog object on the main editor form. Then you
can write the event handler for the command.

To create an Open dialog and an event handler for the Open command:

1 Locate the main form (select View | Forms and choose Form1 to quickly find it).

== 2 From the Dialogs page of the Component palette, drop an OpenDialog component
onto the form. (You may need to scroll to find the Dialogs page.) This is a

nonvisual component, so it doesn’t matter where you place it. C++Builder names
it OpenDialog1 by default. (When OpenDialog1’s Execute method is called, it
invokes a standard Windows dialog for opening files.)

3 In the Object Inspector, set the following properties of OpenDialog1:
e Set DefaultExt to txt.

Creating a text editor—a tutorial 3-19

Writing event handlers

¢ Double-click the text area next to Filter to display the Filter editor. Specify filters
for file types: Type “Text files” as the Filter Name and *.txt as the filter and “All
files” as a second Filter Name and *.* as its filter). Then click OK.

Filter Editor E

Filter Marne I Filker H
Teut files * bt

&l files A

k. I Cancel Help

* Set Title to Open File.

4 The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.

5 In the Action List editor, double-click the FileOpen action.
The Code editor opens with the cursor inside the event handler.

6 Right where the cursor is positioned in the text editor (between { and }), type the
following lines:

if (OpenDialogl->Execute())

{
RichEditl->Lines->LoadFromFile (OpenDialogl->FileName) ;
FileName = OpenDialogl->FileName;
StatusBarl->Panels->Items[0]->Text = FileName;

}

3-20 Quick Start

Writing event handlers

Your FileOpen event handler should look like this when you're done:

B Unit1.cpp
Uritl.cpp | Uritt.h | -

74
void _ fastcall TForml::FileOpenExecute (TOhject *Zender)
{

if (Cpenlialogl->Execute(])
{

L This line defines what
happens when the Open
command is executed.

This line inserts the text
from the specified file.

RichEditi-»Lines-»LoadFromFile (OpenDialogl-»FileName)4 This line sets the filename
FileName = OpenDialogl->FileName: to the one in the Open
StatusBarl-»Panels->Items[0] ->Text = FileMName: dlalog.

—This line puts the file name
into the status bar.

N\l

&'ﬁ‘_u_Z

| B4 3 |Modified |IFsert

That'’s it for the File | Open command and the Open dialog.

Creating an event handler for the Save command

To create an event handler for the Save command:

1 The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.

2 On the Action List editor, double-click the FileSave action.
The Code editor opens with the cursor inside the event handler.

3 Right where the cursor is positioned in the text editor (between { and }), type the
following lines:

if (FileName == "Untitled.txt")
FileSaveAsExecute (NULL) ;

else
RichEditl->Lines->SaveToFile (FileName);

This code tells the editor to display the SaveAs dialog if the file isn’t named yet so
the user can assign a name to it. Otherwise, save the file using its name. The
SaveAs dialog is defined in the event handler for the Save As commandon

page 3-22. FileSaveAsExecute is the automatically generated name for the Save As
command.

Creating a text editor—a tutorial 3-21

Writing event handlers

Your event handler should look like this when you’re done:

B Unit1.cpp [_ O] =]
Uit cpp | Uri | - -
7 =
void _ fastcall TForml::FileSaveExecute (TOhject *Sender)
{ - . .
if (FileName == "Untitled.txt") If the file is untitled, display
FileSaveldsExecute (NULL) ; the File Save As dialog.
B Eit Lo ineoms e Tar 1 1 (F1 lelame] s Otherwise, save to the
, ic i ines aveToFile (Fi 1: named fl|e
A J
R of
| 3% 44 |Modified |IFsert v

That’s it for the File | Save command.

Creating an event handler for the Save As command

To create an event handler for the Save As command:

1 From the Dialogs page of the Component palette, drop a SaveDialog component
&j| onto the form. This is a nonvisual component, so it doesn’t matter where you place
it. C++Builder names it SaveDialog1 by default. (When SaveDialog’s Execute method
is called, it invokes a standard Windows dialog for saving files.)

2 In the Object Inspector, set the following properties of SaveDialog1:
e Set DefaultExt to txt.

¢ Double-click the text area next to Filter to display the Filter Editor. In the editor,
specify filters for file types as in the Open dialog (set Text files to *.txt and All
files to *.*) then click OK.

* Set Title to Save As.
Note The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.
3 In the Action List editor, double-click the FileSaveAs action.
The Code editor opens with the cursor inside the event handler.
4 Right where the cursor is positioned in the text editor, type the following lines:

SaveDialogl->FileName = FileName;
SaveDialogl->InitialDir = ExtractFilePath(FileName);
if (SaveDialogl->Execute())

{
RichEdit1l->Lines->SaveToFile(SaveDialogl->FileName);
FileName = SaveDialogl->FileName;
StatusBarl->Panels->Items[0]->Text = FileName;

3-22 Quick Start

Writing event handlers

Your FileSaveAs event handler should look like this when you're done:

B Unit1.cpp [_ (O] <] . .
T | Unith] - This sets the SaveAs dialog's
PP | nit. == FileName property to the

4 =l main form’s FileName

void _ fastcall TForml::Fi1esavensEiziiiiizggjgeff?ggnderJ property value.

{ .)
Savelialogl->FileName = FileName: - The default dlrectory Is set to
SaveDialogl->InitialDir = ExtractFilePath(FileName); the last one accessed
if (SaveDialogl->Execute()) This line saves the text to the
R . . . _ ~— | specified file.

RichEditl->Lines->3aveToFile (Savelialogl->FilelName) . i
FileName = SaveDialogl->Fileliame; This sets the main form’s
StatusBarl-»Panels->Items[0] ->Text = FileName: J FileName to the name
3 specified in the SaveAs
H dialog.
a1 //| 5 This puts the file name in the
[62 3 [Modfied |[insent /| textpanel of the status bar.

That’s it for the File | SaveAs command.

Creating an event handler for the Exit command

To create an event handler for the Exit command:

1

The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.

On the Action List editor, double-click the FileExit action.

The Code editor opens with the cursor inside the event handler.

Right where the cursor is positioned in the text editor, type the following line:
Close();

This calls the close method of the main form. That’s all you need to do for the File |
Exit command.

Choose File | Save All to save your project.

Creating a text editor—a tutorial 3-23

Creating a Help file

To see what it looks like so far, run the application by pressing F9 or by clicking on

the green Run button § on the toolbar.

JlLL; Text Editor Tutorial
File Edit Help

M= E3

B 5| 0|es e o

4

The running application looks
a lot like the main form in
design mode. Notice that the
nonvisual objects aren't
there.

You can close the application
in three ways:

Click the X.
Choose File|Exit.

Click the Exit application
button on the toolbar.

Most of the buttons and toolbar buttons work but we’re not finished yet.

To return to design mode, close the Text Editor application by choosing File | Exit, by
clicking the Exit application button on the toolbar of your application, or by clicking

the X in the upper right corner.

If you receive any error messages, click on them to locate the error. Make sure you've

followed the steps as described in the tutorial.

Creating a Help file

It's a good idea to create a Help file that explains how to use your application.
C++Builder provides Microsoft Help Workshop in the Help\Tools directory which
includes information on designing and compiling a Windows Help file. In the sample
editor application, users can choose Help | Contents or Help | Index to access a Help

file with either the contents or index displayed.

Earlier, we created HelpContents and HelpIndex actions in the action list for
displaying the Contents tab or Index tab of a compiled Help file. We need to assign
constant values to the Help parameters and create event handlers that display what

we want.

To use the Help commands, you'll have to create and compile a Windows Help file.
Creating Help files is beyond the scope of this tutorial. A sample rtf file
(TextEditor.rtf), Help file (TextEditor.hlp) and contents file (TextEditor.cnt) are
downloadable from the http://www.borland.com/techpubs/bcppbuilder/ Web
site. Or, to test the Help, you can use any HLP or CNT file (such as one of the
C++Builder Help files and its associated CNT file) in your project. You will have to

rename them for the application to find them.

3-24 Quick Start

Creating a Help file

Creating an event handler for the Help Contents command

To create an event handler for the Help Contents command:

1 The Action List editor should still be displayed. If it’s not, double-click the
ActionList icon on the form.

2 On the Action List editor, select the Help category, then double-click the
HelpContents action.

The Code editor opens with the cursor inside the event handler.

3 Right after where the cursor is positioned in the text editor, type the following
lines:

const static int HELP_TAB = 15;
const static int CONTENTS_ACTIVE = -3;

Application->HelpCommand (HELP_TAB, CONTENTS_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting
HELP_TAB to 15 displays the Help dialog and setting CONTENTS_ACTIVE to -3
displays the Contents tab.

Your event handler should look like this when you’re done:

2 Unitl _cpp M=l 3
2 uritt.cep | unitt b - . .
. = These lines define
roid fastcall TFormwl::HelpContentsExecute (TChject *3ender the Command and
‘ — — data parameters of
const static int HELP TLB = 15; the HelpCommand
const static int CONTENTS ACTIVE = -3; method of
TApplication.
Application->HelpComvand (HELF_TAE, CONTENTS_ACTIVE): <L This says to display
' the Help dialog with
I -- . the contents tab
displayed.
Uil 1| LH
31: 53 Modified Insert

Tip To get Help on the HelpCommand method, put the cursor next to HelpCommand
in the editor and press FI.

That’s it for the Help | Contents command.

Creating a text editor—a tutorial 3-25

Creating a Help file

Creating an event handler for the Help Index command

To create an event handler for the Help Index command:

1 The Action List editor should still be displayed. If it's not, double-click the
ActionList icon on the form.

2 On the Action List editor, select the Help category and then double-click the
HelpIndex action.

The Code editor opens with the cursor inside the event handler.

3 Right after where the cursor is positioned in the text editor, type the following
lines:

const static int HELP_TAB = 15;
const static int INDEX_ACTIVE = -2;

Application->HelpCommand (HELP_TAB, INDEX_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting
HELP_TAB to 15 again displays the Help dialog and setting INDEX_ACTIVE to -2

displays the Index tab.
Your event handler should look like this when you’re done:

2 Unitl.cpp M= E3

bz Uritl.cpp | Urit].h - -

* l | o These lines define the
A== - - - - - - - ~—=!| command and data
void _ fastcall TForml::HelpIndexExecute (TChject *3ender) parameters of the
{

HelpCommand method

const stat:_u:!]_.nt HELF_TAE = 15; ofTAppIication.
const static int INDEZ ACTIVE = -2;

This says to display the
Application->HelpConmand (HELP TAE, INDEZ ACTIVE); <1 Helpdialog with the
' index tab displayed.
YR - - - S - -
L - ;I_‘

39: 50 |Modified Insert

That’s it for the Help | Index command.

3-26 Quick Start

Creating an About box

Creating an About box

Many applications include an About box which displays information on the product
such as the name, version, logos, and may include other legal information including
copyright information.

We've already set up a Help About command on the action list.

To create an About box:

1 Choose File | New to display the New Items dialog box and select the Forms tab.

Q:' New ltems

Projects 1 [rata Modules] Business
New] Activer, 1 Pelultitier 1 Froject Farms l Dialogs I
Dusllistbox - Buick Feport Quickfepart - Buickfiepar The New Items dialog box is also called the
Object Repository.
When you're creating an item based on
Tabbed pages one from the Object Repository, you can
copy, inherit, or use the item:
Copy (the default) creates a copy of the
item in your project. Inherit means changes
SED M @l to the object in the repository are inherited
- - by the one in your project. Use means
0K | Cond | mee | changes to the object in your project are

inherited by the object in the repository.
2 On the Forms tab, choose About Box.

A new form is created that simplifies creation of an About box.

A standard About box is
created when you choose
File[New and click About Box
on the Forms tab. You can

; : modify it as you like to

[Cozmist .- describe your application.

Commentsz

3 Select the following TLabel items in the About box and change them in the Object
Inspector:

* Change Product Name to Text Editor.
* Make it Version 1.0.
* Enter the year next to Copyright.

Creating a text editor—a tutorial 3-27

Creating an About box

Tip

4 Select the form itself and change its Caption in the Object Inspector to About Text
Editor.

The easiest way to select the form is to click on the grid portion.
5 Save the About box form by choosing File | Save As and saving it as About.cpp.

6 In the C++Builder editor, you should have three files displayed: Unitl.cpp,
Unitl.h, and About.cpp. Click on the Unitl.cpp tab.

7 Add an include statement for the About unit to Unitl. Choose File | Include Unit
Hdr and then select About and click OK.

Notice that #include About.h has been added to the top of the .cpp file.

Click on the tab to display a file associated with a unit. If you open
other files while working on a project, additional tabs appear on the

editor.
& Unitl.cpp M=l E3
N4
Uritl.cop | Uritt b | About cpp | ="
// ___ -

H#include <wol by
#pragma hdrstop

Hinclude "Unicl.h”
Hinclude "ibout.h"

#pragma resource "¥.d
TForml *Forml:

A e e e
_ fastcall TForml::TForml\TComponent® Owner) =

= R . _.|_I

[2 8 |Modified [Insest A

When you create a new form for your application, you need to add it to the
main form. Choose File|Include Unit Hdr and select the header to add.

8 On the action list, double-click the HelpAbout action to create an event handler.
9 Right where the cursor is positioned in the text editor, type the following line:

AboutBox->ShowModal () ;

This code opens the About box when the user clicks Help | About. ShowModal
opens the form in a modal state. That means the user can’t do anything until the
form is closed.

3-28 Quick Start

Completing your application

Completing your application

Note

The application is almost complete. However, we still have to specify some items on
the main form. To complete the application:

1
2

6

Locate the main form (press F12 to quickly find it).

Check that focus is on the form itself, not any of its components. The top list box
on the Object Inspector should say Form1: TForm1. (If it doesn’t, select Form1
from the drop down list.)

| Check here to make sure focus is on the
main form. If it's not, select Form1 from the
drop down list.

Object Inzpector
IForm'I: TFoml<—
Properties Events |

Ondctivate -
OnCanResize
OnClick
OnClose
OnClogelluemy
OnCaonztrained
OnCantextPop Double-click here to create an event handler

OnCreate FormCreate ¥| <+——— for the form’s OnCreate event.
On0bIClck

OnDeactivate
OnD estroy
OnDockDrop

=l
|l shawar 4

In the Events tab, double-click OnCreate to create an event handler that describes
what happens when the form is created (that is, when you open the application).

Right where the cursor is positioned in the text editor, type the following lines:

Application->HelpFile = ExtractFilePath(Application->ExeName) + "TextEditor.hlp";
FileName = "Untitled.txt";

StatusBarl->Panels->Items[0]->Text = FileName;

RichEditl->Clear();

This code initializes the application by associating a Help file, setting the value of
FileName to untitled.txt, putting the filename into the status bar, and clearing out
the text editing area.

Put the .HLP file and the CNT file into the project application directory (called
projects\TextEditor).

If you decided not to investigate how to create a Help file or use the sample one
provided on the web, the application still works but you’ll receive an error
message when you choose either of the Help commands or click Help on the
toolbar.

Press F9 to run the application.

You can test the Text Editor now to make sure it works. If errors occur, click on the
error message and you'll go right to the place in the code where the error occurred.

Congratulations! You're done.

Creating a text editor—a tutorial 3-29

3-30 Quick Start

Creating a database application—
a tutorial

This tutorial guides you through the creation of a program that navigates a marine-
life database. After setting up access to the database, you'll write an event handler
that opens a standard Save As dialog box, allowing you to write information from the
database to a file.

Note This tutorial is only for the Professional and Enterprise versions. It sets up database
access which requires features not available in the Standard version of C++Builder.

Starting a new application

Before beginning a new application, create a folder to hold the source files. (Also
verify that you copied the sample database files into your ...\Borland Shared\Data
directory when you installed C++Builder.)

1 Create a folder called Marine in the Projects directory off the main C++Builder
directory.

2 Begin a new project.

If another project is already open, choose File | New Application to create a new
project.

3 Choose File | Save All to save your files to disk. When the Save dialog appears,
navigate to your Marine folder and save each file using its default name.

Later on, you can save your work at any time by choosing File | Save AlL

Creating a database application—a tutorial 4-1

Setting property values

Setting property values

Set the background color of Form1 to Aqua.

Find the form’s Color property in the Object Inspector and click the drop-down list
displayed to the right of the property. Choose c/Aqua from the list.

Adding objects to the form

The Component palette represents components by icons grouped onto tabbed pages.
Add a component to a form by selecting the component on the palette, then clicking
on the form where you want to place it. You can also double-click a component to
place it in the middle of the form.

c,:' C++Builder 5 - Project]

File Edit Search “iew Project Hun Component Databaze Tools Help <MNones> < @
O = - n ﬁ E H LJ @ Standard]Additional] W'in32] Sustem] [rata Access] [rata Eontrols] ADO] InterBase] Mid_l_‘ L
PG00, -nlye | OF s AMEdwr o g5 g
\ |
Component palette tabs Components

Add a Table and a StatusBar to the form:
1 Drop a Table component onto the form.

Click the Data Access tab on the Component palette. To find the Table component,
point at an icon on the palette for a moment; C++Builder displays a Help hint
showing the name of the component.

£ C++Builder 5 -

File Edit Search “iew Project Bun Component Databaze Toole Help LM Ones @

OE-J G es =2 = @ Standard | Additional | Win32 | Sustem Datalccess ILI_'
L J“‘
(& & O] > - 5o s -n:‘mn_g SQL.

When you find the Table component, click it once to select it, then click on the form
to place the component. The Table component is nonvisual, so it doesn’t matter
where you put it. C++Builder names the object Tablel by default. (When you point

4-2 Quick Start

Adding objects to the form

to the component on the form, C++Builder displays its name—Tablel—and the
type of object it is—TTable.)

Form1 [_[C]

L

Tablel: TTable

Each C++Builder component is a class; placing a component on a form creates an
instance of that class. Once the component is on the form, C++Builder generates
the code necessary to construct an instance object when your application is
running.

Set the DatabaseName property of Tablel to BCDEMOS. (BCDEMOS is an alias to
the sample database that you're going to use.)

Select Tablel on the form, then choose the DatabaseName property in the Object
Inspector. Select BCDEMOS from the drop-down list.

Cctor

[t e =]| Click the down arrow to display the
Prapettes | Everis | property drop-down list.

Select BCDEMOS.

[

AutoCalcFields true
AutoRefresh | false
CachedUpdate false
Constraints TCheckCorstr
DatabaseMame 52
DefaulfBCOEMOS
Exclusi|DefaulDD
FieldD4!BLocal
Fiter [MBIS
Filtered "isual FosPio Database
[Eiternl Y sual FosPio Tables

)
IndexDets [TIndexDefs]

IndexFieldt ami

IndexFiles [TIndexFiles)

Indext amne:

MasterFields

MasterSource

Name Tahlel =l
All shown

Creating a database application—a tutorial 4-3

Connecting to a database

3 Double-click the StatusBar component on the Win32 page of the Component
palette. This adds a status bar to the bottom of the application.

&% C++Builder 5 -

File Edit Search %iew Project Bun Component Databaze Tools Help [<Hone:] <
DE-J @2 &2 Standard | Addiional | Win32 | Sustem Datadosess | 1%

— + =5 [E = Jh = 53 B2
ot e s | s ol h WLEESE;REE

4 Set the AutoHint property of the status bar to true. The easiest way to do this is to
double-click on false next to AutoHint in the Object Inspector. (Setting AutoHint to
true allows Help hints to appear in the status bar at runtime.)

eciar

2 Form1 JH[=] E3
: TStatusBar | =

Praperties IEvems]

Action =
Align alBottarn
@ Anchars akleftakP
AutaHint j
BiDiMode |bdLefiToRi
Borderwidth 0
Calor clBtinFac
® Constraints |(TSizeCans
Cursor crDefault
DragCursor | crDrag

Dragkind |dkDrag —
Dragkode |drmbdanual
Enabled |True

mFont (TFont)
Height 19 [n s
HelpContexi O H = 4
Hint
Left o

MName StatusBarl -

All shown

Connecting to a database

The next step is to add database controls and a DataSource to your form.

1 From the Data Access page of the Component palette, drop a DataSource
component onto the form. The DataSource component is nonvisual, so it doesn’t
matter where you put it on the form. Set its DataSet property to Tablel.

2 From the Data Controls page, choose the DBGrid component and drop it onto your
form. Position it in the lower left corner of the form above the status bar, then
expand it by dragging its upper right corner.

4-4 Quick Start

Connecting to a database

If necessary, you can enlarge the form by dragging its lower right corner. Your
form should now resemble the following figure.

The Table and
DataSource
objects don't
show when the
application is
running.

Form1

—aE

H[= B

The Data Controls
page on the
Component palette
holds components
that let you view
database tables.

:‘_1

To display all the
fields in atable, use a
DBGrid component.

3 Set DBGrid properties to align the grid with the form. Double-click Anchors in the
Object Inspector to display akLeft, akTop, akRight, and akBottom; set them all to frue.

4 Set the DataSource property of DBGrid to DataSourcel (the default name of the
DataSource component you just added to the form).

Now you can finish setting up the Tablel object you placed on the form earlier.
5 Select the Tablel object on the form, then set its TableName property to BIOLIFE.DB.

(Name is still Tablel.) Next, set the Active property to true.

When you set Active to true, the grid fills with data from the BIOLIFE.DB database
table. If the grid doesn’t display data, make sure you've correctly set the properties
of all the objects on the form, as explained in the instructions above.

Form1

B S5

= 3

As soon as you set Active to
truein Tablel, data appears
in the grid at design time.

Tahlel: TTahle hd

Properties 1 Ewents 1

Species No | Category

Common_Mame

Species Name v

30020 Triggerfish
30030 Snapper
30050 ‘Wiasse
30070 Angeliish
90080 Cod

90090 Scorpionfish
30100 Butterflyfish
30110 Shark

E\\\\\\\\V

Clown Triggerfish
Red Emperar

Giant Maori Wrasse
Elue Angelfish
Lunartal Rockeod
Firefish

Oinate Butterflyfish
Swell Shark

Ballistoides conspicillum
Lutjanus sebae

Cheilinus undulatus
Pomacanthus nauarchus
Wariala louti

Ferois volitans

Chaetodon Omatissimus
Cephaloscylium ventiosum

By

All shown

et =H
AutoCalcFie True
AutoRefresh False
CachedUpd Falze
Constraints | (TCheckCi
DatabaseMN; DBDEMO!
Defaultincles True
Exclusive Falze
FieldDefs (TFielDe
Filter

Filtered False
EFilterOptions]
IndexDefs | (TindexDe
IndexFieldN

IndexFiles (TlndexFil
IndexMName
MasterField
MasterSourt

Mame Tahlel +|

The DBGrid control displays data at design time, while you are working in the
IDE. This allows you to verify that you've connected to the database correctly. You

Creating a database application—a tutorial 4-5

Adding support for a menu and a toolbar

cannot, however, edit the data at design time; to edit the data in the table, you'll
have to run the application.

6 Press F9to compile and run the project. (You can also run the project by clicking
the Run button on the Debug toolbar, or by choosing Run from the Run menu.)

In connecting your application to a database, you've used three components and
several levels of indirection. A data-aware control (in this case, a DBGrid) points to a
DataSource object, which in turn points to a dataset object (in this case, a Table).
Finally, the dataset (Tablel) points to an actual database table (BIOLIFE), which is
accessed through the BDE alias BCDEMOS. (BDE aliases are configured through the

BDE Administrator.)
data-aware control dataset
(Grid) —> DataSource > (Taple) —> BDE —> database

This architecture may seem complicated at first, but in the long run it simplifies
development and maintenance. For more information, see “Designing database
applications” in the Developer’s Guide or online Help.

Adding support for a menu and a toolbar

When you run your project, C++Builder opens the program in a window like the one
you designed on the form. The program is a full-fledged Windows application,
complete with Minimize, Maximize, and Close buttons and a Control menu. You can
scroll through the BIOLIFE data in the grid.

Though your program already has a great deal of functionality, it still lacks many
features usually found in Windows applications. For example, most Windows
applications implement menus and toolbars to make them easy to use.

In this section, you’ll prepare your application for additional graphical-interface
elements by setting up an ActionList component. While you can create menus,
toolbars, and buttons without using action lists, action lists simplify development
and maintenance by centralizing responses to user commands.

1 Click the X in the upper right corner to close the application and return to the
design-time view of the form.

2 From the Win32 page of the Component palette, drop an ImageList onto the form.
This is a nonvisual component, so it doesn’t matter where you place it. The
ImageList will contain icons that represent standard actions like Cut and Paste.

3 From the Standard page of the Component palette, drop an ActionList onto the
form. This is another nonvisual component.

4 Set the action list’s Images property to ImageList1.

4-6 Quick Start

Adding a menu

5 Double-click the action list to display the Action List editor.

Editing Form1-ActionList1 x . N Standard Actions
S B Right-click in the
ia- ed|tor'S anddchgose. e [& x|
e fErE New Standard Action TD ataSetPaost Diatazet
Categorjes: Actions: 0 d|sp|ay the D ataseiPrior Dataset Cancel
Standard Actions Help
listbox. ——> e
Select the actions you min:owénangde win:ow
H ndowLascads Ingow
want and C“Ck OK TwindowCloze Window -
Press Ctrlto select i \ ;l_‘

multiple actions.

6 Right-click on the Action List editor and choose New Standard Action. The
Standard Actions list box is displayed.

7 Select the following actions: TDataSetFirst, TDataSetLast, TDataSetNext,
TDataSetPrior, TEditCopy, TEditCut, and TEditPaste. (Use the Ctrl key to select
multiple items.) Then click OK.

Editing Form.ActionList1 You've added standard
a- actions that C++Builder
Categories Actions: provides anng with
Maone) 1 DataSetrirst] standard images.
Dataset i DataSetlast] ,

Edit » DataSetext] You'll use these on a

< DataSetPrior] toolbar and menu.
Bz EditCopy
% EditCut]

R EditPaste]

8 Click on the X to close the Action List editor.

You've added standard actions. Now you're ready to add the menu and toolbar.

Adding a menu

In this section, you'll add a main menu bar with three drop-down menus—TFile, Edit,
and Record—and you’ll add menu items to each one using the standard actions in
the action list.

1 From the Standard page of the Component palette, drop a MainMenu component
onto the form. It doesn’t matter where you place it.

2 Set the main menu’s Images property to ImageList].

Creating a database application—a tutorial 4-7

Adding a menu

3 Double-click the menu component to display the Menu Designer.

'l Form1.MainMenu1 [_[O]

4 Type &File to set the Caption property of the first top-level menu item and press

Enter.

OhjectInspectar

Filel: Thienultem - E*. Form1-MainMenul HEE
Froperties WEvents I When you type i

- &File and press
Action
AutoHoikey Trie Enter, the top-level
AutoLineRe True File command
Bitmap (None) appears ready for
Break mbNone you to add the first

[Copion |iFile menu item.

Checked |False
Default False
Enabled |True
Grouplncex 0
HelpContexi 0

Hint =

All shown

5 Type &Save and press Enter to create a Save menu item under File.

6 Type a hyphen in the next item under the File menu and press Enter to create a
separator bar on the menu.

7 Type E&xit and press Enter to create an Exit menu item under File.

8 Click on the second top-level menu item (to the right of File), type &Edit, and press
Enter. The first menu item under Edit is selected.

¢ In the Object Inspector, set its Action to EditCutl and press Enter. The item’s
caption is automatically set to Cut.

¢ Select the next menu item (under Cut) and set its Action to EditCopyl.

e Select the next menu item and set its Action to EditPastel.

9 Click on the third top-level menu item (to the right of Edit), type &Record as its
caption, and press Enter. The menu item under Record is selected.

In the Object Inspector, set its Action to DataSetFirst1.

Select the next menu item and set its Action to DataSetPriorl.
Select the next menu item and set its Action to DataSetNext].
Select the next menu item and set its Action to DataSetLast1.

4-8 Quick Start

Adding a toolbar

10 Click on the X to close the Menu Designer.
Press F9 to run your program and see how it looks.

Form1 [_ O] x]

Eile Edit Becord

Species No|Categary Common_Name Species Name -
Triggerfish Clown Triggetish Ballistoides conspicillum
90030 Snapper Red Emperar Lutianus sebae

90060 Wrasse Giant Maori Wrasse Cheilinus undulatus
90070 Angelfich Blue Angeffich Pomacanthug nauarchus
90080 Cod Lunartail Rockcod Variola louti

30080 Scorpionfish Firefish Pterois volitans

40100 Butterflyfish Ornate Butterflyfish Chaetodon Omatissimus

i »F‘j

Close the application when you're ready to continue.

Adding a toolbar

1 On the Win32 page of the Component palette, double-click the ToolBar to add it to
the form.

¢ Set the toolbar’s Indent property to 4.
¢ Set its Images property to ImageList1.
¢ Set ShowHint to True.

2 Add buttons to the toolbar.

¢ With the toolbar selected, right-click and choose New Button three times.
¢ Right-click and choose New Separator.
¢ Right-click and choose New Button four more times.

3 Assign actions to the first set of buttons.

e Select the first button and set its Action to EditCutl1.
¢ Select the second button and set its Action to EditCopy1.
¢ Select the third button and set its Action to EditPastel.

4 Assign actions to the second set of buttons.

Select the first button and set its Action to DataSetFirst].
Select the second button and set its Action to DataSetPrior1.
Select the third button and set its Action to DataSetNext1.
Select the last button and set its Action to DataSetLast1.

Creating a database application—a tutorial 4-9

Displaying images

Here’s how it looks:

Form1 [_[O]x]
Eile Edit Becord
& |E|@fie] « »E:.E B
- | | &) B G :
Species No|Category [Common_Name Species Name -
O 80020 Triggeriish Clown Triggerfish Ballistoides conspicillum
|l 90030 Snapper Fed Emperar Lutjanug sehae
40050 \Wrasse Giant Maori Wrasse Cheilinus undulatus
Ll 30070 Angelfish Blue Angeffish Pomacanthus nauarchus
M| 90080 Cod Lunartail Rackcod Variola louti
|| 40080 Scorpionfish Firefish Pterois valitans
| 30100 Butterh/fish Ornate Butterflyfish Chaetodon Omatissimus f
a1 r /J L=l

5 Press F9to compile and run the project.

Check out the toolbar. The First, Prior, Next, and Last buttons work. Select text
within a cell in the grid; the Cut, Copy, and Paste buttons work as well.

Close the application when you're ready to continue.

Displaying images

The toolbar uses standard
actions supplied with
C++Builder.

Each record in the BIOLIFE database has a picture associated with it. In this section,
you’ll expand your application to display pictures.

1 From the Standard page of the Component palette, drop a Panel component onto
the form below the toolbar. C++Builder names this Panell by default.

2 In the Object Inspector, delete the Panell string from the panel’s Caption property.
Leave the Caption property blank.

4-10 Quick Start

Displayingimages

3 Align Panell to the top of the form by setting its Align property to alTop. Next, drag
the bottom of the panel down so it fills the portion of the form between the toolbar
and the grid.

Form [[O] %]
Eile Edit BRecord
% RIS =
] = L] L]
' .
Panell: TPanel

t | 5] &

Species NDlCategmy |CDmmDm7Name Species Name)
4 90020 | Triggedish Clown Triggerfish Ballistoides conspicillum j
Il 90030 Snapper Fed Emperor Lutjanus sebae
] 90050 Wrasse Giant Maari Wrasse Cheilinus undulatus
Il 90070 Angelfish Blue Angelfish Pomacanthus nauarchus
] 90080 Cod Lunartail Rockcod Wariola louti
Il 90040 Scarpionfish Firefish Pterois volitans
: 90100 Butterflyfish Omate Butterflyfish Chaetodon Ornatissimus =B
1 » lJ =

4 Set the panel’s color to c/Blue.

5 From the Data Controls palette page, drop a DBImage component on top of Panell
and set its Align property to alRight. Size the DBImage by dragging out its left side
so your form resembles the one shown below.

Form1 !Em

File Edit Record

%EH AR]

|»

You can drag to set the
- width of DBImage, or you
can set its Width property
in the Object Inspector.

(DBlmagel))

DBImage1: TDBImage

= EE o

Species NDlCategory |CDmmDn_Name ‘Specwes Marne
4 90020 | Triggerish Clown Triggerfish Ballistoides conspicillum j
[90030 Snapper Red Emperar Lutjanus sehae B
Il 90050 Wrasse Giant Maori Wrasse Cheilinus undulatus
[90070 Angelfish Blue Angelfish Fomacanthus nauarchus
Il 90080 Cod Lunartail Rockcod Wariola louti
B 90090 | Scorpionfish Firefish Pterois valitans N
: 90100 Butterlyfish Ornate Butterflyfish Chaetadon Ornatissimus B
Al » l—I k]

6 Set the DataSource property of DBImage to DataSourcel. Then set its DataField
property to Graphic. (In the Object Inspector, the drop-down list next to DataField
shows the fields in the BIOLIFE table. Graphic is one of the field names.)

Creating a database application—a tutorial 4-11

Adding text and memo objects

7

As soon as you set DataField to Graphic, the DBImage component displays the
image of a fish corresponding to the first record of the table. This shows that you
have correctly hooked up to the database.

Form1 !Em

Eile Edit BRecord

g@,gm LA

|»

SFEE
Species NDlCategmy |CDmmDm7Name ‘Spec\ea Mame)

4 90020 | Triggedish Clown Triggerfish Ballistoides conspicillum j

Il 90030 Snapper Fed Emperor Lutjanus sebae

] 90050 Wrasse Giant Maari Wrasse Cheilinus undulatus

Il 90070 Angelfish Blue Angelfish Pomacanthus nauarchus

] 90080 Cod Lunartail Rockcod Wariola louti

Il 90040 Scarpionfish Firefish Pterois volitans

: 90100 Butterflyfish Omate Butterflyfish Chaetodon Ornatissimus =B

1 » lJ =

Press F9to compile and run your application.

Close the application when you're ready to continue.

Adding text and memo objects

In this section, you’ll add two components that display individual text fields from the
database.

1
2

Select Panell.

From the Data Controls page of the Component palette, drop a DBMermo
component onto Panell and position it so it occupies the upper left corner of the
panel (below the menus and toolbar).

Resize the DBMemo by dragging its lower right corner. Extend the right edge of
the DBMemo until it touches the left edge of the DBImage. Extend the bottom of the
DBMemo to within a half inch or so of the bottom of Panell.

In the Object Inspector, set the following properties for the DBMemo.

e Set DataSource to DataSourcel.
e Set DataField to Notes (information about the fish appears).
e Set ScrollBars to ssVertical.

Drop a DBText component on Panell under the DBMemo object. Enlarge the
DBText so it fills the area under the DBMemo, then set its properties as follows:

e Set DataSource to DataSourcel.
e Set DataField to Common_Name.
o Set Alignment to taCenter.

4-12 Quick Start

Writing an event handler

6 Customize the Font property of the DBText component using the Font editor.

The Font editor is a property editor that you can access through the Object
Inspector. Select the Font property in the Object Inspector; an ellipsis button
appears on the right side of the property setting. Click the ellipsis button to
display the Font editor.

Modify the following DBText settings using the Font editor:

* Set the Font Style to Bold.
e Set the Color to Silver.
e Set the Size to 12.

Then click OK.
7 Compile and run your application by pressing F9.
Form1 [_[o]]

Eile Edit BRecord

IR =

Found in reef areas and sandy bottoms. The j

spotted eagle ray has & poisonous spine on its tail
and incredibly powerful jaws to crush aysters,
clams. and numerous crustaceans. Divers report
large schools during breeding seasaon,

IThis ray is an active swirmmer and often leaps into ﬂ

Spotted Eagle Ray

Commaon_MName Species Name ﬂ
90120 Ray Bat Ray Myliobatis californica
90130 Eel Califomia Moray Gymnothorax mordax
90140 Cod Lingcod Ophiodan elongatus
30150 Sculpin Cabezon Scorpaenichthys marmoratus J
90160 Spadefish Atlantic Spadefish Chaetodiperus faber _
80170 | Shark MNurse Shark Ginglyrmostoma cirraturn

Ray Spotted Eagle Ray Actobatus narinar

T

il

You can view and edit the data in the DBMemo component. The DBText component
displays data for reading only.

Close the application when you're ready to continue.

Writing an event handler

Up to this point, you've developed your application without writing a single line of
code. In this section, however, you'll write functions called event handlers that
respond to user input while the application is running. You’ll connect the event
handlers to menu items, so that when a menu item is selected your application
executes the code in the handler.

Most components on the Component palette have events, and most components
have a default event. A common default event is OnClick, which gets called whenever
the component is clicked; for example, if you placed a Button component (TButton) on
a form, you would almost certainly write an OnClick event handler for it. When you

Creating a database application—a tutorial 4-13

Writing an event handler

double-click certain objects on a form, C++Builder creates a skeleton handler for the
default event.

You can also access all of a component’s events through the Object Inspector. Select
an object on a form, then click the Events tab on the Object Inspector; you'll see a list
of the object’s events. To create a skeleton handler for any event, double-click in the
space to its right.

For more information about events and event handlers, see “Developing the
application user interface” in the Developer’s Guide or online Help.

To write an event handler:

1 From the Dialogs page of the Component palette, drop a SaveDialog component
onto the form. This is a nonvisual component, so it doesn’t matter where you place
it. C++Builder names it SaveDialog1 by default. (When SaveDialog’s Execute method
is called, it invokes a standard Windows dialog for saving files.)

2 From the menu on your form, choose File | Save. C++Builder creates a skeleton
event handler for the event that occurs at runtime when the user selects Save from
the File menu. The Code editor opens with the cursor inside the event handler.

2 Unitl.cpp H=E3
——————x
—————————————— & it B
= (3 Classes B 879 5o
=-w8, TFomi void _ fastcall TForml::3JavelClick (TObject *Sender).sl
@) TButton * Buttonl {
b void FomCreate(T Obj: |
< TFomil(TComponent™ '
[Routines k7
I I 2l 1 _l_I
32: 1 [Modified |Insert 7

This event handler is attached to the OnClick event of the main menu’s first menu
item. The menu item is an instance of the class TMenultem, and OnClick is its
default event. Hence the SavelClick method is a default event handler.

3 Complete the event handler by adding the code shown below between the
outermost pair of braces.

void __fastcall TForml::SavelClick(Tobject *Sender)
{
std::FILE *outfile;
AnsiString Buffer;
Buffer.sprintf("Save Info For: $%s", DBTextl->Field->AsString.c_str());
SaveDialogl->Title = Buffer;
if (SaveDialogl->Execute())
{
outfile = std::fopen(SaveDialogl->FileName.c_str(), "wt");
if (outfile)
{

fprintf (outfile, "Facts on the %s\n\n",

4-14 Quick Start

Writing an event handler

DBText1->Field->AsString.c_str());
for (int 1=0; 1 < DBCridl->FieldCount; i++
fprintf(outfile, "%s: %s\n",
DBGridl->Fields[i]->FieldName.c_str(),
DBGridl->Fields[i]->AsString.c_str());
fprintf (outfile, "\n%s\n", DBMemol->Text.c_str());
}

fclose(outfile);
}
}

This event handler calls the Execute method in the SaveDialog component. When
the dialog box opens and the user specifies a file name, it saves fields from the
current database record into a file.

This code uses file I/O from the standard library. Before compiling it, add:
#include <cstdio>

to the top of the unit file just beneath the line that reads:
#include <vcl.h>

4 To add code for the Exit command, choose File | Exit. C++Builder generates
another skeleton event handler and displays it in the editor.

void __fastcall TForml::Exit1Click(TObject *Sender)
{

}
Right where the cursor is positioned (between the braces), type:
Close();
5 Choose File | Save All to save your work. Then press F9 to run the application.

You can exit the program using the now functional File | Exit command.

Creating a database application—a tutorial 4-15

4-16 Quick Start

Customizing the environment

This chapter explains some of the ways you can customize the C++Builder
development environment.

Organizing your work area

The IDE provides many tools to support development, including the Form Designer,
Object Inspector, Code editor, Project Manager, ClassExplorer, and debugging
windows. With so many tools available, you'll want to organize your work area for
maximum convenience.

Docking tool windows

You can open and close individual tool windows and arrange them on the desktop as
you wish. Many windows can also be docked to one another for easy management.
Docking—which means either attaching windows to each other so that they move
together or combining several windows into a tabbed “notebook”—helps you use
screen space efficiently while maintaining fast access to tools.

From the View menu, you can bring up any tool window and then dock it directly to
the Code editor for use while coding and debugging. For example, when you first
open C++Builder in its default configuration, the ClassExplorer is docked to the left
of the Code editor. If you want, you can add the Project Manager to the first two to
create three docked windows.

Customizing the environment 5-1

Organizing your work area

Here the Project Manager and ClassExplorer
are docked to the Code editor.

/
E C:\Program Files\Borland\Thunder\ExamplesiinternetsD ayTime\main.cpp

== main.cpp]

Other tools, such as the

- = - | Object Inspector, can be
daytime. exe = void _ fastcall TForml::ButtonlClick(Tchiect *Zendesl| docked or arranged
. ¢ separately.
Files Pat NMDayTimel->Reportlevel = Status_Basiec:
3, ProjectGroupl NMDayTimel->Time0ut = 18000;
- 5] daptime_exe NMDayTimel->Host = Editl->Text;
daytime. cpp \| NMDayTimel-»>Port = StrTolInt (EditZ->Text): [MainFarm: TMainFarm
== main C:%Program FileshE Label3i-»Caption = "The Current Date and Tin
E] main.cpp C:%Program FileshE ' Fropeties IEvems]
= Forml C:4Pr 77 I
void fastoall TFormi::NEbayTimelComnect (TR AN alhone
I EAnchare [ekLeftakTop]
StatusBarl-»>SimpleText = "Connected"; AutoScroll | True
=l-[_] Classes i AutoSize |False
) # .
=l-wg TFoml S BiDiMode |bdLeffToRight
TButton * Buttan1 void _ fastecall TFormil::NMDayTimelConnectionf mBorderlcans biSystemientb
» TEdit~ Edit] f
TEdit* Edit? BorderStyle|hsSizeakle
J I ShowMessage ("Connection Failed™);
P TLabel* Labell X Borderyidth 0
TlLabel* Label2 Caption ‘Web Browser
TLabel * Label3 7
/ TNiAI; Ta E*NMD Timet void _ fastcall TForml::NMDayTimelDisconnect | ClientHeight 324
’ ayTime ayTime (Cligntyicth | 495
TPanel * Panell P Bari != 0O Cal Bt
P TStatusBar * StatusBarl if [StatusBarl != 0) oar clhinFace -
< woid Buttor] Click(TObject * Se v StatusBarl->SimpleText = "Disconnected”; @Constaints (TSIZECDnStraImS)
1 3 1 Cursar crDefault
38: 1 Insert Defaulttoni dmActiveForm
DockSite |False
Dragiind | dkDrag
Draghode | dmbtdanual
Enabled j
EFont (TFant) =l
2 hidden

While debugging, you can dock Watch and Breakpoint windows onto the Code

editor.

main. cpp

NMD T e+ DagTimeSt: [prossss ot a i [mana | daine oo b
PageCount: [process not accessible] void _ fastcall TForml::ButtonlClick(TObject *Sender) 2|
1
HMDayTimel->Reportlevel = Status_Basic:
NMDayTimel->TiwsOur = 18000;
NMDayTimel->Host = Editl->Text;
HMDayTimel->Port = StrTolnt (Edit2->Text):
LI—‘ ﬂ Lesbel3->Caption = "The Current Date and Time is : "+N
=
Filename/4ddress | LinedLenagth | Conc ‘}//
main.cpp 50 void _ fastcall TFormwil::NMDayTimelConnect (TObject *Send
main.cpp 42 ‘
B daytine.cpp 17 StatusBarl->SimpleText = "Connected”;
H
£
A | void _ fastcall TForml::NMDayTimelConnectionFailed(TObj
x| 1
=[] Classes i|7 ShowMessage ("Connection Failed™):
=% TFoml 3
? TButton * Button] I
TEdit*Edit1 void _ fastcall TForml::NMDayTimelDisconnect (TOhject *35
P TEdit* Edit2 _H i _Ij
“ v 1 v

38: 2 |Modified Insert

[C++ Enor] main.cppl[38]: E2379 Statement missing .

Quick Start

E ThSoit.cpp

Filename/Address
Bl ThSort.cpp 35
ThSart.cpp 45
B ThSart.cpp fals)
Bl ThSort.cpp £S5

Line/Length

Organizing your work area

[_[D]x]

2 Thsoropp | sorthd.cop | —

void _ fastcall TThreadSortForm::Paintlrray(TPaintBox *Bﬂﬂ
int const ASize)

{
int i:
TCanvas *canvas;

canvas = Box->Canvas:
canvas-»Pen->Color = clRed;

for (i=0;
PaintLin

i < ASiee; i++)

}
I
void _ fastcall TThreadSortForm::Bubble3ortBoxPaint (Tohje
{

Paintirray (BubbleSortBox, EXISTINGARRALY (BubblelSortirray

}
i

void _ fastcall TThreadSortForm::SelectionSorcBoxPaint (TO

lectionSortBEox, EXISTINGLRRE

Here, only the breakpoint list
is docked to the Code editor.

K — I | 7 .|
65: 2 Insert

You can also dock tools to form a tabbed window.

akpoint Lis

Thread Status Breakpoint List |CaH Stackl Watch L\stl Iodules | Event Log |

Filename/Address | Line/Lencth | Condition |Acmn
B CheckBoxlmpll... 4

| Pass Count | Group
Break 0

Here, various debugging views are
docked to form tabbed pages.

=} CheckBoximpll...

Eraak

CheckBoximpl1 Break 0
B Project! dpr 13 Break 0
4] | =l

To dock a window, drag it over another window until the first window’s rectangular
outline becomes narrow and vertical; then release the mouse. To undock a window,

click its title bar and drag it in any direction.

For more information...
Search for “docking tools” in the Help index.

Customizing the environment 5-3

Organizing your work area

Arranging menus and toolbars

The main window, which occupies the top of the screen, contains the menu, toolbars,
and Component palette. You can reorganize its contents.

£ C++Builder 5 - Projectl i i ini
Fie Edt Seach View Profct Aun Component Datehass Tools Help | |[[<Norex o | & Main window in its
DE-8| 0% 22| @] stedad| sddional] winz2| Susten | Datadccess | Data Coriois | ADD | InteBace | Mid 1> default arrangement
@O -nlaglls OF S am e r e BlE==1E] 5

You can move toolbars and menus within the main window. Click the grabber (the double bar on the
left) and drag it to where you want it.

&% C++Builder 5 - TextE ditor

Fie~ Edit Seach Yiew Poject Hun Component Database Tools Help Main WindOW
De-8 8 33[e[eax (0] b -1 s & organized

Standard]Add\lional] Win32] Sustem} DataAccess] Data Contro\s] ADD] InterBase] Midas] IntemetExDress} Inlemel} FastNetI DecismLIL dlﬁerently'

y DF & Amgmr o g=E &

You can even separate parts from the main window and place them elsewhere on the
screen or remove them from the desktop altogether.

File Edit Search Wiew Project Run Compaonent Datsbase Tools Help

‘_(-'}"-I:nﬂuildel 5 - TextEditor ‘

=]
DE-E 0T 33

=
o 5 o

&
= | e

x| E|

3 & <Mone: || &

o

Standard wAddlhunaH Wwin32 | Sustem | Dataficcess | Data Controls | 4D0 | InterBase | Midas | IntemetExoess | Intemet | Fasthiet | Decliu

h OF s A g wr o g5 | &

You can also customize the toolbars by adding or deleting tools.

Customize

Taolbars Commands]Options]

Choose View|Toolbars|

Categories: Commands Customize.

Component = Separator
v® Breakpoints From the Commands

£ Call Stack page, select any

S command and drag it
reads
2 Modules onto the toolbar.

an CPL
Y Local Variahles
"T}Event Log

121

&FPU

View . =l

Tao add command buttons, drag and drop cormmands onta &
toolbar. To remowve command buttons, drag them off of a Toalbar.

Close Help

5-4 Quick Start

Customizing desktop settings

Customizing desktop settings

You can customize and save your desktop settings. A Desktop toolbar in the IDE
includes a pick list of the available desktop layouts and two icons make it easy to
customize the desktop.

Arrange the desktop as you want including displaying, sizing, and docking
particular windows, and placing them where you want on the display. Click the Save
current desktop icon on the Desktop toolbar or choose View | Desktops | Save
Desktop.

Save current
desktop

”IDesktDplsetting j | 3} flﬁ’,‘

Set debug

Named desktop desktop

settings are listed here.

For more information...
Search for “desktop layout” in the Help index.

Setting default project options

The Project Options dialog, accessed by choosing Project | Options, controls settings
that are maintained separately for each application you develop. (See “Setting project
and environment options” on page 2-9.) However, by choosing the Default check box
in the lower left corner of the dialog, you can save your selections as the default
settings for all new projects.

Checking Default writes the current settings from the dialog to the options file
DEFAULT.BPR. To restore C++Builder’s original default settings, delete or rename
the DEFAULT.BPR file, which is located in the CBuilder\Bin directory.

Specifying default projects and forms

When you choose File | New Application, a new project opens in the IDE. If you
haven't specified a default project, C++Builder creates its standard new application
with an empty form. But you can select any item from the Projects page of the Object
Repository (see “Templates and the Object Repository” on page 2-14) as your default
project. Once you've specified a default project, C++Builder uses it as a template
whenever you choose File | New Application. If you select a wizard as your default
project, C++Builder runs the wizard whenever you choose File | New Application;
the wizard creates your new project based on your responses to a series of dialog
boxes.

Customizing the environment 5-5

Setting tool preferences

In the same way that you specify a default project, you can specify a default main
form and a default new form. The default main form is the form created when you
begin a new application. The default new form is the form created when you choose
File |New Form to add a form to an open project. If you haven’t specified a default
form, C++Builder uses a blank form.

You always have the option to override your default project or forms by choosing
File | New and selecting from the New Items dialog box.

For more information...

Search for “projects, specifying default” and “forms, specifying default” in the Help
index.

Setting tool preferences

The Environment Options dialog, accessed by choosing Tools | Environment Options,
controls many aspects of the appearance and behavior of the IDE. Changes made in
the Environment Options dialog are global; that is, they affect not just the current
project, but projects that you open and compile later.

For more information...

Click the Help button on any page of the Environment Options dialog, or search for
“Environment Options dialog box” in the Help index.

Customizing the Code editor

One tool you may want to customize right away is the Code editor. Several pages in
the Tools | Editor Options dialog have editor settings. For example, you can choose
keystroke mappings, fonts, margin widths, colors, syntax highlighting, tabs, and
indentation styles.

You can also configure the Code Insight tools that you can use within the editor on
the Code Insight page of Editor Options. See “Help with coding” on page 2-11 to
learn about these tools.

For more information...

Click the Help button on the following pages in the Editor Options dialog: General,
Display, Key Mapping, Color, and Code Insight.

Customizing the Form Designer

The Preferences page of the Environment Options dialog has settings that affect the
Form Designer. For example, you can adjust or disable the “grid snap” feature.

For more information...
Click the Help button on the Preferences page of the Environment Options dialog.

5-6 Quick Start

Setting ClassExplorer options

Customizing the Component palette

The ClassExplorer (described in “Exploring code” on page 2-7) opens automatically
when you start C++Builder. You can disable this behavior—and set other options for
the ClassExplorer—from the ClassExplorer page of the Environment Options dialog.

For more information...

Click the Help button on the ClassExplorer page of the Environment Options dialog.

Customizing the Component palette

In its default configuration, the Component palette displays many useful VCL objects
organized functionally onto tabbed pages. You can customize the Component palette

¢ hiding or rearranging components
¢ adding, removing, rearranging, or renaming pages

¢ installing new components

* creating component templates and adding them to the palette

€& C++Builder 5 - Project1

File Edit Search Yiew Project Run Component Database Tools Help

D -H@E | 228 €
e 1 & o

<Mone>

] &

Stardsrd | Addiional | '/in32 | Suster | Data Access | Data Contrak: | D0 | InterBase | Mgt >

h CIE & AR =

ok @ SFee T =[]

You can rearrange the palette
and add new pages.

%=| Editor Options...
‘& Debugger Dptions.

T onnl=biun Tl Obimen

£ Environment Dptions

You can create new components and
add them to the Component palette.

Companent Database Tools Help

{d Install Component
¥y Import Activel Contro

@ Install Packages...
Configure Palette

Preterences | Library | Palette | C++Buider Direct | ClassExplorer | COREA |

Campiling
¥ Show compiler progress

[Beep on completion

ey

[T Cache headers on startup
[“wam on package rebuild

¥ Background compilstion

Autosawe options
[™ Editor files
[Project desktop

Running
v Hide designers on mun

Shared repositony

Form designer

¥ Display grid

W Snap to grid

[Show component captions
¥ Shaw designer hints

[V Mew forms as text

[V Auta create forms
8
g

Grid size ¥
Grid size ¥:

[Minimize on run

Digectory, |

Browse...

New Component <]
Mew Component |
Ancestor lype; I j
LClass Mame: I
Palette Page: ISampIes -
Unit file name: I J
Search path: I
Irast=ll | (ke I Cancel | Help |

Cancel | Help

Customizing the environment 5-7

Customizing the Component palette

Arranging the Component palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use
the Palette Properties dialog. You can open this dialog in several ways:

¢ Choose Component | Configure Palette.
* Choose Tools | Environment Options and click the Palette tab.
¢ Right-click on the Component palette an select Properties.

For more information...
Click the Help button in the Palette Properties dialog.

Installing components

You can supplement the components in the VCL with custom components that you
write yourself or obtain from third-party developers. To make new components
available at design time, you need to install them in the IDE.

For more information...

To install third-party components, follow the vendor’s instructions. To learn about
writing your own components, see “Creating custom components” in the Developer’s
Guide or online Help.

Adding ActiveX controls

You can add ActiveX controls to the Component palette and use them in your
C++Builder projects. Choose Component | Import ActiveX Control to open the
Import ActiveX dialog. From here you can register new ActiveX controls or select an
already registered control for installation in the IDE. When you install an ActiveX
control, C++Builder creates and compiles a “wrapper” unit file for it.

For more information...
Choose Component | Import ActiveX Control and click the Help button.

Creating component templates

Component templates are groups of components that you add to a form in a single
operation. Templates allow you to configure components on one form, then save
their arrangement, default properties, and event handlers on the Component palette
for reuse on other forms.

To create a component template, simply arrange one or more components on a form,
set their properties in the Object Inspector, and select all of the components. Then
choose Component | Create Component Template. When the Component Template
Information dialog opens, you can select a name for the template, the palette page on
which you want it to appear, and an icon to represent the template on the palette.

5-8 Quick Start

Customizing the Help system

After placing a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

For more information...

Search for “Template” in the Help index or choose Component | Create Component
Template and press F1.

Customizing the Help system

C++Builder’s online Help system comprises more than a dozen WinHelp ((HLP) files
and includes documentation for the IDE, the Visual Component Library, and
additional products and tools supplied with C++Builder. A utility called OpenHelp
allows you to customize the Help system by choosing which files to make available
through the master table of contents, the index, and the IDE’s context-sensitive Help.

To start OpenHelp, choose Help | Customize.

4t DpenHelp - C:\Program Files\Borland\Rampage\Help\BCB5.ohp
Fie Edit Help
po By . .
F = I E . e The default Help system is set up in
:"I'E”“ | o = i | the Bcb5.ohp file in the Help directory.
itle: il ize | Date H
%Whal‘s New in Borland C++Buider C:4Program Filss'Borland KB 05/20/3312:14 PM YOU Can CUSIomlze your Help syStem
@ Borland C++Builder Help € \Program Files\Biorland IKE 1240893 10:09 &M by adding or deleting files.
Q Programming with C++B uilder C:4Program Files'Borland 20KB 12/08/3303:42 PM T . .
@ Developing Database Applications C'Pragram Files'Borland. 47KE 12/08/33 DE:08 PM This list controls which Help topics
@ Developing Inteinet Applications C:\Program Files\Barland.. KB 12/08/99 04:51 PM appear in the Help Contents.
O Companent Wiiter's Guide C:\Program Files\Borland... 14KB 12/09/9901:19 PM
Q Developing COM-based applications C:\Pragram Files\Borland... 10KB 12¢/08/9904:38 PM
0 C++Buider Language Guide C:4Program Files'Borland 15KB 12/05/33 04:13 PM
Q C Runtime Library Reference C:4Program Files'Borland 36KB 12/05/33 04:21 PM
0 Standard C++ Libwary Help C:4Program Files\Borland... 34KB 17/03/93 0446 PM
0 C++Builder Command-ine Tooks C:WProgram Files\Borland... BKE 10/05/93 0515 PM
Q\u’\sua\ Companent Library Reference... C:\Pragram Files\Borland... T17KE 12/09/99 04:01 PM
0 Intearated Translation Environment ... C:\Pragram Files\Borland... 2KB 11/30/99 0%:00 PM
@ InterBase Exprass Reference C:4Program Filss'Borland 2KB 07/15/93 05:06 PM

OpenHelp lets you add any WinHelp files to C++Builder’s Help system, including
documentation for third-party products. OpenHelp also allows you to remove
references to obsolete Help files from the system registry.

For an overview of the Help files supplied with C++Builder, see “Online Help” on
page 1-2.

For more information...
Choose Help | Customize, then choose Help | Contents from the OpenHelp main
window.

Customizing the environment 5-9

5-10 Quick Start

Programming with C++Bulilder

The following sections provide an overview of software development with
C++Builder and describe features that are not covered earlier in this Quick Start.

Development tools and features

The integrated development environment (IDE) includes the Form Designer, Object
Inspector, Component palette, Project Manager, ClassExplorer, Code editor, Data
Module Designer, software localization tools, debugger, and many other tools. The
particular features and components available to you will depend on which version of
C++Builder you've purchased.

All versions of C++Builder support general-purpose 32-bit Windows programming,
multithreading, COM (Component Object Model) and Automation controllers, and
multiprocess debugging. Some versions add support for server applications such as
COM servers and Web applications, database development with report and chart
generation for a variety of DBMS back ends, support for SQL database servers (such
as Oracle 8 and InterBase), Microsoft Transaction Server (MTS), multi-tiered database
applications, CORBA, and decision-support systems. For up-to-date product
information, refer to www.borland.com or contact your Inprise distributor.

Using the VCL

C++Builder comes with components that are part of a class hierarchy called the
Visual Component Library (VCL). The VCL includes objects that are visible at
runtime—such as edit controls, buttons, and other user-interface elements—as well
as nonvisual controls like datasets and timers.

Programming with C++Builder 6-1

Development tools and features

The diagram below shows some of the principal classes that make up the VCL.

TObject
|
Exce|ption TStre‘am TPersistent TCor|nObject Tlnter‘face
I [I I |
TGraphicsObject TGraphic TComponent TCollection TStrings
|
TAppIij:ation TDat|aSet TMcinu TCon|troI TComanDiang TFiLId
TGraphi(‘:Control TWinClontrol
|
TScroIIingWin‘Control TCustorrLControI
TCusto‘mForm Most visual controls

inherit from TWinControl.

Objects descended from TComponent have properties and methods that allow them to
be installed on the Component palette and added to C++Builder forms. Because VCL
components are hooked into the IDE, you can use tools like the Form Designer to

develop applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a VCL button control,
you don’t have to write code to handle Windows messages when the button is
clicked; you are responsible only for the application logic that executes in response to

the event.

Most versions of C++Builder come with complete source code for the VCL.

For more information...

See “Visual Component Library Reference” and “Creating Custom Components” in

the online Help.

Exception handling

C++Builder’s error-handling is based on exceptions, which are special objects
generated in response to unanticipated input or faulty program execution.
Exceptions can be thrown at both design time and runtime, and the VCL contains
many exception classes that are associated with specific error conditions. In your
applications, you'll want to write exception handlers to deal gracefully with runtime
errors. Exceptions can also be a valuable debugging tool, since the class of an
exception often provides a clue about what caused it to be thrown.

For more information...

See the entries for “Exception” and its specialized descendant classes in the online
VCL reference. Look up “exception handling” in the Help index.

6-2 Quick Start

Development tools and features

Database connectivity and utilities

C++Builder and the VCL offer a variety of connectivity tools to simplify the
development of database applications. The Borland Database Engine (BDE) is a
collection of drivers that support many popular database formats, including dBASE,
Paradox, FoxPro, Access, and any ODBC data source. SQL Links drivers, available
with some versions of C++Builder, support servers such as Oracle, Sybase, Informix,
DB2, SQL Server, and InterBase.

C++Builder includes components that you can use to access data through InterBase
Express (IBX). IBX applications provide access to advanced InterBase features and
offer the highest performance component interface for InterBase 5.5 and later.

IBX is based on the custom data access C++Builder component architecture, and is
integrated with the Data Module Designer. IBX is compatible with C++Builder’s
library of data-aware components, and does not require the BDE.

You can create database tables at design time in the Form Designer. First, create field
definitions using the Object Inspector, then right-click on the table component and
choose Create Table.

Some versions of C++Builder include components to connect to databases using
ActiveX Data Objects (ADO). ADO is Microsoft's high-level interface to any data
source, including relational and non-relational databases, email and file systems, text
and graphics, and custom business objects.

For more information...
See “Developing Database Applications” in the Developer’s Guide or online Help.

BDE Administrator

Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set up the
aliases used by data-aware VCL controls to connect to databases.

For more information...

Start the BDE Administrator from the C++Builder program group under the
Windows Start menu. Then choose Help | Contents.

SQL Explorer (Database Explorer)

The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can use it
to create database aliases, view schema information, execute SQL queries, and
maintain data dictionaries and attribute sets.

For more information...

From the C++Builder main menu, choose Database | Explore to open the Explorer;
then press F1. Or search for “Database Explorer” in the main Help index.

Programming with C++Builder 6-3

Types of development projects

Database Desktop

The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox and
dBase database tables in a variety of formats.

For more information...
Start the Database Desktop from the C++Builder program group under the Windows
Start menu. Then press F1.

Data Dictionary

The Data Dictionary provides a customizable storage area, independent of your
applications, where you can create extended field attribute sets that describe the
content and appearance of data. The Data Dictionary can reside on a remote server
for additional sharing of information.

For more information...
Search for “Data Dictionary” in the Help index.

Types of development projects

You can use C++Builder to write Windows GUI applications, console applications,
service applications, dynamic-link libraries (DLLs), packages (a special type of DLL
used by C++Builder), and other programs.

Applications and servers

C++Builder has features that make it easy to write distributed applications, including
client/server, multi-tiered, and Web-based systems. In addition to support for
standards like COM and a suite of Internet components, some versions of
C++Builder provide extensive tools for CORBA development.

For more information...

See “Building applications, components, and libraries” and “Developing distributed
applications” in the Developer’s Guide or online Help.

DLLs

Dynamic-link libraries (DLLs) are compiled modules containing routines that can be
called by applications and by other DLLs. Since a DLL contains sharable code or
resources, it is typically used by more than one application.

For more information...
Search for “DLLs” in the Help index.

6-4 Quick Start

Types of development projects

Custom components and packages

A package is a special dynamic-link library used by C++Builder applications, the IDE,
or both. While packages can be used in a variety of ways, their most common
purpose is the encapsulation of C++Builder components. In fact, all components
installed in the IDE must be compiled as packages.

The components that come with C++Builder are preinstalled in the IDE and offer a
range of functionality that should be sufficient for most of your development needs.
You could program with C++Builder for years without installing a new component,
but you may sometimes want to solve special problems or encapsulate particular
kinds of behavior that require custom components.

Custom components supplement the VCL while promoting code reuse and
consistency across applications. Many C++Builder components are available through
third-party developers, and C++Builder provides a New Component wizard that
makes it easy to create and install components on your own.

For more information...

See “Creating Custom Components” in the Developer’s Guide or online Help. Search
for “packages” in the Help index.

Frames

A frame (TFrame), like a form, is a container for other components. In some ways, a
frame is more like a customized component than a form. Frames can be saved on the
Component palette for easy reuse, and they can be nested within forms, other frames,
or other container objects. After a frame is created and saved, it continues to function
as a unit and to inherit changes from the components (including other frames) it
contains. When a frame is embedded in another frame or form, it continues to inherit
changes made to the frame from which it derives.

For more information...
Search for “frames” and “TFrame” in the Help index.

COM and ActiveX

C++Builder supports Microsoft’s COM standard and provides wizards for creation
of ActiveX controls. Sample ActiveX controls are installed on the ActiveX page of the
Component palette. Numerous COM server components are provided on the Servers
tab of the Component palette. You can use these components as if they were VCL
components. For example, you can place one of the Microsoft Word components onto
a form to bring up an instance of Microsoft Word within an application interface.

For more information...
Search for “COM” and “ActiveX” in the Help index.

Programming with C++Builder 6-5

Deploying applications

Type libraries

Type libraries are files that include information about data types, interfaces, member
functions, and object classes exposed by an ActiveX control or server. By including a
type library with your COM application or ActiveX library, you make information
about these entities available to other applications and programming tools.
C++Builder provides a Type Library editor for creating and maintaining type
libraries.

For more information...
Search for “type libraries” in the Help index.

Deploying applications

When you deploy an application, be sure to supply all the required files—including
executables, DLLs, packages, and BDE drivers—to your users. To make this process
easier, C++Builder includes a special version of InstallShield Express, a popular tool
for developing installation utilities.

For more information...
Search for “deploying applications” in the Help index.

Internationalizing applications

C++Builder offers many features for internationalizing and localizing applications.
Support for input method editors (IMEs) and extended character sets is provided
throughout the VCL, and tools like the Resource DLL wizard make it easy to prepare
a project for localization. To get the maximum benefit from these features, you need
to start thinking about internationalization requirements as early as possible in the
development process.

The Integrated Translation Environment (ITE), available in some versions of
C++Builder, is a suite of tools for software localization and simultaneous
development for different locales. It is integrated with the IDE to let you manage
multiple localized versions of an application as part of a single project.

The ITE includes three tools:
¢ Translation Manager, a grid for viewing and editing translated resources
¢ Translation Repository, a sharable database for translations

* Resource DLL wizard, a DLL wizard that generates and manage resource DLLs

For more information...
Search for “international applications” and “ITE” in the Help index.

6-6 Quick Start

A

About box 3-27
Access 6-3
Action List editor 3-8
ActionList component 3-7, 4-6
actions 3-8
ActiveX 1-2,6-5
installing controls 5-8
palette page 6-5
ActiveX Data Objects (ADO) 6-3
Automation 6-1
Automation objects 1-2

B

BDE (Borland Database Engine) 6-3
Administrator 4-6, 6-3
aliases 4-6, 6-3

.BPR files 3-2

buttons (VCL) 6-2

C

character sets, extended 6-6
charts 6-1
classes 3-4,4-3
ClassExplorer 2-7,5-7
Code Completion 2-11
Code editor 2-5to 2-12
browsing 2-6
options 5-6
Code Insight 2-11
Code Parameters 2-11
Code Templates 2-11
color
Code editor 5-6
forms 4-2
COM 1-2,6-1,6-4,6-5
compiling 4-6
Component palette 2-3, 3-3,4-2, 6-2
customizing 5-7
component templates 5-8
components 2-3,3-2, 3-3, 4-2
arranging on the Component palette 5-8
customizing 1-2, 5-8, 6-5
documentation 1-2
installing 5-8, 6-5
setting properties 2-4, 3-3
templates 5-8
third-party 5-8, 6-5
VCL hierarchy 6-2

Index

writing 1-2, 5-8, 6-5
console applications 6-4
context menus 2-2
controls

database 4-2,4-4, 4-6, 6-3

nonvisual 4-2,4-4,6-1
CORBA 1-2,6-1, 6-4
customization

Code editor 5-6

Component palette 5-4, 5-7

desktop settings 5-5

Form Designer 5-6

project options 5-5

D

Data Dictionary 6-4
Data Module Designer 2-8 to 2-9, 6-3
data modules 2-8 to 2-9
data-aware controls 4-6, 6-3
Database Desktop 6-4
Database Explorer 2-13, 6-3
databases 2-13 to 2-14
accessing 3-5, 4-2 to 4-6, 6-3
architecture of database connection 4-6
controls 4-2,4-4
report generation 6-1
tools and utilities 6-3
dataset components 4-6
DataSource component 4-4, 4-6
DB2 6-3
dBASE 6-3
DBGrid component 4-4
DBImage component 4-11
DBMemo component 4-12
DBText component 4-12
DCOM 1-2
debugging 2-12 to 2-13
arranging views and tool windows 5-2
remote 2-13
decision support 6-1
default event handlers 4-14
default events 4-13, 4-14
default forms 5-5
default project options 2-9, 5-5
default projects 5-5
deploying applications 6-6
design time 3-3
design-time settings 3-3
desktop settings 5-5
developer support 1-4

Index

I-1

.DFM files 2-6, 3-1 image list 3-12

docking tool windows 5-1 ImageList component 3-7, 4-6
documentation 1-1 to 1-4, 2-10 to 2-11 images 3-12
ordering 1-4 displaying 4-10
dynamic-link libraries (DLLs) 6-4 IMEs 6-6
indentation, Code editor 5-6
E Informix 6-3
- input method editors 6-6
editor example 3-1 to 3-29 installation utilities 6-6
Environment Options dialog 2-9, 5-6 InstallShield Express 6-6
errors instance objects 3-4, 4-3
compiler 2-11 integrated development environment (IDE)
exception handling 6-2 2-1t02-2, 6-1
event handlers 2-5, 3-17 to 3-24, 4-13 to 4-15 customizing 5-1 to 5-9
default 4-14 Integrated Translation Environment (ITE) 6-6
events 2-5,3-17, 4-13 to 4-15, 6-2 InterBase 6-3
default 4-13, 4-14 InterBase Express (IBX) 6-3
Events page (Object Inspector) 2-5 internationalization 6-6
example program 3-1 to 3-29, 4-1 to 4-15
exceptions 6-2 K
F keyboard shortcuts 2-2

keystroke mappings 5-6
Filter editor 3-20 y ppINg

Font editor 4-13 L
fonts, Code editor 5-6
Form Designer options 5-6 libraries, C and C++ 1-2,4-15
form files 2-6, 3-1 localization 6-6
forms 2-3,3-2

default 5-5 M

new 5-5
FoxPro 6-3 MainMenu component 3-13, 4-7
frames 6-5 makefiles 3-2

marine life example 4-1 to 4-15
G menus 2-2,3-13
configuring 5-4
graphics, displaying 4-10 context 2-2
grid snap 5-6 messages
grids (database) 4-4 error 3-29
GUIs, creating 2-3, 3-2 windows 6-2
Microsoft Transaction Server (MTS) 6-1
H modal state 3-28
- MTS 1-2

headel: files 3-1 multithreading 6-1
Help files, creating 3-24 multi-tiered applications 6-1
Help system

accessing 2-10 to 2-11 N

context-sensitive 2-10 to 2-11

customizing 1-3, 5-9 new features 1-1

files 1-2 New Items dialog (File | New) 2-14, 5-6
highlighting, syntax 5-6 newsgroups 1-4
.HLP files 1-2,5-9
HTTP 1-2 O

| Object Inspector 2-4 to 2-5, 3-2
overview 2-4
icons 3-12 Object Pascal 1-3

I-2 Quick Start

Object Repository 2-14, 5-5

objects 3-3,3-4,4-3

ODBC 6-3

.OHP files 5-9

online Help
accessing 2-10 to 2-11
context-sensitive 2-10 to 2-11
customizing 1-3, 5-9
files 1-2

OpenHelp 1-3,5-9

options
environment 2-9, 5-6
project 2-9,5-5

Oracle 6-1, 6-3

P

packages 6-4, 6-5
Panel component 4-10
Paradox 6-3
pictures, displaying 4-10
project files 3-2
project groups 2-8
Project Manager 2-7
Project Options dialog 2-9, 5-5
projects 3-1

default 5-5

new 5-5
properties, setting 2-4, 3-3

R

remote debugging 2-13
reports 6-1

.RES files 3-2

Resource DLL wizard 6-6
RichEdit component 3-4
right-click menus 2-2
Run button 4-6

Run menu 4-6

running applications 4-6

S

service applications 6-4
shortcuts (keyboard) 2-2
sockets 1-2
source code
files 3-1
help in writing 2-11 to 2-12
VCL 6-2
SQL 6-1
SQL Explorer 2-13, 6-3
SQL Links 6-3
SQL Server 6-3

standard actions 3-10
starting C++Builder 2-1
StatusBar component 3-5, 4-4
support services 1-4

Sybase 6-3

syntax highlighting 5-6

T

tabbed windows, configuring in the IDE 5-3
Table component 4-2, 4-6
tabs

Code editor 5-6

Window tabs 5-1
TComponent 6-2
technical support 1-4
templates 2-14
text editor example 3-1 to 3-29
TMenultem class 4-14
to-do lists 2-8
tool windows, docking 5-1
ToolBar component 3-16, 4-9
toolbars 2-2, 3-16

configuring 5-4

desktop 5-5
Tooltip Expression Evaluation 2-11
Tooltip Symbol Insight 2-11
tutorial 3-1 to 3-29, 4-1 to 4-15
two-way tools 2-2
type libraries 1-2, 6-6
Type Library editor 6-6
typographic conventions 1-4

U

unit files 3-1, 5-8
unit header files 3-1
user interfaces, creating 2-3, 3-2, 3-3

\

versions of C++Builder 6-1
Visual Component Library (VCL) 6-1
Component palette 5-7
diagram 6-2
documentation 1-2
source code 6-2

W

windows, docking 5-1

Windows (operating system) messages 6-2
WinHelp 5-9

wizards 2-14, 5-5, 6-5

Index

I3

I-4 Quick Start

	Quick Start
	Contents
	Ch 1: Introduction
	What is C++Builder?
	Where to find information
	Online Help
	Printed documentation
	Developer support services

	Typographic conventions

	Ch 2: A tour of the environment
	Starting C++Builder
	Using toolbars, menus, and keyboard shortcuts
	Placing components on a form
	Changing component appearance and behavior
	Working with events

	Viewing and editing code
	Viewing form files
	Browsing with the editor
	Exploring code

	Managing projects
	Creating to-do lists
	Designing data modules
	Setting project and environment options
	Getting help
	Help with coding

	Debugging applications
	Exploring databases
	Templates and the Object Repository

	Ch 3: Creating a text editor—a tutorial
	Starting a new application
	Setting property values
	Adding objects to the form
	Adding support for a menu and a toolbar
	Adding actions to the action list
	Adding standard actions to the action list
	Adding images to the image list

	Adding a menu
	Clearing the text area (optional)

	Adding a toolbar
	Writing event handlers
	Creating an event handler for the New command
	Creating an event handler for the Open command
	Creating an event handler for the Save command
	Creating an event handler for the Save As command
	Creating an event handler for the Exit command

	Creating a Help file
	Creating an event handler for the Help Contents command
	Creating an event handler for the Help Index command

	Creating an About box
	Completing your application

	Ch 4: Creating a database application— a tutorial
	Starting a new application
	Setting property values
	Adding objects to the form
	Connecting to a database
	Adding support for a menu and a toolbar
	Adding a menu
	Adding a toolbar
	Displaying images
	Adding text and memo objects
	Writing an event handler

	Ch 5: Customizing the environment
	Organizing your work area
	Docking tool windows
	Arranging menus and toolbars

	Customizing desktop settings
	Setting default project options
	Specifying default projects and forms
	Setting tool preferences
	Customizing the Code editor
	Customizing the Form Designer
	Setting ClassExplorer options

	Customizing the Component palette
	Arranging the Component palette
	Installing components
	Adding ActiveX controls

	Creating component templates

	Customizing the Help system

	Ch 6: Programming with C++Builder
	Development tools and features
	Using the VCL
	Exception handling

	Database connectivity and utilities
	BDE Administrator
	SQL Explorer (Database Explorer)
	Database Desktop
	Data Dictionary

	Types of development projects
	Applications and servers
	DLLs
	Custom components and packages
	Frames
	COM and ActiveX
	Type libraries

	Deploying applications
	Internationalizing applications

	Index
	A - D
	E - O
	P - Z

