

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio ii

About the Author

Paul A. Watters, Ph.D, is a Senior Lecturer in
the Department of Computing at Macquarie
University. He has worked as a Solaris and
e-commerce consultant for many corporate
and nongovernmental entities in Australia,
designing systems and software on the Solaris
platform. His current consulting work, through
the Centre for Policing, Intelligence, and Counter
Terrorism at Macquarie University, is in the area
of cyberterrorism and prevention of attacks on
critical system and network infrastructure. His
current research projects involve biometric
authentication for accessing enterprise systems,
and statistical and structural approaches to
filtering pornography on the Internet. He has
previously written Solaris 9: The Complete
Reference and Solaris 9 Administration: A Beginner’s
Guide, as well as contributed to Web Services
Security, all published by McGraw Hill/Osborne.

Dr. Paul A. Watters

McGraw-Hill/Osborne
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio iii

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio vi

Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United
States of America. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

0-07-146657-6

The material in this eBook also appears in the print version of this title: 0-07-222998-5.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the
trademark owner, with no intention of infringement of the trademark. Where such designations appear in
this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity
discounts to use as premiums and sales promotions, or for use in corporate training programs. For more
information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under
the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-
Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use
of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply
with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS
OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or
guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else
for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability to
use the work, even if any of them has been advised of the possibility of such damages. This limitation of
liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort
or otherwise.

DOI: 10.1036/0071466576

������������

Want to learn more?
We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

This book is dedicated to my niece Jasmine.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio v

This page intentionally left blank.

Contents at a Glance

Part I Installation

1 Introduction to Solaris 10 . 3
2 System Concepts and Choosing Hardware . 23
3 Solaris 10 Installation . 43
4 Initialization, OpenBoot PROM, and Run Levels 69

Part II System Essentials

5 Installing Software, Live Upgrade, and Patching 101
6 Text Processing and Editing . 123
7 Shells, Scripts, and Scheduling . 145
8 Process Management . 167

Part III Security

9 System Security . 191
10 File System Access Control . 229
11 Role-Based Access Control . 241
12 Users, Groups, and the Sun Management Console 261
13 Kerberos and Pluggable Authentication . 287

Part IV Managing Devices

14 Device and Resource Management . 303
15 Installing Disks and File Systems . 325
16 File System and Volume Management . 339
17 Backup and Recovery . 357
18 Printer Management . 379
19 Pseudo File Systems and Virtual Memory . 391
20 System Logging, Accounting, and Tuning . 401

v i i

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter
FM:vii

Part V Networking

21 Basic Networking . 425
22 DHCP and NTP . 457
23 Routing and Firewalls . 475
24 Remote Access . 501
25 Internet Layer (IPv6) . 515

Part VI Services, Directories, and Applications

26 Network File System and Caching File System 525
27 Sendmail . 545
28 Domain Name Service . 569
29 Network Information Service (NIS/NIS+) . 583
30 Lightweight Directory Access Protocol (LDAP) 603
31 Samba . 633
32 Application Development and Debugging . 647
33 Web Applications and Services . 675

Index . 713

v i i i S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Contents

Acknowledgments . xxiii
Introduction . xxv

Part I Installation

1 Introduction to Solaris 10 . 3
What Is UNIX? . 5
The History of UNIX . 6

Origins of UNIX . 7
Features of BSD . 10
Features of System V Release 4 . 10

The Solaris Advantage . 11
Hardware Support (SPARC and x86) . 13
Cross-Platform Interoperability . 14

Recent Solaris Innovations . 14
Server Tools . 14
Security Innovations . 16

What’s New in Solaris 10 . 18
Sources for Additional Information . 19

Sun Documentation/Sun Sites . 19
Web Sites . 20
USENET . 20
Mailing Lists . 20

Summary . 21
How to Find Out More . 21

2 System Concepts and Choosing Hardware . 23
Key Concepts . 24

UNIX and the Kernel . 24
The Shell . 27
The File System . 28
Multiuser, Multitasking, and Zoning . 28

i x

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter
FM:ix

For more information about this title, click here

x S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Client/Server Networks . 29
Processes . 29
Naming Services . 30
Java 2 Enterprise Edition (J2EE) . 31
SPARC Hardware . 32
Intel Hardware . 34

Examples . 37
System Components . 37
Example Systems . 38

Procedures . 38
System Configuration . 38
Basic Networking Terminology . 40

Summary . 41

3 Solaris 10 Installation . 43
Preinstallation Planning . 43

Disk Space Planning . 45
Device Names . 46
SPARC Preinstallation . 47
Intel Preinstallation . 48
The Boot Manager . 53

Web Start Wizard Installation . 54
Configuration . 57
Software Selection . 61
Network Installation . 62

suninstall Installation . 63
JumpStart . 64

Boot Servers . 65
Installing Servers . 65
Boot Clients . 66
sysidcfg . 67

Summary . 68

4 Initialization, OpenBoot PROM, and Run Levels 69
Key Concepts . 69

OpenBoot . 69
/sbin/init . 71
Firmware . 73
Control Scripts and Directories . 74
Boot Sequence . 74

Procedures . 75
Viewing Release Information . 75
Changing the Default Boot Device . 75
Testing System Hardware . 78
Creating and Removing Device Aliases 79

C o n t e n t s x i

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Startup . 79
Shutdown . 83

Examples . 86
Single-User Mode . 86
Recovering the System . 86
Writing Control Scripts . 87
Writing Kill Scripts . 88
Control Script Examples . 90
Shutting Down the System . 91

Command Reference . 94
STOP Commands . 94
Boot Commands . 94
Using eeprom . 94
/sbin/init . 96
/etc/inittab . 96

Summary . 98

Part II System Essentials

5 Installing Software, Live Upgrade, and Patching 101
Key Concepts . 101

Getting Information about Packages . 102
Live Upgrade . 102
Patches . 103

Procedures . 104
Viewing Package Information with pkginfo 104
Installing a Solaris Package Using the CLI 105
Uninstalling a Solaris Package Using the CLI 107
Creating New Packages . 108
Archiving and Compression . 111
Finding Patches . 115

Example . 117
Reviewing Patch Installation . 117

Command Reference . 118
Package Commands . 118
install . 119
patchadd . 120
patchrm . 121

Summary . 122

6 Text Processing and Editing . 123
Key Concepts . 123

Visual Editor . 123
.exrc File . 125
Text-Processing Utilities . 127

xi i S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Procedures . 132
sed and awk . 132
PERL Programming . 136

Command Reference . 143
sed . 143
awk . 143

Summary . 143

7 Shells, Scripts, and Scheduling . 145
Key Concepts . 145

The Shell . 145
Procedures . 148

Writing Shell Scripts . 148
Scheduling Jobs . 154

Examples . 157
Setting Environment Variables . 157

Command Reference . 158
Source (.) . 158
basename . 159
cat . 159
cd . 160
chgrp . 160
date . 160
grep . 161
head . 161
less . 161
ls . 162
mkdir . 162
more . 163
pwd . 163
rmdir . 164
tail . 164

Summary . 165

8 Process Management . 167
Key Concepts . 167

Sending Signals . 168
Procedures . 169

Listing Processes . 169
Using the top Program . 173
Using the truss Program . 176

Examples . 177
Using Process File System . 177
Using proc Tools . 178
Using the lsof Command . 182

C o n t e n t s x i i i

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Command Reference . 185
ps . 185
kill . 186
pgrep . 186
pkill . 186
killall . 187

Summary . 187

Part III Security

9 System Security . 191
Key Concepts . 191

Security Requirements . 191
Security Architecture . 192
Trusted Solaris . 194
Trust . 195
Integrity and Accuracy . 196
Authenticity and Consistency . 197
Identification and Authentication . 197

Procedures . 198
Confidentiality . 198
Disabling IP Ports . 204
Checking User and Group Identification 206
Protecting the Superuser Account . 207
Monitoring User Activity . 208
Securing Remote Access . 209

Examples . 217
Ensuring Physical Security . 217
Security Auditing . 219
SAINT . 219

Command Reference . 226
aset . 226
TCP Wrappers . 227

Summary . 228

10 File System Access Control . 229
Key Concepts . 229

Symbolic File Permissions . 229
Procedures . 232

Octal File Permissions . 232
Setting Default Permissions (umask) . 234
setUID and setGID Permissions . 235
Sticky Bit Permissions . 236

xiv S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Example . 237
Access Control Lists . 237

Command Reference . 238
ls . 238

Summary . 239

11 Role-Based Access Control . 241
Key Concepts . 242

sudo . 242
RBAC . 242

Operations . 247
sudo . 247
RBAC . 249

Database Reference . 250
user_attr . 250
auth_attr . 250
prof_attr . 251
exec_attr . 251

Example . 252
Command Reference . 252

smexec . 252
smmultiuser . 254
smuser . 255
smprofile . 257
smrole . 258

Summary . 259

12 Users, Groups, and the Sun Management Console 261
Key Concepts . 261

Users . 261
Groups . 263
Passwords . 264
Introduction to SMC . 266

Procedures . 267
Adding Users . 267
Modifying User Attributes . 268
Deleting Users . 268
Adding Groups . 269
Managing Groups . 270

Starting the SMC . 270
Examples . 272

Working with the SMC . 272
Command Reference . 285

pwck . 285
grpck . 285

C o n t e n t s xv

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

pwconv . 285
SMC Initialization . 285

Summary . 286

13 Kerberos and Pluggable Authentication . 287
Key Concepts . 287

Kerberos . 287
PAM . 289

Procedures . 291
Kerberos . 291
PAM . 294

Examples . 296
Non-Kerberized Services . 296
Kerberized Services . 297

Command Reference . 298
kadmin . 298
kdb5_util . 299

Summary . 299

Part IV Managing Devices

14 Device and Resource Management . 303
Key Concepts . 303

Device Files . 303
/dev and /devices Directories . 304
Storage Devices . 305
CD-ROMs and DVD-ROMs . 308

Procedures . 309
Adding Devices . 309

Examples . 316
Checking for Devices . 316

Command Reference . 322
format . 322

Summary . 323

15 Installing Disks and File Systems . 325
Key Concepts . 325

Physical and Logical Device Names . 325
Creating a File System . 326

Examples . 326
Monitoring Disk Usage . 326

Command Reference . 330
The /etc/path_to_inst File . 330
dmesg . 331

xvi S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

mkfile . 333
mkfs . 333
newfs . 334
lofiadm . 334
swap . 335
sync . 336
tunefs . 336

Summary . 337

16 File System and Volume Management . 339
Key Concepts . 339

Mounting Local File Systems . 339
Unmounting Local File Systems . 340
Creating Entries in /etc/vfstab . 340
Fixing Problems by Using fsck . 340

What Is RAID? . 343
Procedures . 346

Mounting a File System . 346
Configuring /etc/vfstab . 348
Setting Up RAID . 348

Examples . 350
Using umount . 350
fsck Operations . 351

Command Reference . 355
mount . 355

Summary . 356

17 Backup and Recovery . 357
Key Concepts . 357

Understanding Backups . 357
Analyzing Backup Requirements . 358
Determining a Backup Strategy . 359
Selecting Backup Tools . 362

Procedures . 365
Selecting a Backup Medium . 365
Backup and Restore . 368
Taking a Snapshot . 373

Examples . 374
Using ufsdump and ufsrestore . 374

Command Reference . 377
ufsrestore . 377

Summary . 378

C o n t e n t s xv i i

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

18 Printer Management . 379
Key Concepts . 379
Procedures . 380

Determining Whether a Printer Is Supported 380
Setting Up Printer Classes . 381

Examples . 381
Configuring Print Services . 381
Adding a Local Printer . 382
Accessing Remote Printers . 383
Using Forms and Filters . 383

Command Reference . 384
Solaris Print Manager . 384
lp . 386
cancel . 388
lpadmin . 388
lpstat . 389

Summary . 390

19 Pseudo File Systems and Virtual Memory . 391
Key Concepts . 391

Pseudo File Systems . 391
Procedures . 393

proc Tools . 393
Virtual Memory . 397

Summary . 399

20 System Logging, Accounting, and Tuning . 401
Key Concepts . 401

System Logging . 401
Quotas . 402
System Accounting . 402
Performance . 402

Procedures . 403
Examining Logfiles . 403
Implementing Quotas . 404
Collecting Accounting Data . 406
Collecting Performance Data . 406

Examples . 410
Logging Disk Usage . 410
Generating Accounting Reports . 413
Charging Fees Using Accounting . 417
Performance Tuning . 420

Command Reference . 421
syslog . 421

Summary . 422

xvi i i S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Part V Networking

21 Basic Networking . 425
Key Concepts . 425

Network Topologies . 426
OSI Networking . 429
TCP/IP Networking . 431
Ethernet . 431
IPv4 . 436
Transport Layer . 440

Procedures . 442
Hostnames and Interfaces . 442
Internet Daemon . 443
Network Configuration Files . 444
Configuring Network Interfaces . 444
Modifying Interface Parameters . 445

Examples . 446
Configuring inetd . 446
Configuring Services . 447
Application Protocols . 448
/etc/inetd.conf . 450
/etc/services . 451
Checking if a Host Is “Up” . 451

Command Reference . 452
arp . 452
snoop . 453
ndd . 454

Summary . 456

22 DHCP and NTP . 457
Key Concepts . 457

Dynamic Host Configuration Protocol 457
Network Time Protocol . 459

Procedures . 462
DHCP Operations . 462
Configuring an NTP Server . 463
NTP Security . 466

Examples . 466
Configuring a Solaris DHCP Server . 466
Manual DHCP Server Configuration . 471
Configuring a Solaris DHCP Client . 472
Configuring a Windows DHCP Client 472
Configuring an NTP Client . 472

Summary . 474

C o n t e n t s x ix

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

23 Routing and Firewalls . 475
Key Concepts . 475

Network Interfaces . 475
IP Routing . 478
Overview of Packet Delivery . 479
IP Filtering and Firewalls . 481
The Kernel Routing Table . 482

Procedures . 483
Configuring a Router . 483
Viewing Router Configuration . 484
Static Routes . 485
Routing Protocols . 485
Viewing the Routing Table (netstat –r) 486
Manipulating the Routing Table (route) 486
Dynamic Routing . 488
Configuring the IPFilter Firewall . 488
Configuring the SunScreen Firewall . 490

Examples . 496
Viewing Router Status . 496

Summary . 499

24 Remote Access . 501
Key Concepts . 501

Internet Access . 501
telnet . 502
Port Monitors . 503
The Service Access Facility . 503
Point-to-Point Protocol . 504

Procedures . 504
Using telnet . 505
Remote Logins . 506
Testing Service Connectivity . 508
Using Remote Access Tools . 508
Setting Up Port Listeners . 509
Adding a Serial Port . 510
Adding a Modem . 510
Setting Up PPP . 511

Examples . 512
Using ttymon . 512
Connecting to an ISP . 513

Command Reference . 513
pmadm . 513
sacadm . 513
tip . 513

Summary . 514

xx S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

25 Internet Layer (IPv6) . 515
IPv6 Motivation . 515
Addressing . 516
IPv6 Routing . 518
Headers . 519
Quality of Service . 520
Security . 520
Summary . 521

Part VI Services, Directories, and Applications

26 Network File System and Caching File System 525
Key Concepts . 526

NFS Architectures . 526
Remote Procedure Calls . 526
automounter . 527

Procedures . 528
Configuring an NFS Server . 528
Sharing File Systems . 528
Installing an NFS Client . 530
Configuring a CacheFS File System . 531
Enabling the automounter . 533
automount and NIS+ . 536
Starting and Stopping the automounter 537

Examples . 538
Checking portmapper Status . 538
Mounting Remote File Systems . 539
Enhancing Security . 540
Performance . 541

Command Reference . 542
share . 542
mount . 542

Summary . 543

27 Sendmail . 545
Key Concepts . 545

Understanding E-Mail Protocols . 546
Mail Headers . 550
sendmail . 551
m4 Configuration . 552

Procedures . 554
Configuring sendmail (sendmail.cf) . 554
Running sendmail . 558
Troubleshooting . 558

C o n t e n t s xx i

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Examples . 560
An Example SMTP Transaction . 560
Mail Headers . 561
Using Multipurpose Internet Mail Extensions 562
Using Mail Clients . 563

Command Reference . 567
alias . 567

Summary . 568

28 Domain Name Service . 569
Key Concepts . 569

Overview of DNS . 569
Examples . 572

DNS Client Tools . 572
Procedures . 578

Configuring a DNS Server . 578
Summary . 581

29 Network Information Service (NIS/NIS+) . 583
Key Concepts . 583

Managing Resources . 584
NIS Maps . 587
NIS+ Tables . 588

Procedures . 591
Setting Up a Root Domain . 591
Populating Tables . 591
Setting Up Clients . 592
Setting Up Servers . 592

Examples . 593
Command Reference . 597

nisdefaults . 597
nischmod . 598
nisls . 599
niscat . 600

Summary . 602

30 Lightweight Directory Access Protocol (LDAP) 603
Key Concepts . 604
Procedures . 606

Configuring iDS . 606
Supporting LDAP Clients . 607
Creating LDAP Entries . 609
Starting a Client . 610
Using the LDAP-NIS+ Interface . 612

Example . 613

xxi i S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Command Reference . 630
ldapsearch . 630
ldapmodify . 630

Summary . 631

31 Samba . 633
Key Concepts . 633

Samba Server . 633
NetBIOS Naming . 636
Samba Clients . 638

Procedures . 640
Configuring the Samba Daemon . 640
Samba Daemon Status . 642
Troubleshooting . 643

Examples . 644
Samba GUIs . 644
NT Authentication . 644

Summary . 645

32 Application Development and Debugging . 647
Programming Languages . 647
C Programming . 649

Using gcc . 650
System Calls, Libraries, and Include Files 652
High-Level Input/Output . 656
Low-Level Input/Output . 663

Performance Optimization and Debugging . 667
Summary . 673

33 Web Applications and Services . 675
Apache Web Server . 675

Global Environment Configuration . 676
Main Server Configuration . 677
Virtual Hosts Configuration . 680
Starting Apache . 680

Sun Java System Application Server . 681
Architecture . 684
Server Configuration . 685

Summary . 711

Index . 713

Acknowledgments

Iwould like to acknowledge the professionalism and support of the team at
McGraw-Hill/Osborne. Jane Brownlow has worked tirelessly to ensure that this
title arrived on the market to coincide with the release of Solaris 10. Jessica Wilson

and Emily Rader provided valuable insight and feedback on each chapter, while Bill
McManus graciously corrected every typo and error in the manuscript. The technical
editor, Nalneesh Gaur, was tough but fair, as always. Thanks Nalneesh!

To everyone at my agency, Studio B, thanks for your past and continued support.
To Neil Salkind, my agent, thanks for your wisdom and pragmatic advice.

Finally, thanks to my family, especially my wife Maya, for always being there,
through good times and bad.

x x i i i

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter
FM:xxiii

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank.

Introduction

This book is intended as an easy-to-access reference point for Solaris 10, the latest
version of the enterprise network operating system developed by Sun Microsystems.
Solaris 10 is now free for all users, making it just as accessible as competing, “free”

UNIX-style systems, such as Linux, and pay-per-seat systems such as Microsoft Windows.
Each chapter provides a concise overview of the technologies that comprise Solaris 10, a

review of the typical operations used for installation and configuration, worked examples,
and a command reference. While it is not possible to provide information on every
command—the online reference material at http://docs.sun.com/ is excellent, after all—
this book provides you with easily accessible examples, where the reason why you might
use certain commands is clearly explained. This is usually what is missing from man pages
and other system documentation, which are designed to be concise.

This reference is divided into six parts that cover all of the tactical activities associated
with Solaris 10 system administration. The sections are roughly ordered by complexity
and timeline—for example, you need to install a system and application software before
implementing security plans and setting up logical volumes, usually in preparation for
deployment of enterprise applications into a networked environment.

Part I, “Installation,” covers system installation and the selection of hardware for
various workload mixes. Chapter 1 introduces the scope of the now-free version of
Solaris 10 for the SPARC and Intel hardware platforms in the context of competing
UNIX and UNIX-like systems. A major benefit of using Solaris over Linux, for example,
is getting access to hardware that scales up to over 100 CPUs in a single box. Chapter 2
reviews hardware decision choices. Chapter 3 provides walkthroughs of the main
system installation methods—Web Start Wizard, JumpStart, and suninstall—as well
as preinstallation planning issues. Chapter 4 covers system booting and working with
the PROM boot monitor on SPARC-based systems, which is much more sophisticated
than its PC counterparts.

Part II, “System Essentials,” covers the installation of end-user and third-party
software packages, writing scripts, and managing processes. Chapter 5 reviews how to
install new software using the package tools, and how to update software installations
by using Live Upgrade and patching. Because editing text files is a basic skill for system
administrators, Chapter 6 covers how to use the vi text editor and also how to use
various text-processing utilities, such as cat, head, tail, sed, and awk. Much of the

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter
FM:xxv

x x v

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter
FM:xxv

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

interaction system administrators have with Solaris is through a command-line shell,
rather than a GUI, so Chapter 7 reviews how to work with shells and write scripts to
perform repetitive tasks. Chapter 8 investigates how processes and threads are managed
to enable multitasking.

Part III, “Security,” covers system security configuration, including authorization
and authentication. Chapter 9 covers basic security concepts that underlie Solaris
technologies, such as integrity and authenticity. Chapter 10 explains two broad types
of authorization enabled in Solaris—user- and group-based access control—with which
most users will be familiar, and Chapter 11 explains the newer and far more sophisticated
role-based access control. Chapter 12 discusses managing users and groups, including
the new Sun Management Console, which is much easier to use than the command line!
Chapter 13 reviews distributed authentication, provided by the MIT Kerberos system,
along with configuration of the Pluggable Authentication Module (PAM), which allows
different authentication systems to be used across all applications.

Part IV, “Managing Devices,” provides an in-depth review of how to install, configure,
and tune the performance of hardware devices. Chapter 14 covers generic device
configuration procedures, while Chapter 15 covers file system installation. Chapter 16
discusses logical volume management and associated RAID levels, and Chapter 17 reviews
the backup and restoration of file systems, including snapshots. Chapter 18 discusses
printing devices and the printing commands, including a review of print classes, services,
and queue management. Chapter 19 covers special file systems, such as the process file
system (PROCFS) and virtual memory configuration; and the section finishes with
Chapter 20, which presents configuration for system logging and usage accounting,
along with kernel tuning hints.

Part V, “Networking,” covers basic and advanced configuration for IPv4 and IPv6
stacks, including IPSec, and firewall configuration for routers. Chapter 21 introduces
core networking concepts, including OSI layers, the TCP/IP stack, and Ethernet, while
Chapter 22 investigates how IP addresses can be allocated dynamically using DHCP
and how consistent network time can be managed through NTP. Chapter 23 covers
how to prevent network intrusion by using firewalls and discusses appropriate router
configuration, and Chapter 24 covers connecting to the Internet using a modem. Finally,
Chapter 25 reviews advanced network security technologies such as IPSec and the
Internet Key Exchange.

Part VI, “Services, Directories, and Applications,” covers distributed system support
through naming and directory services, as well as development and deployment
of enterprise systems and J2EE applications. Chapter 26 describes the Network File
System (NFS), which is the distributed file-sharing technology developed specifically
for Solaris. Chapters 28, 29, and 30 present three different naming services—the Domain
Name Service (DNS), which maps IP addresses to user-friendly names on the Internet;
the Network Information Service (NIS/NIS+), a Solaris innovation; and the industry
standard Lightweight Directory Access Protocol (LDAP), which is likely to supersede
NIS/NIS+ for all directory services in the very near future. Chapter 31 describes Samba, a
heterogeneous file-sharing environment in which Solaris systems work within a Microsoft

xxvi S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

Windows environment. Samba provides similar file-sharing capabilities to NFS, as well
as domain control. Chapter 32 covers application development issues in the Solaris
environment, focusing on system calls and how they can be accessed from C programs.
On the enterprise front, Chapter 33 presents the Sun Java System Application Server, which
provides J2EE services (Enterprise JavaBean deployment, JDBC database connectivity, and
so on) from within the Solaris environment without requiring a third-party system.

Solaris 10 introduces many refinements to existing technology, and affected entries
in this book have been updated accordingly. Newer technologies, such as the Sun
Management Console and Pluggable Authentication, are covered in their own right.

As the requirements of Sarbanes-Oxley filter down to the CIO’s office, the ability to
ensure proper access controls to data will become critical—and Solaris 10 provides the
best set of tools for this task because of its built-in support for user-, group-, and role-
based approaches. Security receives a strong emphasis in this book because we, system
administrators, will be called on to account for the implementation of our authorization
and access control policies if they are inadequate.

Solaris’s integrated support for J2EE web applications and XML web services means
that there is consistent checking of authorization from end to end. In this edition, I’ve
expanded the discussion of security and included material on integrating J2EE into the
Solaris 10 environment.

I hope you find this book useful. Please don’t hesitate to contact me at paul@
cassowary.net if you have any questions, comments, or corrections.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Front Matter

I n t r o d u c t i o n xxv i i

This page intentionally left blank.

I
Installation

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1
Blind Folio 1

CHAPTER 1:
Introduction to Solaris 10

CHAPTER 2:
System Concepts and
Choosing Hardware

CHAPTER 3:
Solaris 10 Installation

CHAPTER 4:
Initialization, OpenBoot
PROM, and Run Levels

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank.

1
Introduction to Solaris 10

Operating systems are the building blocks of computer systems, and provide
the interface between user applications and computer hardware. Solaris 10 is
a multiuser, multitasking, multithreading operating environment, developed

and sold by Sun Microsystems (http://www.sun.com/). Solaris is one implementation
of the UNIX operating system that draws on both the System V (AT&T) and Berkeley
(BSD) traditions. It has risen from little more than a research project to become the
dominant UNIX operating system in the international marketplace today. Solaris 10
is the latest in a long line of operating environment releases based around the SunOS
operating system, which is currently in version 5.10. Solaris is commonly found in
large corporations and educational institutions that require concurrent, multiuser
access on individual hosts and between hosts connected via the Internet. However, it
is also rapidly being adopted by small businesses and individual developers, through
Sun’s promotion of the “Free Solaris” program (http://wwws.sun.com/software/
solaris/binaries/). In this book, many of the references to the commands and
procedures of Solaris 10 apply equally to earlier versions of Solaris 9, 8, 7, and 2.x.

Many desktop computer users have never heard of the word “Sun” in the context
of computing, nor are they usually familiar with the term “Solaris” as an operating
environment. However, almost every time that an Internet user sends an e-mail message
or opens a file from a networked server running Sun’s Network File System (NFS)
product, Solaris is transparently supporting many of today’s existing Internet applications.
In the enterprise computing industry, Sun is synonymous with highly available and
reliable high-performance hardware, while Solaris 10 is often the operating
environment of choice to support database servers, message queues, XML Web
services, and Java 2 Enterprise Edition (J2EE) application servers. Sun’s hardware
solutions are based around the UltraSPARC integrated circuit technologies, which
currently support more than 100 processors in a single StarFire 15K server system. Sun
systems are typically used to run financial databases, large-scale scientific computing
environments, such as genetic sequencing, and complex graphics rendering required
by movie studios in post-production.

In recent times, two of Sun’s innovations have moved the spotlight from the server
room to the desktop. First, Sun’s development of the Java programming language,

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1
Blind Folio 3

3
Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

which promises “write once, read anywhere” application execution across any platform
that supports the Java Virtual Machine (JVM), has revolutionized the development of
networked applications. Java “applets” now appear on many Web pages, being small,
encapsulated applications that execute on the client side. J2EE application servers and
their associated distributed component models (Enterprise Java Beans) power the back
end of many n-tier applications, such as CRM, ERP, and HR systems.

Second, Sun is promoting a “free” version of Solaris 10 for the SPARC and Intel
hardware platforms (http://wwws.sun.com/software/solaris/binaries/). Sun has also
made Solaris 10 more accessible for desktop users, offering the OpenOffice productivity
suite for a relatively small cost. OpenOffice is a product that is competitive to Microsoft
Office—it contains word processing, spreadsheet, presentation, and database components
that are fully integrated. In addition, OpenOffice runs on many different platforms, and
in eight languages, meaning that a user on an UltraSPARC system can share documents
seamlessly with users on Linux and Microsoft Windows. The combination of a solid
operating system with a best-of-breed productivity suite has given Solaris new
exposure in the desktop market.

This book is a “complete reference” for the Solaris 10 operating environment, and
for the SunOS 5.10 operating system, meaning that I will try to cover, in detail, the
operational aspects of Solaris and SunOS. If you simply need to look up a command’s
options, you can usually make use of Sun’s own online “manual pages,” which you can
access by typing man command, where command is the command for which you require
help. You can also retrieve the text of man pages and user manuals online by using the
search facility at http://docs.sun.com/. This reference will be most useful when you
need to implement a specific solution, and you need practical, tried-and-tested solutions.
Although Solaris 10 comes with a set of tools for process management, for example,
there may be others that improve productivity. Thus, while ps and psig are supplied
with Solaris 10, lsof is not. In outlining a solution to a problem, we generally introduce
Sun-supplied software first, and then discuss the installation and configuration of third-
party alternatives. You can also use this book as a reference for previous versions of
Solaris, since much of the command syntax remains unchanged across operating system
releases. Command syntax is typically identical across different platforms as well (SPARC
and Intel), except where hardware differences come into play, such as disk
configuration and layout.

If you’ve been keeping track of recent press releases, you may be wondering why
Solaris has a version number of 10, while SunOS has a revision level of 5.10. Since the
release of Solaris 7 (SunOS 5.7), Sun has opted to number its releases sequentially with
a single version number, based on the old minor revision number, coinciding with the
introduction of 64-bit CPU architectures. This means that the release sequence for Solaris
has been 2.5.1, 2.6, 7, 8, 9, and now 10. Sun provides “jumbo patches” for previous
operating system releases, which should always be installed when released, to ensure
that bugs (particularly security bugs) are resolved as soon as possible. Some changes
between releases may appear cosmetic; for example, Larry Wall’s Perl interpreter has
been included since the Solaris 8 distribution, meaning that a new generation of system

4 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

administrators will no longer have the pleasure of carrying out their first post-installation
task. However, other quite important developments in the area of networking (such as
IPv6) and administration (Sun Management Console tools) may not directly affect users,
but are particularly important for enterprise administration.

In this chapter, we cover the background to the Solaris 10 operating environment,
which really begins with the invention and widespread adoption of the UNIX operating
system. In addition, we also cover the means by which Solaris 10 can run cross-platform
applications—Sun’s development of Java can be seen as a strong commitment to cross-
platform interoperability. In addition, Solaris 10 uses Samba to allow a Solaris server
to act as a Windows NT or 2000 domain controller. Thus, if you want the reliability
of SPARC hardware coupled with the widespread adoption of Microsoft Windows
as a desktop operating system, Solaris 10 running Samba is an ideal solution.

Finally, we review some of the many sites on the Internet that provide useful
information, software packages, and further reading on many of the topics that we
cover in this book.

What Is UNIX?
UNIX is not easily defined, since it is an “ideal” operating system that has been instantiated
by different vendors over the years, in some quite nonstandard ways. It is also the subject
of litigation, as vendors fight over the underlying intellectual property in the system.
However, there are a number of features of UNIX and UNIX-like systems (such as Linux)
that can be readily described. UNIX systems have a core kernel, which is responsible
for managing core system operations, such as logical devices for input/output (such
as /dev/pty, for pseudo-terminals), and allocating resources to carry out user-specified
and system-requisite tasks. In addition, UNIX systems have a hierarchical file system
that allows both relative and absolute file path naming, and is extremely flexible. UNIX
file systems can be mounted locally, or remotely from a central file server. All operations
on a UNIX system are carried out by processes, which may spawn child processes or other
lightweight processes to perform discrete tasks. Processes can be uniquely identified by
their process ID (PID).

Originally designed as a text-processing system, UNIX systems share many tools
that manipulate and filter text in various ways. In addition, small, discrete utilities can
be easily combined to form complete applications in rather sophisticated ways. These
applications are executed from a user shell, which defines the user interface to the
kernel. Although GUI environments can be constructed around the shell, they are not
mandatory.

UNIX is multiprocess, multiuser, and multithreaded. This means that more than
one user can execute a shell and applications concurrently, and that each user can
execute applications concurrently from within a single shell. Each of these applications
can then create and remove lightweight processes as required.

Because UNIX was created by active developers, rather than operating system
gurus, there was always a strong focus on creating an operating system that suited

C h a p t e r 1 : I n t r o d u c t i o n t o S o l a r i s 1 0 5

6 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

programmers’ needs. A Bell System Technical Journal article (“The Unix shell,” by S.R.
Bourne, 1978) lists the key guiding principles of UNIX development:

• Create small, self-contained programs that perform a single task. When a new task
needs to be solved, either create a new program that performs it, or combine
tools from the toolset that already exists, to arrive at a solution. This is a similar
orientation to the current trend toward encapsulation and independent component
building (such as Enterprise Java Beans), where complicated systems are built from
smaller, interacting but logically independent modules.

• Programs should accept data from standard input and write to standard input; thus,
programs can be “chained” to process each other’s output sequentially. Avoid
interactive input in favor of command-line options that specify a program’s
actions to be performed. Presentation should be separated from what a program
is trying to achieve. These ideas are consistent with the concept of piping, which
is still fundamental to the operation of user shells. For example, the output of the
ls command to list all files in a directory can be “piped” using the | symbol to
a program such as grep to perform pattern matching. The number of pipes on
a single command-line instruction is not limited.

• Creating a new operating system or program should be undertaken on a scale of weeks
not years: the creative spirit that leads to cohesive design and implementation should
be exploited. If software doesn’t work, don’t be afraid to build something better.
This process of iterative revisions of programs has resurfaced in recent years
with the rise of object-oriented development.

• Make best use of all the tools available, rather than asking for more help. The motivation
behind UNIX is to construct an operating system that supports the kinds of toolsets
required for successful development.

This is not intended to be an exhaustive list of the characteristics that define UNIX;
however, these features are central to understanding the importance that UNIX
developers often ascribe to the operating system. It is designed to be a
programmer-friendly system.

The History of UNIX
UNIX was originally developed at Bell Laboratories as a private research project by
a small group of people, starting in the late 1960s. This group had experience with
research efforts on a number of different operating systems in the previous decade,
and its goals with the UNIX project were to design an operating system to satisfy
the objectives of transparency, simplicity, and modifiability, with the use of a
new third-generation programming language. At the time of conception, typical
vendor-specific operating systems were extremely large, and all written in assembly
language, making them difficult to maintain. Although the first attempts to write the

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

UNIX kernel were based on assembly language, later versions were written in a
high-level language called C, which was developed during the same era. Even today,
most modern operating system kernels, such as the Linux kernel, are written in C.
After the kernel was developed using the first C compiler, a complete operating
environment was developed, including the many utilities associated with UNIX
today (e.g., the visual editor, vi). In this section, we examine the timeline leading
to the development of UNIX, and the origins of the two main “flavors” of UNIX:
AT&T (System V) and BSD.

Origins of UNIX
In 1969, Ken Thompson from AT&T’s Bell Telephone Labs wrote the first version of
the UNIX operating system, on a DEC PDP-7. Disillusioned with the inefficiency of the
Multics (Multiplexed Information and Computing Service) project, Thompson decided
to create a programmer-friendly operating system that limited the functions contained
within the kernel and allowed greater flexibility in the design and implementation
of applications. The PDP-7 was a modest system on which to build a new operating
system—it had only an assembler and a loader, and it would allow only a single user
login at any one time. It didn’t even have a hard disk—the developers were forced to
partition physical memory into an operating system segment and a RAM disk segment.
Thus, the first UNIX file system was emulated entirely in RAM!

After successfully crafting a single-user version of UNIX on the PDP-7, Thompson
and his colleague Dennis Ritchie ported the system to a much larger DEC PDP-11/20
system in 1970. This project was funded with the requirement of building a text-processing
system for patents, the descendents of which still exist in text filters such as troff. The
need to create application programs ultimately led to the development of the first
C compiler by Ritchie, which was based on the B language. C was written with
portability in mind—thus, platform-specific libraries could be addressed using the
same function call from source code that would also compile on another hardware
platform. Although the PDP-11 was better than the PDP-7, it was still very modest
compared to today’s scientific calculators—it had 24KB of addressable memory, with
12KB reserved for the operating system. By 1972, the number of worldwide UNIX
installations had grown to ten.

The next major milestone in the development of UNIX was the rewriting of
the kernel in C, by Ritchie and Thompson, in 1973. This explains why C and UNIX
are strongly related—even today, most UNIX applications are written in C, even
though other programming languages have long been made available. Following
the development of the C kernel, the owners of UNIX (being AT&T) began licensing
the source code to educational institutions within the United States and abroad.
However, these licenses were often restrictive, and the releases were not widely
advertised. No support was offered, and no mechanism was available for officially
fixing bugs. However, because users had access to the source code, the ingenuity in

C h a p t e r 1 : I n t r o d u c t i o n t o S o l a r i s 1 0 7

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

hacking code—whose legacy exists today in community projects like Linux—gathered
steam, particularly in the University of California at Berkeley (UCB). The issue of
licensing and AT&T’s control over UNIX would determine the future fragmentation
of the operating system in years to come.

In 1975, the first distribution of UNIX software was made by the Berkeley group,
and was known as the BSD. Berkeley was Ken Thompson’s alma mater, and he teamed
up with two graduate students (Bill Joy and Chuck Haley) who were later to become
leading figures in the UNIX world. They worked on a UNIX Pascal compiler that was
released as part of BSD, and Bill Joy also wrote the first version of vi, the visual editor,
which continues to be popular even today.

In 1978, the seventh edition of the operating system was released, and it supported
many different hardware architectures, including the IBM 360, Interdata 8/32, and
Interdata 7/32. The version 7 kernel was a mere 40KB in size, and included the following
system calls: _exit, access, acct, alarm, brk, chdir, chmod, chown, chroot,
close, creat, dup, dup2, exec*, exit, fork, fstat, ftime, getegid, geteuid,
getgid, getpid, getuid, gtty, indir, ioctl, kill, link, lock, lseek, mknod,
mount, mpxcall, nice, open, pause, phys, pipe, pkoff, pkon, profil, ptrace,
read, sbrk, setgid, setuid, signal, stat, stime, stty, sync, tell, time,
times, umask, umount, unlink, utime, wait, write. Indeed, the full manual for
version 7 is now available online at http://plan9.bell-labs.com/7thEdMan/index.html.

With the worldwide popularity of UNIX version 7, AT&T began to realize that
UNIX might be a valuable commercial product, and attempted to restrict the teaching
of UNIX from source code in university courses, thereby protecting valuable
intellectual property. In addition, AT&T began to charge license fees for access to the
UNIX source for the first time. This prompted the UCB group to create its own variant
of UNIX—the BSD distribution now contained a full operating system in addition to
the traditional applications that originally formed the distribution. As a result, version 7
forms the basis for all the UNIX versions currently available. This version of UNIX
also contained a full Brian Kernighan and Ritchie C compiler, and the Bourne shell. The
branching of UNIX into AT&T and BSD “flavors” continues even today, although many
commercial systems—such as SunOS, which is derived from BSD—have now adopted
many System V features, as discussed in the upcoming section, “Features of System V
Release 4.” Mac OS X is the latest UNIX system to be based around a BSD kernel.

The most influential BSD versions of UNIX were 4.2, released in 1983, and 4.3,
released in 1987. The DARPA-sponsored development of the Internet was largely
undertaken on BSD UNIX, and most of the early commercial vendors of UNIX used
BSD UNIX rather than pay license fees to AT&T. Indeed, many hardware platforms even
today, right up to Cray supercomputers, can still run BSD out of the box. Other responses
to the commercialization of UNIX included Andrew Tanenbaum’s independent solution,
which was to write a new UNIX-like operating system from scratch that would be
compatible with UNIX, but without even one line of AT&T code. Tanenbaum called it
Minix, and Minix is still taught in operating systems courses today. Minix was also to

8 P a r t I : I n s t a l l a t i o n

play a crucial role in Linus Torvalds’ experiments with his UNIX-like operating system,
known today as Linux.

Bill Joy left Berkeley prior to the release of 4.2BSD, and modified the 4.1c system to
form SunOS. In the meantime, AT&T continued with its commercial development of
the UNIX platform. In 1983, AT&T released the first System V Release 1 (SVR1), which
had worked its way up to Release 3 by 1987. This is the release that several of the older
generation of mainframe hardware vendors, such as HP and IBM, based their HP-UX
and AIX systems upon, respectively. At this time, Sun and AT&T also began planning a
future merging of the BSD and System V distributions. In 1990, AT&T released System
V Release 4, which formed the basis for the SunOS 5.x release in 1992—this differed
substantially from the previous SunOS 4.x systems, which were entirely based on BSD.
Other vendors, such as IBM and DEC, eschewed this new spirit of cooperation and
formed the Open Software Foundation (OSF).

In recent years, a number of threats have emerged to the market dominance of UNIX
systems: Microsoft’s enterprise computing products and frameworks, such as Windows
2003, 2000, and NT servers, and the .NET Framework. Together, these are designed to
deliver price-competitive alternatives to UNIX on inexpensive Intel hardware. In the
same way that UNIX outgunned the dominant mainframe vendors with a faster, leaner
operating system, Microsoft’s strategy has also been based on arguments concerning total
cost of ownership (TCO), and a worldwide support scheme for an enormous installed
base of desktop Microsoft Windows clients. With the development of XML Web services,
providing platform-independent transports, data descriptions, and message-based
Remote Procedure Call (RPC), there has been a strong push to move toward common
standards for system integration. Thus, integrating .NET components with J2EE EJBs can
now be performed with a few mouse clicks.

The greatest threat to UNIX is the increasing popularity of Linux, for which
different vendors sell distributions based on a “free” kernel. Initially, these companies
provided distributions for free, in the spirit of the “free software” movement, and only
charged for support and services. Nowadays, the reverse is true: Linux vendors charge
for distributions, while the Solaris distribution is free (see http://wwws.sun.com/
software/solaris/binaries/ for details)!

UNIX will still have an important role to play in the future; however, as desktop
computing systems rapidly become connected to the Internet, they will require the
kinds of services typically available under Solaris 10. As part of their territorial defense
of the UNIX environment, many former adversaries in the enterprise computing market,
such as IBM, HP, and Sun, have agreed to work toward a Common Open Software
Environment (COSE), which is designed to capitalize on the common features of UNIX
provided by these vendors. By distributing common operating system elements such as
the common desktop environment (CDE), based on X11, these vendors will be looking
to streamline their competing application APIs, and to support emerging enterprise
data-processing standards, such as the Object Management Group’s CORBA object
management service, and XML Web services.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

C h a p t e r 1 : I n t r o d u c t i o n t o S o l a r i s 1 0 9

Features of BSD
Solaris was originally derived from the BSD distribution from the University of California.
Thus, commands in SunOS 4.x were very similar to those found in other BSD distributions,
although these changed significantly in SunOS 5.x when System V Release 4 was adopted.
For example, many veteran system administrators would still find themselves typing
ps aux to display a process list, which is BSD style, rather than the newer ps –eaf,
which is correct for SVR4. Before AT&T commercialized UNIX, the BSD distribution
required elements of the AT&T system to form a fully operational system. By the early
1990s, the UCB groups had removed all dependencies on the AT&T system. This led to
the development of many of the existing BSD systems available today, including
FreeBSD and NetBSD.

The innovations pioneered at UCB included the development of a virtual memory
system for UNIX, a fast file system (which supported long filenames and symbolic links),
and the basic elements of a TCP/IP networking system (including authentication with
Kerberos). The TCP/IP package included support for services such as Telnet and FTP,
and the Sendmail mail transport agent, which used the Simple Mail Transfer Protocol
(SMTP). In addition, alternate shells to the default Bourne shell—such as the C shell, which
uses C-like constructs to process commands within an interpreted framework—were also
first seen in the BSD distribution, as were extensions to process management, such as job
control. Standard terminal-management libraries, such as termcap and curses, also
originated with BSD. Products from other vendors were also introduced into BSD,
including NFS clients and servers from Sun Microsystems. Later releases also included
support for symmetric multiprocessing (SMP), thread management, and shared
libraries.

It is often said that the BSD group gave rise to the community-oriented free software
movement, which underlies many successful software projects being conducted around
the world today. However, BSD is not the only attempt to develop a “free” version
UNIX. In 1984, Richard Stallman started developing the GNU (GNU’s Not UNIX)
system, which was intended to be a completely free replacement for UNIX. The GNU
C and C++ compilers were some of the first to fully support industry standards (ANSI),
and the GNU Bourne Again Shell (BASH) has many more features than the original Bourne
shell. You can find more information about the GNU project at http://www.gnu.org/. In
addition, several versions of BSD are still freely distributed and available, such as FreeBSD.

Features of System V Release 4
Solaris 10 integrates many features from the AT&T System V releases, including
support for interprocess communication, which were missing in the BSD distributions.
As discussed earlier, many legal battles were fought over the UNIX name and source.
System V was developed by the UNIX System Laboratories (USL), which was still
majority-owned by AT&T in the early 1980s. However, Novell bought USL in early
1993. Eventually, USL sold UNIX to Novell, which ultimately sold it to X/Open. In
1991, the OSF-1 specification was released, and although DEC is the only major
manufacturer to fully implement the standard, there is much useful cross-fertilization

10 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

between System V and other operating systems. Since Sun joined OSF in 1994, there
has been new hope of standardizing UNIX services and APIs across platforms.

The major contributions of System V to the UNIX platform are as follows:

• Enhancement of the Bourne shell, including shell functions

• The STREAMS and TLI networking libraries

• Remote file sharing (RFS)

• Improved memory paging

• The Application Binary Interface (ABI)

The major differences between SVR4 and BSD UNIX can be summarized as follows:

Feature System V BSD

Boot scripts /etc/init.d /etc/rc.d

Default shell Bourne shell C shell

File system mount database /etc/mnttab /etc/mtab

Kernel name /unix /vmunix

Printing system lp lpr

String functions memcopy bcopy

Terminal initialization /etc/inittab /etc/ttys

Terminal control termio termios

The Solaris Advantage
Sun Microsystems was formed by former graduate students from Stanford and Berkeley,
who used Stanford hardware and Berkeley software to develop the workstation market
in the enterprise. Sun aimed to compete directly with the mainframe vendors by
offering CPU speed and a mature operating system on the desktop, which was
unprecedented. For a given price, greater performance could be obtained from the
Sun workstations than was ever possible using mainframes. From one perspective,
this success destroyed the traditional client/server market, which used very dumb
terminals to communicate with very clever but horrendously expensive mainframe
systems. The vendors of some proprietary systems, such as HP and DEC, saw their
market share rapidly decline in the enterprise market because Sun delivered more
“bang per buck” in performance. By 1986, UNIX was the dominant force at the
expense of operating systems like VAX/VMS, although VMS would later come back
to haunt UNIX installations in the form of Windows NT. When users could have a
workstation with graphics instead of a dumb terminal, there were few arguments about
adopting Sun.

However, Sun’s innovation enabled departments and workgroups to take control of
their own computing environments and to develop productively with the C programming

C h a p t e r 1 : I n t r o d u c t i o n t o S o l a r i s 1 0 11

language. Sun took BSD and transformed it into a commercial product, adding some
useful innovations, such as NFS, along the way. This was similar in some ways to the
approach of Linux companies that create distributions of useful software packages and
bundle them with the Linux kernel. However, one significant difference between Sun
and Red Hat Linux is that Sun has always been a company with a hardware focus—its
systems were designed with the SPARC chipset, and more recently the UltraSPARC
chipset, in mind. This has enabled Sun to create very fast workstations and servers
with typically lower CPU speeds than Intel, but faster and more efficient bus performance.
Sun invests heavily in hardware design and implementation for an expected commercial
reward, all the more so now that Sun gives away the Solaris 10 operating system.

The major innovations of SunOS 4.x can be summarized as follows:

• Implementation of the network file system (NFS version 2.0, running over UDP)

• The OpenWindows 2.0 graphical user environment, based on X11

• The OpenBoot monitor

• The DeskSet utilities

• Multiprocessing support

The major innovations of SunOS 5.x can be summarized as follows:

• Support for SMP of more than 100 processors in a single server

• The OpenWindows graphical user environment and OpenLook

• Integration with MIT X11R5, Motif, PostScript, and the CDE

• Support for Gnome 2.0 as an alternative desktop, enhancing Linux integration

• The Network Information Service (NIS/NIS+)

• Kerberos integration for authentication

• Support for static and dynamic linking

• Full-moon clustering and N1 grid containers, ensuring high availability

• The ability to serve Windows 2003, 2000, and NT clients as a domain controller

• Tooltalk

• Java

• POSIX-compliant development environment, including single threads,
multithreading, shared memory, and semaphores

• Real-time kernel processing

• X/OPEN-compliant command environment

• Compliance with UNIX 95 and UNIX 98 standards

• Support for very large (>2GB) files

12 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

• Microsoft Windows emulation on the desktop with Windows Application
Binary Interface (WABI)

• Advanced volume management (vold)

• Standardized package administration and deployment tools

• Standardized patch management and integration

• Software-based power management

• Access control lists for resource authorization

• Support for centralized management of user home directories using the
automounter

• Improvements to NFS (version 4), running over TCP

• Support for advanced networking, such as IPv6, ATM, frame relay, and Gigabit
Ethernet

• JumpStart customization of local site installation and deployment

• 64-bit kernel architecture with Solaris 7 and later

• Simplified backup and restore procedures

• Simplified site administration with the AdminSuite toolkit and now the Solaris
Management Console

Hardware Support (SPARC and x86)
The original CPU for Sun systems was the SPARC chip, with processor speeds of
around 40–60 MHz. However, current systems use the UltraSPARC chipset, with
processor speeds in the GHz range. The bus architectures of Sun systems are typically
much faster than their PC counterparts, more than making up for their sometimes
slower chip speeds.

With the introduction of Solaris 2.1 came support for the Intel platform, supporting
ISA, EISA, MCA, and PCI bus types. Version 2.1 performed adequately on high-end
486 systems. Given the significant variation in types and manufacturers of PC hardware,
not all devices are currently supported under Solaris 10, although newer innovations,
such as the Universal Serial Bus (USB), are supported. Solaris 10 for Intel runs very fast
on modern Pentium-IV systems, meaning that Intel devotees now have a wider choice
of operating system, if they don’t want to buy Sun hardware. There was also a single
port of Solaris to the PowerPC platform (with version 2.5.1); however, this failed to
impress MacOS users, and was deprecated in Solaris 2.6.

Solaris for Intel users will require the Hardware Compatibility List (HCL) to
determine whether their particular system or their peripheral devices are supported.
You can find this list at http://access1.sun.com/drivers/hcl/hcl.html. The HCL lists
all tested systems, components, and peripherals that are known to work with Solaris
for Intel. Chances are, if your hardware is not listed, it won’t be supported. However,
many Intel-based standards have been adopted by Sun, including the PCI bus, which
is now integrated in the desktop Ultra workstations.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

C h a p t e r 1 : I n t r o d u c t i o n t o S o l a r i s 1 0 13

Cross-Platform Interoperability
The main focus of interoperability of different operating systems lies with the Java
programming language, developed by Sun. Starting life as the “Oak” project, Java
promises a “write once, run anywhere” platform, which means that an application
compiled on Windows NT, for example, can be copied to Solaris 10 and executed
without modification and without recompilation. Even in the 1970s, when C was being
implemented far and wide across different hardware platforms, it was often possible to
transfer source and recompile it without modification, but binary compatibility was
never achieved. The secret to Java’s success is the two-stage compile and interpretation
process, which differs from many other development environments. Java source is
compiled on the source platform to an intermediary bytecode format, which can then
be transferred to any other platform and interpreted by a JVM. Many software vendors,
including SunSoft and Microsoft, have declared support for the Java platform, even
though some vendors have failed to meet the specifications laid out by Sun. Until a
standard is developed for Java, Sun will retain control over its direction, which is a risk
for non-Solaris sites especially. However, organizations with Solaris 10 installations
should have few qualms about integrating Java technology within their existing
environments. With the release of free development tools, such as Borland’s JBuilder
Foundation (http://www.borland.com/), development in Java is becoming easier for
C and experienced UNIX developers. Java is the best attempt yet at complete binary
compatibility between operating systems and architectures. More recently, XML Web
services have emerged as an important set of technologies for system integration, and
these are generally supported by Java.

Recent Solaris Innovations
Recent Solaris releases have contained many enhancements and new features compared
to earlier versions, on both the client and server side, and specifically for administrators.
For example, security has been overhauled with the inclusion of Kerberos version 5,
and IPSec for both IPv4 and IPv6. This security makes it easy to create virtual private
networks (VPNs) through improved tunneling and encryption technologies. In the
next section, we review some of the recent Solaris innovations.

Server Tools
Many Solaris tools are targeted at implementing nonfunctional requirements, such
as scalability, availability, security, integrity, and manageability. For example, Sun’s
multiprocessing systems are highly available because of their hot-swapping capabilities,
meaning that components can be replaced while the system is running—no need for
a reboot! The systems are also highly scalable, because the CPU capacity of many
systems can be combined using Sun’s Cluster product, which offers high system
availability through management of hardware redundancy.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

14 P a r t I : I n s t a l l a t i o n

Clustering
Increased performance is often gained by the use of hardware redundancy, which can
be achieved on a file system–by–file system basis, by using a software solution, such
as volume management, or a hardware-based solution, such as a Redundant Array of
Independent Disks (RAID) appliance. This allows partitions to be actively mirrored,
so that in the event of a hardware failure, you can rapidly resume service and restore
missing data.

This approach is fine for single-server systems that do not require close to 100
percent uptime. However, for mission-critical applications, where the integrity of the
whole server is at stake, it makes sense to invest in clustering technology. Quite simply,
clusters are what the name suggests: groups of similar servers (or “nodes”) that have
similar function, and that share responsibility for providing system and application
services. Clustering is commonly found in the financial world, where downtime is
measured in hundreds of thousands of dollars, and not in minutes. Large organizations
need to undertake a cost-benefit analysis to determine whether clustering is an effective
technology for their needs. However, Sun has made the transition to clustering easier by
integrating the Cluster product with Solaris 10, featuring a clustered virtual file system
and cluster-wide load balancing.

Grids, Zones, and Resource Management
Clustering is generally restricted to a set of co-located servers with similar capabilities.
The real innovation in Solaris 10 is the introduction of N1 grid containers, providing a
framework for logically partitioning a single system. Advanced resource management
features ensure that applications can be run in separate zones, with logical isolation
ensuring true encapsulation. Applications can be allocated CPU capacity on demand,
reducing overall waste.

The Resource Manager extends a number of existing tools that provide for monitoring
and allocation of system resources to various tasks and services. This is particularly useful
in high-end systems, where a large pool of resources can be allocated to specific processes.
Although the existing nice command allows priorities to be set on specific processes,
and top displays the resources used by each process, the Resource Manager is an
integrated toolkit, featuring a scheduler, accounting, and billing. Again, although
accounting tools are supplied as part of the standard Solaris toolkit, they have never
been integrated with useful real-time monitoring tools. The Resource Manager also
features a command-line interface and optional GUI for configuring and monitoring
resource allocation and usage.

Volume Management
Although software RAID support has been previously provided in Solaris through
Solstice Disk Suite (SDS), this product has now been superseded by Volume Manager
(VM). VM supports RAID levels 0, 1, and 5, and allows a wide range of mirroring and
striping facilities. Cross-grade and migration tools are also available to assist SDS users
who are currently using metadevices as their primary virtual file systems for boot and
nonboot disks and their associated slices.

C h a p t e r 1 : I n t r o d u c t i o n t o S o l a r i s 1 0 15

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

16 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

Live Upgrade
Live Upgrade allows a Solaris system to continue running while components of its
operating system are upgraded. This is particularly useful in production environments,
where system downtime costs money and customers, particularly on shared platforms,
like the StarFire 15K. A separate boot environment is constructed during run time, after
which the system is rebooted with the new configuration, thereby minimizing downtime.

System Management
Solaris Management Tools 2.1 is the only supported GUI management environment for
Solaris 10—admintool, AdminSuite 2.3 and 3.0, and Solaris Management Tools 1.0 and
2.1 have all been deprecated. For console-based system administration, new command
sets are integrated into the Solaris Management Console command set. This makes
system management tasks easier because there is now a single GUI or console interface.
The Solaris Management Console Tools Suite includes the following tools:

• Computers and Networks Tool

• Diskless Client Support

• Disks Tool

• Enhanced Disk Tool (Solaris Volume Manager)

• Job Scheduler

• Log Viewer

• Mail Alias Support

• Mounts and Shares Tool

• Name Service Support

• Patch Tool

• Performance Tool

• Projects Tool

• RBAC Support

• RBAC Tool

• Serial Port Tool

• Software Package Tool

• System Information Tool

• User and Group Tool

Security Innovations
Security is a major concern for Solaris administrators. The Internet is rapidly expanding,
with the new IPv6 protocol set to completely supercede IPv4 sometime in the next few
years. This will make many more addresses available for Internet hosts than are currently
available. It also means that the number of crackers, thieves, and rogue users will also

increase exponentially. Solaris 10 prepares your network for this “virtual onslaught” by
embracing IPv6, not only for its autoconfiguration and network numbering features, but
also because of the built-in security measures that form part of the protocol. In particular,
authentication is a key issue, after many highly publicized IP-spoofing breaches reported
in the popular press over the past few years. A second layer of authentication for internal
networks and intranets is provided in Solaris 10 by the provision of Kerberos version 5
clients and daemons.

Kerberos Version 5
Kerberos is the primary means of network authentication employed by many organizations
to centralize authentication services. As a protocol, it is designed to provide strong
authentication for client/server applications by using secret-key cryptography. Recall
that Kerberos is designed to provide authentication to hosts inside and outside a firewall,
as long as the appropriate realms have been created. The protocol requires a certificate
granting and validation system based around “tickets,” which are distributed between
clients and the server. A connection request from a client to a server takes a convoluted
but secure route from a centralized authentication server, before being forwarded to
the target server. This ticket authorizes the client to request a specific service from a
specific host, generally for a specific time period. A common analogy is a parking ticket
machine that grants the drivers of motor vehicles permission to park in a specific street
for one or two hours only.

Kerberos version 5 contains many enhancements, including ticket renewal,
removing some of the overhead involved in repetitive network requests. In addition,
there is a pluggable authentication module, featuring support for RPC. The new
version of Kerberos also provides both server- and user-level authentication, featuring
a role-based access-control feature that assigns access rights and permissions more
stringently, ensuring system integrity. In addition to advances on the software front,
Solaris 10 also provides integrated support for Kerberos and smart card technology
using the Open Card Framework (OCF) 1.1. More information concerning Kerberos is
available from MIT at http://web.mit.edu/network/kerberos-form.html.

IPv6 and IPSec
IPv6, described in RFC 2471, is the replacement IP protocol for IPv4, which is currently
deployed worldwide. The Internet relies on IP for negotiating many transport-related
transactions on the Internet, including routing and the Domain Name Service. This
means that host information is often stored locally (and inefficiently) at each network
node. It is clearly important to establish a protocol that is more general in function, but
more centralized for administration, and that can deal with the expanding
requirements of the Internet.

One of the growing areas of the Internet is obviously the number of hosts that need
to be addressed; many subnets are already exhausted, and the situation is likely to get
worse. In addition, every IP address needs to be manually allocated to each individual
machine on the Internet, which makes the usage of addresses within a subnet sparse
and less than optimal. Clearly, there is a need for a degree of centralization when

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

C h a p t e r 1 : I n t r o d u c t i o n t o S o l a r i s 1 0 17

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

organizing IP addresses that can be handled through local administration, and through
protocols like Dynamic Host Configuration Protocol (DHCP). However, one of the key
improvements of IPv6 over IPv4 is its autoconfiguration capabilities, which make it
easier to configure entire subnets and to renumber existing hosts. In addition, security
is now included at the IP level, making host-to-host authentication more efficient and
reliable, even allowing for data encryption.

One way security is achieved is by authentication header extensions: this allows a
target host to determine whether a packet actually originates from a source host. This
prevents common attacks, such as IP spoofing and denial of service (DoS), and reduces
reliance on a third-party firewall by locking in security at the packet level. Tools are
also included with Solaris 10 to assist with IPv4 to IPv6 migration.

VPN technology is also provided with Solaris 10, using IPSec. IPSec is compatible
with both IPv4 and IPv6, making it easier to connect hosts using both new and existing
networking protocols. IPSec consists of a combination of IP tunneling and encryption
technologies to create sessions across the Internet that are as secure as possible. IP
tunneling makes it difficult for unauthorized users (such as intruders) to access data
being transmitted between two hosts on different sites. This is supported by encryption
technologies, and an improved method for exchanging keys, using the Internet key
exchange (IKE) method. IKE facilitates inter-protocol negotiation and selection during
host-to-host transactions, ensuring data integrity. Implementing encryption at the IP
layer will make it even more difficult for rogue users to “pretend” to be a target host,
intercepting data with authorization.

What’s New in Solaris 10
Each new release of Solaris brings about changes at the client, server, and system levels.
These changes affect users, administrators, and developers in different ways. The
following features have been released for the first time with Solaris 10:

• N1 containers, allowing systems to be logically partitioned into zones with
specific functions. Containers can be “booted” within a few seconds, ensuring
high availability.

• Resource management changes, ensuring that specific limits can be set on
resource usage by applications, preventing “runaway” applications from
bringing a system to its knees.

• Integrated firewall technology, not requiring a separate install.

• Support for smart card authentication.

• Kernel instrumentation through dynamic tracing, allowing system fine-tuning
and problem identification.

• Binary compatibility between different Solaris versions and Linux, and source
compatibility between different Solaris platforms.

• Failure prediction of hardware components, ensuring that they can be replaced
before impacting on system performance.

18 P a r t I : I n s t a l l a t i o n

Sources for Additional Information
In this chapter, we have so far examined the history of UNIX, and what distinguishes
UNIX systems from other operating systems. We have also traced the integration of both
“flavors” of UNIX into the current Solaris 10 release. With the ever-rising popularity of
Solaris 10, there are many Web sites, mailing lists, and documentation sets that new and
experienced users will find useful when trying to capitalize on an investment in Sun
equipment or the latest Solaris 10 operating environment. In this section, we present
some pointers to the main Internet sites on which you can find reliable information
about Solaris 10.

Sun Documentation/Sun Sites
Unlike some operating systems, Solaris 10 comes with a complete set of online
reference manuals and user guides on the Documentation CD-ROM, which is
distributed with all Solaris 10 releases (Intel and SPARC). The manuals, which are
in PDF format and cover a wide range of system administration topics, include the
following:

• System Administration Guide: Basic Administration

• System Administration Guide: Advanced Administration

• System Administration Guide: Devices and File Systems

• System Administration Guide: IP Services

• System Administration Guide: Naming and Directory Services (DNS, NIS,
and LDAP)

• System Administration Guide: Naming and Directory Services (NIS+)

• System Administration Guide: Network Services

• System Administration Guide: Security Services

The best thing about the manuals is that they are available for download and
interactive searching through http://docs.sun.com/. This means that if you are working
in the field and need to consult a guide, you don’t need to carry around a CD-ROM or
a printed manual. Just connect through the Internet and read the guide in HTML, or
download and retrieve a PDF format chapter or two.

The two main Sun sites for Solaris 10 are at http://www.sun.com/solaris (for SPARC
users) and http://www.sun.com/intel (for Intel users). Both of these pages contain internal
and external links that are useful in finding out more information about Solaris 10 and any
current offerings. The Sun Developer Connection (http://developers.sun.com/) is a useful
resource that users can join to obtain special pricing and to download many software
components for free.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

C h a p t e r 1 : I n t r o d u c t i o n t o S o l a r i s 1 0 19

Web Sites
Many third-party Web sites are also available that deal exclusively with Sun and Solaris
10. For example, if you are looking for a Solaris 10 FAQ, or pointer to Sun information,
try the Sun Help site (http://www.sunhelp.org/). If it’s free, precompiled software that
you’re after, check the Sun Freeware site (http://www.sunfreeware.com/) or one of the
many mirrors. Here you can find the GNU C compiler in a precompiled package. For
Solaris for Intel users, there is also an archive of precompiled binaries available at
ftp://x86.cs.duke.edu/pub/solaris-x86/bins/.

In case you are interested in seeing what the pioneers of UNIX are doing these
days, check out the home pages of these famous UNIX developers:

• Brian Kernighan http://cm.bell-labs.com/cm/cs/who/bwk/index.html

• Dennis Ritchie http://cm.bell-labs.com/cm/cs/who/dmr/index.html

• Ken Thompson http://cm.bell-labs.com/who/ken/

USENET
USENET is a great resource for asking questions, finding answers, and contributing
your skills and expertise to help others in need. This is not necessarily a selfless
act—there will always be a Solaris 10 question that you can’t answer, and if you’ve
helped others before, they will remember you. The comp.unix.solaris forum is the best
USENET group for Solaris 10 information and discussion. The best source of practical
Solaris 10 information is contained in the Solaris FAQ, maintained by the legendary
Casper Dik. You can always find the latest version at http://www.wins.uva.nl/pub/
solaris/solaris2/. For Solaris for Intel users, there is the less formal alt.solaris.x86
forum, where you won’t be flamed for asking questions about dual-booting with
Microsoft Windows, or mentioning non-SPARC hardware. For Solaris Intel, the best
FAQ is at http://sun.pmbc.com/faq/. For both SPARC and Intel platforms, there is a
comp.sys.sun.admin group that deals with system administration issues, which also
has a FAQ available at ftp://thor.ece.uc.edu/pub/sun-faq/FAQs.

Mailing Lists
Mailing lists are a good way of meeting colleagues and engaging in discussions in a
threaded format. The Sun Manager’s List is the most famous Sun list, and contains
questions, answers, and, most importantly, summaries of previous queries. All
Solaris-related topics are covered. Details are available at ftp://ftp.cs.toronto.edu/pub/
jdd/sun-managers/faq. In addition, there is a Solaris for x86 mailing list archived at
http://www.egroups.com/group/solarisonintel/, which has some great tips, tricks, and
advice for those who are new to Solaris 10, or who are having difficulties with specific
hardware configurations.

20 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

Summary
Solaris 10 is an exciting, innovative operating environment. It can provide more
functionality than existing desktop operating systems; however, there is an increased
administrative overhead that you must consider. In this book, we hope to convey
sound management practices and divulge practical techniques for solving many
Solaris-related problems, and to implement the best-of-breed methods for all
enterprise-level installations. By the end of this book, you should feel confident
in managing all aspects of Solaris 10 system administration, and feel confident
in transferring those skills to the management of related operating systems, such
as Linux.

How to Find Out More
The main site for all Sun technologies in http://www.sun.com/. For further information
on Java technologies, users should browse Sun’s Java site at http://java.sun.com/.

C h a p t e r 1 : I n t r o d u c t i o n t o S o l a r i s 1 0 21

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 1

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio 22

This page intentionally left blank.

2
System Concepts and

Choosing Hardware

Understanding what makes Solaris different from other operating systems is
critical to appreciating why it is the environment of choice for high-availability
client/server environments. In this chapter we review the terms used to describe

Solaris systems and major components, as well as networking terminology associated
with Solaris networks. Understanding these terms will ensure that you understand some
of the concepts discussed in later chapters. Much Solaris terminology is particular to the
context of Solaris systems, and some generic terms may have one meaning in Solaris
but another meaning for other operating systems. For example, while the term host may
be used generically to identify any system attached to a network, it may be used more
specifically in Solaris, when referring to multihomed hosts.

One of the main reasons for using Solaris is its SPARC-based hardware. While Solaris
has supported Intel-based systems for supported for some time, many characteristics of
SPARC-based systems make them appealing. For example, all new SPARC-based CPUs
are capable of 64-bit processing, which has been available for several years on Solaris.
This mature support is reflected in the current Sun Fire 15K configurations that allow
more than 100 CPUs to be combined into a single physical system that features completely
redundant hardware devices, including power supplies and buses. This configuration
enables high availability and hot swapping of failed components while the system is
still running.

At the lower end of the market, 64-bit UltraSPARC workstations are now price
comparable to many PC systems that offer only 32-bit CPU performance. While these
systems generally have faster CPUs, they simply don’t have the processing capacity
of 64-bit CPUs. In addition, the UltraSPARC series features both Small Computer System
Interface (SCSI) and PCI local buses, which allow a wide variety of third-party hardware
devices to be attached to the workstations. (The PCI local bus is now the dominant bus
technology in the PC market.)

You might be wondering what SPARC hardware can do, where it came from, and
why you should (or shouldn’t) use it. Some administrators may be concerned about the

2 3

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2
Blind Folio 23

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

use of proprietary hardware, given the “vendor lock-in” they may have experienced in
the past. However, Solaris complies with many open standards, and the SPARC platform
is supported by multiple hardware vendors. Alternatively, if you have an existing
investment in Intel-based systems, it may be more sensible to migrate those to Solaris
instead of using one or more of the alternatives.

This chapter reviews some of the main hardware components used in building both
SPARC- and Intel-based systems, and it reviews some of the common workstation and
server systems currently available for Solaris 10. If you need to find out more about
specific servers and workstations, Sun offers PDF and HTML versions of hardware
manuals for all supported systems at http://docs.sun.com/.

Key Concepts
This chapter reviews the role of the kernel, shells, and file systems. The distinction between
a multiuser system and a multitasking system is also examined, and the role of clients
and servers is explored. You will also learn how to define hosts, hostnames, networks,
and IP addresses, and explore the range of SPARC and Intel hardware supported by
Solaris.

UNIX and the Kernel
Operating systems are the building blocks of computer systems, and they provide the
interface between user applications and computer hardware. Solaris is a multiuser,
multitasking operating system developed and sold by Sun Microsystems (http://
www.sun.com/), and it is one implementation of the UNIX operating system that draws
on both the System V (AT&T) and Berkeley (BSD) systems. Solaris has evolved from
little more than a research project to become the dominant UNIX operating system in
the international marketplace.

Solaris 10 is the latest in a long line of operating environment releases that are based
around the SunOS operating system, which is currently in version 5.10. Solaris 10 is
considered a minor release, in the sense that it maintains complete binary compatibility
with the previous release (Solaris 9). However, there are many new innovations—such
as system minimization, extensible password encryption, and the thread-safe base
security model—that make upgrading worthwhile.

Solaris is commonly found in large corporations and educational institutions that
require concurrent, multiuser access on individual hosts and between hosts connected
via the Internet.

In the enterprise computing industry, Sun is synonymous with highly available,
highly reliable performance hardware, while Solaris is often the operating environment
of choice to support database servers and application servers. Sun’s hardware solutions
are based around the SPARC and UltraSPARC integrated circuit technologies, which can
currently support more than 100 processors in a single server system. These high-end
systems, such as the Sun Fire 15K, can be logically partitioned into a number of dedicated
multiprocessor “domains,” allowing each domain to act as an independent system. This

24 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

partitioning assists with the design and implementation of fail-over and replication
strategies designed to ensure high availability.

UNIX is hard to define because different vendors have historically introduced
different features to arrive at the entities that most users would think of as UNIX.
However, it is easy enough to list the fundamental characteristics that are common
to all UNIX and UNIX-like systems:

• They have a kernel, written in the C programming language, which mainly
manages input/output processing rather than being a complete operating system.
The kernel has ultimate responsibility for allocating system resources to complete
various tasks.

• They have a hierarchical file system, which begins with a root directory and
from which the branches of all other directories (and file systems) are mounted.

• System hardware devices are represented logically on the file system as special
files (such as /dev/pty, for pseudoterminals).

• They are process based, with all services and user shells being represented by
a single identifying number (the process ID, or PID).

• They share a set of command-line utilities that can be used for text and numeric
processing of various kinds, such as troff, col, cat, head, tbl, and so on.

• User processes can be spawned from a shell, such as the Bourne shell, which
interactively executes application programs.

• Multiple processes can be executed concurrently by a single user and sent into
the background by using the & operator.

• Multiple users can execute commands concurrently by logging in from
pseudoterminals.

Note that a graphical user interface (GUI) is not necessarily a defining feature of UNIX,
unlike other desktop operating systems, which place much stock in “look and feel.” The
common desktop environment (CDE) remains the default desktop for Solaris 10, but the
Linux-developed GNOME desktop is also available for each user (http://www.gnome.org/).
GNOME is currently the leading desktop of Linux users. Full integration of GNOME
into Solaris 10 will lead to greater interoperability between Solaris and Linux systems,
particularly in terms of GUI application development. It will also make porting GUI
applications between Solaris and Intel easier, because Linux back-end applications have
been able to be executed on Solaris Intel for some time by using lxrun.

For operating systems that are not layered, changing the window manager or even
the look and feel involves rewriting significant portions of back-end code. In the Solaris
environment, where the interface and display technologies are appropriately abstracted
from the underlying kernel, moving from CDE to GNOME involves simply changing
the command to initialize the X11 display manager; the kernel remains unmodified. The
layering of the various components of a UNIX system is shown in Figure 2-1.

C h a p t e r 2 : S y s t e m C o n c e p t s a n d C h o o s i n g H a r d w a r e 25

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

Broadly speaking, a UNIX system is layered according to applications that are invoked
through user shells, which are managed by a kernel—which in turn uses file systems to
create a persistent storage mechanism. Since the kernel provides the interface between
shells and the file system (and by extension, between applications and the file system),
it is considered the central part of UNIX technology.

Solaris kernels can trace their origins to both the System V and BSD variants of UNIX,
while Microsoft Windows NT was based on the Virtual Memory System (VMS) kernel
originally developed for the high-end VAX systems. Most kernels during the 1960s were
written using assembly language or machine (binary) code, so the development of a
high-level language for writing kernels (the C language) was one of the founding ideas
of UNIX. This level of abstraction from hardware meant that kernels could be ported to
other hardware platforms without having to be completely rewritten. The tradition of
writing kernels in C continues today, with the Linux kernel (for example) being written
in C. Obviously, a kernel alone is not a complete operating environment, so many
additional applications (such as the visual editor, vi) were later added to what UNIX
users would recognize as the suite of standard UNIX tools.

All UNIX systems have a kernel, which is the central logical processor that provides
an interface between the system hardware, the system services, and the user shells that
directly enable applications. For example, support for network interfaces is provided in
the form of a kernel module and a device file that logically represents the physical device.
Services are defined in the services database, and network daemons provide the final
layer for supporting applications that use the network to transmit data. Since UNIX kernels
are typically written in the C programming language, many systems-level applications
and daemons are also written in C.

Of course, UNIX systems share some common characteristics with other operating
systems, including the use of a hierarchical file system in which special files called
directories are used to arrange related files logically. But UNIX has some distinctive

26 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

FIGURE 2-1 Components of a UNIX system

features as well: explicit permissions to read, execute, and modify files on the UNIX file
system can be granted to specific users or groups of users, making it easy to share work
and collaborate with other users on the system.

The Shell
A key Solaris concept is the functional separation between the user interface and the
operating system. This distinction means that a user can access a Solaris system by using
either a terminal-based character user interface (CUI) or a high-resolution GUI without
modifying the underlying operating system.

With so much attention paid to GUIs, why are CUI environments still important to
Solaris? Are they just a historical hangover that Windows has managed to overcome?
Are they simply the tools of choice for long-haired network administrators who have
never used a mouse? In fact, mastering the Solaris command line is one of the most
effective tools available under any UNIX environment, and the good news is that it’s not
that difficult to learn. Using the command line (or shell) has several advantages over
GUI environments.

The shell is essential for programming repetitive tasks that can be performed only
laboriously through a GUI. For example, searching a file system for all document files
that have changed each day and making a copy of all these files (with the extension .doc)
to a backup directory (with the extension .bak) takes time.

The shell can be used to search for, modify, edit, and replace Solaris configuration
files, which are typically storied in text format. This is much like the approach taken
with Windows .ini configuration files, which were text-based. However, after Windows 95,
Windows versions store configuration information in the Registry in a binary format,
making it impossible to edit manually. Most Solaris configuration files, including the
startup scripts, are text based, and there is a move in many applications to standardize
around XML.

The shell has a number of built-in commands that typically mirror those provided
in the C programming language. This means that it is possible to write small programs
as shell statements that are executed as sequential steps, without having to use a compiler
(just like MS-DOS batch files are interpreted without requiring a compiler).

The shell can be used to launch applications that use a CUI, which is especially useful
for logging onto a remote system and enabling access to the commands an administrator
can use on the console, a valuable point in this era of global information systems. While
Windows applications like Symantec’s pcAnywhere can be used for remote access to
the Windows Desktop, they don’t easily support multiuser access (or multiuser access
where one user requires a CUI and another a GUI).

The shell can be used to execute commands for which no equivalent GUI application
exists. Although many operations could conceivably be performed using a GUI, it is
usually easier to write a shell script than to create a completely new GUI application.

Many applications in Solaris, Linux, and Windows are now available through a GUI.
If you feel more comfortable using GUIs, there is little reason to stop using them as long as
you can find the tools to perform all of the tasks you need to undertake regularly, such
as monitoring resource usage, setting process alarms and diagnostics, and/or facilitating

C h a p t e r 2 : S y s t e m C o n c e p t s a n d C h o o s i n g H a r d w a r e 27

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

remote access. However, if you want to make the most of Solaris and competently
administer the system, you will need to become familiar with the shell and command-
line utilities.

In keeping with the philosophy that different administrators have different needs
and styles, Solaris makes several different shells available:

• Bourne shell (sh) The original UNIX shell used to write all system scripts
by convention

• Korn shell (ksh) Provides enhanced input/output features, including the
print and read commands

• C shell (csh) Offers a command syntax similar to the C programming language

• Bourne Again shell (bash) An open source, much improved version of the
Bourne shell

• Z shell (zsh) A freely available Bourne-like shell with a focus on sophisticated
scripting features

The File System
UNIX also features a hierarchical file system that makes it easy for you to separate
related files logically into directories, which are themselves special files. While MS-DOS
and similar operating systems feature a hierarchical file system with simple file access
permissions (such as read only), UNIX has a complete user-based file access permission
system. Like process management, each file on the system is “owned” by a specific user,
and by default only that user can perform operations on that file. Privileged users can
perform all operations on all files on the file system. Interestingly, a special file permission
allows unprivileged users to execute certain commands and applications with superuser
privileges (such as setuid).

The following file system types are supported by the kernel:

• cachefs The CacheFS cached file system

• hsfs The High Sierra file system

• nfs The Network File System (NFS)

• pcfs The MS-DOS file system

• tmpfs A file system that uses memory

• ufs The standard UNIX File System (UFS)

The default local file system type is contained in the /etc/default/fs file, while the
default remote file system type is contained in the /etc/default/fstypes file.

Multiuser, Multitasking, and Zoning
Modern enterprise operating systems like Solaris are able to support multiple users,
executing multiple applications concurrently. Users can spawn multiple shells, which

28 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

in turn can execute multiple applications. In addition, Solaris supports lightweight
processes such as threads, which allow the traditional concept of multitasking to be
generalized to execute multiple threads within a single process.

Solaris also supports symmetric multiprocessing, meaning that the physical execution
of processes, threads, and user applications may occur on one of many different supported
processors. In addition, the computing resources of multiple servers can be requested
on demand through the N1 grid computing initiative, allowing a virtualization of the
multiprocess, multiuser, multiprocessor scheme. Here, “zones” are configured as virtual
instances that operate within the resource management framework, and form the
basic containers for working with N1. More details on zoning can be found at http://
www.blastwave.org/docs/Solaris-10-b51/DMC-0002/dmc-0002.html.

All of these functions are targeted at ensuring high availability and scalability
of computationally intensive applications.

Client/Server Networks
While PC operating systems were designed in response to the waning of client/server
systems, Solaris and other UNIX systems are firmly designed as client/server systems.
While a PC is designed to run many high-powered applications using the local CPU,
a client/server network is designed around the concept of multiple thin clients that access
data and execute applications on a fat centralized server, or on a number of servers that
are dedicated to one particular purpose. For example, a typical Solaris network might
consist of hundreds of Sun Ray thin client systems, which are supported on the front
line by several E450 departmental servers, as well as a set of rack-mounted 420R systems
that run database, Web server, and development systems.

The client/server topology is also reflected in the structure of UNIX services:
client applications running on client systems are designed to connect through to server
applications running on server systems. Sun was instrumental in initiating key distributed
computing technologies, such as the Remote Procedure Call (RPC) technology used in
the NFS protocol. In addition, the Remote Method Invocation (RMI) technology developed
as part of the Java networking and distributed computing APIs allows objects to be
passed around the network as seamlessly as RPC.

Processes
Processes lie at the heart of all modern multiuser operating systems. By dividing system
tasks into small, discrete elements that are each uniquely identified by a PID, Solaris is
able to manage all the applications that may be concurrently executed by many different
users. In addition, individual users may execute more than one application at any time.
Each Solaris process is associated with a user ID (UID) and a group ID (GID), just like
a standard file. This means that only users may send signals to their own processes
(except for the superuser, who may send signals to any process on the system). Signals
are typically used to restart or terminate processes. The multiuser, multitasking process
model in Solaris ensures that system resources can be shared equally among all competing
processes or allocated preferentially to the most important applications. For example,

C h a p t e r 2 : S y s t e m C o n c e p t s a n d C h o o s i n g H a r d w a r e 29

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

a firewall application would probably take precedence over all other system processes.
Individual users and the superuser may allocate a priority level to active processes in
real time.

Solaris provides a number of command-line tools that can be used to manage
processes. In addition, APIs are provided for C programmers to allow them to operate
directly on processes—spawning, managing, and killing as necessary. Solaris also provides
lightweight processes (LWPs) that don’t require as much overhead to operate as “normal”
processes.

Naming Services
Every computer connected to the Internet must have an IP address, which identifies it
uniquely within the network. For example, 192.18.97.241 is the IP address of the Web
server at Sun. IP addresses are difficult for humans to remember, and they don’t adequately
describe the network on which a host resides. Thus, by examining the Fully Qualified
Domain Name (FQDN) of 192.18.97.241—www.sun.com—it’s immediately obvious that
the host, www, lies within the sun.com domain. The mapping between human-friendly
domain names and machine-friendly IP addresses is performed by a distributed naming
service known as the Domain Name Service (DNS). DNS is the standard protocol used
by UNIX systems (and other operating systems) for mapping IP addresses to hostnames,
and vice versa.

Although Solaris provides complete support for DNS, it uses its own domain
management and naming system, known as the Network Information Service (NIS).
NIS is not only responsible for host naming and management, but it is a comprehensive
resource management solution that can be used to structure and administer groups of
local and remote users.

NIS uses a series of maps to create namespace structures. Sometimes administrators
ask why this extra effort is required to manage hosts and naming, because DNS already
provides this function for Internet hosts by converting computer-friendly IP addresses
to human-friendly “names.” However, NIS does not just provide naming services; a NIS
server also acts as a central repository of all information about users, hosts, Ethernet
addresses, mail aliases, and supported RPC services within a network. This information
is physically stored in a set of maps that are intended to replace the network configuration
files usually stored in a server’s /etc directory, ensuring that configuration data within
the local area network (LAN) is always synchronized. Many large organizations use NIS
alongside DNS to manage both their Internet and LAN spaces effectively. Linux also
supports NIS.

In the past, Sun introduced an enhanced version of NIS known as NIS+. Instead
of a simple mapping system, it uses a complex series of tables to store configuration
information and hierarchical naming data for all networks within an organization.
Individual namespaces may contain up to 10,000 hosts, with individual NIS+ servers
working together to support a completely distributed service. NIS+ also includes greater
capabilities in the area of authentication, security (using DES encryption), and resource
access control.

30 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

Recently, Solaris has begun a transition to Lightweight Directory Access Protocol
(LDAP) directory services as an alternative source of authoritative information for
naming, identification, and authentication. LDAP is based on the original Directory
Access Protocol (DAP), which provided X.500-type services for centralized directory
lookups. Like NIS and NIS+, LDAP performs lookups, given a token, and returns a result.
However, the query is much more generalized than what can be returned from NIS or
NIS+: text, sounds, and graphics can all be associated with an entry in the directory.

While LDAP does not provide any kind of programmatic query language, like SQL,
to query the directory, it does provide a standard interface to search the hierarchical
namespace (ldapsearch). Since it works directly over TCP/IP and can support directory
services for clients on different operating systems, LDAP is often viewed as the future
central naming and directory service for Solaris.

Java 2 Enterprise Edition (J2EE)
Java is a relatively new programming language that is often used to create platform-
independent GUIs that a user can interact with in complex and sophisticated ways.
However, Java applets—the bits of code that are transmitted over the Internet and executed
on the user’s machine—are only one side of the whole Java story. This section focuses
on the server side of Java.

Simple Java applications that execute on the server are called servlets, and they have
their own standard API specification that has now been widely implemented in Web
server extension products known as servlet runners (such as Apache’s Tomcat server).
Servlets are useful in developing Web-enabled, Solaris-based enterprise applications.

Increasingly, applications in the enterprise are being implemented using Web
interfaces, partly in response to the persistent heterogeneity of computing platforms within
organizations that span cities, states, and even nations. Accepting platform diversity
does not mean losing control of standards, however. Sun Microsystems has pioneered
a platform-independent programming language in which applications run on top of a
logical Java Virtual Machine (JVM) that presents a consistent API for developers.
Most major hardware platforms and operating systems now have virtual machines
implemented, including (obviously) Solaris. In fact, the Solaris JVM produced by Sun has
been highly optimized in its production release series. JVMs have also been integrated
into popular Web browsers, so that Java programs can be downloaded from a server
and executed within these browsers. (HTML has an <applet> tag that facilitates this
process.) Applets have increased the complexity of Web-based user interfaces from simple
arrays of buttons and forms to dynamic interaction with the user in a way that is similar
to a normal desktop application.

The Java 2 Enterprise Edition (J2EE) is an extension of Java that aims to provide a
complete enterprise architecture for delivering applications over the Web. J2EE is designed
around a basic four-tier model—including client, presentation, business logic, and data
tiers—that is sufficient to build new applications in a way that separates display logic
from back-end data processing functions. In addition, J2EE features a component model
that supports both stateless and stateful operations, transactional access to relational

C h a p t e r 2 : S y s t e m C o n c e p t s a n d C h o o s i n g H a r d w a r e 31

32 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

databases, and components that participate in asynchronous messaging. J2EE allows
platform-independent enterprise applications to be executed through a standard Web
interface, changing the way that users, developers, and software interact. The “write once,
run anywhere” philosophy means that servers with totally different operating systems
and hardware can be replaced with newer systems, without concern for application
stability and porting.

How does server-side Java compare to Web-based client/server techniques such
as the combination of a Common Gateway Interface (CGI) and a non-object-oriented
language such as C? Although a compiled language like C is faster on a byte-per-byte
basis than an interpreted language like Java, performance increases for Java can be gained
by the combination of optimizing just-in-time (JIT) compilers for specific platforms and
reducing the process and memory overhead associated with the CGI. For example, if
you wrote a search application in Perl that is accessed by 1,000 Web users per hour, that
would mean an extra 1,000 invocations of Perl that the server has to deal with, unless you
used a specialized module. Of course, if you are running on a Sun Fire 15K, this would
probably result in a negligible system strain. For other systems, invoking a Java servlet
that occupies only a single process after being loaded into memory, and which persists
across sessions, is both memory and process efficient. Servlets are therefore more
appropriate for applications that are constantly being executed by multiple users, because
they take advantage of Java’s multithreading and synchronization capabilities.

On the flip side, CGI programs are often better suited to single-user, infrequently
used, and numerically intensive applications that might be invoked only once per hour.
In addition, CGI programs written in C are logically isolated from each other in the server’s
memory space: if Java servlets are executed using a single instance of a service manager
(for example, Live Software’s JRun), an unhandled exception arising from malformed
or unexpected input could potentially impact all servlets running through the manager,
especially if the JVM crashes.

SPARC Hardware
Sun has developed a wide range of hardware systems over the past few years, much of
which are still supported by Solaris 10. These systems are based on the Scalable Processor
Architecture (SPARC), which is managed by a SPARC member organization (http://
www.sparc.org/). In addition to Sun Microsystems, Fujitsu (http://www.fujitsu.com/)
and T.Sqware (http://www.tsqware.com/) also build SPARC-compliant CPU systems.
System vendors that sell systems based on SPARC CPUs include Amdahl Corporation
(http://www.amdahl.com/), Tatung (http://www.tatung.com/), Tadpole (http://
www.tadpole.com/), and Toshiba (http://www.toshiba.com/). Vendors of system boards
and peripherals for SPARC CPU–based systems include Hitachi (http://www.hitachi.com/),
Seagate (http://www.seagate.com/), and Kingston Technology (http://www.kingston.com/).

Although media critics and competitors often paint SPARC systems from Sun as
stand-alone, vendor-specific traps for the unwary, the reality is that a large number of
hardware vendors also support the SPARC platform. It should also be noted that software

C h a p t e r 2 : S y s t e m C o n c e p t s a n d C h o o s i n g H a r d w a r e 33

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

vendors, such as Red Hat, also support SPARC versions of Linux, which proves that
Solaris is not the only operating system that powers the SPARC platform. The SPARC
standards can be downloaded free of charge from http://www.sparc.org/standards.html.

Often, administrators of Linux and Microsoft Windows systems who are used to
“PC” hardware are incredulous to discover that some supported systems (such as the
SPARCclassic) have CPUs that run below 100 MHz. This must seem a slow CPU speed
in the age of Intel CPUs and their clones reaching the 1 GHz mark. However, CPU speed
is only one component that contributes to the overall performance of a system—SPARC
systems are renowned for their high-speed buses and very fast I/O performance. In
addition, many SPARC systems were designed for continuous operation—it is not unheard
of for systems to have several year of uptime, compared to several days for some operating
systems. The many impressive features of the Solaris operating systems were developed
with the SPARC hardware platform as a target, and these systems naturally have the
best performance.

However, Sun has not ignored hardware developments and emerging standards—
in recent years, Sun has created the UltraSPARC series of workstations and servers that
features a PCI local bus, USB, and compatibility with Super Video Graphics Array (SVGA)
multisync monitors commonly sold with PC systems. Of course, SPARC systems have
always supported the SCSI standard, and all SCSI devices will work with Solaris. At the
same time, Sun has proceeded with innovations, such as the Sun Fire 15K system, which
can operate as a single system with massively parallel computational abilities, or it can
be logically partitioned to act as 18 different systems. It has 106 UltraSPARC III Cu 1.2
GHz CPUs, and each domain can address more than half a terabyte of memory (576GB).
Imagine being able to control an entire Application Service Provider (ASP) with no
apparent “shared hosting” to the client, which is actually being serviced by a single
physical system. Although the up-front cost of a Sun Fire 15K exceeds that required
for 106 systems running Linux or Microsoft Windows, only one administrator is required
to manage a Sun Fire 15K, while 106 different systems might require more than one
administrator. More details on the Sun Fire platform can be found at http://www.sun.com/
servers/highend/sunfire15k/specs.xml.

Supported Platforms
SPARC systems have an application architecture and a kernel architecture: most modern
Sun systems have an application architecture of type 4, while the latest UltraSPARC
systems have a kernel architecture of type u. Thus, UltraSPARC systems are known as
Sun4u systems, and are the minimum requirement to run Solaris 10. One of the great
advantages of SPARC is that systems with the same application architecture can run the
same binaries; thus, the binary of an application compiled on an Ultra 5 should work
on a Sun Fire 15K. This protects your investment in existing software, and acts as a
protection against future changes in technology. However, the kernel architecture has
changed significantly over the years, so that systems with different kernel architectures
cannot boot the same kernel.

Table 2-1 shows a list of system types and platforms that are support for Solaris 10.

You will need at least a Sun4u architecture system to run Solaris 10, and its CPU must
run at 200 MHz or above. Sun4m and Sun4c systems are still supported by Solaris 9 and
Linux. A minimum of 96MB of RAM is required to install Solaris 10—the Web Start Wizard
will not let you proceed unless it can detect this amount of physical RAM, so be sure
to check that your system meets the basic requirements before attempting to install
Solaris 10. All SPARC kernels are now 64-bit only.

Full compatibility details are available at http://wwws.sun.com/software/solaris/
solaris-express/supported_platforms.html.

Intel Hardware
If Solaris was originally designed to run on SPARC hardware, and if SPARC hardware
is where Sun makes its money, why would Sun support an Intel version? For starters,
many more Intel systems exist in the world than SPARC systems. Sun also has a historical
relationship with Intel, which supported SunOS 4.x for several 80386 and 80486 systems.
At this point, however, Sun introduced the SPARC range of CPUs, which was the
forerunner of the current UltraSPARC series. Intel-based systems are also suitable for
workstation environments, and were (until the recent release of the Sun Blade 100) much
cheaper than SPARC systems. Since Sun is primarily in the server hardware business,
it made sense to develop a reliable operating system for Intel workstations that was
supported by its high-end servers.

For many potential Solaris users, SPARC systems are still prohibitively expensive,
even though these users want the features of the UNIX operating system. Often,
organizations need to make best use of their existing investment in PC hardware. However,
some PC operating systems may not currently meet their needs. While PCs have become
the de facto standard for desktop computers, investments in PC-based solutions have
sometimes met with dissatisfaction from users because some PC operating systems lack
stability—particularly regarding application-specific issues, although operating systems

34 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

Desktop Workgroup Midrange High End Netra

Sun Blade 100
and 1000

Sun Fire V880 Sun Fire 6800
and 4810

Sun Fire 15K Netra 20

Ultra 2 Sun Fire V480 Sun Fire 3800 Enterprise 10000 Netra T1

Ultra 5 Sun Fire V240 Sun Fire V1280 Netra ct800

Ultra 10 Sun Fire V210 Enterprise 6500 Netra ct400

Ultra 30 Sun Fire V120 Enterprise 6000 Netra t1400

Ultra 60 Sun Fire V100 Enterprise 5500 Netra t1425

Ultra 80 Enterprise 450 Enterprise 5000 Netra t1120
and t1125

Ultra 450 Enterprise 250
and 150

Enterprise 3500
and 4500

Netra t1100
and t1105

TABLE 2-1 Supported Systems for Solaris 10

C h a p t e r 2 : S y s t e m C o n c e p t s a n d C h o o s i n g H a r d w a r e 35

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

have also caused concern. Some of the problems included the perceived lack of reliability
of operating systems that were prone to crash during important business operations.
Although Intel CPUs featured modes that should logically isolate such failures to the
operation that causes them (such as protected mode), this requires operating system
support that was never fully perfected by some vendors. In other words, PC hardware
is up to the task, but operating systems have not always taken full advantage of the
PC’s abilities.

Perhaps more frustratingly, errors in existing PC operating systems could not be
corrected by talented developers, because most PC operating systems are proprietary—
in some instances, operating system vendors actually charged users to report operating
system bugs, only refunding the charge if the bug was verified. In addition, frustration
was often caused by so-called “standard” hardware, which often had incompatibilities
with application and server software. For example, at the time when 80286 CPU systems
were being touted as “IBM compatible,” most were using an ISA bus, while IBM was
actually using the Micro Channel Architecture (MCA) as the bus on its PS/2 systems.
However, PC hardware has converged on a number of standards, such as the PCI bus,
which has vastly improved the performance figures for data throughput on PCs.

There are some key benefits to using Solaris for Intel over SPARC hardware. For a
start, “plug and play” devices are supported, meaning that explicit device configuration
is often not required. In addition, you can get access to modern bus architectures like
PCI, without having to purchase an UltraSPARC system. This point relates to overall
system cost: If SPARC systems are going to use PCI for the foreseeable future, why use
SPARC when PCI is supported by Intel systems at a smaller cost? In addition, Solaris for
Intel supports multiple CPUs, each of which is much cheaper in cost than the equivalent
SPARC CPU.

There are, however, some limitations to using Solaris for Intel. These limitations may
be specific to Solaris, but some relate to the architecture itself. For example, while some
versions of Microsoft Windows support up to four Enhanced Integrated Drive Electronics
(EIDE) controllers, Solaris will “see” only the first two. Granted, IDE disks and controllers
are generally less favorable than SCSI-3 drives, but they do exist and they are cheap.
In addition, support for the Universal Serial Bus (USB) is still experimental, making it
harder to add new devices that don’t use the serial port for connection. Many new modems
also won’t work on anything but Windows (so-called “Winmodems”) because they rely
on Windows to control the modem hardware rather than having a built-in controller.

Because Sun makes no direct revenues from Solaris Intel, the bottom line is that, with
the growing popularity of Linux for the Intel platform, continued development of the
Solaris Intel edition may receive less attention than the SPARC edition. This doesn’t mean
that you shouldn’t continue to use Solaris Intel, though, because it is a mature and stable
product. In terms of contemplating future server purchases, however, it might be wiser
to go with SPARC.

The Hardware Compatibility List (HCL), which is available at http://www.sun.com/
bigadmin/hcl/, is the definitive guide to all hardware devices supported by the Solaris
Intel platform. If a device does not appear in the HCL, it is unlikely that it will be supported
under Solaris Intel—with some exceptions: motherboards, for example, often follow
fairly loose standards, with clone boards often working correctly under Solaris even if

36 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

they don’t appear in the HCL. The most common compatibility issue occurs with video
cards—many are not supported at all or, if they are, their full feature set is unsupported.
For example, some video cards have hardware support for receiving TV signals. While
their graphical rendering ability will be supported, the TV functions will generally not
work with Solaris.

Fortunately, if your video card is not supported, it is possible to replace the X server
provided by Solaris with the XFree-86 X server (http://www.xfree.org/). This server is
functionally equivalent to any other server that supports the X11R6 standard, meaning
that the CDE and all other Solaris GUI applications will run if you have installed XFree.
The main advantage of using XFree-86 is that it supports a much larger array of hardware
devices than the Solaris X server.

Devices Supported Under Solaris Intel
This section reviews some of the families of devices supported under Solaris Intel and
provides examples of products that are likely to be supported. Most common motherboards
are supported, including those developed by Acer, ASUS, EPoX, and Intel. Some examples are
the Acer M9N MP, the ASUS A7V, and the EPoX EP-MVP3G. In addition, motherboard
support has been established for many prebuilt systems, including the Acer AcerAcros
T7000 MT, Bull Information Systems Express5800-HX4500, and Compaq Deskpro EN 6400.
Many symmetric multiprocessing (SMP)-capable motherboards are also supported. No
special configuration is required to support SMP devices—they are plug and play—and
some popular models include the Dell PowerEdge 6300, the Fujitsu TeamSERVER-T890I,
and the Gateway 8400.

Video cards from many different manufacturers are supported, including those
operating from ISA, PCI, or AGP buses. Five display resolutions are supported:

• 800 × 600 pixels

• 1024 × 768 pixels

• 1152 × 900 pixels

• 1280 × 1024 pixels

• 1600 × 1200 pixels

Both 8- and 24-bit color are supported in all of these modes, depending on the chipset
and onboard memory. Many cards are supported, including the ATI 3D RAGE, the Boca
Voyager 64, and the Chips & Technology 65540. All multisync monitors are supported.
However, the kdmconfig application used for setting up the display does not show
14-inch monitors in its selection list: in most cases, you will be able to use the 15-inch
setting, as long as the frequency specified is supported by your monitor. Fixed-sync
monitors should work as long as their frequency is supported by the video card at the
resolution you require. Serial, bus, and PS/2 mouse devices are supported under Solaris.
In addition, many third-party pointing devices are supported, including the MicroSpeed
MicroTRAC trackball, the LogiTech MouseMan cordless, and the Kraft Systems MicroTrack.

In terms of SCSI host adapters, both standard and UltraSCSI support is included for
the most popular host adapters, including the Adaptec AHA-2940/2940W, the AMD

Pcscsi, and the Compaq 32-bit Fast-Wide SCSI-2. Many Iomega Jaz/Zip devices are
supported under Solaris, including the SCSI 2250S Zip (250MB) and the V2008I Jaz (2GB)
drives, and the ATAPI and IDE Z100A Zip drives (100MB).

Many different types of network adapters are supported, including 10 Mbps and
100 Mbps data transfer rates. Supported adapters include the 3Com EtherLink III PCI
Bus Master, the Adaptec ANA-6901, and the AMD PCnet-PCI.

For laptops, common PCMCIA devices are generally supported, such as modems and
network adapters, including the ATI Technologies 14400 ETC-EXPRESS, the Compaq
SpeedPaq 192, and the Hayes 5361US.

Solaris 10 also has full support for USB technology, allowing communication with
peripheral devices at very high speeds.

Examples
In the following section, you will examine the basic components of a Solaris system,
and two sample systems that demonstrate the difference between a workstation and
a server.

System Components
A typical Solaris SPARC workstation consists of the following components:

• Base unit (aka “pizza box”), which contains the motherboard, SCSI controller,
and SBUS cards

• Frame buffer or graphics card

• SCSI or IDE units connected by SCSI or IDE cables to the SCSI or IDE controller
in the pizza box

• CD-ROM drive, internal or external (SCSI or IDE)

• DVD-ROM drive, internal on newer systems

• Speaker box and microphone, external

• Two serial ports (A and B)

• A parallel port

• A tape drive, internal or external (DAT/DDS/QIC and so on)

• Mouse (mechanical or infrared) and keyboard (type 4 or type 5)

As noted, most desktop workstations come in a “pizza box” chassis, although earlier
Internetwork Packet Exchange (IPX) and similar systems had a “lunch box” chassis. Both
of these designs were more compact than their PC counterparts. Servers generally come
in two versions: stand-alone or rack-mountable. The version numbers on servers also
differ with their chassis type. The 220R, for example, is the rack-mounted version of the
stand-alone E-250, while the 420R is the rack-mounted version of the stand-alone 420.
The 220R and E-250 have two CPUs each, while the 420R and E-450 have four CPUs each.

C h a p t e r 2 : S y s t e m C o n c e p t s a n d C h o o s i n g H a r d w a r e 37

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

38 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

Example Systems
Let’s examine two SPARC systems in detail; a workstation (UltraSPARC 5) and a server
(UltraSPARC E-450). The UltraSPARC 5 system is a popular, low-end desktop model.
Although it has been replaced in this category by the new, lower-cost Sun Blade 100
(available for around $1,000), it remains a popular workstation for business and home use.
It supports UltraSPARC-IIi CPUs with speeds ranging from 270 to 400 MHz. Internally,
it features 16KB instruction and data caches, while it supports from 256KB to 2MB of
external cache memory. In terms of memory and disk capacity, the system supports up
to 512MB of physical RAM, a CD-ROM drive, a 1.44MB floppy disk drive, and two hard
drives, making it possible to enable volume management. The system has three peripheral
ports—two serial and one parallel—and it has a built-in Ethernet adapter and supports
10 Mbps and 100 Mbps transmission rates. The system also features a PCMCIA bay, which
allows a wide variety of PC-type hardware to be connected.

While the UltraSPARC 5 is comparable in performance to desktop PCs, the E-450
is a workgroup-level server that features SMP, larger numbers of disks, fast buses, hot
swapping, and more cache RAM per CPU. The E-450 supports up to four UltraSPARC-IIi
CPUs, operating at 250–480 MHz. Internally, it features 16KB instruction and data caches
per CPU, and up to 4MB of external cache per CPU—for a four-CPU system, that’s a
total of 16MB of external cache. The system also features two Ultra Port Architecture
(UPA) buses operating at 100 MHz, supporting up to two CPUs on each bus. With respect
to mass storage and memory, the system accepts up to 16 dual inline memory modules
(DIMMs), giving up to 4GB of physical RAM. Some 20 slots for hard disks provide a
large pool of hot-swappable volumes on a fast SCSI-3 bus. A CD-ROM and floppy disk
drive are also supplied, and a DDS-3 internal Digital Audio Tape (DAT) drive for backups.
In addition, hot-swappable power supplies can be installed into the chassis, enabling
two different power sources to be utilized.

Procedures
In the following sections, you will learn how to examine system and network configuration,
in order to prepare you for system and upgrade installation tasks.

System Configuration
Solaris provides a simple way to view all the hardware devices on your system. This
information can be used to configure your system. For example, by identifying the disk
devices on your system, you can correctly select targets for formatting.

The prtconf command is used for displaying system information:

prtconf
System Configuration: Sun Microsystems sun4u
Memory size: 128 Megabytes

This section shows the hardware architecture (Sun4u, which means that this is a Sun-4
system with an UltraSPARC CPU) and that it has 128MB of RAM.

The following section identifies the terminal emulator, keyboard, and UFS. These
devices are necessary to boot a Solaris system.

System Peripherals (Software Nodes):
SUNW,Ultra-5_10

packages (driver not attached)
terminal-emulator (driver not attached)

disk-label (driver not attached)
SUNW,builtin-drivers (driver not attached)
sun-keyboard (driver not attached)
ufs-file-system (driver not attached)

The next section shows the OpenBoot PROM (programmable read-only memory),
physical memory, and virtual memory monitor devices:

chosen (driver not attached)
openprom (driver not attached)

client-services (driver not attached)
options, instance #0
aliases (driver not attached)
memory (driver not attached)
virtual-memory (driver not attached)

The final section displays devices attached to the first PCI local bus. This includes an
Integrated Device Electronics (IDE) hard disk, IDE hard drive, and network interface.

pci, instance #0
pci, instance #0

ebus, instance #0
auxio (driver not attached)
power, instance #0
SUNW,pll (driver not attached)
se, instance #0
su, instance #0
su, instance #1
ecpp (driver not attached)
fdthree, instance #0
eeprom (driver not attached)
flashprom (driver not attached)
SUNW,CS4231 (driver not attached)

network, instance #0
SUNW,m64B (driver not attached)
ide, instance #0

disk (driver not attached)
cdrom (driver not attached)
dad, instance #0
sd, instance #30

C h a p t e r 2 : S y s t e m C o n c e p t s a n d C h o o s i n g H a r d w a r e 39

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

40 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

NOTEOTE Obviously, the specific devices installed on each system vary, and so will
the configuration displayed when using prtconf.

Basic Networking Terminology
A Solaris network consists of a number of different hosts that are interconnected using a
switch or a hub. Solaris networks connect to one another via routers, which can be
dedicated hardware systems, or Solaris systems, which have more than one network
interface. Each host on a Solaris network is identified by a unique hostname; these
hostnames often reflect the function of the host in question. For example, a set of four
FTP servers may have the hostnames ftp1, ftp2, ftp3, and ftp4.

Every host and network that is connected to the Internet uses the Internet Protocol
(IP) to support higher-level protocols such as Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP). Every interface of every host on the Internet has a unique
IP address that is based on the network IP address block assigned to the local network.
Networks are addressable by using an appropriate netmask that corresponds to a class
A (255.0.0.0), class B (255.255.0.0), or class C (255.255.255.0) network.

Solaris supports multiple Ethernet interfaces that can be installed on a single machine.
These are usually designated as /etc/hostname.hmen, where n is the interface number and
hme is the interface type. Interface files contain a single unqualified domain name, with the
primary network interface being designated with an interface number of zero. Thus, the
primary interface of a machine called ftp would be defined by the file /etc/hostname.hme0,
which might contain the unqualified domain name ftp. A secondary network interface,
connected to a different subnet, might be defined in the file /etc/hostname.hme1. In this
case, the file might contain the unqualified domain name mail.

Enabling multiple interfaces is commonly used in organizations that have a provision
for a failure of the primary network interface or to enable load balancing of server requests
across multiple subnets (for example, for an intranet Web server processing HTTP
requests). A system with a second network interface can act either as a router or as a
multihomed host. Hostnames and IP addresses are locally administered through a naming
service, which is usually DNS for companies connected to the Internet, and the Network
Information Service (NIS/NIS+) for companies with large internal networks that require
administrative functions beyond what DNS provides, including centralized authentication.
Large organizations may also use a directory service such as LDAP for naming.

It is also worth mentioning at this point that it is possible for you to assign different
IP addresses to the same network interface; this configuration can be useful for hosting
“virtual” interfaces that require their own IP address, rather than relying on application-
level support for multihoming (for example, when using the Apache Web server). You
simply create a new /etc/hostname.hmeX:Y file for each IP address required, where X
represents the physical device interface and Y represents the virtual interface number.

The subnet mask used by each of these interfaces must also be defined in /etc/netmasks.
This is particularly important if the interfaces lie on different subnets, or if they serve
different network classes. In addition, it might also be appropriate to assign an FQDN to
each of the interfaces, although this will depend on the purpose to which each interface
is assigned.

Summary
In this chapter, we have examined some of the key concepts that underlie the Solaris 10
Operating Environment and the SunOS 5.10 Operating System. From the kernel to the
shell to different file system types, Solaris 10 provides a number of sophisticated methods
for managing systems and deploying applications in the enterprise. We have also examined
the basic hardware support for systems that run the Solaris 10 Operating Environment
and the SunOS 5.10 Operating System. From SPARC-based systems, specifically designed
for Solaris with a mature 64-bit architecture, to the ubiquitous Intel-based systems that
can now run Solaris Intel, the range of servers and workstations is enormous. Given Sun’s
efforts in presenting a unified desktop and office suite, many more systems will run
Solaris in the future.

C h a p t e r 2 : S y s t e m C o n c e p t s a n d C h o o s i n g H a r d w a r e 41

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 2

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio 42

This page intentionally left blank.

3
Solaris 10 Installation

Solaris 10 provides more installation methods than any previous version. These
include the Web Start Wizard, JumpStart, suninstall, and Live Upgrade.
The Web Start Wizard is the easiest method for installing Solaris 10: it uses a

GUI-based front end that presents a series of configuration choices. For those who
prefer a command-line installation, the suninstall program is available. This is
particularly useful for installing servers that are attached to a simple terminal on the
console port, using the tip command, rather than a high-resolution monitor. Large
organizations are more likely to create a JumpStart configuration to install a standard
operating environment (SOE) on all Solaris 10 systems. Using JumpStart ensures that
all systems have an identical installation base, which makes it easy for you to manage
patches and maintain production systems. Live Upgrade is a new innovation that
minimizes the downtime of production servers: a new boot environment is constructed
while the server is still operating under its existing operating environment release.
Once the second boot environment has been installed, the system is quickly rebooted
into the new operating environment, and the previous version is uninstalled in the
background.

In most cases, installing from a high-speed CD-ROM with a modern system will
take around 30 minutes. However, JumpStart, Live Upgrade, and all network-based
installations will be slower on a per-machine basis, since network bandwidth limits
the data that can be transmitted from the install server to the install client.

Preinstallation Planning
The basic process of installing Solaris remains the same, regardless of the installation
method selected. A number of planning tasks must be performed prior to installation:

1. Choose the appropriate installation method: the Web Start Wizard, JumpStart,
suninstall, or Live Upgrade.

2. Decide whether you want to upgrade an existing installation or perform a clean
install of the operating system. If your system is currently running Solaris 7, 8,
or 9, you can perform an upgrade. If your system is running Solaris 2.6 or earlier,

4 3

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3
Blind Folio 43

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

or if it is not running Solaris at all, you need to perform a clean installation. An
upgrade preserves many of the system settings from the previous installation
and generally takes less time to complete than a completely new installation. If
you are performing an upgrade, you should first back up the current system by
using ufsdump or a similar method so that it can be restored in the event of an
upgrade failure.

3. Analyze your existing hardware devices to determine whether Solaris 10 will
run on your system without an upgrade. For example, Solaris 9 on SPARC would
run with only 96MB of RAM; however, at least 128MB of RAM is required to run
Solaris 10. To perform an upgrade installation, you would need to add RAM to
an existing Solaris 9 system with only 96MB of RAM.

4. Determine whether your storage devices have sufficient capacity to install
Solaris 10 and all required third-party applications. A complete Solaris 10
installation requires around 3GB of disk space. In addition, an amount of swap
space equivalent to twice your physical memory should be factored into the
sum, along with third-party and user disk space requirements.

5. Choose an appropriate installation medium. Possibilities include a JumpStart,
CD-ROM, DVD-ROM, or net-based installation from a remotely mounted CD-
ROM or DVD-ROM drive. For enterprises, it’s often convenient to set up a
single network server with a Network File System (NFS)-exported DVD-ROM
or CD-ROM drive that is publicly available for mounting. In addition, enterprises
might also choose a customized JumpStart installation, which also requires
network access to a centralized boot server. Smaller organizations will almost
certainly use a CD-ROM or DVD-ROM drive attached to the local system for
installation.

6. Gather all of the necessary system configuration information. This includes the
system hostname, IP address, subnet mask, name service type, name server IP
address, default router IP address, time zone, locale, and proxy server IP address.
These values, and when they are required, will be discussed in the “Configuration”
section.

By undertaking a comprehensive preinstallation review, you can ensure a successful
installation. In addition to making a decision about the installation type and gathering
basic system data, you need to understand the network context in which the system
will operate. You can define the network context by answering several key questions:

• Will the system be networked? If so, you will need an IP address, subnet mask,
and default router (unless the system itself is intended to be a router).

• Will the system use the Dynamic Host Configuration Protocol (DHCP)? If so,
you will not need to supply an IP address, as a lease over an IP address will
automatically be granted to you at boot time. However, you will need the IP
address of the DHCP server to enable DHCP.

• Will the system use IPv6, the newest version of the Internet Protocol?

44 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

• Will the system form part of a Kerberos v5 realm to allow centralized
authentication? If so, you will need the name of the realm, the administration
server’s IP address, and the address of the primary Key Distribution Center
(KDC).

• Will the system use the Domain Name Service (DNS)? If so, you will need the
IP address of a primary and secondary DNS server that is authoritative for the
local domain.

• Will the system use Network Information Service (NIS) or NIS+? If so, you will
need to supply the IP address of the local NIS or NIS+ server.

• Will the system use the Lightweight Directory Access Protocol (LDAP) for
centralized authentication and authorization? If so, you will need to supply
the profile server’s IP address.

• Will the system use a proxy server to access the Internet? If so, you will need
to provide the IP address of the proxy server.

You will need to answer these questions before you can completely configure the
system during installation.

Disk Space Planning
You can determine how much disk space you require to install Solaris 10 only by
examining the purpose of the server. For a SPARC system, with 512MB of RAM, a
complete installation will require around 3GB of space for software, 1024MB for swap,
and more space for user data and applications. You need to set aside extra disk space
for special features such as internationalization, and you need to estimate the size of
print and mail spooling directories that are located in /var. Although the default size of
/var is usually small in the installation program, mail and print servers will require that
you increase this amount by allowing for a reasonable allocation of spooling space per
user. Since a full /var file system caused by a large print job can affect other tasks such
as mail, it’s important that you overestimate rather than underestimate the size of /var.

In terms of applications, an Oracle database server, for example, will require at
least 1–2GB of disk space for software packages, mount points, and table data. For a
development system with multiple users, you should compute a projection based on
the maximum quota for each user. For example, if each of 50 users is allowed 100MB of
disk space, at least 5GB of disk space must be available for the users’ exclusive use—as
a rule, if users have quotas imposed on them, they should always be guaranteed access
to that space. If data on a server is mission critical, you should consider installing some
volume management software.

In terms of specific layouts, the typical file system layout for a SPARC system follows
a set of customary disk slice allocations. Slice 0 holds the root partition, while slice 1 is
allocated to swap space. For systems with changing virtual memory requirements, using
a swap file on the file system might be better than allocating an entire slice for swap.
Slice 2 often refers to the entire disk, while /export on slice 3 traditionally holds older
versions of the operating system that are used by client systems with lower performance

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 45

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

(for example, older systems that use the trivial FTP daemon tftpd to download their
operating system upon boot). These systems may also use slice 4 as exported swap
space. /export may also be used for file sharing using NFS. Slice 5 holds the /opt file
system, which is the default location under Solaris 10 for local packages installed using
the pkgadd command. Under earlier versions of Solaris, the /usr/local file system held
local packages, and this convention is still used by many sites. The system package file
system /usr is usually located on slice 6, while /export/home usually contains user home
directories on slice 7. Again, earlier systems located user home directories under /home,
but since /home is used by the automounter program in Solaris 10, some contention
can be expected.

The typical file system layout for an Intel-based system also follows a set of customary
disk slice allocations. Slice 0 again holds the root partition, while slice 1 is allocated to
swap space. Slice 2 continues to refer to the entire disk, while /export on slice 3 again
holds older versions of the operating system that are used by client systems, and slice 4
contains exported swap space for these clients. The local package file system /opt is still
located on slice 5, and the system package file system /usr is again located on slice 6.
Slice 7 contains the user home directories on /export/home. However, the two extra slices
serve different purposes: boot information for Solaris is located on slice 8 and is known
as the boot slice, while slice 9 provides space for alternative disk blocks and is known as
the alternative slice.

Device Names
One of the most challenging aspects of understanding Solaris hardware is to learn the
device names and references used by Solaris to manage devices. Solaris uses a specific
set of naming conventions to associate physical devices with instance names on the
operating system. In addition, devices can also be referred to by their device name,
which is associated with a device file created in the /dev directory after configuration.
For example, a hard disk may have the physical device name /pci@1f,0/pci@1,1/ide@3/
dad@0,0, which is associated with the device file /dev/dsk/c0t0d0. The benefit of the more
complex Solaris device names and physical device references is that it is easy to interpret
the characteristics of each device by looking at its name. For the preceding physical
device name example, you can see that the Integrated Device Electronics (IDE) hard
drive is located on a PCI local bus at target 0. When you view the amount of free disk
space on the system, for example, it is easy to identify slices on the same disk by looking
at the device name:

df -k
Filesystem kbytes used avail capacity Mounted on
/proc 0 0 0 0% /proc
/dev/dsk/c0t0d0s0 1982988 615991 1307508 33% /
fd 0 0 0 0% /dev/fd
/dev/dsk/c0t0d0s3 1487119 357511 1070124 26% /usr
swap 182040 416 181624 1% /tmp

46 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

Here you can see that /dev/dsk/c0t0d0s0 and /dev/dsk/c0t0d0s3 are slice 0 and slice 3 of
the disk.

If you’re ever unsure of which physical disk is associated with a specific disk device
name, you can use the format command to find out:

format
Searching for disks...done
AVAILABLE DISK SELECTIONS:
0. c1t3d0 <SUN2.1G cyl 2733 alt 2 hd 19 sec 80>

/pci@1f,0/pci@1/scsi@1/sd@3,0

Here you can see that physical device /pci@1f,0/pci@1/scsi@1/sd@3,0 is matched with the
disk device /dev/dsk/c1t3d0. In addition, a list of mappings between physical devices and
instance names is always kept in the /etc/path_to_inst file.

SPARC Preinstallation
One of the main hardware differences between SPARC systems that run Solaris and PC
systems that run Linux or Microsoft Windows is that SPARC systems have an Open
Boot PROM monitor program that can be used to modify firmware settings prior to
booting. It is based on the Forth programming language and can be used to run Forth
programs that perform the following functions:

• Boot the system using the boot command

• Perform diagnostics on hardware devices using the diag command

• Test network connectivity using the watch-net command

Prior to installing or upgrading Solaris on a SPARC system, you should perform a
few basic checks of the system to obtain the data necessary for installation (such as the
device name of the boot disk) and to verify that all system components are functional.
The three most commonly performed tasks are to check network connectivity, check the
disks that have been detected on the SCSI bus, and review how much memory is installed.

If you are booting over a network or if your system needs to access a DNS, NIS/NIS+,
Kerberos, or LDAP server, and you want support for these services to be installed, your
network connection needs to be operational. To ensure that packets are being sent to
and received from your system, you can use the watch-net command:

ok watch-net
Internal Loopback test - succeeded
External Loopback test - succeeded
Looking for Ethernet packets.
'.' is a good packet. 'X' is a bad packet.
Type any key to stop
......X.........XXXX.....….XX............

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 47

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

48 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

If the output reports that a large number of packets are bad, you should check for
hardware errors on your network cable and/or use a packet analyzer to determine
whether a structural fault exists on the local area network (LAN).

To check whether all the disk devices attached to the system have been correctly
detected, you can use the probe-scsi command to print a list of available devices:

ok probe-scsi

Target 1

Unit 0 Disk SUN0104 Copyright (C) 2004 Sun Microsystems All rights reserved

You can see the default boot disk at target 1 unit 0.
To check that sufficient memory is available on the local system for the installation

of Solaris 10, you can use the banner command:

ok banner
Sun Ultra 5/10, Keyboard present
OpenBoot 3.25, 256 MB memory (50 ns) installed, Serial #12345353
Ethernet address 5:2:12:c:ee:5a HostID 456543

In this case, 256MB of RAM is available, which is sufficient for installation.

Intel Preinstallation
To install Solaris Intel, first switch on the system and insert the Solaris 10 Installation
CD-ROM into the drive. If a high-resolution graphics monitor is attached to the system,
the GUI-based Configuration Assistant will start. Alternatively, if you are using a low-
resolution terminal to connect, the Configuration Assistant will be text based.

After the BIOS messages have been displayed, the following message is displayed:

SunOS Secondary Boot
Solaris Intel Platform Edition Booting System
Running Configuration Assistant...

The Configuration Assistant is responsible for performing a number of preinstallation
tasks and must be executed prior to starting the Web Start Wizard or any other installation
program. At the opening screen, simply press F2 to proceed with the installation, unless
you are performing an upgrade.

The first task performed by the Configuration Assistant is to determine the bus
types supported by your system and to collect data about the devices installed in your
system. During this process, the following message is displayed on your screen:

Determining bus types and gathering hardware configuration data ...

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 49

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

After all the devices have been discovered by scanning, a list of identified devices is
printed on the screen:

The following devices have been identified on this system. To identify
devices not on this list or to modify device characteristics, chose Device
Task. Platform types may be included in this list.

ISA: Floppy disk controller
ISA: IDE controller
ISA: IDE controller
ISA: Motherboard
ISA: PS/2 Mouse
ISA: PnP bios: 16550-compatible serial controller
ISA: PnP bios: 8514-compatible display controller
ISA: PnP bios: Audio device
ISA: System keyboard (US-English)

If you are satisfied that the devices required for installation have been correctly
detected (video card and RAM size, for example), press F2 again to proceed with
booting. Alternatively, you may perform several other tasks on this screen, including
the following:

• View and edit devices

• Set the keyboard type

• Save the current configuration

• Delete a saved configuration

• Set the default console device

If your system does not already have a UNIX File System (UFS) installed, or if it is
a completely new system, you need to use fdisk to create new partitions at this point so
that your system may be installed. However, if you have an existing Linux installation that
you want to dual boot with Solaris, you must ensure that the Linux swap partition is
not confused with a Solaris UFS device, because they have the same type within fdisk.
You should be able to distinguish Linux swap partitions by their maximum size (127MB).
The following page will be displayed during bootup and prior to the execution of fdisk:

<<< Current Boot Parameters >>>
Boot path: /pci@1,0/pci-ide@6,1/ide@2/sd@1,0:a
Boot args: kernel/unix
<<< Starting Installation >>>
SunOS Release 5.10 Version Generic 32-bit
Copyright 1983-2001 Sun Microsystems, Inc. All rights reserved.
Configuring /dev and /devices

50 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

Using RPC Bootparams for network configuration information.
Solaris Web Start installer
English has been selected as the language in which to perform the install.
Starting the Web Start Solaris installer
Solaris installer is searching the system’s hard disks for a
location to place the Solaris installer software.
No suitable Solaris fdisk partition was found.
Solaris Installer needs to create a Solaris fdisk partition
on your root disk, c0d0, that is at least 395 MB.
WARNING: All information on the disk will be lost.
May the Solaris Installer create a Solaris fdisk [y,n,?]

You should heed the warning that all data will be lost if you choose to overwrite an
existing partition with fdisk.

Disk Partitions
If you consent to using fdisk, you will see a screen similar to the following:

Total disk size is 2048 cylinders
Cylinder size is 4032 (512 byte) blocks
Cylinders
Partition Status Type Start End Length %
========= ====== ==== ===== ==== ====== ===
1 UNIX 0 1023 1024 50
2 DOS 1024 2047 1024 50
SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Exit (update disk configuration and exit)
5. Cancel (exit without updating disk configuration)
Enter Selection:

In this example, you can see that two existing partitions occupy 1,204 cylinders each.
Partition 1 is a UNIX partition (perhaps from SCO UNIX, from the Santa Cruz Operation),
while partition 2 is an MS-DOS partition. If you want to use the entire disk for Solaris,
you need to select option 3 on this menu, twice, to delete each existing partition in turn.
Alternatively, if you wished to retain the UNIX partition but delete the MS-DOS partition,
you would select option 3 only once, and then select partition 2 for deletion.

After you have freed up space (if necessary), you will be required to select option 1
to create a partition. You will then be required to select option A from the following
menu to create a Solaris partition:

Select the partition type to create:
1=SOLARIS 2=UNIX 3=PCIXOS 4=Other
5=DOS12 6=DOS16 7=DOSEXT 8=DOSBIG
A=x86 Boot B=Diagnostic 0=Exit?

NOTEOTE It is not possible to run Solaris from a non-UFS partition; however, it is possible to
mount non-Solaris file systems after the system has been installed.

Next, you need to specify the size of the partition, in either the number of cylinders
or the percentage of the disk to be used. In this example, you enter either 100 percent or
2,048 cylinders:

Specify the percentage of disk to use for this partition
(or type "c" to specify the size in cylinders).

Next, you need to indicate whether the target partition is going to be activated. This
means that the system will attempt to boot the default operating system loader from
this partition. If you are going to use the Solaris boot manager, you may activate this
partition. However, if you are using Boot Magic or LILO to manage existing Microsoft
Windows or Linux partitions, and you wish to continue using either of these systems,
you should answer no.

After you have created the partition, the fdisk menu will be updated and displayed
as follows:

2 Active x86 Boot 8 16 9 1
Total disk size is 2048 cylinders
Cylinder size is 4032 (512 byte) blocks
Cylinders
Partition Status Type Start End Length %
========= ====== ========= ===== ==== ====== ===
2 Active x86 Boot 0 2047 2048 100
SELECT ONE OF THE FOLLOWING:
1. Create a partition
2. Specify the active partition
3. Delete a partition
4. Exit (update disk configuration and exit)
5. Cancel (exit without updating disk configuration)
Enter Selection:

At this point, you should select option 4. You will then be prompted with the
following message:

No suitable Solaris fdisk partition was found.
Solaris Installer needs to create a Solaris fdisk partition
on your root disk, c0d0, that is at least 395MB.
WARNING: All information on the disk will be lost.
May the Solaris Installer create a Solaris fdisk [y,n,?]

Since you’ve just created the appropriate partition using fdisk, you should type n
here. You will then see this message:

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 51

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

To restart the installation, run /sbin/cd0_install.

After restarting the installer, you will see the formatting display shown in the next
section.

Disk Formatting and Virtual Memory
If your system already has a UFS partition, or if you have just created one, you will see
a screen containing text similar to the following:

<<< Current Boot Parameters >>>
Boot path: /pci@1,0/pci-ide@6,1/ide@2/sd@1,0:a
Boot args: kernel/unix
<<< Starting Installation >>>
SunOS Release 5.10 Version Generic 32-bit
Copyright 1983-2001 Sun Microsystems, Inc. All rights reserved.
Configuring /dev and /devices
Using RPC Bootparams for network configuration information.
Solaris Web Start installer
English has been selected as the language in which to perform the install.
Starting the Web Start Solaris installer
Solaris installer is searching the system’s hard disks for a
location to place the Solaris installer software.
The default root disk is /dev/dsk/c0d0.
The Solaris installer needs to format
/dev/dsk/c0d0 to install Solaris.
WARNING: ALL INFORMATION ON THE DISK WILL BE ERASED!
Do you want to format /dev/dsk/c0d0? [y,n,?,q]

At this point, you simply type y and the disk will be formatted so that you can
create new partitions. You will then be prompted to enter the size of the swap partition:

NOTE: The swap size cannot be changed during filesystem layout.
Enter a swap partition size between 384MB and 1865MB, default = 512MB [?]

You are then asked to confirm that the swap slice can be installed at the beginning
of the partition:

The Installer prefers that the swap slice is at the beginning of the
disk. This will allow the most flexible filesystem partitioning later
in the installation.
Can the swap slice start at the beginning of the disk [y,n,?,q]

After you create the swap partition, the other slices can be created on the target
disk, because the installation program requires a UFS to install correctly. However,
the system must first be rebooted to perform the disk layout:

52 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 53

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

The Solaris installer will use disk slice, /dev/dsk/c0d0s1.
After files are copied, the system will automatically reboot, and
installation will continue.
Please Wait...
Copying mini-root to local disk....done.
Copying platform specific files....done.
Preparing to reboot and continue installation.
Need to reboot to continue the installation
Please remove the boot media (floppy or cdrom) and press Enter
Note: If the boot media is cdrom, you must wait for the system
to reset in order to eject.

After you press the ENTER key, you will see the standard Solaris shutdown messages,
including this one:

Syncing file systems... 49 done
rebooting...

The Boot Manager
After you eject the installation CD-ROM from your drive, the standard Solaris boot
manager menu should appear:

SunOS - Intel Platform Edition Primary Boot Subsystem
Current Disk Partition Information
Part# Status Type Start Length
=======================================
1 Active X86 BOOT 0 2048
Please select the partition you wish to boot:

After you enter 1 and press the ENTER key, the following message appears:

SunOS Secondary Boot
Solaris Intel Platform Edition Booting System
Running Configuration Assistant...
Autobooting from boot path: /pci@1,0/pci-ide@6,1/ide@2/sd@1,0:a
If the system hardware has changed, or to boot from a different
device, interrupt the autoboot process by pressing ESC.

A few seconds later, the boot interpreter that is responsible for initializing the system
is started:

Initializing system
Please wait...
<<< Current Boot Parameters >>>
Boot path: /pci@0,0/pci-ide@7,1/ata@1/cmdk@0,0:b

Boot args:
Type b [file-name] [boot-flags] <ENTER> to boot with options
or i <ENTER> to enter boot interpreter
or <ENTER> to boot with defaults
<<< timeout in 5 seconds >>>
Select (b)oot or (i)nterpreter:
SunOS Release 5.10 Version Generic 32-bit
Copyright 1983-2004 Sun Microsystems, Inc. All rights reserved.
Configuring /dev and /devices
Using RPC Bootparams for network configuration information.

Next, you need to use kdmconfig to set up your graphics card and monitor so that
the Web Start Wizard can correctly display its windows. To start kdmconfig, press F2.
Then, you are taken to the kdmconfig introduction screen. After pressing F2 again, you
will be asked to perform the kdmconfig view/edit system operation. In the configuration
window, you can make changes to the settings detected on your system. If your system
is listed on the Hardware Compatibility List (HCL), you shouldn’t have any problems
with hardware detection.

Web Start Wizard Installation
To use the Web Start Wizard installer using a local DVD-ROM or CD-ROM drive, you
need to bring the system to run-level 0 so that commands can be entered into the PROM
boot monitor. The following command can be used from a root shell to bring the system
to run-level 0:

sync; init 0

When the system has reached init level 0, the following prompt will be displayed:

ok

Next, place the Solaris 10 Installation CD-ROM or DVD-ROM into the local drive,
and type the following command:

ok boot cdrom

NOTEOTE This command is the same whether a DVD or CD-ROM is used as the source. If you
are using a Solaris Intel system, you cannot upgrade from Solaris versions 2.6 or from
versions 7 through 9 to 10 by using the Web Start Wizard from the CD-ROM: you must
use a DVD-ROM or JumpStart, or you must perform an Internet-based installation.
In addition, your BIOS and hard disk controller for the boot device must support Logical
Block Addressing (LBA) to work with Solaris 10.

54 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

Soon after the system has started booting, you see output similar to the following:

Boot device: /sbus/espdma@e,8400000/esp@e,8800000/sd@6,0:f File and args:
SunOS Release 5.10 Version Generic 32-bit
Copyright 1983-2004 Sun Microsystems, Inc. All rights reserved.
Configuring /dev and /devices
Using RPC Bootparams for network configuration information.
Solaris Web Start installer
English has been selected as the language in which to perform the install.
Starting the Web Start Solaris installer
Solaris installer is searching the system’s hard disks for a
location to place the Solaris installer software.
Your system appears to be upgradeable.
Do you want to do a Initial Install or Upgrade?
1) Initial Install
2) Upgrade
Please Enter 1 or 2 >

If this message appears in the boot messages, you may elect to perform an upgrade
of the existing Solaris installation. However, most administrators would back up their
existing software, perform a fresh install, and then restore their data and applications
after the system is operational. In this example, the option to perform an Initial Install
is chosen, which will overwrite the existing operating system.

Type 1, and then press ENTER. You will see a message like this:

The default root disk is /dev/dsk/c0t0d0.
The Solaris installer needs to format
/dev/dsk/c0t0d0 to install Solaris.
WARNING: ALL INFORMATION ON THE DISK WILL BE ERASED!
Do you want to format /dev/dsk/c0t0d0? [y,n,?,q]

Formatting the hard drive overwrites all existing data on the drive—you must
ensure that if you have previously installed an operating system on the target drive
(c0t0d0), you have backed up all data that you will need in the future. This includes
both user directories and application installations.

After you answer by typing Y, the following screen appears:

NOTE: The swap size cannot be changed during filesystem layout.
Enter a swap slice size between 384MB and 2027MB, default = 512MB [?]

Press the ENTER key to accept the default of 512MB, if your system has 256MB of
physical RAM, as this example system has. However, as a general rule, you should
allocate twice the amount of physical RAM as swap space; otherwise, system performance
will be impaired. The swap partition should be placed at the beginning of the drive, as

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 55

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

the following message indicates, so that other slices are not dependent on its physical
location:

The Installer prefers that the swap slice is at the beginning of the
disk. This will allow the most flexible filesystem partitioning later
in the installation.
Can the swap slice start at the beginning of the disk [y,n,?,q]

After you type Y to answer this question, you will be asked to confirm the
formatting settings:

You have selected the following to be used by the Solaris installer:
Disk Slice : /dev/dsk/c0t0d0
Size : 1024 MB
Start Cyl. : 0
WARNING: ALL INFORMATION ON THE DISK WILL BE ERASED!
Is this OK [y,n,?,q]

If you answer by typing Y, the disk will be formatted and a mini-root file system
will be copied to the disk. Then the system will reboot, and the Web Start Wizard
installation process can begin:

The Solaris installer will use disk slice, /dev/dsk/c0t0d0s1.
After files are copied, the system will automatically reboot, and
installation will continue.
Please Wait...
Copying mini-root to local disk....done.
Copying platform specific files....done.
Preparing to reboot and continue installation.
Rebooting to continue the installation.
Syncing file systems... 41 done
rebooting...
Resetting ...
Sun Ultra 5/10, Keyboard present
OpenBoot 3.25, 256 MB memory (50 ns) installed, Serial #12345353
Ethernet address 5:2:12:c:ee:5a HostID 456543
Rebooting with command: boot /sbus@1f,0/espdma@e,8400000/
esp@e,8800000/sd@0,0:b
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/
sd@0,0:b File and args:
SunOS Release 5.10 Version Generic 32-bit
Copyright 1983-2004 Sun Microsystems, Inc. All rights reserved.
Configuring /dev and /devices
Using RPC Bootparams for network configuration information.

56 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

Configuration
The Web Start Wizard asks a number of configuration questions that are used to
determine which files are copied to the target drive and how the new system’s
key parameters will be set. Many of these questions involve network and software
configuration, because these are the two foundations of the Solaris installation. The
following sections review each of the configuration options and provide examples of
appropriate settings.

Network Support
The Network Support screen gives you the option to select either a networked or
nonnetworked system. Some examples of nonnetworked systems include standalone
workstations and offline archives. If you don’t want or need to install network support,
however, you still need a unique hostname to identify the localhost.

DHCP Server
Network users must first identify how their system is identified using the IP. One
possibility is that the system will use DHCP, which is useful when IP addresses are
becoming scarce on a class C network. DHCP allows individual systems to be allocated
only for the period during which they are “up.” Thus, if a client machine is operated only
between 9 A.M. and 5 P.M. every day, for example, it is only “leased” an IP address for
that period of time. When an IP address is not leased to a specific host, it can be reused
by another host. Solaris DHCP servers can service Solaris clients as well as Microsoft
Windows and Linux clients.

Hostname
A hostname is used to uniquely identify a host on the local network; when combined
with a domain name, the hostname allows a host to be uniquely identified on the Internet.
Solaris administrators often devise related sets of hostnames that form part of a single
domain. Alternatively, a descriptive name can be used to describe systems with a single
purpose, such as mail for mail servers.

IP Address
If your network does not provide DHCP, you need to enter the IP address assigned to
this system by the network administrator. It is important to ensure that the IP address
is not currently being used by another host, because packets may be misrouted if identical
IP addresses exist. Like a hostname, the IP address needs to be unique to the local system.

Netmask
You need to enter the netmask for the system: 255.0.0.0 (class A), 255.255.0.0 (class B), or
255.255.255.0 (class C). If you’re not sure what the correct netmask is, ask your network
administrator.

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 57

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

IPv6 Support
You need to indicate whether IPv6 needs to be supported by this system. The decision
of whether or not to use DHCP will depend on whether your network is part of
MBone, the IPv6-enabled version of the Internet. As proposed in RFC 2471, IPv6 will
replace IPv4 in the years to come, as version 6 provides for many more IP addresses
than IPv4. Once IPv6 is adopted worldwide, less reliance on DHCP will be necessary.

However, IPv6 also incorporates a number of innovations above and beyond
the addition of more IP addresses for the Internet. Enhanced security provided by
authenticating header information, for example, will reduce the risk of IP spoofing and
denial of service (DoS) attacks. Since IPv6 support does not interfere with existing IPv4
support, most administrators will want to support version 6.

Kerberos Server
Kerberos is a network authentication protocol that is designed to provide centralized
authentication for client/server applications by using secret-key cryptography, which
is based around ticketing. Once a ticket has expired, the trust relationship between two
hosts is broken. To use Kerberos, you need to identify the name of the local KDC.

Name Services
A name service allows your system to find other hosts on the Internet or on the LAN.
Solaris supports several different naming servers, including NIS/NIS+, DNS, and file-
based name resolution. Solaris supports the concurrent operation of various naming
services, so it’s possible to select NIS/NIS+ and set up DNS manually later. However,
because most hosts are now connected to the Internet, it may be more appropriate for
you to install DNS first and then install NIS/NIS+.

DNS Server
DNS maps IP addresses to hostnames. If you select DNS, you will be asked to enter
a domain name for the local system. This should be the FQDN, or Fully Qualified
Domain Name (for example, cassowary.net). You need to either search the local subnet
for a DNS server or enter the IP address of the primary DNS server for your domain.
You may also enter up to two secondary DNS servers that have records of your domain,
which can be a useful backup if your primary DNS server goes down. It is also possible
that, when searching for hosts with a hostname rather than an FQDN, you would want
to search multiple local domains. For example, the host www.buychapters.com belongs to
the buychapters.com domain. However, your users may wish to locate other hosts
within the broader cassowary.net domain by using the simple hostname, in which case
you can add the cassowary.net domain to a list of domains to be searched for hosts.

NIS/NIS+ Server
NIS/NIS+ is used to manage large domains by creating maps or tables of hosts, services,
and resources that are shared between hosts. NIS/NIS+ centrally manages the naming
and logical organization of these entities. If you choose NIS or NIS+ as a naming service,
you need to enter the IP address of the local NIS or NIS+.

58 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

LDAP Server
LDAP provides a “white pages” service that supersedes existing X.500 systems and
runs directly over TCP/IP. The LDAP server is used to manage directory information
for entire organizations, using a centralized repository. If you want to use an LDAP
server, you need to provide both the name of your profile and the IP address of the
LDAP server. If the machine that you’re installing will be the LDAP server, you shouldn’t
set up the system as an LDAP client. Note that it might be wiser to configure LDAP
after system installation, or at the very least, if you should ensure that the system can
connect to the LDAP server. A client system will not come up until the LDAP server is
up, and the client system can hang for a long time if the LDAP server is not available.

Router
To access the LAN and the Internet, you need to supply the IP address of the default
router for the system. A router is a multihomed host that is responsible for passing
packets between subnets.

Time Zone and Locale
The next section requires that you enter your time zone as specified by geographic
region—the number of hours beyond or before Greenwich Mean Time (GMT) or by
time-zone file. Using the geographic region is the easiest method, although if you
already know the GMT offset or the name of the time-zone file, you may enter that
instead. Next, you are required to enter the current time and date, with a four-digit
year, a month, day, hour, and minute. In addition, you need to specify support for a
specific geographic region in terms of locales, if required.

Power Management
Do you want your system to switch off automatically after 30 minutes of inactivity?
If your answer is yes (e.g., because you have a workstation that does not run services),
then you should enable power management, as it can save costly power bills. However,
if you’re administering a server, you’ll definitely want to turn power management off.
A case in point: once your server shuts down in the middle of the night, and consequently
your clients cannot access data, you’ll understand why disabling power management
is so important.

Proxy Server
A proxy server acts as a buffer between hosts on a local network and the rest of the
Internet. A proxy server passes connections between local hosts and any other host on
the Internet. It sometimes acts in conjunction with a firewall to block access to internal
systems, thereby protecting sensitive data. One of the most popular proxy servers is
squid, which also acts as a caching server. To enable access to the Internet through a
proxy server, you need to enter the hostname of the proxy server, and the port on which
the proxy operates.

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 59

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

64-Bit Support
Solaris 10 provides support for 64-bit kernels for the SPARC platform. By default, only
a 32-bit kernel will be installed. For superior performance, a 64-bit kernel is preferred,
because it can natively compute much larger numbers than can the 32-bit kernel. In the
64-bit environment, 32-bit applications run in compatibility mode. However, only some
UltraSPARC systems support the 64-bit kernel.

Disk Selection and Layout
If you are performing an upgrade or installing a new system, you need to decide whether
you want to preserve any preexisting data on your target drives. For example, you may
have five SCSI disks attached, only one of which contains slices used for a previous
version of Solaris. Obviously, you will want to preserve the data on the four nonboot
disks. However, partitions on the boot disk will be overwritten during installation, so
it’s important that you back up and/or relocate files that need to be preserved. Fortunately,
if you choose to perform an upgrade rather than a fresh installation, many system
configuration files will be preserved.

The Web Start Wizard will also ask whether you want to “auto-layout” the boot
disk slices or configure them manually. You should be aware that the settings supplied
by the installation program are conservative, and trying to recover a system that has a
full root file system can be time consuming, especially given the low cost of disk space.
It’s usually necessary to increase the size of the / and /var partitions by at least 50 percent
over what the installer recommends. If you have two identical disks installed, and you
have more space than you need, you can always set up volume management to ensure
high availability through root partition mirroring; thus, if your primary boot disk fails,
the system can continue to work uninterrupted until the hardware issue is resolved.

Finally, some client systems use NFS to mount disks remotely on central servers.
While this can be a useful way of accessing a centralized home directory from a number
of remote clients (by using the automounter), database partitions should never be
mounted remotely. If you need to access remote partitions via NFS, you can nominate
these partitions during the installation program.

Root Password
An important stage of the installation process involves selecting the root password
for the superuser. The root user has the same powers as the root user on Linux or the
Administrator account on Windows NT. If an intruder gains root access, he or she is
free to roam the system, deleting or stealing data, removing or adding user accounts,
or installing Trojan horses that can transparently modify the way your system operates.

One way to protect against an authorized user gaining root access is to use a difficult-
to-guess root password, which makes it difficult for a cracker to use a password-cracking
program to guess your password successfully. The optimal password is a completely
random string of alphanumeric and punctuation characters. Some password-generating
applications can be used to generate passwords that are easy to remember but that
contain almost random combinations of characters.

60 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 61

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

You should never write down the root password, and you should change it often,
unless it is locked in the company safe. The root password should not be known by
anyone who doesn’t need to know it. If users require levels of access that are typically
privileged (such as mounting CD-ROMs), using the sudo utility to limit the access of
each user to specific applications for execution as the superuser is better than giving
out the root password to everyone who asks for it.

The root password must be entered twice—just in case you make a typographical
error, as the characters that you type are masked on the screen.

Software Selection
After you have entered all the configuration settings, the following message appears:

Please wait while the system is configured with your settings...

The installation Kiosk then appears on the screen. In the Kiosk, you select the type of
installation that you want to perform. To begin the software selection process, you need
to eject the Web Start CD-ROM and insert the Software (1) CD-ROM. Next, you have
the option of installing all Solaris software using the default options or customizing
your selection before copying the files from the CD-ROM. Obviously, if you have a lot
of disk space and a fast system, you may prefer to install the entire distribution and
then, after installation, delete the packages that you no longer require. This is definitely
the fastest method. Alternatively, you can elect to perform a custom installation.

You are then presented with a list of all the available software groups. You can select or
deselect individual package groups, or package clusters, depending on your requirements.
For example, you may decide to install the Netscape Navigator software, but not install
the NIS/NIS+ server for Solaris.

After choosing the packages that you want to install, you are required to enter your
locale based on geographic region (the U.S. entry is selected by default). You may also
elect to install third-party software during the Solaris installation process—this is
particularly useful if you have a standard operating environment that consists of using
the Oracle database server in conjunction with the Solaris operating environment, for
example. You would need to insert the product CD-ROM at this point so that it could
be identified.

After selecting your software, you need to lay out the disks, which involves defining
disk slices that will store the different kinds of data on your system. The fastest
configuration option involves selecting the boot disk and allowing the installer to lay
out the partitions automatically according to your software selections. For example,
you may want to expand the size of the /var partition to allow for large print jobs to
be spooled or Web server logs to be recorded.

Finally, you will be asked to confirm your software selections and proceed with
installation. All the packages will then be installed to your system. A progress bar
indicates which packages have been installed at any particular point, and how many

remain to be installed. After you have installed the software, you must reboot the
system. After restarting, your system should boot directly into Solaris unless you have
a dual-booting system—in which case you will need to select the Solaris boot partition
from the Solaris boot manager.

Upon reboot, a status message is printed on the console, looking something like this:

ok boot
Resetting ...
Sun Ultra 5/10, Keyboard present
OpenBoot 3.25, 256 MB memory (50 ns) installed, Serial #12345353
Ethernet address 5:2:12:c:ee:5a HostID 456543
Boot device: /iommu/sbus/espdma@f,400000/esp@f,800000/sd@1,0
File and args:
SunOS Release 5.10 Version generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-2001, Sun Microsystems, Inc.
configuring network interfaces: le0.
Hostname: server
The system is coming up. Please wait.
add net default: gateway 204.58.62.33
NIS domainname is paulwatters.net
starting rpc services: rpcbind keyserv ypbind done.
Setting netmask of le0 to 255.255.255.0
Setting default interface for multicast: add net 224.0.0.0: gateway client
syslog service starting.
Print services started.
volume management starting.
The system is ready.
client console login:

By default, the common desktop environment (CDE) login screen is displayed.

Network Installation
Although the discussion up to this point has looked in detail at CD-ROM and DVD-ROM
installation from a local drive, it’s actually possible to set up a single install server from
which installation clients read all of their data, using a variation of the JumpStart install
program. This approach is useful when a number of clients will be installing from the
same disk and/or if installation is concurrent. Thus, it’s possible for a number of users
to install Solaris from a single server, which can be very useful when a new release of
Solaris is made. For example, the Solaris 10 beta was distributed in a form suitable for
network installation, allowing multiple developers to get their systems running as
quickly as possible. For existing install servers, this reduces administration overhead,
since different versions of Solaris (Solaris 8 and 9, for example) can be distributed from
the same server.

The install server reads copies of the installation CD-ROMs and DVD-ROMs and
creates a distributable image that can then be downloaded by remote clients. In addition,

62 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

you can create images for both SPARC and Intel versions that can be distributed from
a single system; thus, a high-end SPARC install server could distribute images to many
Intel clients. The install server uses DHCP to allocate IP addresses dynamically to all
install clients. Alternatively, a name server can be installed and used to allocate permanent
IP addresses to install clients.

To create SPARC disk images on the install server, you use the setup_install_
server command. For a SPARC DVD-ROM or CD-ROM, this command is located in
/cdrom/cdrom0/s0/Solaris_10/Tools. For an Intel DVD-ROM or CD-ROM, this command is
located in /cdrom/cdrom0/Solaris_10/Tools. The only parameter that needs to be supplied
to the command is the path where the disk images should be installed. You should ensure
that the path can be exported to clients and that the partition selected has sufficient disk
space to store the images.

The same command is used to create Intel disk images, but the path is different: for
a SPARC DVD-ROM or CD-ROM, the command is located in /cdrom/cdrom0/Solaris_10/
Tools, whereas for an Intel DVD-ROM or CD-ROM, the command is located in /cdrom/
cdrom0/s2/Solaris_10/Tools.

To set up individual clients, execute the add_install_client command on
the install server—once for each client. You need to specify the name of the client to be
installed, as well as its architecture. For a Sun4m system named pink, for example, you
would use the following command:

/export/install/boot/Solaris_10/Tools/add_install_client pink sun4m

You also need an entry in the /etc/ethers file and /etc/hosts file for pink. On the client
side, instead of typing boot cdrom at the OK prompt, you would need to enter the
following command:

ok boot net

suninstall Installation
To boot with the suninstall program, you don’t use the Solaris 10 Installation CD-ROM;
rather, you use the Solaris 10 Software 1 CD-ROM, which is bootable. suninstall has
the advantage of not requiring high-resolution graphics to complete installation, so you
can use a low-resolution monitor or terminal. It requires a minimal amount of RAM
and allows you flexibility in configuring your system prior to installation (including
internationalization). The order of questions and procedures followed are generally the
same as those used in the Web Start Wizard. However, suninstall does not allow
you to install third-party software as part of the installation process.

Using the suninstall method is more reliable than the Web Start Wizard when
installing Solaris Intel, because suninstall relies less on graphic cards and displays,
which may not be compatible with the Solaris X11 server.

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 63

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

64 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

JumpStart
JumpStart is an installation technology that allows a group of systems to be installed
concurrently, using a standard file system layout and software package selection. For
sites with hundreds of systems that are maintained by a small staff, JumpStart is the
ideal tool for upgrading or reinstalling systems.

For example, when a staff member leaves the organization, her workstation can be
simply reinstalled using JumpStart. By enforcing an SOE, there is no need to configure
individually every system that needs to be installed, greatly reducing the administrative
burden on system administrators.

When using JumpStart on a large number of clients, installation can be expedited
by using a sysidcfg file, which defines a number of standard parameters for installation.
The sysidcfg file can contain configuration entries for the following properties:

Current date and time DHCP server IP address Local domain name

Graphics card Local hostname Local IP address

IPv6 support Locale Security policy

Monitor type DNS server NIS/NIS+ server

LDAP server Netmask Network interface

Pointing device Power management Root password

Security policy Terminal type Time zone

The following is a sample sysidcfg file:

system_locale=en_US
timezone=US/Eastern
timeserver=192.168.34.3
network_interface=le0 {netmask=255.255.255.0 protocol_ipv6=yes}
security_policy=NONE
terminal=dtterm
name_service=NONE
root_password=5fg48;r3f
name_service=NIS {domain_name=cassowary.net name_server=
nis(192.168.44.53)}

Here, you can see that the system locale has been set to standard U.S. English, the time
zone to the U.S. East Coast, the timeserver to 192.168.34.3, and the network interface
running IPv6 to /dev/le0. While the default terminal and root password are also set, the
name service and security policy have not been set because these might change from
system to system. In addition, the name service selected is NIS, with the NIS server set
to nis.cassowary.net (192.168.44.53).

JumpStart has three roles, which are filled by different systems on the network:

• An install server, which provides all the data and services required to install
the system

• A boot server, where the RARP daemon is used to boot client systems that have
not been installed

• An install client, which is the target system for installation

Boot Servers
A boot server provides a copy of the operating system to be installed on a target host.
Once the target host has been booted using the network and install options, a kernel is
downloaded to the target host from an install server, and booted locally. Once the system
has been loaded, the operating system is then downloaded from the boot server. The rules
for downloading and installing specific files are located in the rules.ok file. Individual
systems can have their own entries in the rules file, or generic rules can be inserted. After
loading the system from the boot server, the install client executes a post-installation
script, and then is ready for use.

Installing Servers
The install server uses RARP to listen for requests to install the system from target hosts.
Once such a request is received, a mini-root system is downloaded from the install server
to the target host.

To set up an install server, you need to enter the following commands:

mkdir -p /export/install /export/config
cp -r /cdrom/Sol_10_sparc/s0/Solaris_2.10/Misc/jumpstart_sample/ * /export/config
/cdrom/Sol_10_sparc/s0/Solaris_2.10/Tools

./setup_install_server /export/install

This assumes that /export/install has sufficient space to store the installation files, and
that the JumpStart configuration data, such as the rules file, will be stored in /export/
config. Here is a sample host_class file, which is referred to in rules, that specifies the
UFS disk layout for all boot clients:

install_type initial_install
system_type standalone
partitioning explicit
filesys c1t2d0s0 512 /
filesys c1t2d0s3 2048 /usr
filesys c1t2d0s4 256 /var
filesys c0t3d1s0 1024 swap
filesys c0t3d1s1 free /export
cluster SUNWCall

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 65

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

Here, you can see that the standard layout allocated 512MB to /, 2048MB to /usr, 256MB
to /var, 1024MB to swap, and all free space to /export. In addition, the cluster SUNWCall
is to be installed.

Once the rules file has been customized, its contents must be verified by using the
check command. Once the check command parses the rules file and validates its contents,
a rules.ok file is created.

Boot Clients
To set up a boot client, you must shut down the target system to init level 0, by using
the init 0 command or equivalent. Next, you need to boot the system by using the
following command from the “ok” prompt:

boot net - install

At this point, a broadcast is made on the local subnet to locate an install server. Once
an install server is located, a mini-root system is downloaded to the target system. Once the
kernel is loaded from the mini-root system, the operating system in then downloaded from
the boot server:

Resetting ...

Sun Ultra 5/10, Keyboard present
OpenBoot 3.25, 256 MB memory (50 ns) installed, Serial #12345353
Ethernet address 5:2:12:c:ee:5a HostID 456543
Initializing Memory |
Boot device: /iommu/sbus/ledma@f,400010/le@f,c00000 File and args: -
hostname: paul.cassowary.net
domainname: cassowary.net
root server: installserv
root directory: /Solaris_2.10/export/exec/kvm/sparc.sun
Copyright (c) 1983-2004, Sun Microsystems, Inc.
The system is coming up. Please wait.

Once the system has started, you’ll see individual clusters being installed:

Selecting cluster: SUNWCXall

Total software size: 324.55 MB

Preparing system to install Solaris. Please wait.

Setting up disk c1t2d0:

Creating Solaris disk label (VTOC)

66 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

Creating and checking UFS file systems:

- Creating / (c1t2d0)
- Creating /var (c1t2d0)
- Creating /scratch (c1t2d0)
- Creating /opt (c1t2d0)
- Creating /usr (c1t2d0)
- Creating /staff (c1t2d0)
Beginning Solaris package installation...
SUNWcsu.....done. 321.23 MB remaining.
SUNWcsr.....done. 277.34 MB remaining.
SUNWcsd.....done. 312.23 MB remaining.

sysidcfg
When installing JumpStart on a large number of clients, you can expedite installation
by using a sysidcfg file, which defines a number of standard parameters for installation.
The sysidcfg file can contain configuration entries for the properties shown in Table 3-1.

The following is a sample sysidcfg file:

system_locale=en_US
timezone=US/Eastern
timeserver=localhost
network_interface=le0 {netmask=255.255.255.0 protocol_ipv6=yes}
security_policy=NONE
terminal=dtterm
name_service=NONE
root_password=f7438:;H2ef

C h a p t e r 3 : S o l a r i s 1 0 I n s t a l l a t i o n 67

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

Property sysidcfg Parameter

Date and time timeserver

DHCP dhcp

DNS domains to search search

DNS, LDAP, or NIS/NIS+ name server name_server

DNS, LDAP, or NIS/NIS+ name service name_service

Domain name domain_name

Graphics card display

Hostname hostname

IP address ip_address

IPv6 protocol_ipv6

Kerberos administration server admin_server

Kerberos KDC kdc

TABLE 3-1 Configurable sysidcfg Properties

Summary
This chapter has shown you how to perform preinstallation planning and how to estimate
the amount of disk space required for installation. In addition, you have walked through
how to perform a Web Start Wizard installation, and how to configure a Solaris system for
first-time operation. These techniques must be employed whenever a Solaris system is
installed.

68 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 3

Property sysidcfg Parameter

Kerberos realm default_realm

Keyboard language keyboard

LDAP profile profile

Monitor type monitor

Netmask netmask

Network interface network_interface

Pointing device pointer

Root password root_password

Security policy security_policy

Terminal type terminal

Time zone timezone

TABLE 3-2 Configurable sysidcfg Properties (continued)

4
Initialization, OpenBoot
PROM, and Run Levels

One of the main hardware differences between SPARC systems that run Solaris
and PC systems that run Linux or Microsoft Windows is that SPARC systems
have an OpenBoot PROM monitor program, which can be used to modify

firmware settings prior to booting. In this chapter, we examine how to use the
OpenBoot PROM monitor to manage SPARC system firmware.

Solaris 10 uses a flexible boot process that is based on the System V Release 4.0
specification for UNIX systems. The System V approach makes it easier to create
and customize startup and shutdown procedures that are consistent across sites and
systems. The aim of this chapter is to introduce you to the basic terminology and
initialization elements that play an important role in bringing a Solaris system to
single- and multiuser run levels or init states. Each run level is a mutually exclusive
mode of operation. Transitions between run levels are managed by the init process.
After reading this chapter, you should feel confident in tailoring the startup and
shutdown of your own system.

Key Concepts
The following concepts are required knowledge for starting up and shutting down a
system.

OpenBoot
The OpenBoot PROM monitor is based on the Forth programming language and can be
used to run Forth programs that perform the following functions:

• Boot the system, by using the boot command

• Perform diagnostics on hardware devices by using the diag command

• Test network connectivity by using the watch-net command

6 9

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4
Blind Folio 69

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

The OpenBoot PROM monitor has two prompts from which you can issue commands:
the ok prompt and the > prompt. In order to switch from the > prompt to the ok prompt,
you simply need to type n:

> n
ok

Commands are typically issued from the ok prompt. These commands include
boot, which boots a system either from the default system boot device or from an
optional device specified at the prompt. Thus, if a system is at run-level 0 and needs
to be booted, the boot command with no options specified will boot the system:

ok boot
Sun Ultra 5/10 UPA/PCI (UltraSPARC Iii 360 MHz), Keyboard Present
OpenBoot Rev. 3.25, 512 MB memory installed, Serial #13018400.
Ethernet address 5:2:12:c:ee:5a Host ID: 456543
Rebooting with command:
Boot device: /iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,8...
SunOS Release 5.10 Version s10_48 64-bit
Copyright (c) 1983-2003 by Sun Microsystems, Inc. All rights reserved
configuring IPv4 interfaces: hme0.
Hostname: winston
The system is coming up. Please wait.
checking ufs filesystems
/dev/rdsk/c0t0d0s1: is clean.
NIS domainname is Cassowary.Net.
starting rpc services: rpcbind keyserv ypbind done.
Setting netmask of hme0 to 255.255.255.0
Setting default IPv4 interface for multicast: add net 224.0/
4: gateway winston
syslog service starting.
Print services started.
volume management starting.
The system is ready.
winston console login:

If you have modified your hardware configuration since the last boot and want the
new devices to be recognized, you should always reboot using this command:

ok boot -r

This is equivalent to performing a reconfiguration boot using either of the following
command sequences in a shell as the superuser:

touch /reconfigure; sync; init 6

70 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

or

reboot -- -r

So far, we’ve looked at automatic booting. However, sometimes, performing
a manual boot is desirable, using the command boot -a, where you can specify
parameters at each stage of the booting process. These parameters include the
following:

• The path to the kernel that you wish to boot

• The path to the kernel’s modules directory

• The path to the system file

• The type of the root file system

• The name of the root device

For example, if you wished to use a different kernel, such as an experimental
kernel, you would enter the following parameters during a manual boot:

Rebooting with command: boot -a
Boot device: /pci@1f,0/pci@1,2/ide@1/disk@0,1:a File and args: -a
Enter filename [kernel/sparcv9/unix]: kernel/experimental/unix
Enter default directory for modules [/platform/SUNW,Sparc-20/kernel
/platform/sun4m/kernel /kernel /usr/kernel]:
Name of system file [etc/system]:
SunOS Release 5.10 Version Generic 64-bit
Copyright (c) 1983-2003 by Sun Microsystems, Inc.
root filesystem type [ufs]:
Enter physical name of root device
[/pci@1f,0/pci@1,2/ide@1/disk@0,1:a]:

To accept the default parameters, simply press ENTER when prompted. Thus, to change
only the path to the experimental kernel, you would enter kernel/experimental/unix at the
Enter Filename prompt.

/sbin/init
Upon booting from OpenBoot, Solaris has several different modes of operation, which
are known as run levels or init states, so called because the init command is often
used to change run levels, although init-wrapper scripts (such as shutdown) are also
used. These init states, which can be single- or multiuser, often serve different
administrative purposes and are mutually exclusive (i.e., a system can only ever be in
one init state).

Typically, a Solaris system that is designed to “stay up” indefinitely cycles through
a predefined series of steps in order to start all the software daemons necessary for the

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 71

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

provision of basic system services, primary user services, and optional application
services. These services are often provided only during the time that a Solaris system
operates in a multiuser run state, with services being initialized by run control (rc)
shell scripts. Usually, one run control script is created to start each system, user, or
application service. Fortunately, many of these scripts are created automatically for
administrators during the Solaris installation process. However, if you intend to install
third-party software (such as a database server), you may need to create your own run
control scripts in the /etc/init.d directory to start up these services automatically at boot time.
This process is fully described in the “Writing Control Scripts” section, later in the chapter.

If the system needs to be powered off for any reason (e.g., a scheduled power outage)
or switched into a special maintenance mode to perform diagnostic tests, there is also a
cycle of iterating through a predefined series of run control scripts to kill services and
preserve user data. It is essential that you preserve this sequence of events so that data
integrity is maintained. For example, operating a database server typically involves
communication between a server-side, data-writing process and a daemon listener
process, which accepts new requests for storing information. If the daemon process
is not stopped prior to the data-writing process, it could accept data from network
clients and store it in a cache, while the database has already been closed. This could
lead to the database being shut down in an inconsistent state, potentially resulting
in data corruption and/or record loss. It is essential that you apply your knowledge
of shell scripting to rigorously manage system shutdowns and startups using run
control scripts.

In terms of system startup, Solaris has some similarities to Microsoft Windows and
Linux. Although Solaris doesn’t have an autoexec.bat or config.sys file, it does have a number
of script files that are executed in a specific order to start services, just like Linux. These
scripts are typically created in the /etc/init.d directory as Bourne shell scripts and are
then symbolically linked into the “run level” directories. Just as Microsoft Windows has
Safe Modes, Solaris supports a number of different modes of operation, from restricted,
single-user modes to full, multiuser run levels. The complete set of run levels, with their
respective run control script directories, is displayed in Table 4-1.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

72 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Run
Level Description User Status

Run Control
Script Directory

0 Hardware maintenance mode Console access /etc/rc0.d

1 Administrative state; only root file system is available Single user /etc/rc1.d

2 First multiuser state; NFS resources unavailable Multiuser /etc/rc2.d

3 NFS resources available Multiuser /etc/rc3.d

4 User-defined state Not specified N/A
5 Power down firmware state Console access /etc/rc5.d

6 Operating system halted for reboot Single user /etc/rc6.d

S Administrative tasks and repair of corrupted file
systems

Console access /etc/rcS.d

TABLE 4-1 Solaris Run Levels and Their Functions

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Each run level is associated with a run-level script, as shown in Table 4-2. The run-level
script is responsible for the orderly execution of all run-level scripts within a specific run-
level directory. The script name matches the run level and directory name.

When a Solaris system starts, the init process is spawned, which is responsible
for managing processes and the transitions between run levels. You can actually switch
manually between run levels by using the init command; to halt the operating system
and reboot (run-level 6), you can simply type the following command:

init 6

Note that a reboot command exists as an alias to init 6.

Firmware
In many respects, Solaris startup and shutdown is similar to many other systems.
However, recognizing and appreciating the distinguishing features of the Solaris
operating system from other operating systems is important. One of the outstanding
facilities for SPARC hardware is the firmware monitoring system (OpenBoot PROM),
which is responsible for key prebooting tasks:

• Starting the Solaris operating system by typing ok boot at the OpenBoot
prompt, which boots the Solaris kernel

• Setting system configuration parameters, such as the boot device, which could
be one of the hard disks (specified by a full device pathname), another host on
the network, or a CD-ROM

• Watching network traffic by issuing the command ok watch-net at the
OpenBoot prompt

• Performing simple diagnostic tests on system devices (e.g., testing the
termination status of a SCSI bus, or the Power-On Self-Test [POST] tests)

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 73

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Run Level Run Control Script

0 /etc/rc0

1 /etc/rc1

2 /etc/rc2

3 /etc/rc3

4 N/A

5 /etc/rc5

6 /etc/rc6

S /etc/rcS

TABLE 4-2 Solaris Run-Level Scripts

74 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Rather than just being a simple operating system loader, OpenBoot also permits
programs written in the stack-based Forth programming language to be written, loaded,
and run before booting commences. You can also set variables post-boot during single-
and multiuser init states by using the eeprom command as superuser. For example,
you can use eeprom to change the amount of RAM self-tested at boot to 64MB:

eeprom selftest-#megs=64

On Solaris x86 systems, the firmware does not directly support this kind of eeprom
functionality; every PC manufacturer has a different “BIOS” system, making it difficult.
Instead, storage is simulated by variables set in the /boot/solaris/bootenv.rc file.

A second distinguishing feature of the Solaris operating system is the aim of maximized
uptime, through efficient kernel design and the user application model. In some non-
Solaris server environments, the system must be rebooted every time a new application
is installed, or a kernel rebuild might be required to change a configuration. Fortunately,
rebooting is rarely required for Solaris systems, because applications are logically isolated
from system configuration options, and you can set many system-level configuration
options in a superuser shell. For example, you can set many TCP/IP stack options
dynamically using the following command:

ndd /dev/tcp

With most hardware configurations, you don’t even need to reboot to install new
hardware—for example, if a drive fails that is part of a RAID array, it can usually be
hot-swapped without interrupting the operation of any applications or rebooting. If the
original drive is mirrored, then the replacement drive will be resynchronized. These are
the kinds of benefits that will be a welcome relief to new Solaris administrators.

Control Scripts and Directories
Every Solaris init state (such as init state 6) has its own run-level script directory
(e.g., /etc/rc6.d). This contains a set of symbolic links (like shortcuts in Microsoft Windows)
that are associated with the service startup files in the /etc/init.d directory. Each linked script
starts with the letter S (“start”) or the letter K (“kill”), and is used to either start or kill
processes. When a system is booted, processes are started. When a system is shut down,
processes are killed. The start and kill links are typically made to the same script file,
which interprets two parameters: start and stop. The scripts are executed in numerical
order, so a script like /etc/rc3.d/S20dhcp is executed before /etc/rc3.d/S21sshd.

Boot Sequence
Booting the kernel is a straightforward process, once the operating system has been
successfully installed. You can identify the Solaris kernel by the pathname /platform/
PLATFORM_NAME/kernel/unix, where PLATFORM_NAME is the name of the current
architecture. For example, sun4u systems boot with the kernel /platform/sun4u/kernel/.
Kernels can also be booted from a CD-ROM drive or through a network connection

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

(by using the boot cdrom or boot net command, respectively, from the OpenBoot
PROM monitor).

When a SPARC system is powered on, the system executes a series of basic hardware
tests before attempting to boot the kernel. These Power-On Self-Tests (POSTs) ensure that
your system hardware is operating correctly. If the POST tests fail, you will not be able to
boot the system.

Once the POST tests are complete, the system attempts to boot the default kernel using
the path specified in the firmware; or if you wish to boot a different kernel, you can press
STOP-A, enter boot kernel/name, and boot the kernel specified by kernel/name. For example,
to boot a kernel called newunix, you would use the command boot kernel/newunix,
especially if kernel/newunix is an experimental kernel.

Systems boot either from a UFS file system (whether on the local hard disk or on a
local CD-ROM drive) or across the network. Two applications facilitate these different
boot types: ufsboot is responsible for booting kernels from disk devices, and inetboot
is responsible for booting kernels using a network device (such as another Solaris
server). Although servers typically boot themselves using ufsboot, diskless clients
must use inetboot.

The ufsboot application reads the bootblock on the active partition of the boot
device, and inetboot performs a broadcast on the local subnet, searching for a trivial
FTP (TFTP) server. Once located, the kernel is downloaded using NFS and booted.

Procedures
The following procedures can be used to interact with the OpenBoot PROM monitor.

Viewing Release Information
To view the OpenBoot release information for your firmware and the system
configuration, use this command:

ok banner
Sun Ultra 5/10 UPA/PCI (UltraSPARC Iii 360 MHz), Keyboard Present
OpenBoot Rev. 3.25, 512 MB memory installed, Serial #13018400.
Ethernet address 5:2:12:c:ee:5a Host ID: 456543

Here, you can see that the system is an UltraSPARC 5, with a keyboard present, and
that the OpenBoot release level is 3.25. 512MB of RAM is installed on the system, which
has a host ID of 456543. Finally, the Ethernet address of the primary Ethernet device
is 5:2:12:c:ee:5a.

Changing the Default Boot Device
To boot from the default boot device (usually the primary hard drive), you would
type this:

ok boot

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 75

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

However, you can also boot using the CD-ROM by using this command:

ok boot cdrom

You may boot the system from a host on the network by using this command:

ok boot net

Or, if you have a boot floppy, you may use the following command:

ok boot floppy

Because many early Solaris distributions were made on magnetic tape, you can also
boot using a tape drive with the following command:

ok boot tape

Instead of specifying a different boot device each time you want to reboot, you
can set an environment variable within the OpenBoot PROM monitor, so that a specific
device is booted by default. For example, to set the default boot device to be the primary
hard disk, you would use the following command:

ok setenv boot-device disk
boot-device = disk

To verify that the boot device has been set correctly to disk, you can use the
following command:

ok printenv boot-device
boot-device disk disk

To reset the system to use the new settings, you simply use the reset command:

ok reset

To set the default boot device to be the primary network device, you would use the
following command:

ok setenv boot-device net
boot-device = net

The preceding configuration is commonly used for diskless clients, such as Sun
Rays, which use the Reverse Address Resolution Protocol (RARP) and NFS to boot

76 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

across the network. To verify that the boot device has been set correctly to the primary
network device, you can use the following command:

ok printenv boot-device
boot-device net disk

To set the default boot device to be the primary CD-ROM device, you would use
the following command:

ok setenv boot-device cdrom
boot-device = cdrom

This is often useful when installing or upgrading the operating system. To verify
that the boot device has been set correctly to cdrom, you can use the following
command:

ok printenv boot-device
boot-device cdrom disk

To set the default boot device to be the primary floppy drive, you would use the
following command:

ok setenv boot-device floppy
boot-device = floppy

To verify that the boot device has been set correctly to floppy, you can use the
following command:

ok printenv boot-device
boot-device floppy disk

To set the default boot device to be the primary tape drive, you would use the
following command:

ok setenv boot-device tape
boot-device = tape

To verify that the boot device has been set correctly to tape, you can use the
following command:

ok printenv boot-device
boot-device tape disk

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 77

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Testing System Hardware
The test command is used to test specific hardware devices, such as the loopback
network device. You could test this device by using this command:

ok test net
Internal Loopback test - (OK)
External Loopback test - (OK)

This indicates that the loopback device is operating correctly.
You can also use the watch-clock command to test the clock device:

ok watch-clock
Watching the 'seconds' register of the real time clock chip.
It should be ticking once a second.
Type any key to stop.

1
2
3

If the system is meant to boot across the network, but a boot attempt does not
succeed, you can test network connectivity by using the watch-net program. This
determines whether the system’s primary network interface is able to read packets from
the network it is connected to. The output from the watch-net program looks like this:

Internal Loopback test - succeeded
External Loopback test - succeeded
Looking for Ethernet packets.
'.' is a good packet. 'X' is a bad packet.
Type any key to stop
......X.........XXXX.....….XX............

In this case, a number of packets are marked as bad, even though the system has been
connected successfully to the network. This can occur because of network congestion.

In addition to the watch-net command, the OpenBoot PROM monitor can
perform a number of other diagnostic tests. For example, you can detect all the SCSI
devices attached to the system by using the probe-scsi command. The output of
probe-scsi looks like this:

ok probe-scsi
Target 1
Unit 0 Disk SUN0104 Copyright (C) 1995 Sun Microsystems All rights reserved
Target 1
Unit 0 Disk SUN0207 Copyright (C) 1995 Sun Microsystems All rights reserved

78 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Here, you can see that two SCSI disks have been detected. If any other disks or
SCSI devices were attached to the chain, they have not been detected, indicating
a misconfiguration or hardware error.

Because most modern SPARC systems also ship with a PCI bus, you can display the
appropriate PCI devices by using the probe-pci and probe-pci-slot commands.

Creating and Removing Device Aliases
The OpenBoot PROM monitor is able to store certain environment variables in
nonvolatile RAM (NVRAM) so that they can be used from boot to boot by using the
nvalias command. For example, to set the network device to use RARP for booting,
you would use the following command:

ok nvalias net /pci@1f,4000/network@1,1:rarp

This output indicates that booting using the network device, as shown in the
following example, would use the /pci@1f,4000/network@1,1 device to boot the system
across the network:

ok boot net

However, if you wanted to use the Dynamic Host Configuration Protocol (DHCP)
to retrieve the host’s IP address when booting, instead of using RARP, you would use
the following command:

ok boot net:dhcp

To remove the alias from NVRAM, you simply use the nvunalias command:

ok nvunalias net

This would restore the default value of net.

Startup
You should be aware of three kinds of boots. In addition to a normal reboot, which is
initiated by the command # shutdown from a superuser shell, you should be familiar
with these two kinds of boots:

• Reconfiguration boot Involves reconstructing device information in the /dev
and /devices directories. A reconfiguration boot is commonly undertaken in
older SPARC systems when new hard disks are added to the system, although
this may not be necessary with newer systems, which have hot-swapping

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 79

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

facilities. You can initiate this kind of boot by typing # boot –r at the OpenBoot
PROM monitor prompt, or by issuing the command # touch /reconfigure
prior to issuing a shutdown command from a superuser shell.

• Recovery boot Involves saving and analyzing crash dump files if a system does
not respond to commands issued on the console. A recovery boot is a rare event
on a Solaris system—although hardware failures, kernel module crashes, and
incorrect kernel parameters can sometimes result in a hung system. A stack trace
is usually provided if a system crash occurs, which can provide vital clues to
tracking the source of any system problems using the kernel debugger (kadb).

Although Solaris has eight init states, only five are commonly encountered by
administrators during normal operations. Run-level S is a single-user init state that
is used for administrative tasks and the repair of corrupted file systems, using the
following command:

/usr/sbin/fsck

In run-level 2, the init state changes to multiuser mode for the first time, with the
exception of NFS-exported network resources. In run-level 3, all users can log in and
all system and NFS network resources are available. Run-level 6 halts the operating
system and initiates a reboot. Finally, in run-level 0, the operating system is shut down,
ensuring that it is safe to power down. In older SPARC systems, you need to bring the
system down to run-level 0 to install new hardware, such as disk drives, peripheral
devices, and memory modules. However, newer systems are able to continue to
operate in multiuser init states while disks are hot swapped into special drive bays.
This means that these machines may not have a need to enter run-level 6. Further,
uptimes of many months are not uncommon.

The Solaris software environment provides a detailed series of run control (rc) scripts
to control run-level changes. In this section, we examine each of the control scripts in turn.
Each run level has an associated rc script located in the /sbin directory, which is also
symbolically linked into the /etc directory: rc0, rc1, rc2, rc3, rc5, rc6, and rcS.

/sbin/rc0 is responsible for the following:

• Executing all scripts in /etc/rc0.d, if the directory exists

• Terminating all system services and active processes, initially using /usr/sbin/
killall and then /usr/sbin/killall 9 for any stubborn processes

• Syncing all mounted file systems, using /sbin/sync

• Unmounting all mounted file systems, using /sbin/umountall

/sbin/rc5 and /sbin/rc6 are just symbolic links to /sbin/rc0 and do not need to be
maintained separately.

/sbin/rc1 is responsible for executing all scripts in the /etc/rc1.d directory, if it exists.
This terminates all system services and active processes, initially using /usr/sbin/killall,

80 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 81

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

and /usr/sbin/killall 9 for any stubborn processes. The differences between /etc/rc0
and /etc/rc1 are that the latter brings up the system into single-user mode after shutting
down all processes in multiuser mode, and does not unmount any file systems.

In run-level 2 state, /sbin/rc2 executes all scripts in the /etc/rc2.d directory, bringing
the system into its first multiuser state. Thus, all local file systems listed in /etc/vfstab are
mounted, disk quotas and file system logging are switched on if configured, temporary
editor files are saved, the /tmp directory is cleared, system accounting is enabled, and
many network services are initialized.

In run-level 3 state, /sbin/rc3 executes all scripts in the /etc/rc3.d directory, bringing
the system into its final multiuser state. These services are mainly concerned with
shared network resources, such as NFS, but Solstice Enterprise Agents, and other
SNMP-based systems, may also be started here.

/sbin/rcS executes all scripts in the /sbin/rcS.d directory, to bring the system up to the
single-user run level. A minimal network configuration is established if a network can
be found, otherwise an interface error is reported. Essential system file systems (such
as /, /usr, and /proc) are mounted if they are available, and the system name is set.

To the superuser on the console, the transition between run levels is virtually
invisible: most daemons, whether starting in a single- or multiuser init state, display
a status message when starting up, which is echoed to the console.

Obviously, when booting into single-user mode, fewer messages appear on the
console, because multiuser init state processes are not started. The single-user
run-level messages appear as something like this:

ok boot -s
SunOS Release 5.10 Version [UNIX(R) System V Release 4.0]
Copyright (c) 1983-2003, Sun Microsystems, Inc.
configuring network interfaces: hme0.
Hostname: sakura
INIT: SINGLE USER MODE
Type Ctrl-d to proceed with normal startup,
(or give root password for system maintenance):

At this point, you enter the password for the superuser account (it will not be echoed
to the display). Assuming that you enter the correct password, the display then proceeds
with another banner and a Bourne shell prompt:

Sun Microsystems Inc. SunOS 5.10 November 2003
#

After maintenance is complete, simply exit the shell by using CTRL-D, after which
the system proceeds with a normal multiuser boot.

The /sbin/init daemon is responsible for process control initialization and is a key
component of the booting process. Although /sbin/init is not significant in many
day-to-day operations after booting, its configuration for special purposes can be

confusing for first-time users. In this section, we examine the initialization of init
using the /etc/inittab file, and explain in detail what each entry means. The primary
function of init is to spawn processes, usually daemon processes, from configuration
information specified in the file /etc/inittab in ASCII format. Process spawning always
takes place in a specific software context, which is determined by the current run level.

After booting the kernel from the OpenBoot PROM monitor, init reads the system
environment variables stored in /etc/default/init (e.g., the time zone variable TZ) and sets
them for the current run level. init then reads the /etc/inittab file, setting the init
level specified in that file by the initdefault entry. In most multiuser systems, this entry
corresponds to run-level 3 and the entry looks like this:

is:3:initdefault:

If the file /etc/inittab does not exist during booting, the superuser will be asked to
manually enter the desired run level for the system. If this event ever occurs unexpectedly
for a multiuser system, it is a good strategy to enter single-user mode (by typing s) to
perform maintenance on the /etc/inittab file. Another potential problem is if /etc/inittab
does contain an empty rstate value in the initdefault entry: the system will go to firmware
and continuously reboot! If this occurs, exit from the operating system into the OpenBoot
PROM monitor by holding down the STOP key and pressing A. You can now boot directly
into single-user mode and add an appropriate rstate entry to the /etc/inittab file. Safeguards
are built into init; however, if the system discovers that any entry in /etc/inittab
is respawning rapidly (i.e., more than five times per minute), init assumes that a
typographical error has been made in the entry, and a warning message is printed on
the system console. init will then not respawn the affected entry until at least five
minutes has elapsed since the problem was identified.

After entering a multiuser run level for the first time since booting from the OpenBoot
PROM monitor, init reads any appropriate boot and bootwait entries in /etc/inittab. This
provides for basic initialization of the operating system, such as mounting file systems,
which is generally performed before users may be allowed to operate on the system.

In order to spawn processes specified in /etc/inittab, init reads each entry and
determines the process requirements for the commands to be executed. For example,
for entries that must be respawned in the future, a child process is created using
fork(). After reading all entries and spawning all processes, init simply waits until
it receives a signal to change the system’s init state (this explains why init is always
visible in the process list). /etc/inittab is always reread at this point to ensure that any
modifications to its specified behavior are used. In addition, init can be initialized at
any time by passing a special parameter to force rereading of /etc/inittab:

init q

When init receives a valid request to change run levels, it sends a warning signal
to all affected processes and then waits five seconds, after which it sends to any
processes that do not behave well a kill signal to forcibly terminate them. Affected

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

82 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

processes are those that will be invalid under the target init state (e.g., when going
from multiuser to single-user mode, daemons started in multiuser mode will be
invalid). Because five seconds may not be sufficient to shut down an entire database
server and close all open files, it is best to ensure that such activities precede any
change of state that affects the main applications running on your system (e.g., by
executing the appropriate command in /etc/init.d with the stop parameter).

/sbin/init can be executed only by a superuser, because changes in the system’s init
state executed by a normal user could have serious consequences (e.g., using init to
power down a live server). Thus, it is always wise to ensure that file permissions are
correctly set on the /sbin/init binary. The “Command Reference” section later in the
chapter contains further details about the format of the /etc/inittab file.

Shutdown
A Solaris system is designed to stay up continuously, with as few disruptions to service
through rebooting as possible. This design is facilitated by a number of key high-
availability and redundancy features in Solaris, including the following:

• Dual power supplies A secondary supply can continue to power the system if
the primary power supply fails.

• Mirroring of disk data The system can generally continue to operate even in
the face of multiple disk failure.

• Hot-swappable disks You can remove a faulty disk and replace it while the
system is still online. You can format and use the new disk immediately,
especially when you use DiskSuite.

• The use of domains on StarFire and E10000 systems You can perform
maintenance on one “virtual” host while a second domain acts in its place.

However, there are two situations in which a Solaris system must be halted by the
superuser:

• Performing a reconfiguration boot

• Powering down the system

Note that you can use the drvconfig command to recognize most new hardware
devices, further reducing the need for rebooting. A number of different commands are
available to shut down and halt a system, and which one to use depends on the specific
situation at hand. For example, some commands cycle through a series of shutdown
scripts that ensure that key applications and services, such as databases, are cleanly
shut down. Others commands are designed to ensure that a system is powered down
as rapidly as possible. For example, if a storm strikes out the main power system and
you’re left with only a few minutes of battery backup, it might be wise to perform a
rapid powerdown, to protect equipment from further damage. The next several

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 83

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

84 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

sections investigate the following commands: init, shutdown, reboot, poweroff,
and halt. These commands can only be run as the root user.

Shutting Down the System
The shutdown command is used to change a system’s state, performing a similar
function to init, as described earlier. However, shutdown has several advantages
over init:

• You can specify a grace period, so that the system can be shut down at some
future time rather than immediately.

• A confirmation message requires the superuser to confirm the shutdown before
it proceeds. If an automated shutdown is to be executed at some future time,
you can avoid the confirmation message by using the –y option.

• Only init states 0, 1, 5, 6, and S can be reached using shutdown.

For example, to shut down the system to run-level 5, so that you can move the
system, you would use the following command, giving 60 seconds’ notice:

shutdown -i 5 -g 60 "System will be powered off for
maintenance. LOGOUT NOW."

This prints the following messages at 60 and 30 seconds, respectively:

Shutdown started. Tue Feb 12 12:00:00 EST 2004
Broadcast Message from root (pts/1) on cassowary Tue Feb 12
12:00:00 EST 2004...

The system will be shut down in 1 minute
System will be powered off for maintenance. LOGOUT NOW.
Shutdown started. Tue Feb 12 12:00:30 EST 2004
Broadcast Message from root (pts/1) on cassowary Tue Feb 12
12:00:30 EST 2004...

The system will be shut down in 30 seconds
System will be powered off for maintenance. LOGOUT NOW.

Once the countdown has been completed, the following message appears:

Do you want to continue? (y or n):

If you type Y, the shutdown proceeds. If you type N, the shutdown is cancelled and
the system remains at the current run level.

Rebooting
The reboot command is used to reboot the system, from the current run level to the
default run level, and not to change to any other run level. The reboot command has

several options. You can use the –l flag to prevent the recording of the system halt in
the system log, which it normally attempts before halting the CPU. The –n option
prevents the refreshing of the superblock, which is performed by default, to prevent
damage to mounted file systems. The most extreme option is –q, which does not
attempt any kind of fancy actions before shutting down the system and rebooting.

In addition, reboot accepts the standard parameters passed to the boot
command, if they are preceded by two dashes and are placed after the reboot
parameters (described in the preceding paragraph) on the command line.

For example, to perform a configuration reboot, without recording an entry in the
system log, you could use the following command:

reboot -l -- -r

Reconfiguration Boot
Performing a reconfiguration boot involves updating the hardware configuration for the
system. If you add new hardware to the system, other than a disk, you must bring the
system down to the hardware maintenance state (level 0) before you can insert the new
device. In addition, you must notify the system of a reconfiguration reboot either by
booting from the OpenBoot PROM monitor with the command boot -r or by creating
an empty file called /reconfigure before changing to run-level 0. You can achieve this by
using the command touch /reconfigure. Be sure to remove the /reconfigure file
after the system has been reconfigured (if necessary).

Powering Down
The poweroff command is used to rapidly shut down the system and switch off
power (like switching to run-level 5), without cycling through any intermediate run
levels and executing the kill scripts specified for those run levels. This ensures that you
can achieve a very fast shutdown when emergency situations dictate that the system
cannot remain live, even with the risk of data loss. For example, if a system is under a
denial of service attack, and the decision is made to pull the plug on the service, the
poweroff command shuts it down much faster than init or shutdown. The CPU is
halted as quickly as possible, no matter what the run level.

The poweroff command has several options. You can use the –l flag to prevent
the recording of the system halt in the system log, which it normally attempts before
halting the CPU. The –n option prevents the refreshing of the superblock, which is
performed by default, to prevent damage to mounted file systems. The most extreme
option is –q, which does not attempt any kind of fancy actions before shutting down.

Halting the System
You can use the halt command to rapidly shut down the system, to the OpenBoot
PROM monitor, without cycling through any intermediate run levels and executing the
kill scripts specified for those run levels. Like the poweroff command, this ensures a
rapid shutdown. Also, the halt command has the same options as poweroff.

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 85

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Examples
The following examples demonstrate how to use the OpenBoot PROM monitor
effectively, and provide some real-world cases for starting up and shutting down
a Solaris system.

Single-User Mode
If a system fails to start correctly in multiuser mode, it’s likely that one of the scripts
being run in /etc/rc2.d is the cause. To prevent the system from going multiuser, you can
boot directly into single-user mode from the ok prompt:

INIT: SINGLE USER MODE
Type Ctrl-d to proceed with normal startup,
(or give root password for system maintenance):

At this point, you can enter the root password, and the user will be given a root
shell. However, not all file systems will be mounted, although you can then check
individual scripts for misbehaving applications.

Recovering the System
If the system will not boot into single-user mode, the solution is more complicated,
because you cannot use the default boot device. For example, if an invalid entry has
been made in the /etc/passwd file for the root user, the system will not boot into single-
or multiuser mode. To recover the installed system, you need to boot the host from the
installation CD-ROM into single-user mode. At this point, you can mount the default
root file system on a separate mount point, edit the /etc/passwd file, and reboot the
system with the default boot device. This sequence of steps is shown here, assuming
that /etc is located on /dev/dsk/c0t0d0s1:

ok boot cdrom
...
INIT: SINGLE USER MODE
Type Ctrl-d to proceed with normal startup,
(or give root password for system maintenance):
mkdir /temp
mount /dev/dsk/c0t0d0s1 /temp
vi /temp/etc/passwd
sync; init 6

If a system is hung and you cannot enter commands into a shell on the console, you
can use the key combination STOP-A to halt the system and access the OpenBoot PROM
monitor. If you halt and reboot the system in this way, all data that has not been written
to disk will be lost, unless you use the go command to resume the system’s normal
operation. Another method of accessing a system if the console is locked is to telnet to

86 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

the system as an unprivileged user, use the su command to obtain superuser status,
and kill whatever process is hanging the system. You can then resume normal operation.

Writing Control Scripts
For a multiuser system, the most important control scripts reside in the /etc/rc2.d and /
etc/rc3.d directories, which are responsible for enabling multiuser services and NFS
network resource sharing, respectively. A basic script for starting up a Web server looks
like this:

#!/bin/sh
Sample webserver startup script
Should be placed in /etc/rc2.d/S99webserver
case "$1" in

'start')
echo "Starting webserver...\c"
if [-f /usr/local/sbin/webserver]; then

/usr/local/sbin/webserver start
fi
echo ""
;;

'stop')
echo "Stopping webserver...\c"
if [-f /usr/local/sbin/webserver]; then

/usr/local/sbin/webserver stop
fi
echo ""

;;
*)

echo "Usage: /etc/rc2.d/S99webserver { start | stop }"
;;

esac

This file should be created by root (with the group sys) and placed in the file /etc/
rc2.d/S99webserver, and should have executable permissions:

chmod 0744 /etc/rc2.d/S99webserver
chgrp sys /etc/rc2.d/S99webserver

This location of the file is a matter of preference. Many admins treat the Web server
similar to an NFS server. In this regard the system run-level 3 represents a “share” state.

Note that because a Web server is a shared service, you could also start it from a
script in /etc/rc3.d. When called with the argument start (represented in the script
by $1), the script prints a status message that the Web server daemon is starting, and
proceeds to execute the command if the Web server binary exists. The script can also act
as a kill script, because it has a provision to be called with a stop argument. Of course,

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 87

a more complete script would provide more elaborate status information if the Web
server binary did not exist, and may further process any output from the Web server by
using a pipe (e.g., mailing error messages to the superuser).

One of the advantages of the flexible boot system is that you can execute these
scripts to start and stop specific daemons without changing the init state. For
example, if you were going to update a web site and needed to switch off the Web
server for a few minutes, the command

/etc/rc2.d/S99webserver stop

would halt the Web server process, but would not force the system back into a single-
user state. You could restart the Web server after all content was uploaded by typing
the following command:

/etc/rc2.d/S99webserver start

In order to conform to System V standards, it is actually more appropriate to create
all the run control scripts in the /etc/init.d directory and create symbolic links back to
the appropriate rc2.d and rc3.d directories. This means that all scripts executed by init
through different run levels are centrally located and can be easily maintained. With
the Web server example, you could create a file in /etc/init.d with a descriptive filename:

vi /etc/init.d/webserver

After adding the appropriate contents, you could save the file and create the
appropriate symbolic link by using the symbolic link command ln:

ln -s /etc/init.d/webserver /etc/rc2.d/S99webserver

Using this convention, kill and startup scripts for each service can literally coexist
in the same script, with the capability to process a start argument for startup scripts,
and a stop argument for kill scripts. In this example, you would also need to create a
symbolic link to /etc/init.d/webserver for K99webserver.

Writing Kill Scripts
Under System V, kill scripts follow the same convention as startup scripts, in that a
stop argument is passed to the script to indicate that a kill rather than a startup is
required, in which a start argument would be passed. A common approach to killing
off processes is to find them by name in the process list. The following script kills the
asynchronous PPP daemon, which is the link manager for the asynchronous data link
protocol. This daemon is started by using aspppd—thus, the script generates a process
list, which is piped through a grep to identify any entries containing aspppd, and the
process number is extracted using awk. This value is assigned to a variable ($procid),

88 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

which is then used by the kill command to terminate the appropriate process.
Alternatively, you could use pgrep or pkill.

procid=`ps -e | grep aspppd | awk '{print $1}'`
if test -n "$procid"
then

kill $procid
fi

Alternatively, you could use sed to match the process name:

procid=`/usr/bin/ps -e |
/usr/bin/grep aspppd |
/usr/bin/sed -e 's/^ *//' -e 's/ .*//'`

When multiple processes are to be terminated using a single script (for example,
when the NFS server terminates), you can write a shell function, killprocid(),
which takes an argument and searches for it in the process list, terminating the named
process if its exists:

killprocid() {
procid=`/usr/bin/ps -e |

/usr/bin/grep -w $1 |
/usr/bin/sed -e 's/^ *//' -e 's/ .*//'`

["$procid" != ""] && kill $procid
}

You can then terminate individual processes by using the same function:

killproc nfsd
killproc mountd
killproc rpc.boot
killproc in.rarpd
killproc rpld

There are two problems with these approaches to process termination. First, there
is an ambiguity problem in that different daemons and applications can be identified
by the same name. For example, a system may be running the Apache Web server,
which is identified by the process name httpd, as well as a Web server from another
vendor (such as iPlanet) that is also identified by httpd. If you write a script to kill
the Apache Web server, but the first process identified actually belongs to the iPlanet
Web server, the iPlanet Web server process would be terminated. One solution to this
problem is to ensure that all applications are launched with a unique name, or from a
wrapper script with a unique name. The second problem is that for a system with even
a moderately heavy process load (e.g., 500 active processes), executing the ps

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 89

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

command to kill each process is going to generate a large CPU overhead, leading to
excessively slow shutdown times. An alternative solution to this problem would be
to use a kill script.

Control Script Examples
If you’re curious about what kind of scripts are started or killed in Solaris during
startup and shutdown, Table 4-3 lists some sample startup scripts in /etc/rc2.d, and
Table 4-4 lists some example kill scripts found in /etc/rc0.d. You need to realize that
these scripts change from system to system. In addition, if you modify these standard
scripts, it’s important to realize that subsequent patch installs could wipe out the
changes—so, it’s worthwhile to verify each script after a patch has been installed.

If you want to stop a script from being loaded at startup, you can simply preface
the filename with NO. If you simply add a .bak extension or similar, then the script
will still load because the script name still starts with Snn, where nn is an integer
representing the order in which each script should be loaded. The lower-numbered
scripts are executed before the higher-numbered scripts.

90 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Script Description

S05RMTMPFILES Removes temporary files in the /tmp directory.

S20sysetup Establishes system setup requirements and checks /var/crash to
determine whether the system is recovering from a crash.

S21perf Enables system accounting using /usr/lib/sa/sadc and /var/adm/sa/sa.

S30sysid.net Executes /usr/sbin/sysidnet, /usr/sbin/sysidconfig, and /sbin/ifconfig,
which are responsible for configuring network services.

S69inet Initiates the second phase of TCP/IP configuration, following on from
the basic services established during single-user mode (rcS). Setting
up IP routing (if /etc/defaultrouter exists), performing TCP/IP parameter
tuning (using ndd), and setting the NIS domain name (if required) are all
performed here.

S70uucp Initializes the UNIX-to-UNIX Copy (UUCP) program by removing locks and
other unnecessary files.

S71sysid.sys Executes /usr/sbin/sysidsys and /usr/sbin/sysidroot.

S72autoinstall Executes JumpStart installation if appropriate.

S72inetsvc Performs final network configuration using /usr/sbin/ifconfig after NIS/NIS+
have been initialized. Also initializes the Internet Domain Name System (DNS)
if appropriate.

S80PRESERVE Preserves editing files by executing /usr/lib/expreserve.

S92volmgt Starts volume management for removable media using /usr/sbin/vold.

TABLE 4-3 Typical Multiuser Startup Scripts Under Solaris 10

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Shutting Down the System
In order to manually change run levels, the desired init state is used as an argument
to /sbin/init. For example, to bring the system down to a single-user mode for
maintenance, you could use the following command:

init s
INIT: New run level: S
The system is coming down for administration. Please wait.
Print services stopped.
syslogd: going down on signal 15
Killing user processes: done.
INIT: SINGLE USER MODE
Type Ctrl-d to proceed with normal startup,
(or give root password for system maintenance):
Entering System Maintenance Mode ...
#

The system is most easily shut down by using the new /usr/sbin/shutdown command
(not the old BSD-style /usr/ucb/shutdown command discussed later). This command is
issued with the form

shutdown -i run-level -g grace-period -y

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 91

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Script Description

K00ANNOUNCE Announces that “System services are now being stopped.”

K10dtlogin Initializes tasks for the CDE (common desktop environment), including
killing the dtlogin process.

K20lp Stops printing services using /usr/lib/lpshut.

K22acct Terminates process accounting using /usr/lib/acct/shutacct.

K42audit Kills the auditing daemon (/usr/sbin/audit).

K47asppp Stops the asynchronous PPP daemon (/usr/sbin/aspppd).

K50utmpd Kills the utmp daemon (/usr/lib/utmpd).

K55syslog Terminates the system logging service (/usr/sbin/syslogd).

K57sendmail Halts the sendmail mail service (/usr/lib/sendmail).

K66nfs.server Kills all processes required for the NFS server (/usr/lib/nfs/nfsd).

K69autofs Stops the automounter (/usr/sbin/automount).

K70cron Terminates the cron daemon (/usr/bin/cron).

K75nfs.client Disables client NFS.

K76nscd Kills the name service cache daemon (/usr/sbin/nscd).

K85rpc Disables remote procedure call (rpc) services (/usr/sbin/rpcbind).

TABLE 4-4 Typical Single-User Kill Scripts Under Solaris 10

92 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

where run-level is an init state that is different from the default init state S (i.e., one of
the run levels 0, 1, 2, 5, or 6). However, most administrators typically are interested in
using shutdown with respect to the reboot or powerdown run levels. The grace-period is
the number of seconds before the shutdown process is initiated. On single-user machines,
the superuser can easily determine who is logged in and what processes need to be
terminated gracefully. However, on a multiuser machine, it is more useful to warn
users in advance of a powerdown or reboot. If the change of init state is to proceed
without user intervention, including the –y flag at the end of the shutdown command
is useful; otherwise, the message

Do you want to continue? (y or n):

is displayed and you must type Y for the shutdown to proceed. The default grace-period
on Solaris is 60 seconds, so if the administrators wanted to reboot with two minutes’
warning given to all users, without user intervention, the command would be as follows:

shutdown -i 5 -g 120 -y

The system then periodically displays a message that warns all users of the imminent
init state change:

Shutdown started. Tue Feb 12 10:22:00 EST 2004
Broadcast Message from root (console) on server Tue Feb 12 10:22:00...
The system server will be shut down in 2 minutes

The system then reboots without user intervention, and does not enter the OpenBoot
PROM monitor. If you need to issue commands using the monitor (i.e., an init state of
0 is desired), you can use the following command:

shutdown -i0 -g180 -y
Shutdown started. Tue Feb 12 11:15:00 EST 2004
Broadcast Message from root (console) on server Tue Feb 12 11:15:00...
The system will be shut down in 3 minutes
.
.
.
INIT: New run level: 0
The system is coming down. Please wait.
.
.
.
The system is down.
syncing file systems... [1] [2] [3] done
Program terminated
Type help for more information
ok

There are many ways to warn users in advance of a shutdown. One way is to edit
the “message of the day” file (/etc/motd) to contain a warning that the server will be
down and/or rebooted for a specific time. This message will be displayed every time
a user successfully logs in with an interactive shell. The following message gives the
date and time of the shutdown, expected duration, and a contact address for enquiries:

System server will be shutdown at 5 p.m. 2/12/2004.
Expected downtime: 1 hour.
E-mail root@system for further details.

At least 24 hours’ notice is usually required for users on a large system, because
long jobs need to be rescheduled. In practice, many administrators shut down or reboot
only outside of business hours to minimize inconvenience; however, power failure and
hardware problems can necessitate unexpected downtime.

This method works well in advance, but because many users are continuously
logged in from remote terminals, they won’t always read the new message of the day.
Another approach is to use the “write all” command (wall), which sends a message
to all terminals of all logged-in users. You can send this command manually at hourly
intervals prior to shutdown, or you could establish a cron job to perform this task
automatically. An example command would be this:

wall
System server will be shutdown at 5 p.m. 2/12/2004.
Expected downtime: 1 hour.
E-mail root@system for further details.
^d

After sending the wall message, you can perform a final check of logged-in users
prior to shutdown by using the who command:

who
root console Feb 12 10:15
pwatters pts/0 Feb 12 10:15 (client)

You can send a message to the user pwatters on pts/0 directly to notify him of the
imminent shutdown:

write pwatters
Dear pwatters,
Please logout immediately as the system server is going down.
If you do not logout now, your unsaved work may be lost.
Yours Sincerely,
System Administrator (root@system)
CTRL+d

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 93

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

94 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

Depending on the status of the user, you may also want to request a talk session, by
using the following command:

talk pwatters

If all these strategies fail to convince the user pwatters to log out, you have no choice
but to proceed with the shutdown.

Command Reference
The following commands can be used within the OpenBoot PROM monitor to manage
the SPARC firmware and the commands that are commonly used to manage init states.

STOP Commands
The STOP commands are executed on the SPARC platform by holding down the
special STOP key, located on the left side of the keyboard, and any one of several other
keys, each of which specifies the operation to be performed. The following functions
are available:

STOP Enters the POST environment

STOP-A Enters the OpenBoot PROM monitor environment

STOP-D Performs diagnostic tests

STOP-F Enters a program in the Forth language

STOP-N Initializes the NVRAM settings to their factory defaults

Boot Commands
You can use the boot command with any one of the following options:

net Boots from a network interface

cdrom Boots from a local CD-ROM drive

disk Boots from a local hard disk

tape Boots from a local tape drive

In addition, you can specify the name of the kernel to boot by including its relative
path after the device specifier. You can also pass the –a option on the command line to
force the operator to enter the path to the kernel on the boot device.

Using eeprom
Solaris provides an easy way to modify the values of variables stored in the PROM,
through the eeprom command. The eeprom command can be used by the root user
when the system is running in either single- or multiuser mode. The following
variables can be set, shown here with their default values:

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 95

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

/usr/sbin/eeprom
tpe-link-test?=true
scsi-initiator-id=7
keyboard-click?=false
keymap: data not available.
ttyb-rts-dtr-off=false
ttyb-ignore-cd=true
ttya-rts-dtr-off=false
ttya-ignore-cd=true
ttyb-mode=9600,8,n,1,-
ttya-mode=9600,8,n,1,-
pcia-probe-list=1,2,3,4
pcib-probe-list=1,2,3
mfg-mode=off
diag-level=max
#power-cycles=50
system-board-serial#: data not available.
system-board-date: data not available.
fcode-debug?=false
output-device=screen
input-device=keyboard
load-base=16384
boot-command=boot
auto-boot?=true
watchdog-reboot?=false
diag-file: data not available.
diag-device=net
boot-file: data not available.
boot-device=disk net
local-mac-address?=false
ansi-terminal?=true
screen-#columns=80
screen-#rows=34
silent-mode?=false
use-nvramrc?=false
nvramrc: data not available.
security-mode=none
security-password: data not available.
security-#badlogins=0
oem-logo: data not available.
oem-logo?=false
oem-banner: data not available.
oem-banner?=false
hardware-revision: data not available.
last-hardware-update: data not available.
diag-switch?=false

You can also change the values of the boot device and boot command from within
Solaris by using the eeprom command, rather than having to reboot, jump into the
OpenBoot PROM monitor, and set the values directly.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

/sbin/init
In addition to being the process spawner, init can be used to switch run levels at any
time. The following are some examples of what you can do with init:

Task Command

Perform hardware maintenance # init 0

Enter the administrative state # init 1

Enter the first multiuser state # init 2

Enter the second multiuser state # init 3

Enter a user-defined state # init 4

Power down the system # init 5

Halt the operating system # init 6

Enter the administrative state, with all the file systems available # init S

Before using init in this way, preceding its execution with a call to sync is often
advisable. The sync command renews the disk superblock, which ensures that all
outstanding data operations are flushed and that the file system is stable before
shutting down.

/etc/inittab
After the kernel is loaded into memory, the /sbin/init process is initialized and the
system is bought up to the default init state, which is determined by the initdefault
value contained in /etc/inittab, which controls the behavior of the init process. Each
entry has the form

identifier:runlevel:action:command

where identifier is a unique two-character identifier, runlevel specifies the run level to be
entered, action specifies the process characteristics of the command to be executed, and
command is the name of the program to be run. The program can be an application or a
script file. The run level must be one of S, A, B, C, 1, 2, 3, 4, 5, or 6. If the process is to be
executed by all run levels, no run level should be specified.

The following is a standard inittab file:

ap::sysinit:/sbin/autopush -f /etc/iu.ap
ap::sysinit:/sbin/soconfig -f /etc/sock2path
fs::sysinit:/sbin/rcS sysinit >/dev/msglog 2<>/dev/msglog \
</dev/console

is:3:initdefault:
p3:s1234:powerfail:/usr/sbin/shutdown -y -i5 -g0 >/dev/msglog 2<>/dev/msglog
sS:s:wait:/sbin/rcS >/dev/msglog 2<>/dev/msglog \
</dev/console

96 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

s0:0:wait:/sbin/rc0 >/dev/msglog 2<>/dev/msglog \
</dev/console

s1:1:respawn:/sbin/rc1 >/dev/msglog 2<>/dev/msglog \
</dev/console

s2:23:wait:/sbin/rc2 >/dev/msglog 2<>/dev/msglog \
</dev/console

s3:3:wait:/sbin/rc3 >/dev/msglog 2<>/dev/msglog \
</dev/console

s5:5:wait:/sbin/rc5 >/dev/msglog 2<>/dev/msglog \
</dev/console

s6:6:wait:/sbin/rc6 >/dev/msglog 2<>/dev/msglog \
</dev/console

fw:0:wait:/sbin/uadmin 2 0 >/dev/msglog 2<>/dev/msglog \
</dev/console

of:5:wait:/sbin/uadmin 2 6 >/dev/msglog 2<>/dev/msglog \
</dev/console

rb:6:wait:/sbin/uadmin 2 1 >/dev/msglog 2<>/dev/msglog \
</dev/console

sc:234:respawn:/usr/lib/saf/sac -t 300
co:234:respawn:/usr/lib/saf/ttymon -g -h -p "`uname -n` console login: "\

-T sun -d /dev/console -l console -m ldterm,ttcompat

This /etc/inittab file contains only entries for the actions sysinit, respawn,
initdefault, wait, and powerfail. These are the common actions found on most
systems. However, Solaris provides a wide variety of actions that may be useful in
special situations (e.g., when powerwait is more appropriate than powerfail).
Potential actions are identified by any one of the following:

• initdefault This is a mandatory entry found on all systems and is used to
configure the default run level for the system. This is specified by the highest
init state specified in the rstate field. If this field is empty, init interprets the
rstate as the highest possible run level (run-level 6), which forces a continuous
reboot of the system. In addition, if the entry is missing, you must supply one
manually on the console for booting to proceed.

• sysinit This entry is provided as a safeguard for asking which run level is
required at boot time if the initdefault entry is missing. Only devices required
to ask the question are affected.

• boot This entry is parsed only at boot time and is mainly used for initialization
following a full reboot of the system after powerdown.

• off This entry ensures that a process is terminated upon entering a particular
run level. A warning signal is sent, followed by a kill signal, again with a five-
second interval.

• once This entry is similar to boot but is more flexible, because the named
process runs only once and is not respawned.

• ondemand This entry is similar to the respawn action.

C h a p t e r 4 : I n i t i a l i z a t i o n , O p e n B o o t P R O M , a n d R u n L e v e l s 97

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

• powerfail This entry runs the process associated with the entry when a power
fail signal is received.

• powerwait This entry is similar to powerfail, except that initwaits until the
process terminates before further processing entries in /etc/inittab. This is especially
useful for enforcing sequential shutdown of services that are prioritized.

• bootwait This entry is parsed only on the first occasion that the transition
from a single- to multiuser run levels occurs after a system boot.

• wait This entry starts a process and waits for its completion upon entering the
specified run level; however, the entry is ignored if /etc/inittab is reread during
the same run level.

• respawn This entry ensures that if a process that should be running is not, it is
respawned.

The /etc/inittab file follows conventions for text layout used by the Bourne shell: A
long entry can be continued on the following line by using a backslash (\), and
comments can be inserted into the process field only by using a hash character (#).
There is a limitation of 512 characters for each entry imposed on /etc/inittab; however,
there is no limit on the number of entries that may be inserted.

Summary
The OpenBoot PROM monitor is one of the outstanding features of the SPARC
architecture. It allows a wide range of system parameters to be configured using a
high-level programming language that is independent of the installed operating
system. OpenBoot includes a variety of diagnostic and testing applications. In this
chapter, you have also learned the basic elements of booting and initializing a Solaris
system. These procedures are used across the entire range of SPARC hardware and, in
most cases, across Solaris x86 systems. While the process of booting and initializing a
Solaris system may seem complicated, it allows for a greater amount of flexibility when
building systems for high availability.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

98 P a r t I : I n s t a l l a t i o n

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 4

II
System Essentials

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5
Blind Folio 99

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5
Blind Folio 99

CHAPTER 5:
Installing Software, Live
Upgrade, and Patching

CHAPTER 6:
Text Processing and Editing

CHAPTER 7:
Shells, Scripts,
and Scheduling

CHAPTER 8:
Process Management

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank.

5
Installing Software, Live

Upgrade, and Patching

All Solaris software installed as part of the operating environment is included
in an archive known as a package. Solaris packages provide an easy way to
bring together application binaries, configuration files, and documentation for

distribution to other systems. In addition to the Solaris packaging system, Solaris also
supports standard UNIX archiving and compression tools, such as tar (tape archive)
and compress. This chapter examines how you can manage packages using the standard
Solaris packaging tools and the command-line interface (CLI). Operations that are
reviewed in this chapter include installing packages, displaying information about
packages, and removing packages primarily using the CLI tools.

One of the most important aspects of system maintenance involves identifying,
downloading, and installing patches that have been released for a specific revision
level. Patches are binary code modifications that generally fix bugs but may also introduce
new, urgently required features into existing applications and system services. This
chapter looks at the process of patch installation and backing out of patches that have
already been applied.

Key Concepts
Packages are text files that contain archives of binary applications, configuration files,
documentation, and even source code. All files in the Solaris operating environment
are supplied as part of a package, making it easy for you to group files associated with
different applications. If files are installed without packaging, it can become difficult
over the years for administrators to remember which files were installed with particular
applications. Packaging makes it easy to recognize application dependencies, because
all files required by a specific application can be included within the archive.

1 0 1

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5
Blind Folio 101

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Getting Information about Packages
Administrators can use the pkgchk command to examine the package properties of a
file that has already been installed:

pkgchk -l -p /usr/bin/mkdir
Pathname: /usr/bin/mkdir
Type: regular file
Expected mode: 0555
Expected owner: bin
Expected group: bin
Expected file size (bytes): 9876
Expected sum(1) of contents: 38188
Expected last modification: Oct 06 05:47:55 PM 1998
Referenced by the following packages:

SUNWcsu
Current status: installed

Another advantage of using packages is that they make use of the standard installation
interface provided to install Solaris packages. This means that all Solaris applications
are installed using one of two standard installation applications (pkgadd or the admintool),
rather than each application having its own installation program. This reduces coding
time and makes it easier for administrators to install software, because they need to learn
only a single interface with standard options, such as overwriting existing files. Using
packages reduces the administrative overhead in software management on Solaris 10.

In this chapter, we examine how to install new packages, display information about
downloaded packages, and remove packages that have been previously installed on the
system, by using the command-line package tools.

Live Upgrade
All the installation methods reviewed so far require that an existing system be brought
to run-level 0 to start the installation process. In addition, you can expect any system
that is being upgraded to be in single-user mode for a matter of hours while distribution
files are copied and third-party software is reinstalled. This kind of downtime may be
unacceptable for a production server. While many departmental servers no doubt have
a backup server that can take their place during upgrading and installation testing,
many high-end servers, such as the Sun Fire 15K, are logically divided into domains
that run on a single system. A second standby system may not be available to replace
a high-end server, just for the purpose of an upgrade. Note that while it’s possible to
configure each domain individually, many sites would prefer to keep all servers at the
same release level.

For such sites, Solaris 10 offers a Live Upgrade facility that allows a separate boot
environment to be created, with the distribution of the new operating system files
installed to an alternative location. Once the installation of the new boot environment
has been completed, the system needs to be rebooted only once to allow it to run the

102 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 103

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

new operating environment. If the new boot environment fails for some reason, the old
boot environment can be reinstated as the default and the system can be rebooted to its
previous state. This allows operations to resume as quickly as possible in the event of a
failure.

One of the nice features of Live Upgrade is that the file system layout and configuration
can be different from your existing installation. This allows you to fine-tune your existing
settings before you upgrade. For example, if print and mail jobs have continually caused
the /var partition to overfill on a regular basis, you can increase the size of the /var partition
in the new boot environment. You can make changes to the /, /usr, /var, and /opt partitions.
Other file systems continue to be shared between the existing and new boot environments,
unless otherwise specified.

To create a new boot environment, you must identify and format a separate partition
before the procedure can begin. This partition must have sufficient disk space to install
the new boot environment. The current contents of /, /usr, and /opt are then copied to the
new partition prior to upgrade. Alternatively, if you have a second disk installed on the
system, you can copy the existing files to the appropriate slices on the new disk. Once
these files are in place, the new boot environment is ready to be upgraded. All these
processes can occur without interfering with the current boot environment.

Upgrading typically involves overwriting the files stored on the new boot environment
in /, /usr, and /opt. After this has been completed, you can activate the new boot
environment and boot the system into the new environment.

Live Upgrade operates through a terminal-based menu that allows the following
operations to be performed:

Operation Description

Activate Activates a newly installed boot environment

Cancel Cancels a file-transfer operation

Compare Checks for differences between the new and current boot environments

Copy Begins a file-transfer operation

Create Initializes a new boot environment

Current Prints the name of the current boot environment

Delete Uninstalls a boot environment

List Displays the file systems in a boot environment

Rename Modifies the name of a new or existing boot environment

Status Prints the condition of any boot environment

Upgrade Begins the upgrade process on the new boot environment

Help Prints the Help menu

Exit Quits the program

Patches
Patches are binary code modifications that affect the way Sun-supplied software operates.
Sun may release a patch to fix previously identified bugs or to remove a security exploit

104 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

in a piece of software for which a simple workaround is inadequate to prevent intrusion
or disruption of normal system activity. For example, until recently, many of the older
Solaris daemons suffered from buffer-overflow vulnerabilities, which allowed a rogue
client to deliberately overwrite the fixed boundaries on an array to crash the system.
Many of the system daemons, such as Web servers, may be crashed by overwriting
memory with arbitrary values outside the declared size of an array. Without appropriate
bounds checking, passing a GET request of 1025 bytes to a Web server when the array
size is 1024 would clearly result in unpredictable behavior, because the C language does
not prevent a program from doing this. Since Solaris daemons are typically written in C,
a number of them have been fixed in recent years to prevent this problem (but you may
be surprised at just how often new weaknesses are exposed). Sendmail, IMAP, and POP
daemons for Solaris have all experienced buffer-overflow vulnerabilities in the past that
have required urgent installation of security patches.

For security-related patches (e.g., CVE 1999-0977), the CVE number matches
descriptions of each security issue from the Common Vulnerabilities and Exposures
database (http://cve.mitre.org/). Each identified vulnerability contains a hyperlink back
to the CVE database, so that information displayed about every issue is updated directly
from the source. New patches and bug fixes are also listed.

Keep in mind that although security-related patches are important, other significant
upgrades and patches are also released. These patches might involve upgrading the kernel,
or fixing identified bugs in system libraries or applications. It’s important to apply patches
as they are released by Sun, to ensure that your system avoids known problems. Sun
also releases so-called “recommended” patch clusters, each of which is a large set of
patches that should be applied to all systems. A script is provided to install patches
automatically. The patch clusters are usually updated every month, so it pays to check
the SunSolve site regularly (for Solaris 10, the recommended file is 10_recommended.zip).
Sun also releases a patch order file, which can be edited to selectively install patches.

Procedures
This section examines how to work with packages and patches in the Solaris environment,
including how to view package information, install and uninstall a Solaris package
using the CLI, create new packages, create and compress archives, and find patches.

Viewing Package Information with pkginfo
At any time, you can examine which packages have been installed on a system by using
the pkginfo command:

bash-2.05# pkginfo
system IPLTadcon Administration Server Console
system IPLTadman Administration Server Documentation
system IPLTadmin Administration Server
system IPLTcons Console Client Base
system IPLTdscon Directory Server Console

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 105

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

system IPLTdsman Directory Server Documentation
system IPLTdsr Directory Server (root)
system IPLTdsu Directory Server (usr)
system IPLTjss Network Security Services for Java
system IPLTnls Nationalization Languages and Localization Support
system IPLTnspr Portable Runtime Interface
system IPLTnss Network Security Services
system IPLTpldap PerLDAP
application SUNWlur Live Upgrade (root)
application SUNWluu Live Upgrade (usr)

As you can see, this system has quite a few packages installed in both the system
and application categories, including lxrun, the application that allows Linux binaries
to be executed on Solaris Intel, and the Gimp, a graphics manipulation program. There
are no restrictions on the kinds of files and applications that can be installed with packages.

Installing a Solaris Package Using the CLI
The best way to learn about adding packages is to use an example. In this section, you’ll
download a package from http://www.sunfreeware.com called gpw-6.94-sol10-sparc-
local.gz, an application developed by Tom Van Vleck that generates random passwords.
Let’s look more closely at the package name to determine what software this package
contains:

• The .gz extension indicates that the package file has been compressed using
gzip after it was created. Other possible extensions include .Z, which indicates
compression with the compress program, and .z, which indicates compression
with the pack program.

• The local string indicates that the package contents will be installed under the
directory /usr/local. Other typical installation targets include the /opt directory,
where optional packages from the Solaris distribution are installed.

• The sparc string states that the package is intended for use on Solaris SPARC
and not Solaris Intel.

• The 6.94 string indicates the current software revision level.

• The gpw string states the application’s name.

To use the package file, you first need to decompress it using the gzip command:

bash-2.05# gzip -d gpw-6.94-sol10-sparc-local

You can then examine the contents of the file by using the head command:

bash-2.05# head gpw-6.94-sol10-sparc-local
PaCkAgE DaTaStReAm
TVVgpw 1 150

end of header
NAME=gwp
ARCH=sparc
VERSION=6.94
CATEGORY=application
VENDOR=Tom Van Vleck
EMAIL=steve@smc.vnet.net

This kind of header exists for all Solaris packages and makes it easy to understand
what platform a package is designed for, who the vendor was, and who to contact for
more information.

Now that the package is decompressed and ready, you can begin the installation
process by using the pkgadd command. To install the gpw-6.94-sol10-sparc-local package,
use the following command:

pkgadd -d gpw-6.94-sol10-sparc-local

You’ll see the following output:

The following packages are available:
1 TVVgpw gwp

(sparc) 6.94

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]: all

Press ENTER at this point to proceed with the installation:

Processing package instance <TVVgpw> from </tmp/gpw-6.94-sol10-sparc-local>

gwp
(sparc) 6.94
Tom Van Vleck
Using </usr/local> as the package base directory.
Processing package information.
Processing system information.

2 package pathnames are already properly installed.
Verifying disk space requirements.
Checking for conflicts with packages already installed.
Checking for setuid/setgid programs.

Installing gwp as <TVVgpw>

Installing part 1 of 1.
/usr/local/bin/gpw
/usr/local/doc/gpw/README.gpw
[verifying class <none>]

Installation of <TVVgpw> was successful.

106 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

After processing package and system information and checking that the required
amount of disk space is available, the pkgadd command copies only two files from the
archive to the local file system: /usr/local/bin/gpw and /usr/local/doc/gpw/README.gpw.

Uninstalling a Solaris Package Using the CLI
After a package has been installed on the system, you can easily remove it by using the
pkgrm command. For example, if you wanted to remove the gpw program after it was
installed in the /usr/local directory, you would use

pkgrm TVVgpw

and respond to the following information:

The following package is currently installed:
TVVgpw gwp

(sparc) 6.94

Do you want to remove this package? y

Removing installed package instance <TVVgpw>
Verifying package dependencies.
Processing package information.
Removing pathnames in class <none>
/usr/local/doc/gpw/README.gpw
/usr/local/doc/gpw
/usr/local/doc <shared pathname not removed>
/usr/local/bin/gpw
/usr/local/bin <shared pathname not removed>
Updating system information.

Removal of <TVVgpw> was successful.

The pkgrm command also operates in an interactive mode, in which multiple packages
can be removed using the same interface:

pkgrm

The following packages are available:
1 GNUlstdc libstdc++

(i86pc) 2.8.1.1
2 GNUmake make

(i86pc) 3.77
3 NCRos86r NCR Platform Support, OS Functionality (Root)

(i386) 1.1.0,REV=1998.08.07.12.41
4 SFWaalib ASCII Art Library

(i386) 1.2,REV=1999.11.25.13.32

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 107

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

108 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

5 SFWaconf GNU autoconf
(i386) 2.13,REV=1999.11.25.13.32

6 SFWamake GNU automake
(i386) 1.4,REV=1999.11.25.13.32

7 SFWbison GNU bison
(i386) 1.28,REV=1999.11.25.13.32

8 SFWemacs GNU Emacs
(i386) 20.4,REV=1999.11.25.13.32

9 SFWflex GNU flex
(i386) 2.5.4,REV=1999.11.25.13.32

10 SFWfvwm fvwm virtual window manager
(i386) 2.2.2,REV=1999.11.25.13.32

... 288 more menu choices to follow;
<RETURN> for more choices, <CTRL-D> to stop display:

At this point, you can enter the number of the package that you wish to remove.

Creating New Packages
Creating a package is easy if you follow a few simple steps. In this example, you compile
and build the Apache Web server from source, which is then customized for your local
environment. Instead of rebuilding Apache on every Web server from source, if you
compile it once and then distribute it as a package to all the local systems, you can save
valuable time and CPU cycles.

The first step is to download the Apache source and build it according to the
instructions supplied with the source package. After compiling the application into the
source directory (e.g., /usr/local/apache), make local customizations as appropriate. Next,
you need to create the two files that are used to create the package: the prototype file,
which contains a list of all the files to be stored in the archive, and their file permissions,
and the pkginfo file, which contains all the descriptive information regarding the package,
including the creator, architecture, and base directory.

To create the pkginfo file, you use the find command to create a list of all the files
below the base directory of the package installation. In the case of Apache, the base
directory is /usr/local/apache, if that is where the source was compiled:

cd /usr/local/apache
find . -print | pkgproto > prototype

This command produces the prototype file in /usr/local/apache. It contains entries
like this:

d none bin 0755 nobody nobody
f none bin/httpd 0755 nobody nobody
f none bin/ab 0755 nobody nobody

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 109

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

f none bin/htpasswd 0755 nobody nobody
f none bin/htdigest 0755 nobody nobody
f none bin/apachectl 0755 nobody nobody
f none bin/dbmmanage 0755 nobody nobody
f none bin/logresolve 0755 nobody nobody
f none bin/rotatelogs 0755 nobody nobody
f none bin/apxs 0755 nobody nobody
d none libexec 0755 nobody nobody
d none man 0755 nobody nobody
d none man/man1 0755 nobody nobody|
f none man/man1/htpasswd.1 0644 nobody nobody
f none man/man1/htdigest.1 0644 nobody nobody
f none man/man1/dbmmanage.1 0644 nobody nobody
d none man/man8 0755 nobody nobody
f none man/man8/httpd.8 0644 nobody nobody
f none man/man8/ab.8 0644 nobody nobody
f none man/man8/apachectl.8 0644 nobody nobody

Each entry is either an f (file) or a d (directory), with the octal permissions code, user
and group ownership also being displayed. After you verify that all the files that you
wish to package are listed in the pkginfo file, you need to manually add an entry for the
pkginfo file itself into the pkginfo file:

i pkginfo=./pkginfo

The pkginfo file contains a description of your archive. Adding this entry ensures
that the pkginfo file is added to the archive. Next, you need to actually create the pkginfo
file in the base directory of the package (i.e., /usr/local/apache for this example). The file
needs to contain several customized entries like the following:

PKG="EDapache"
NAME="Apache"
ARCH="sparc"
VERSION="1.3.12"
CATEGORY="application"
VENDOR="Cassowary Computing Pty Ltd"
EMAIL="paul@cassowary.net"
PSTAMP="Paul Watters"
BASEDIR="/usr/local/apache"
CLASSES="none"

Although these tags are self-explanatory, Table 5-1 contains a description of each of
the options available for the pkginfo file.

110 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

Once the pkginfo file has been created, you’re ready to begin building the package.
After changing into the package base directory, execute the following command:

pkgmk –o –r /usr/local/apache
Building pkgmap from package prototype file.
Processing pkginfo file.
Attempting to volumize 362 entries in pkgmap.
part 1 -- 6631 blocks, 363 entries
Packaging one part.
/var/spool/pkg/EDapache/pkgmap
/var/spool/pkg/EDapache/pkginfo
/var/spool/pkg/EDapache/reloc/.bash_history
/var/spool/pkg/EDapache/reloc/.profile
/var/spool/pkg/EDapache/reloc/bin/ab
/var/spool/pkg/EDapache/reloc/bin/apachectl
/var/spool/pkg/EDapache/reloc/bin/apxs
/var/spool/pkg/EDapache/reloc/bin/dbmmanage
/var/spool/pkg/EDapache/reloc/bin/htdigest
/var/spool/pkg/EDapache/reloc/bin/htpasswd

A directory called EDapache will have been created in /var/spool/pkg, containing a
copy of the source files, which are now ready to be packaged in the archive, by using
the pkgtrans command:

cd /var/spool/pkg
pkgtrans -s /var/spool/pkg /tmp/EDapache-1.3.12.tar

The following packages are available:
1 EDapache Apache

(sparc) 1.3.12

Command Tag Description

PKG The name of the package

NAME The name of the application contained in the package

ARCH The target system architecture (SPARC or Intel)

VERSION The package version number

CATEGORY A package contains either an “application” or a “system” application

VENDOR The supplier of the software

EMAIL The e-mail address of the vendor

PSTAMP The package builder’s name

BASEDIR The base directory where package files will be installed

TABLE 5-1 Command Options for pkginfo Files

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:

You need to select the EDapache package to be built, by pressing the ENTER key:

Transferring <EDapache> package instance

The package (EDapache-1.3.12) has now been successfully created in the /tmp directory:

-rw-r--r-- 1 root other 3163648 Oct 18 10:09 EDapache-1.3.12

To reduce the size of the package file, use the gzip command to compress its contents:

gzip EDapache-1.3.12
ls -l EDapache-1.3.12.gz
-rw-r--r-- 1 root other 816536 Oct 18 10:09 EDapache-1.3.12.gz

The compressed package file may now be distributed to other users, and installed
using the pkgadd command.

Archiving and Compression
Using packages gives you the greatest level of control over how an archive is distributed
and installed. However, creating the pkginfo and prototype files can be a time-consuming
process for creating packages that are simply designed for a tape backup or for temporary
use. In this case, it may be appropriate to create a tape archive (tar file) rather than a
package. Another advantage of using a tar file is that it can be distributed to colleagues
who are using operating systems other than Solaris (such as Microsoft Windows and
Linux), and unpacked with ease.

Creating Archives
Creating a tar file is easy. For example, to create a tape archive containing the Apache
distribution that you packaged in the previous section, you would use the following
command:

tar cvf /tmp/apache.tar *
a bin/ 0K
a bin/httpd 494K
a bin/ab 28K
a bin/htpasswd 39K
a bin/htdigest 16K
a bin/apachectl 7K
a bin/dbmmanage 7K
a bin/logresolve 10K
a bin/rotatelogs 7K
a bin/apxs 20K

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 111

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

112 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

a cgi-bin/ 0K
a cgi-bin/hello.c 1K
a cgi-bin/printenv 1K
a cgi-bin/test-cgi 1K
a cgi-bin/hello 7K
a cgi-bin/hello.cgi 7K
a cgi-bin/hello.sh 1K
a cgi-bin/prt 1K
a conf/ 0K

The cvf part of the tar command can be read as “create file using verbose mode and
copy to a file.” Originally, the tar command was designed to copy an archive to a tape
device, thus, an extra modifier is required to specify that the archive should be copied to
a file instead. Table 5-2 summarizes the main modifiers used with the tar command.

The tar command takes either function letters or functions modifiers. The main
function letters used with tar, to specify operations, are given with examples in the
following three sections.

Replacing Files
The function letter r is used to replace files in an existing archive. The named files are
written at the end of the tar file, as shown in this example:

tar rvf /tmp/apache.tar *
a bin/ 0K
a bin/httpd 494K
a bin/ab 28K
a bin/htpasswd 39K
a bin/htdigest 16K
a bin/apachectl 7K
a bin/dbmmanage 7K
a bin/logresolve 10K
a bin/rotatelogs 7K
a bin/apxs 20K
a cgi-bin/ 0K
a cgi-bin/hello.c 1K
a cgi-bin/printenv 1K
a cgi-bin/test-cgi 1K
a cgi-bin/hello 7K
a cgi-bin/hello.cgi 7K
a cgi-bin/hello.sh 1K
a cgi-bin/prt 1K

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 113

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

Displaying Contents
The function letter t is used to extract the table of contents of an archive, which lists all
the files that have been archived within a specific file, as shown in this example:

tar tvf /tmp/apache.tar *
drwxr-xr-x 1003/10 0 Mar 30 13:45 2004 bin/
-rwxr-xr-x 1003/10 505536 Mar 30 13:45 2004 bin/httpd
-rwxr-xr-x 1003/10 27896 Mar 30 13:45 2004 bin/ab
-rwxr-xr-x 1003/10 38916 Mar 30 13:45 2004 bin/htpasswd
-rwxr-xr-x 1003/10 16332 Mar 30 13:45 2004 bin/htdigest
-rwxr-xr-x 1003/10 7065 Mar 30 13:45 2004 bin/apachectl
-rwxr-xr-x 1003/10 6456 Mar 30 13:45 2004 bin/dbmmanage
-rwxr-xr-x 1003/10 9448 Mar 30 13:45 2004 bin/logresolve
-rwxr-xr-x 1003/10 6696 Mar 30 13:45 2004 bin/rotatelogs
-rwxr-xr-x 1003/10 20449 Mar 30 13:45 2004 bin/apxs
drwxr-xr-x 1003/10 0 Oct 5 14:36 2004 cgi-bin/
-rwxr-xr-x 1003/10 279 Oct 5 15:04 2004 cgi-bin/hello.c
-rwxr-xr-x 1003/10 274 Mar 30 13:45 2004 cgi-bin/printenv
-rwxr-xr-x 1003/10 757 Mar 30 13:45 2004 cgi-bin/test-cgi
-rwxr-xr-x 1003/10 7032 Oct 5 15:04 2004 cgi-bin/hello
-rwxr-xr-x 1003/10 6888 Oct 5 14:31 2004 cgi-bin/hello.cgi
-rwxr-xr-x 1003/10 179 Oct 5 15:09 2004 cgi-bin/hello.sh
-rwxr-xr-x 1003/10 274 Oct 5 14:34 2004 cgi-bin/prt

Modifier Name Description

b Blocking factor Specifies the number of tape blocks to be used during each read
and write operation.

e Error Specifies that tar should exit if an error is detected.

f File Output is written to a file rather than to a tape drive.

h Symbolic links Archives files accessed through symbolic links.

i Ignore Checksum errors are ignored during archive creation.

k Kilobytes Specifies the size of the archive in kilobytes. If an archive is larger
than this size, it will be split across multiple archives.

o Ownership Modifies the user and group ownership of all archive files to the
current owner.

v Verbose Displays information about all files extracted or added to the archive.

TABLE 5-2 Tape Archive Function Modifiers

Extracting Files
The function letter x is used to extract files from an archive, as shown in this example:

tar xvf apache.tar
x bin, 0 bytes, 0 tape blocks
x bin/httpd, 505536 bytes, 988 tape blocks
x bin/ab, 27896 bytes, 55 tape blocks
x bin/htpasswd, 38916 bytes, 77 tape blocks
x bin/htdigest, 16332 bytes, 32 tape blocks
x bin/apachectl, 7065 bytes, 14 tape blocks
x bin/dbmmanage, 6456 bytes, 13 tape blocks
x bin/logresolve, 9448 bytes, 19 tape blocks
x bin/rotatelogs, 6696 bytes, 14 tape blocks
x bin/apxs, 20449 bytes, 40 tape blocks
x cgi-bin, 0 bytes, 0 tape blocks
x cgi-bin/hello.c, 279 bytes, 1 tape blocks
x cgi-bin/printenv, 274 bytes, 1 tape blocks
x cgi-bin/test-cgi, 757 bytes, 2 tape blocks
x cgi-bin/hello, 7032 bytes, 14 tape blocks
x cgi-bin/hello.cgi, 6888 bytes, 14 tape blocks
x cgi-bin/hello.sh, 179 bytes, 1 tape blocks
x cgi-bin/prt, 274 bytes, 1 tape blocks

Compressing Files
Archives and other files can occupy a large amount of disk space if they contain data
that is redundant. For example, text files often have large segments of empty space, and
images with segments of the same color are clearly redundant. Solaris provides tools to
exploit this redundancy by allowing files to be stored in a compressed format. When tape
archives are created as shown in the preceding section, it’s wise to maximize the availability
of disk space to other applications by compressing archives before they are moved to
offline storage, such as backup tapes.

Two compression commands are typically used under Solaris: the compress command,
which creates compressed files with a .Z extension, and the GNU gzip command, which
creates compressed files with a .gz extension. Since compress and gzip use different
compression algorithms to pack data, the size of a file compressed by gzip may differ
from the size of the same file compressed by compress. In general, gzip can achieve
a higher compression ratio than compress.

To compress an archive called backup.tar, you would use the following command:

$ compress backup.tar

Once the compressed file backup.tar.Z has been created, the original file backup.tar
will be deleted. Alternatively, you could use the following gzip command to compress
backup.tar:

114 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 115

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

$ gzip backup.tar

Again, once the gzip-compressed file backup.tar.gz has been created, the original file
backup.tar will be deleted. To perform repeat packing on the file, to achieve maximum
compression, the following command can be used:

$ gzip –9 backup.tar

Keep in mind that repeat packing is a CPU-intensive and lengthy process. To restore
a file that has been compressed by using the compress program, the uncompress
command is used:

$ uncompress backup.tar.Z

Once the file backup.tar has been restored, the backup.tar.Z file will be automatically
removed. Alternatively, to restore a file compressed using gzip, use the following
command:

$ gzip –d backup.tar.gz

Once again, after the file backup.tar has been restored, the backup.tar.gz file will be
removed automatically.

Finding Patches
To find out information about current patches, sysadmins are directed to the http://
sunsolve.sun.com/ site. Here, details about current patches for each operating system
release can be found. There are two basic types of patches available from SunSolve:
single patches and jumbo patches. Single patches have a single patch number associated
with them, and are generally aimed at resolving a single outstanding issue; they usually
insert, delete, or update data in a small number of files. Single patches are also targeted
at resolving specific security issues. Each patch is associated with an internal bug number
from Sun’s bug database. For example, patch number 108435-01 aims to fix BugId 4318566,
involving a shared-library issue with the 64-bit C++ compiler.

In contrast, a jumbo patch consists of many single patches that have been bundled
together, on the basis of operating system release levels, to ensure that the most common
issues for a particular platform are resolved by the installation of the jumbo patch. It’s
standard practice to install the current jumbo patch for Solaris 10 once it’s been installed
from scratch, or if the system has been upgraded from Solaris 9, for example.

Some of the latest patches released for Solaris 10 include the following:

• 110322-01: Patch for /usr/lib/netsvc/yp/ypbind

• 110853-01: Patch for Sun-Fire-880

• 110856-01: Patch for /etc/inet/services

• 110888-01 : Patch for figgs

• 110894-01: Patch for country name

• 110927-01: Patch for SUNW_PKGLIST

• 111078-01: Patch Solaris Resource Manager

• 111295-01: Patch for /usr/bin/sparcv7/pstack and /usr/bin/sparcv9/pstack

• 111297-01: Patch for /usr/lib/libsendfile.so.1

• 111337-01: Patch for /usr/sbin/ocfserv

• 111400-01: Patch for KCMS configure tool

• 111402-01: Patch for crontab

• 111431-01: Patch for /usr/lib/libldap.so.4

• 111439-01: Patch for /kernel/fs/tmpfs

• 111473-01: Patch for PCI Host Adapter

• 111562-01: Patch for /usr/lib/librt.so.1

• 111564-01 Patch for SunPCi 2.2.1

• 111570-01: Patch for uucp

• 111588-01: Patch for /kernel/drv/wc

• 111606-01: Patch for /usr/sbin/in.ftpd

• 111624-01: Patch for /usr/sbin/inetd

• 111648-01 Patch for env3test, cpupmtest, ifbtest, and rsctest

• 111656-01: Patch for socal and sf drivers

• 111762-01 Patch for Expert3D and SunVTS

One of the most useful guides to the currently available patches for Solaris 10 is the
SunSolve Patch Report (ftp://sunsolve.sun.com/pub/patches/Solaris10.PatchReport).
This report provides a quick reference to all newly released patches for the platform, as
well as updates on previous patches that have now been modified. A list of suggested
patches for the platform is also contained in the Patch Report, while recommended security
patches are listed separately. Finally, a list of obsolete patches is provided. Some of the
currently listed security patches available include the following:

• 108528-09: Patch for kernel update

• 108869-06: Patch for snmpdx/mibiisa/libssasnmp/snmplib

• 108875-09: Patch for c2audit

• 108968-05: Patch for vol/vold/rmmount

• 108975-04: Patch for /usr/bin/rmformat and /usr/sbin/format

116 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

• 108985-03: Patch for /usr/sbin/in.rshd

• 108991-13: Patch for /usr/lib/libc.so.1

• 109091-04: Patch for /usr/lib/fs/ufs/ufsrestore

• 109134-19: Patch for WBEM

• 109234-04: Patch for Apache and NCA

• 109279-13: Patch for /kernel/drv/ip

• 109320-03: Patch for LP

• 109322-07: Patch for libnsl

• 109326-05: Patch for libresolv.so.2 and in.named

• 109354-09: Patch for dtsession

• 109783-01: Patch for /usr/lib/nfs/nfsd

• 109805-03: Patch for pam_krb5.so.1

• 109887-08: Patch for smartcard

• 109888-05: Patch for platform drivers

• 109892-03: Patch for /kernel/drv/ecpp driver

• 109894-01: Patch for /kernel/drv/sparcv9/bpp driver

• 109896-04: Patch for USB driver

• 109951-01: Patch for jserver buffer overflow

Example
In the following example, you’ll examine how to use the Solstice Launcher GUI to manage
packages. The flexible package format is independent of the interface used to install
specific packages. In previous Solaris versions, admintool would have been used to
perform these operations, but this tool has now been deprecated.

Reviewing Patch Installation
To determine which patches are currently installed on your system, you need to use the
showrev command as follows:

showrev -p
Patch: 107430-01 Obsoletes: Requires: Incompatibles: Packages: SUNWwsr
Patch: 108029-01 Obsoletes: Requires: Incompatibles: Packages: SUNWwsr
Patch: 107437-03 Obsoletes: Requires: Incompatibles: Packages: SUNWtiu8
Patch: 107316-01 Obsoletes: Requires: Incompatibles: Packages: SUNWploc
Patch: 107453-01 Obsoletes: Requires: Incompatibles: Packages: SUNWkvm,
SUNWcar
Patch: 106541-06 Obsoletes: 106976-01, 107029-01, 107030-01, 107334-01
Requires: Incompatibles: Packages: SUNWkvm, SUNWcsu, SUNWcsr, SUNWcsl,

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 117

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

SUNWcar, SUNWesu, SUNWarc, SUNWatfsr, SUNWcpr, SUNWdpl, SUNWhea, SUNWtoo,
SUNWpcmci, SUNWtnfc, SUNWvolr
Patch: 106541-10 Obsoletes: 106832-03, 106976-01, 107029-01, 107030-01,
107334-01, 107031-01, 107117-05, 107899-01 Requires: 107544-02
Incompatibles: Packages:
SUNWkvm, SUNWcsu, SUNWcsr, SUNWcsl, SUNWcar, SUNWesu, SUNWarc, SUNWatfsr,
SUNWscpu, SUNWcpr, SUNWdpl, SUNWhea, SUNWipc, SUNWtoo, SUNWpcmci, SUNWpcmcu,
SUNWtnfc, SUNWvolr
Patch: 106541-15 Obsoletes: 106832-03, 106976-01, 107029-01, 107030-01,
107334-01, 107031-01, 107117-05, 107899-01, 108752-01, 107147-08, 109104-04
Requires: 107544-02 Incompatibles: Packages: SUNWkvm, SUNWcsu, SUNWcsr,
SUNWcsl, SUNWcar, SUNWesu, SUNWarc, SUNWatfsr, SUNWscpu, SUNWcpr, SUNWdpl,
SUNWhea, SUNWipc, SUNWtoo, SUNWnisu, SUNWpcmci, SUNWpcmcu, SUNWtnfc, SUNWvolu,
SUNWvolr

From the preceding example, you can see that showrev reports several different
properties of each patch installed:

• The patch number

• Whether the patch obsoletes a previously released patch (or patches) and, if so,
which version numbers

• Whether there are any prerequisite patches (and their version numbers) on which
the current patch depends

• Whether the patch is incompatible with any other patches

• What standard Solaris packages are affected by installation of the patch

As an example, consider the last several lines of the preceding output regarding patch
106541-15. As you can see, this patch obsoletes a large number of other patches, including
106832-03, 106976-01, 107029-01, 107030-01, 107334-01, 107031-01, 107117-05, 107899-01,
108752-01, 107147-08, and 109104-04. In addition, it depends on patch 107544-02, and is
compatible with all other known patches. Finally, it affects a large number of different
packages, including SUNWkvm, SUNWcsu, SUNWcsr, SUNWcsl, SUNWcar, SUNWesu,
SUNWarc, SUNWatfsr, SUNWscpu, SUNWcpr, SUNWdpl, SUNWhea, SUNWipc,
SUNWtoo, SUNWnisu, SUNWpcmci, SUNWpcmcu, SUNWtnfc, SUNWvolu, and
SUNWvolr.

Command Reference
The following commands are commonly used to install packages and files on Solaris.

Package Commands
Table 5-3 summarizes the various commands used to create, install, and remove
packages.

118 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 119

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

install
The install command is not part of the standard package tools, but is often used in
scripts to copy files from a source to a destination directory, as part of an installation
process. It does not require superuser privileges to execute, and will not overwrite files
unless the effective user has permission. However, if the superuser is executing the
command, then files can be written with a specific username, group membership, and
octal permissions code. This allows a superuser to install multiple files with different
permissions, and ownership different to root.

The three ownership and permission options are specified by:

• –m Octal permissions code

• –u File owner

• –g Group membership

There are four options that indicate which operations are to be performed:

• –c Copies a source file to a target directory

• –f Overwrites the target file with a source file if the former exists

• –n Copies a source file to a target directory if and only if it does not exist in
any of a specified set of directories

• –d Creates a directory

To install the file /tmp/setup_server.sh to the directory /opt/scripts, as the user bin and
group sysadmin, you would use the following command:

install –c /opt/scripts –m 0755 –u bin –g sysadmin /tmp/setup_scripts

Command Description

pkgproto Creates a prototype file that specifies the files contained in a package

pkgmk Creates a package directory

pkgadd Installs a package from a package file

pkgtrans Converts a package directory into a file

pkgrm Uninstalls a package

pkgchk Verifies that a package is valid

pkginfo Prints the contents of a package

TABLE 5-3 Solaris Packaging Commands

patchadd
To install single patches, use the patchadd command:

patchadd /patches/106541-15

where /patches is the directory in which your patches are downloaded, and 106541-15
is the patch filename (it should be the same as the patch number).

To add multiple patches from the same directory, use the following command:

patchadd /patches/106541-15 106541-10 107453-01

where 106541-15, 106541-10, and 107453-01 are the patches to be installed. Once the
patches have been successfully installed, you can verify them by using the showrev
command, as shown here for 106541-15:

showrev -p | grep 106541-15

patchadd has a large number of options that you can use for nonstandard patch
installations. For example, if you need to patch a net install image, you need to specify
the path to the image. Alternatively, if you don’t want to have the option to back out
of a patch, then you can flag this. As a strategy, this is not recommended, because you
won’t be able to revert your system to a prepatched state. The following are the options
for patchadd:

• –B Specifies a directory for storing backout information other than the default

• –C Specifies the path to the net install image that is to be patched, if required

• –d Disallows backing out of patch installations

• –M Specifies an alternative directory where patches are located

• –p Prints a list of all installed patches

• –u Does not validate file installations

• –R Specifies an alternative root directory for client installations

• –S Patches a client from a server, where clients share the server’s operating
system directories

Let’s look at how some of these options can be used in practice. In order to patch a
client system called mars, with its root directory mapped to /export/mars, you could use
the following command:

patchadd –d -R /export/mars /var/spool/patch/106541-15

120 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

C h a p t e r 5 : I n s t a l l i n g S o f t w a r e , L i v e U p g r a d e , a n d P a t c h i n g 121

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

Note that this command would disallow backing out of the patch installation. To
add the patch to a net install image, located in /export/Solaris_2.10/Tools/boot, you would
use the following command:

patchadd -C /export/Solaris_2.10/Tools/boot /var/spool/patch/106541-15

Since patches overwrite system files, you may experience some potential pitfalls
when applying patches. The most common problem is running out of disk space on the /
var partition. If this occurs during patch installation, you see the following error message:

Insufficient space in /var/sadm/pkg/106541-15/save to save old files

In this situation, there are several possible courses of action, listed in order of
desirability:

• Increase the available space on /var by removing unnecessary files, even
temporarily, until the patch can be applied.

• Specify an alternative backout directory that is located on a different file
system.

• Create a symbolic link from /var/sadm/pkg/106541-15/save to a directory on
another file system, such as /usr/local/var/sadm/pkg/106541-15/save.

• Switch off backing out of the patch installation.

Any error messages for the patch installation generally are logged in /tmp/
log.106541-15, which may indicate other reasons for installation failure. For example,
if a patch is applied twice to a system, then the following entry will appear in the log:

This appears to be an attempt to install the same architecture
and version of a package which is already installed. This
installation will attempt to overwrite this package.

patchrm
Patches can be easily removed using the patchrm command. For example, to remove
the patch 106541-15, the following command would be used:

patchrm 106541-15

If the patch was previously installed, it would now be removed.

However, if the patch was not previously installed, the following error message
would be displayed:

Checking installed packages and patches...
Patch 106541-15 has not been applied to this system.
patchrm is terminating.

Like patchadd, patchrm has a number of options that may be passed on the
command line:

• –B Specifies a directory for storing backout information for the patch removal,
other than the default

• –C Specifies the path to the net install image from which a patch is to be removed,
if required

• –f Forces a package to be removed

• –R Specifies an alternative root directory for patch removal from client
installations

• –S Removes a patch from a client system, executed from the server

For example, to remove patch 106541-15 from the client system jupiter, the following
command could be used:

patchrm -C /export/Solaris_2.10/Tools/boot 106541-15

Summary
In this chapter, you have examined how to install software in the Solaris environment
using GUI and CUI tools. In previous Solaris versions, admintool would have been
used in this context, but future versions of Solaris will not ship with admintool, so it’s
a good practice to stop using it.

122 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 5

6
Text Processing and Editing

In this chapter, we focus on basic and advanced text processing in Solaris. An editor
is used primarily to create new text files or edit existing text files. Few UNIX users
would have escaped learning about the visual editor (vi) when first learning how

to use a Solaris shell. In this chapter, the aim is to review some of the more esoteric vi
usages, and to review commonly used command-mode and ex-mode commands. We
also present examples of how to use text-processing utilities like PERL, sed, and awk.

Key Concepts
The following concepts are required knowledge for working with text processing.

Visual Editor
vi is a text-processing tool that carries out the following tasks on Solaris and other
UNIX systems:

• Creates new text files

• Modifies existing files

• Searches for a text string in a file

• Replaces one string with another in a file

• Moves or copies a string within a file

• Removes a string from a file

To run vi from the command line and create a new file, you use the following
command:

$ vi

To run vi from the command line and edit an existing file, use the following command:

$ vi file.txt

1 2 3

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6
Blind Folio 123

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

where file.txt is the filename of the file to be edited. The result of editing a file (such as /
etc/passwd.txt) is shown in Figure 6-1.

When editing an existing file, vi copies the bytes from disk into a memory buffer,
which is then operated on according to user commands. Text can be inserted during
edit mode, while commands are executed during command mode. Changes are not
written to disk until the appropriate save command is executed. During edit mode,
special keys such as the arrow keys do not operate as commands to move the cursor
around the screen; instead, the actual code is inserted into the file. These keys can be
used only when the editor is in command mode. During edit mode, you can switch to
command mode by pressing the ESCAPE key. When in command mode, you can switch
to edit mode by pressing the I key.

The following commands can be executed in command mode:

• / Performs a forward search for a text string.

• ? Performs a backward search for a text string.

• : Runs an ex editor command on the current line.

• ! Executes a shell within vi.

• ZZ Saves a file and exits.

• h Moves the cursor left.

• j Moves the cursor down.

• k Moves the cursor up.

124 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

FIGURE 6-1 Editing the /etc/passwd file

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 125

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

• l Moves the cursor right.

• nG Moves the cursor to line n.

• w Moves to next the word.

• b Moves back one word.

• dw Deletes words.

• ndw Deletes n words.

• d^ Deletes all words to the beginning of the line.

• dd Deletes the current line.

• dG Deletes all lines to the end of the file.

• D Deletes all words to the end of the line.

• x Deletes the current character.

• nx Deletes the n characters to the right.

• nY Yanks n lines into the buffer.

• p Pastes to the right of the cursor.

• P Pastes to the left of the cursor.

A separate set of commands, called the ex commands, can be run by using the colon
in conjunction with one of these commands:

• :n Moves the cursor to line n.

• :$ Moves the cursor to the end of the file.

• : s/a/b/g Replaces all occurrences of string a with string b on the current line.

• :%s/a/b/g Replaces all occurrences of string a with string b in the entire file.

• :wq Saves the modified file and quits.

• :q! Quits without saving any changes.

• :set Sets a number of different options.

Let’s examine the result of using the ex command :%s/a/b/g. Figure 6-2 shows
the /etc/passwd file with an ex command that searches for all occurrences of “export”
and replaces them with “staff”.

Figure 6-3 shows the result output, with the string /export/home, for example,
now changed to /staff/home.

.exrc File
vi can be customized on a per-user basis by creating an .exrc file in each user’s
home directory, which they can then modify with their own settings. You can map
commands to function keys on the keyboard, and set various modes to be the default.

126 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

FIGURE 6-2 Using an ex command

FIGURE 6-3 Performing text substitutions

In the following example .exrc, we set showmode and autoindent to be the default
modes when opening all text files, and map the F1 and F2 keys to set line numbering
and then turn it off, respectively:

set showmode
set autoindent
map #1: set number
map #2: set nonumber

Any valid ex command can be included in the .exrc file.

Text-Processing Utilities
Solaris has many user commands available to perform tasks ranging from text
processing, to file manipulation, to terminal management. In this section, we look at
some standard UNIX utilities that are the core of using a shell in Solaris. However,
readers are urged to obtain an up-to-date list of the utilities supplied with Solaris by
typing this command:

$ man intro

The cat command displays the contents of a file to standard output, without any
kind of pagination or screen control. It is most useful for viewing small files, or for
passing the contents of a text file through another filter or utility (e.g., the grep
command, which searches for strings). To examine the contents of the groups database,
for example, you would use the following command:

$ cat /etc/group
root::0:root
other::1:
bin::2:root,bin,daemon
sys::3:root,bin,sys,adm
adm::4:root,adm,daemon
uucp::5:root,uucp
mail::6:root
tty::7:root,tty,adm
lp::8:root,lp,adm
nuucp::9:root,nuucp
staff::10:
postgres::100:
daemon::12:root,daemon
sysadmin::14:
nobody::60001:
noaccess::60002:
nogroup::65534:

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 127

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

The cat command is not very useful for examining specific sections of a file. For
example, if you need to examine the first few lines of a web server’s log files, using cat
would display them, but they would quickly scroll off the screen out of sight. However,
you can use the head command to display only the first few lines of a file. This example
extracts the lines from the log file of the Borland Application Server:

$ head access_log
203.16.206.43 - - [31/Jan/2004:14:32:52 +1000]
"GET /index.jsp HTTP/1.0" 200 24077

203.16.206.43 - - [31/Jan/2004:14:32:52 +1000]
"GET /data.jsp HTTP/1.0" 200 13056

203.16.206.43 - - [31/Jan/2004:14:32:52 +1000]
"GET /names.jsp HTTP/1.0" 200 15666

203.16.206.43 - - [31/Jan/2004:14:32:52 +1000]
"GET /database.jsp HTTP/1.0" 200 56444

203.16.206.43 - - [31/Jan/2004:14:32:52 +1000]
"GET /index.jsp HTTP/1.0" 200 24077

203.16.206.43 - - [31/Jan/2004:14:32:52 +1000]
"GET /index.jsp HTTP/1.0" 200 24077

203.16.206.43 - - [31/Jan/2004:14:32:52 +1000]
"GET /names.jsp HTTP/1.0" 200 15666

203.16.206.43 - - [31/Jan/2004:14:32:53 +1000]
"GET /database.jsp HTTP/1.0" 200 56444

203.16.206.43 - - [31/Jan/2004:14:32:53 +1000]
"GET /index.jsp HTTP/1.0" 200 24077

203.16.206.43 - - [31/Jan/2004:14:32:53 +1000]
"GET /search.jsp HTTP/1.0" 200 45333

Instead, if you just want to examine the last few lines of a file, you could use the cat
command to display the entire file, ending with the last few lines, or you could use the
tail command to specifically display these lines. If the file is large (e.g., an Inprise
Application Server log file of 2MB), displaying the whole file using cat would be a
large waste of system resources, whereas tail is very efficient. Here’s an example of
using tail to display the last several lines of a file:

$ tail access_log
203.16.206.43 - - [31/Aug/2004:14:32:52 +1000] "GET /index.jsp HTTP/1.0" 200 24077
203.16.206.43 - - [31/Aug/2004:14:32:52 +1000] "GET /index.jsp HTTP/1.0" 200 24077
203.16.206.43 - - [31/Aug/2004:14:32:52 +1000] "GET /index.jsp HTTP/1.0" 200 24077
203.16.206.43 - - [31/Aug/2004:14:32:52 +1000] "GET /index.jsp HTTP/1.0" 200 24077
203.16.206.43 - - [31/Aug/2004:14:32:52 +1000] "GET /index.jsp HTTP/1.0" 200 24077
203.16.206.43 - - [31/Aug/2004:14:32:52 +1000] "GET /index.jsp HTTP/1.0" 200 24077
203.16.206.43 - - [31/Aug/2004:14:32:52 +1000] "GET /index.jsp HTTP/1.0" 200 24077
203.16.206.43 - - [31/Aug/2004:14:32:53 +1000] "GET /index.jsp HTTP/1.0" 200 24077
203.16.206.43 - - [31/Aug/2004:14:32:53 +1000] "GET /index.jsp HTTP/1.0" 200 24077
203.16.206.43 - - [31/Aug/2004:14:32:53 +1000] "GET /index.jsp HTTP/1.0" 200 24077

128 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

Now, imagine that you were searching for a particular string within the access_log
file, such as a 404 error code, which indicates that a page has been requested that does
not exist. Webmasters regularly check log files for this error code, to create a list of links
that need to be checked. To view this list, you can use the grep command to search the
file for a specific string (in this case, “404”), and you can use the more command to
display the results page by page:

$ grep 404 access_log | more
203.16.206.56 - - [31/Aug/2004:15:42:54 +1000]
"GET /servlet/LibraryCatalog?command=mainmenu HTTP/1.1" 200 21404

203.16.206.56 - - [01/Sep/2004:08:32:12 +1000]
"GET /servlet/LibraryCatalog?command=searchbyname HTTP/1.1" 200 14041

203.16.206.237 - - [01/Sep/2004:09:20:35 +1000]
"GET /images/LINE.gif HTTP/1.1" 404 1204

203.16.206.236 - - [01/Sep/2004:10:10:35 +1000]
"GET /images/black.gif HTTP/1.1" 404 1204

203.16.206.236 - - [01/Sep/2004:10:10:40 +1000]
"GET /images/white.gif HTTP/1.1" 404 1204

203.16.206.236 - - [01/Sep/2004:10:10:47 +1000]
"GET /images/red.gif HTTP/1.1" 404 1204

203.16.206.236 - - [01/Sep/2004:10:11:09 +1000]
"GET /images/yellow.gif HTTP/1.1" 404 1204

203.16.206.236 - - [01/Sep/2004:10:11:40 +1000]
"GET /images/LINE.gif HTTP/1.1" 404 1204

203.16.206.236 - - [01/Sep/2004:10:11:44 +1000]
"GET /images/LINE.gif HTTP/1.1" 404 1204

203.16.206.236 - - [01/Sep/2004:10:12:03 +1000]
"GET /images/LINE.gif HTTP/1.1" 404 1204

203.16.206.41 - - [01/Sep/2004:12:04:22 +1000]
"GET /data/books/576586955.pdf HTTP/1.0" 404 1204

--More--

These log files contain a line for each access to the Web server, with entries relating
to the source IP address, date and time of access, the HTTP request string sent, the protocol
used, and the success/error code. When you see the --More-- prompt, you can press the
SPACEBAR to advance to the next screen, or you can press ENTER to advance by a single
line in the results. As you have probably guessed, the pipe operator (|) was used to
pass the results of the grep command through to the more command.

In addition to the pipe, you can use four other operators on the command line to direct
or append input streams to standard output, or output streams to standard input.
Although that sounds convoluted, directing the output of a command into a new file
(or appending it to an existing file) can be very useful when working with files. You
can also generate the input to a command from the output of another command. These
operations are performed by the following operators:

• > Redirects standard output to a file.

• >> Appends standard output to a file.

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 129

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

• < Redirects file contents to standard input.

• << Appends file contents to standard input.

bash also has logical operators, including the “less than” (lt) operator, which uses the
test facility to make numerical comparisons between two operands. Other commonly
used operators include the following:

a –eq b a equals b

a –ne b a does not equal b

a –gt b a is greater than b

a –ge b a is greater than or equal to b

a –le b a is less than or equal to b

Let’s look at an example with the cat command, which displays the contents of
files, and the echo command, which echoes the contents of a string or an environment
variable that has been previously specified. For example, imagine that you want to
maintain a database of endangered species in a text file called animals.txt. If you want
to add the first animal “zebra” to an empty file, you could use this command:

$ echo "zebra" > animals.txt

You could then check the contents of the file animals.txt with this command:

$ cat animals.txt
zebra

Thus, the insertion was successful. Now, imagine that you want to add a second
entry (the animal “emu”) to the animals.txt file. You could try using this command:

$ echo "emu" > animals.txt

However, the result may not be what you expected:

$ cat animals.txt
emu

You get this result because the > operator always overwrites the contents of an existing
file, whereas the >> operator always appends to the contents of an existing file. Let’s
run that command again with the correct operators:

$ echo "zebra" > animals.txt
$ echo "emu" >> animals.txt

130 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

This time, the output is just what we expected:

$ cat animals.txt
zebra
emu

Once you have a file containing a list of all the animals, you would probably want
to sort it alphabetically, which simplifies searching for specific entries. To do this, you
can use the sort command:

$ sort animals.txt
emu
zebra

The sorted entries are then displayed on the screen in alphabetical order. You can
also redirect the sorted list into another file (called sorted_animals.txt) by using this
command:

$ sort animals.txt > animals_sorted.txt

If you want to check that the sorting process actually worked, you could compare
the contents of the animals.txt file line by line with the sorted_animals.txt file, by using
the diff command:

$ diff animals.txt sorted_animals.txt
1d0
< zebra
2a2
> zebra

This result indicates that the first and second lines of the animals.txt and sorted_
animals.txt files are different, as expected. If the sorting process had failed, the two files
would have been identical, and no differences would have been reported by diff.

A related facility is the basename facility, which is designed to remove file extensions
from a filename specified as an argument. This is commonly used to convert files with
one extension to another extension. For example, imagine that you have a graphics
file–conversion program that takes as its first argument the name of a source JPEG file,
and takes the name of a target bitmap file. Somehow, you need to convert a filename
of the form filename.jpg to a file of the form filename.bmp. You can do this with the
basename command. In order to strip a file extension from an argument, you need to
pass the filename and the extension as separate arguments to basename. For example,
the command

$ basename maya.gif .gif

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 131

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

produces this output:

maya

If you want the .gif extension to be replaced by a .bmp extension, you could use the
command

$ echo `basename maya.gif`.bmp

to produce the following output:

maya.bmp

Of course, you are not limited to extensions like .gif and .bmp. Also, keep in mind
that the basename technique is entirely general—and because Solaris does not have
mandatory filename extensions, you can use the basename technique for other
purposes, such as generating a set of strings based on filenames.

Procedures
The following procedures are required for advanced text processing.

sed and awk
So far, we’ve looked at some fairly simple examples of text processing. However, the
power of Solaris-style text processing lies with advanced tools like sed and awk. sed
is a command-line editing program that can be used to perform search-and-replace
operations on very large files, as well as to perform other kinds of noninteractive editing.
awk, on the other hand, is a complete text-processing programming language that has
a C-like syntax and can be used in conjunction with sed to program repetitive
text-processing and editing operations on large files. These combined operations
include double- and triple-spacing files, printing line numbers, left- and right-justifying
text, performing field extraction and field substitution, and filtering on specific strings
and pattern specifications. We examine some of these applications shortly.

To start this example, create a set of customer address records stored in a flat-text,
tab-delimited database file called test.dat:

$ cat test.dat
Bloggs Joe 24 City Rd Richmond VA 23227
Lee Yat Sen 72 King St Amherst MA 01002
Rowe Sarah 3454 Capitol St Los Angeles CA 90074
Sakura Akira 1 Madison Ave New York NY 10017

132 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 133

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

This is a fairly common type of record, storing a customer’s surname, first name,
street address, city, state, and ZIP code. For presentation, we can double-space the
records in this file by redirecting the contents of the test.dat file through sed, with
the G option:

$ sed G < test.dat
Bloggs Joe 24 City Rd Richmond VA 23227

Lee Yat Sen 72 King St Amherst MA 01002

Rowe Sarah 3454 Capitol St Los Angeles CA 90074

Sakura Akira 1 Madison Ave New York NY 10017

The power of sed lies in its ability to be used with pipe operators; thus, an action
can literally be performed in conjunction with many other operations. For example, to
insert double spacing and then remove it, simply invoke sed twice with the appropriate
commands:

$ sed G < test.dat | sed 'n;d'
Bloggs Joe 24 City Rd Richmond VA 23227
Lee Yat Sen 72 King St Amherst MA 01002
Rowe Sarah 3454 Capitol St Los Angeles CA 90074
Sakura Akira 1 Madison Ave New York NY 10017

If you are printing reports, you’ll probably be using line numbering at some point
to uniquely identify records. You can generate line numbers dynamically for display by
using sed:

$ sed '/./=' test.dat | sed '/./N; s/\n/ /'
1 Bloggs Joe 24 City Rd Richmond VA 23227
2 Lee Yat Sen 72 King St Amherst MA 01002
3 Rowe Sarah 3454 Capitol St Los Angeles CA 90074
4 Sakura Akira 1 Madison Ave New York NY 10017

You could also use nl. For large files, counting the number of lines is often useful.
Although you can use the wc command for this purpose, you can also use sed in
situations where wc is not available in the PATH environment variable:

$ cat test.dat | sed -n '$='
4

When you’re printing databases for display, you might want to have comments and
titles left-justified but have all records displayed with two blank spaces before each
line. You can achieve this by using sed:

$ cat test.dat | sed 's/^/ /'
Bloggs Joe 24 City Rd Richmond VA 23227
Lee Yat Sen 72 King St Amherst MA 01002
Rowe Sarah 3454 Capitol St Los Angeles CA 90074
Sakura Akira 1 Madison Ave New York NY 10017

Imagine that due to some municipal reorganization, all cities currently located in
CT were being reassigned to MA. sed would be the perfect tool to identify all instances
of CT in the data file and replace them with MA:

$ cat test.dat | sed 's/MA/CT/g'
Bloggs Joe 24 City Rd Richmond VA 23227
Lee Yat Sen 72 King St Amherst CT 01002
Rowe Sarah 3454 Capitol St Los Angeles CA 90074
Sakura Akira 1 Madison Ave New York NY 10017

If a data file has been entered as a first-in, last-out (FILO) stack, you’ll generally be
reading records from the file from top to bottom. However, if the data file is to be
treated as a last-in, first-out (LIFO) stack, reordering the records from the last to the
first would be useful:

$ cat test.dat | sed '1!G;h;$!d'
Sakura Akira 1 Madison Ave New York NY 10017
Rowe Sarah 3454 Capitol St Los Angeles CA 90074
Lee Yat Sen 72 King St Amherst MA 01002
Bloggs Joe 24 City Rd Richmond VA 23227

Some data-hiding applications require that data be encoded in some way that is
nontrivial for another application to detect a file’s contents. One way to foil such
programs is to reverse the character strings that comprise each record, which you can
achieve by using sed:

$ cat test.dat | sed '/\n/!G;s/\(.\)\(.*\n\)/&\2\1/;//D;s/.//'
72232 AV dnomhciR dR ytiC 42 eoJ sggolB
20010 AM tsrehmA tS gniK 27 neS taY eeL
47009 AC selegnA soL tS lotipaC 4543 haraS ewoR
71001 YN kroY weN evA nosidaM 1 arikA arukaS

Some reporting applications might require that the first line of a file be processed
before deletion. Although you can use the head command for this purpose, you can
also use sed:

134 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

$ sed q < test.dat
Bloggs Joe 24 City Rd Richmond VA 23227

If you want to print a certain number of lines, you can use sed to extract the
first q lines:

$ sed 2q < test.dat
Bloggs Joe 24 City Rd Richmond VA 23227
Lee Yat Sen 72 King St Amherst MA 01002

The grep command is often used to detect strings within files. However, you can
also use sed for this purpose, as shown in the following example, where the string CA
(representing California) is searched for:

$ cat test.dat | sed '/CA/!d'
Rowe Sarah 3454 Capitol St Los Angeles CA 90074

However, this is a fairly gross and inaccurate method, because CA might match a
street address like “1 CALGARY Rd”, or “23 Green CAPE”. Thus, you need to use the
field-extraction features of awk. In the following example, use awk to extract and print
the fifth column in the data file, representing the state:

$ cat test.dat | awk 'BEGIN {FS = "\t"}{print $5}'
VA
MA
CA
NY

Note that the tab character (\t) is specified as the field delimiter. Now, if you
combine the field-extraction capability of awk with the string-searching facility of sed,
you should be able to print out a list of all occurrences of the state CA:

$ cat test.dat | awk 'BEGIN {FS = "\t"}{print $5}' | sed '/CA/!d'
CA

or, you could simply count the number of records that contain CA in the state field:

$ cat test.dat | awk 'BEGIN {FS = "\t"}{print $5}' | sed '/CA/!d' \
| sed -n '$='

1

When you are producing reports, selectively displaying fields in a different order is
useful. For example, although surname is typically used as a primary key, and is generally

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 135

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

136 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

the first field, most reports would display the first name before the surname, which
you can achieve by using awk:

$ cat test.dat | awk 'BEGIN {FS = "\t"}{print $2,$1}'
Joe Bloggs
Yat Sen Lee
Sarah Rowe
Akira Sakura

You can also split such reordered fields across different lines, and use different
format specifiers. For example, the following script prints the first name and surname
on one line, and the state on the following line. Such code is the basis of many
mail-merge and bulk-printing programs.

$ cat test.dat | awk 'BEGIN {FS = "\t"}{print $2,$1,"\n"$5}'
Joe Bloggs
VA
Yat Sen Lee
MA
Sarah Rowe
CA
Akira Sakura
NY

Because awk is a complete programming language, it contains many common
constructs, like if/then/else evaluations of logical states. These states can be used to test
business logic cases. For example, in a mailing program, you could check the bounds of
valid ZIP codes by determining whether the ZIP code lay within a valid range. For
example, the following routine checks to see whether a ZIP code is less than 9999, and
rejects it as invalid if it is greater than 9999:

$ cat test.dat | awk 'BEGIN {FS = "\t"}{print $2,$1}{if($6<9999) \
{print "Valid zipcode"} else {print "Invalid zipcode"}}'

Joe Bloggs
Invalid zipcode
Yat Sen Lee
Valid zipcode
Sarah Rowe
Invalid zipcode
Akira Sakura
Invalid zipcode

PERL Programming
PERL stands for the Practical Extraction and Reporting Language, and was originally
developed by Larry Wall. One of the things that developers really like about PERL is
how quickly it is possible to write a full-blown application literally within a few

minutes. When teamed up with the Common Gateway Interface (CGI) provided by
Web servers such as Apache, PERL provides an easy way to write applications that can
be executed on a server when requested by a client. This means that HTML pages can
be generated dynamically by a PERL application and streamed to a client. Coupled
with PERL’s database access libraries (known as the PERL Database Interface, or DBI),
PERL can be used to create multitiered applications, which is especially useful for
system-management applications.

To create a PERL application, simply follow these five steps:

1. Create a text file by using the vi editor or pico editor.

2. Give the file executable permissions, by using the chmod command.

3. Instruct the shell to execute the PERL interpreter by including a directive in the
first line of the script.

4. Write the PERL code.

5. Run the application.

As an example, let’s create a PERL program that simply prints a line of text to the
screen (for example, the string “Hello World!”). First, create a file called helloworld.pl by
using the command touch:

$ touch helloworld.pl

Next, set the permissions on the file to be executable:

$ chmod +x helloworld.pl

Next, edit the file like this:

$ vi helloworld.pl

and insert a directive to the shell to execute the PERL interpreter contained in the /usr/
bin directory (it may also be installed in /usr/local/bin):

#!/usr/bin/perl

Next, insert the PERL code that actually constitutes the program:

print "Hello World\n";

Finally, save the file in the current directory and execute it on the command line:

$./helloworld.pl
Hello World!

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 137

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

Like most programming languages, PERL uses variables to store values that can
change over time. These are represented as names with the $ symbol preceding them.
So, for example, if you develop a program that prints the balance of a checking account,
you might create and assign values to variables with names like $date, $transaction,
$amount, and $balance. You can use variables to store just about any kind of information,
including simple messages. A revision of the “Hello World” program code using a
variable to store the message you want to print out would look like this:

#!/usr/bin/perl
$message="Hello World!";
print $message, "\n";

When you run this program, you get exactly the same output as before,

$./helloworld.pl
Hello World!

because the comma symbol here acts to concatenate the string contained in the $message
variable and the newline command contained between the quotes directly after the
comma symbol.

Variables in PERL do not necessarily just contain strings; they can also store numeric
values, and PERL has a series of operators that you can use to perform arithmetic
operations on variables. For example, you may want to perform a simple addition:

#!/usr/bin/perl
$val1=10;
$val2=20;
print $val1, " + ", $val2, " = ", $val1+$val2, "\n";

This program assigns the value of 10 to the variable $val1, and the value of 20 to the
variable $val2. It then prints the addition expression that is going to be evaluated, and
then actually performs the addition of $val1 and $val2 by using the + operator. Here’s
the result, which is unsurprising:

$./addition.pl
10 + 20 = 30

Other operators for PERL include the following:

– Subtraction operator

* Multiplication operator

/ Division operator

== Equivalence operator

!= Nonequivalence operator

138 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

< Less-than operator, also called le

> Greater-than operator, also called gt

<= Less-than or equal-to operator, also known as le

>= Greater-than or equal-to operator, also known as ge

So far, we’ve only seen the special escape character \n, which comes from C and
means “newline character.” It’s also possible to use other escape characters from C,
such as \t, which is the tab escape character. Let’s have a look at the results of combining
the tab escape character to produce tabulated output, and then examine other arithmetic
operators from PERL:

#!/usr/bin/perl
$val1=10;
$val2=20;
print $val1, " + ", $val2, " =\t", $val1+$val2, "\n";
print $val1, " - ", $val2, " =\t", $val1-$val2, "\n";
print $val1, " * ", $val2, " =\t", $val1*$val2, "\n";
print $val1, " / ", $val2, " =\t", $val1/$val2, "\n";

Once again, the results are as expected, with the result column being separated
from the expression by a tab character:

$./operators.pl
10 + 20 = 30
10 - 20 = -10
10 * 20 = 200
10 / 20 = 0.5

Other escape characters commonly used in PERL include the following:

\a Terminal bell

\b Backspace

\f Form feed

\r Return

\\ Inserts \ as a character literal

\" Inserts " as a character literal

In many cases, applications require that some kind of decision be taken on the basis
of the current value of a specific variable. One way of making this decision is to use an
if/else construct, which separates two blocks of code, one that is executed if a statement
is true, and one that is executed if a statement is false. For example, imagine that you
want to test whether a particular file exists. There are many reasons why you would
want to do this. If a password file does not exist, for example, you might want to notify

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 139

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

the system administrator, or if a shadowed password file does not exist, you might
want to suggest that one be created for improved security. You can perform a file test
by creating an expression using the –e operator, which tests for existence. Thus, an
expression like this,

(-e /etc/passwd)

when evaluated, returns true if the file /etc/passwd exists, and returns false if the file
does not exist. Other file operators used in PERL include the following:

–B Tests whether the file contains binary data

–d Tests whether the file is a directory entry

–T Tests whether the file contains text data

–w Tests whether the file is writeable

To test for the existence of both the password file and the shadowed password file,
you can create a program like this:

#!/usr/bin/perl
$passwdfile="/etc/passwd";
$shadowfile="/etc/shadow";
if (-e $passwdfile)
{

print "Found standard Solaris password file\n";
}
else
{

print "No standard Solaris password file found\n";

}
if (-e $shadowfile)
{

print "Found shadow password file - good security move!\n";
}
else
{

print "No shadow password file found!\n";
}

When executing the file on a Solaris 9 system, you should see output like this:

$./checkpasswords.pl
Found standard Solaris password file
Found shadow password file - good security move!

140 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

This kind of check could be added as a cron job for the root user, meaning that it
could be executed on a regular basis as part of a security check. If any errors were detected,
instead of writing a message to standard output, a mail message could be sent to the
system administrator. Of course, password files are not the only kinds of files that
might be included as part of a security check. Imagine the situation where a Trojan
horse or virus has deleted one of the major shells or changed its permissions to render
it inoperable. Thus, it is not adequate to just check for the existence of a file. You may
also need to check other characteristics, such as being executable (–x), being readable
(–r), and having a file size greater than zero (–s). Imagine that you want to check the
status of the default Bourne Again Shell (/bin/bash): You can define a valid shell state
as existing, being readable, being executable, and having a file size greater than zero,
where logical AND is represented by the operator &&. If the shell does not have these
attributes, you can generate a warning message. A simple program to achieve this
could look like this:

#!/usr/bin/perl
$shell="/bin/bash";
if (-e $shell && -x $shell && -r $shell && -s $shell)
{

print "Valid shell found\n";
}
else
{

print "No valid shell found\n";
}

When executed, the program prints the following message:

$./checkbash.pl
Valid shell found

Other logical operators commonly used in PERL include the following:

|| Logical OR

! Logical NOT

| Bitwise OR

^ Bitwise XOR

Of course, there is more than one shell to be found on Solaris systems, and users are
free to choose any one of them for their default login. You can modify the shell-checking
program to verify the attributes of each of these shells by using an array that contains
the name of each shell, rather than just creating a single scalar variable (e.g., $shell in
the previous example). If you create an array called @shell that stores the names of all

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 141

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

142 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

shells on the system, you can just iterate through the list using the foreach command,
as shown in this program:

#!/usr/bin/perl
@shells=("/bin/sh", "/bin/csh", "/bin/sh", "/bin/tcsh", "/bin/zsh");
foreach $i (@shells)
{

if (-e $i && -x $i && -r $i && -s $i)
{

print "Valid shell: ".$i."\n";
}
else
{

print "Invalid shell: ".$i."\n";
}

}

When you execute the program on a Solaris system, you might see output like this:

Valid shell: /bin/sh
Valid shell: /bin/csh
Valid shell: /bin/sh
Valid shell: /bin/tcsh
Invalid shell: /bin/zsh

Oops—you can see that the first four shells check out okay, but a problem occurs
with the /bin/zsh shell. This means that a system administrator should check whether
there is a problem. Again, this could be achieved by creating a cron job that runs once
per day, and e-mails the administrator if a problem is detected. However, it may be
much more useful to actually run this application through a Web browser, which is
possible by using CGI. Few modifications are necessary to convert a PERL program to
use the CGI: you simply need to print out a content-type header and then continue to
print output as usual. For example, the earlier program could be restated in CGI terms
as follows:

#!/usr/bin/perl
print "Content-type: text/html\n\n";
@shells=("/bin/sh", "/bin/csh", "/bin/sh", "/bin/tcsh", "/bin/zsh");
foreach $i (@shells)
{

if (-e $i && -x $i && -r $i && -s $i)
{

print "Valid shell: ".$i."
\n";
}
else

{
print "Invalid shell: ".$i."
\n";

}
}

Command Reference
The following commands are used to process text.

sed
The standard options for sed are shown here:

–n Prevents display of pattern space

–e filename Executes the script contained in the file filename

–V Displays the version number

awk
The standard POSIX options for awk are shown here:

–f filename Where filename is the name of the awk file to process

–F field Where field is the field separator

–v x=y Where x a variable, and y is a value

–W lint Turns on lint checking

–W lint-old Uses old-style lint checking

–W traditional Enforces traditional usage

–W version Displays the version number

Summary
In this chapter, we have examined basic text editing and command-line processing, as
well as more advanced text-processing utilities like sed and awk. As predecessors to
PERL, sed and awk were widely used within shell scripts (see next chapter) to perform
pattern analysis and matching.

C h a p t e r 6 : T e x t P r o c e s s i n g a n d E d i t i n g 143

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 6

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio 144

This page intentionally left blank.

7
Shells, Scripts,
and Scheduling

Graphical user interfaces (GUIs) are an increasingly popular metaphor for interacting
with computer systems, including the GNOME GUI included with Solaris 10. However,
character user interfaces (CUIs) are a core feature of Solaris 10, because they provide a
programmatic environment in which commands can be executed. Many operations on
Solaris systems are performed in the context of a script, whether starting services at boot
time or processing text to produce a report. Indeed, one of the key advantages of UNIX
and UNIX-like environments over non-UNIX systems is the capability to combine large
numbers of small commands in a CUI, in conjunction with pipes and filters, to create
complex command sets that perform repetitive tasks that can be scheduled to run at a
specific time.

Key Concepts
The following key concepts are required knowledge for understanding shells, scripts,
and the scheduling of operations.

The Shell
All shells have a command prompt—the prompt usually tells the user which shell is
currently being used, the user who owns the shell, and the current working directory.
For example, the following prompt

#

usually indicates that the current user has superuser privileges. Shell prompts are
completely customizable—the default for the Bourne Again Shell (bash) is just the
name of the shell:

bash-2.05$

1 4 5

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7
Blind Folio 145

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

146 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

When you start a new terminal window from within the CDE, a shell is automatically
spawned for you. This will be the same shell that is specified in your /etc/passwd entry:

apache:x:1003:10:apache user:/usr/local/apache:/usr/local/bin/bash

In this case, the apache user has bash set as the default. To be a valid login shell, /usr/
local/bin/bash must also be included in the shells database (stored in the file /etc/shells).

If the default shell prompt is not to your liking, you can easily change its format by
setting two environment variables—PS1 and PS2. I cover environment variables in the
“Setting Environment Variables” section later in the chapter. For now, simply note that
the Solaris environment space is similar to that found in Linux and Windows. For example,
to set the prompt to display the username and host, you would use the following command
in bash:

PS1='\u@\H> '; export PS1

The prompt displayed by the shell would then look like this:

oracle@db>

Many users like to display their current username, hostname, and current working
directory, which can be set using the following command:

PS1='\u@\H:\w> '; export PS1

When executed, this shell prompt is changed to

oracle@db:/usr/local>

where oracle is the current user, db is the hostname, and /usr/local is the current working
directory. A list of different customization options for shell prompts is given in Table 7-1.

At the shell prompt, you enter commands in the order in which you intend for them
to be executed. For example, to execute the admintool from the command prompt,
you would type this command:

oracle@db:/usr/sbin> ./admintool

The ./ in this example indicates that the admintool application resides in the current
directory—you could also execute the application using this command:

oracle@db:/usr/sbin> /usr/sbin/admintool

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 147

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

The admintool window would then appear on the desktop, assuming that you’re
using a terminal window to execute a shell. Once the shell is executing a command in
the “foreground” (like admintool), no other commands can be executed. However, by
sending a command process into the “background,” you can execute more than one
command in the shell. You can send a process into the background immediately by
adding an ampersand (&) to the end of the command line:

oracle@db:/usr/sbin> ./admintool &

Once a command has been executed, you can suspend it by pressing CTRL-Z, and
then send it into the background by using the command bg:

oracle@db:/usr/sbin> ./admintool
^Z[1] + Stopped (SIGTSTP) admintool
oracle@db:/usr/sbin> bg
[1] admintool&
oracle@db:/usr/sbin>

The application name is displayed along with the job number

Setting Description Output

\a ASCII beep character “beep”

\d Date string Wed Sep 6

\h Short hostname www

\H Full hostname www.paulwatters.com

\s Shell name bash

\t Current time (12-hour format) 10:53:44

\T Current time (24-hour format) 10:53:55

\@ Current time (A.M./P.M. format) 10:54 A.M.

\u Username Root

\v Shell version 2.05

\W Shell version with revision 2.05.0

\! Command history number 223

\$ Privilege indicator #

\u\$ Username and privilege indicator root#

\u:\!:\$ Username, command history number, and privilege indicator root:173:#

TABLE 7-1 Environment Variable Settings for Different Command Prompts Under bash

You can bring an application back into the foreground by using the following
command:

oracle@db:/usr/sbin> fg
admintool

This brings job number 1 back into the foreground by default. However, if you had
multiple jobs suspended, you would need to specify a job number with the fg command:

oracle@db:/usr/local/bin> ./netscape
^Z[2] + Stopped (SIGTSTP) netscape
oracle@db:/usr/sbin> bg
[2] netscape&
oracle@db:/usr/sbin> fg
netscape

You can obtain a list of all running jobs in the current shell by typing the following
command:

$ jobs
[2] + Running ./netscape&
[1] - Running admintool&

Procedures
The following procedures are required knowledge for understanding the shell and how
operations can be scripted and scheduled.

Writing Shell Scripts
Shell scripts are combinations of shell and user commands that are executed in
noninteractive mode for a wide variety of purposes. Whether you require a script that
converts a set of filename extensions, a script that alerts the system administrator by
e-mail that disk space is running low, or a script that performs some other function,
you can use shell scripts. The commands that you place inside a shell script should
normally execute in the interactive shell mode as well, making it easy to take apart
large scripts and debug them line by line in your normal login shell. In this section,
we examine only shell scripts that run under bash—although many of the scripts
will work without modification using other shells, it is always best to check the
syntax chart of your own shell before attempting to run the scripts in another shell.

Processing Shell Arguments
A common goal of writing shell scripts is to make them as general as possible so that
you can use them with many different kinds of input. Fortunately, shell scripts are able
to make use of command-line parameters, which are numerically ordered arguments

148 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7Complete Reference Fluff / Solaris 10: TCR / Watters / 1859-8 / Chapter 7

that are accessible from within a shell script. For example, a shell script to move files
from one computer to another computer might require parameters for the source host,
the destination host, and the name of the file to be moved. Obviously, you want to be
able to pass these arguments to the script, rather than hard-wiring them into the code.
This is one advantage of shell scripts (and PERL programs) over compiled languages like
C: scripts are easy to modify, and their operation is completely transparent to the user.

Arguments to shell scripts can be identified by a simple scheme—the command
executed is referred to with the argument $0, with the first parameter identified as $1,
the second parameter identified as $2, and so on, up to a maximum of nine parameters.
Thus, a script executed with these parameters

$ display_hardware.sh cdrom scsi ide

would refer internally to cdrom as $1, scsi as $2, and ide as $3.
Let’s see how arguments can be used effectively within a script to process input

parameters. The first script simply counts the number of lines in a file (using the wc
command), specified by a single command-line argument ($1). To begin with, create
an empty script file:

$ touch count_lines.sh

Next, set the permissions on the file to be executable:

$ chmod +x count_lines.sh

Next, edit the file

$ vi count_lines.sh

and add the appropriate code:

#!/bin/bash
echo "Number of lines in file " $1
wc –l $1

The script takes the first command-line argument, prints the number of lines, and
then exits. Run the script with the command

$./count_lines.sh /etc/group

which gives the following output:

Number of lines in file /etc/group
43

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 149

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

Although the individual activity of scripts is quite variable, the procedure of creating
the script file, setting its permissions, editing its contents, and executing it on the command
line remains the same across scripts. Of course, you may want to make the script available
only to certain users or groups for execution. You can enable this by using the chmod
command and explicitly adding or removing permissions when necessary.

Testing File Properties
One of the assumptions that we made in the previous script was that the file specified
by $1 actually exists; if it doesn’t exist, we obviously cannot count the number of lines
it contains. If the script is running from the command line, we can safely debug it and
interpret any error conditions that arise (such as a file not existing or having incorrect
permissions). However, if a script is intended to run as a scheduled job (using the cron
or at facility), debugging it in real time is impossible. Thus, writing scripts that can
handle error conditions gracefully and intelligently is often useful, rather than leaving
administrators wondering why a job didn’t produce any output when it was scheduled
to run.

The number one cause of run-time execution errors is the incorrect setting of file
permissions. Although most users remember to set the executable bit on the script file
itself, they often neglect to include error checking for the existence of data files that are
used by the script. For example, if you want to write a script that checks the syntax of
a configuration file (like the Apache configuration file, httpd.conf), you need to check
that the file actually exists before performing the check—otherwise, the script may
not return an error message, and you may erroneously assume that the script file is
correctly configured.

Fortunately, bash makes it easy to test for the existence of files by using the
(conveniently named) test facility. In addition to testing for file existence, the test
facility can determine whether files have read, write, and execute permissions, prior
to any read, write, or execute file access being attempted by the script. The following
example revises the previous script that counted the number of lines in a file. The script
first verifies whether the target file (specified by $1) exists. If a file exists, the command
should count the number of lines in the target file as before:

#!/bin/bash
if test -a $1 then
echo "Number of lines in file " $1
wc –l $1
else

echo "The file" $1 "does not exist"
fi

Otherwise, an error message will be printed. If the /etc/group file does not exist, for
example, you’d really want to know about it:

bash-2.05# ./count_lines.sh /etc/group
The file /etc/group does not exist

150 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

There may be some situations in which you want to test another file property. For
example, the /etc/shadow password database must be readable only by the superuser. Thus,
if you execute a script to check whether the /etc/shadow file is readable by a nonprivileged
user, it should not return a positive result. You can check file readability by using the –r
option rather than the –a option. Here’s the revised script:

#!/bin/bash
if test –r $1 then
echo "I can read the file " $1
else

echo "I can’t read the file" $1
fi

You can also test the following file permissions using the test facility:

–b File is a special block file

–c File is a special character file

–d File is a directory

–f File is a normal file

–h File is a symbolic link

–p File is a named pipe

–s File has nonzero size

–w File is writeable by the current user

–x File is executable by the current user

Looping
All programming languages have the capability to repeat blocks of code for a specified
number of iterations. This makes performing repetitive actions very easy for a well-
written program. The Bourne shell is no exception. It features a for loop, which repeats
the actions of a code block for a specified number of iterations, as defined by a set of
consecutive arguments to the for command. It also features a while loop and an until
loop. In addition, an iterator is available within the code block to indicate which of the
sequence of iterations that will be performed is currently being performed. If that sounds
a little complicated, take a look at the following concrete example, which uses a for loop
to generate a set of filenames. These filenames are then tested using the test facility, to
determine whether they exist.

#!/bin/bash
for i in apple orange lemon kiwi guava
do

DATAFILE=$i".dat"
echo "Checking" $DATAFILE
if test -s $FILENAME

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 151

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

then
echo "$DATAFILE "has zero-length"

else
echo $FILENAME "is OK"

fi
done

The for loop is repeated five times, with the variable $i taking on the values apple,
orange, lemon, kiwi, and guava. Thus, on the first iteration, when $i=apple, the shell
interprets the for loop in the following way:

FILENAME="apple.dat"
echo "Checking apple.dat"
if test -s apple.dat
then
echo "apple.dat has zero-length"
else
echo "apple.dat is OK"
fi

If you run this script in a directory with files of zero length, you would expect to see
the following output:

$./zero_length_check.sh
Checking apple.dat
apple.dat is zero-length
Checking orange.dat
orange.dat is zero-length
Checking lemon.dat
lemon.dat is zero-length
Checking kiwi.dat
kiwi.dat is zero-length
Checking guava.dat
guava.dat is zero-length

However, if you entered data into each of the files, you should see them receive the
OK message:

$./zero_length_check.sh
Checking apple.dat
apple.dat is OK
Checking orange.dat
orange.dat is OK
Checking lemon.dat
lemon.dat is OK
Checking kiwi.dat
kiwi.dat is OK

152 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

Checking guava.dat
guava.dat is OK

Using Shell Variables
In the previous example, you assigned different values to a shell variable, which was
used to generate filenames for checking. It is common to modify variables within scripts
by using export, and to attach error codes to instances where variables are not defined
within a script. This is particularly useful if a variable that is available within a user’s
interactive shell is not available in their noninteractive shell. For example, you can
create a script called show_errors.sh that returns an error message if the PATH variable
is not set:

#!/bin/bash
echo ${PATH:?PATH_NOT_SET}

Of course, because the PATH variable is usually set, you should see output similar
to the following:

$./path_set.sh
/sbin:/bin:/usr/games/bin:/usr/sbin:/root/bin:/usr/local/bin:
/usr/local/sbin/:/usr/bin:
/usr/X11R6/bin: /usr/games:/opt/gnome/bin:/opt/kde/bin

However, if PATH was not set, you would see the following error message:

./show_errors.sh: PATH_NOT_SET

You can use system-supplied error messages as well, by not specifying the optional
error string:

$./path_set.sh
#!/bin/bash
echo ${PATH:?}

Thus, if the PATH variable is not set, you would see the following error message:

$./path_set.sh
./showargs: PATH: parameter null or not set

You can also use the numbered shell variables ($1, $2, $3, and so on) to capture the
space-delimited output of certain commands, and perform actions based on the value
of these variables, using the set command. For example, the command

$ set `ls`

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 153

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

sequentially assigns each of the fields within the returned directory listing to a numbered
shell variable. For example, if the directory listing contains the entries

apple.dat guava.dat kiwi.dat lemon.dat orange.dat

you could retrieve the values of these filenames by using the echo command:

$ echo $1
apple.dat
$ echo $2
guava.dat
$ echo $3
kiwi.dat
$ echo $4
lemon.dat
$ echo $5
orange.dat

This approach is very useful if your script needs to perform some action based on
only one component of the date. For example, if you want to create a unique filename
to assign to a compressed file, you could combine the values of each variable, with a .Z
extension, to produce a set of strings like orange.dat.Z.

Scheduling Jobs
Many system administration tasks need to be performed on a regular basis. For example,
log files for various applications need to be archived nightly, and a new log file needs to
be created. Often, a short script is created to perform this, by following these steps:

1. Kill the daemon affected, using the kill command.

2. Compress the logfile, using the gzip or compress command.

3. Use the time command to change the logfile name to include a timestamp,
so that it can be distinguish from other logfiles.

4. Move the logfile to an archive directory, using the mv command.

5. Create a new logfile by using the touch command.

6. Restart the daemon by calling the appropriate /etc/init.d script.

Instead of the administrator having to execute these commands interactively at
midnight, they can be scheduled to run daily using the cron scheduling command.
Alternatively, if a job needs to be run only once at a particular time, like bringing a new
Web site online at 7 A.M. one particular morning, then you can use the at scheduler.
In the next section, we look at the advantages and disadvantages of each scheduling
method.

154 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 155

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

The at Command
You can schedule a single system event for execution at a specified time by using the
at command. The jobs are specified by files in the /var/spool/cron/atjobs directory, while
configuration is managed by the file /etc/cron.d/at.deny. The job can either be a single
command or refer to a script that contains a set of commands. Imagine that you want
to start up sendmail at a particular time. Perhaps some scheduled maintenance of the
network infrastructure is scheduled to occur until 8:30 A.M. tomorrow morning, but you
really don’t feel like logging in early and starting up sendmail (you’ve switched it off
completely during the outage to prevent users from filling the queue). The following
adds to the queue a job that is scheduled to run at 8:40 A.M., giving the network guys a
ten-minute window:

bash-2.05$ at 0840
at> /usr/lib/sendmail -bd
at> <EOT>
commands will be executed using /bin/ksh
job 954715200.a at Mon Apr 3 08:40:00 2004

After submitting a job using at, you can check that the job is properly scheduled
by checking whether an atjob has been created:

bash-2.05$ cd /var/spool/cron/atjobs
bash-2.05$ ls -l
total 8
-r-Sr--r-- 1 paul other 3701 Apr 3 08:35 954715200.a

The file exists, which is a good start. Now check that it contains the appropriate
commands to run the job:

bash-2.05$ cat 954715200.a
: at job
: jobname: stdin
: notify by mail: no
export PWD; PWD='/home/paul'
export _; _='/usr/bin/at'
cd /home/paul
umask 22
ulimit unlimited
/usr/lib/sendmail -bd

156 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

This looks good. After 8:40 A.M. the next morning, the command should have executed
at the appropriate time, and some output should have been generated and sent to you
as a mail message. Take a look at what the message contains:

From paul Sat Apr 1 08:40:00 2004
Date: Sat Apr 1 2000 08:40:00 +1000 (EST)
From: paul <paul>
To: paul
Subject: Output from "at" job
Your "at" job on tango
"/var/spool/cron/atjobs/954715200.a"
produced the following output:
/bin/ksh[5]: sendmail: 501 Permission denied

Oops! The job needs to be submitted as root: normal users don’t have permission to
start sendmail in the background daemon mode. You would need to submit this job
as root to be successful.

The cron Command
An at job executes only once at a particular time. However, cron is much more flexible,
because you can schedule system events to execute repetitively, at regular intervals, by
using the crontab command. Each user on the system can have a crontab file, which
allows them to schedule multiple events to occur at multiple times, on multiple dates.
The jobs are specified by files in the /var/spool/cron/cronjobs directory, while configuration
is managed by the files /etc/cron.d/cron.allow and /etc/cron.d/cron.deny.

To check your own crontab, you can use the crontab –l command:

bash-2.05$ crontab -l root
10 3 * * 0,4 /etc/cron.d/logchecker
10 3 * * 0 /usr/lib/newsyslog
15 3 * * 0 /usr/lib/fs/nfs/nfsfind
1 2 * * * [-x /usr/sbin/rtc] && /usr/sbin/rtc -c > /dev/null 2>&1
30 3 * * * [-x /usr/lib/gss/gsscred_clean] && /usr/lib/gss/gsscred_clean

This is the standard crontab generated by Solaris for root, and it performs tasks like
checking if the cron logfile is approaching the system ulimit at 3:10 A.M. on Sundays
and Thursdays, creating a new system log at 3:10 A.M. only on Sundays, and reconciling
time differences at 2:01 A.M. every day of the year.

The six fields in the crontab stand for the following:

• Minutes, in the range 0–59

• Hours, in the range 0–23

• Days of the month, in the range 1–31

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 157

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

• Months of the year, in the range 1–12

• Days of the week, in the range 0–6, starting with Sundays

• The command to execute

If you want to add or delete an entry from your crontab, you can use the crontab –e
command. This starts up your default editor (vi on the command line, textedit in CDE),
in which you can make changes interactively. After saving your job, you then need to run
crontab by itself to make the changes.

Examples
The following examples demonstrate how to use the shell.

Setting Environment Variables
Environment variables are used to store information in a form that is accessible to
commands within the shell and other applications that are spawned from the shell.
You can obtain a list of all environment variables that have been set in a shell by
using the following command:

BASH=/bin/bash
BASH_VERSINFO=([0]="2" [1]="05b" [2]="7" [3]="1" [4]="release"
[5]="sparc-sun-solaris2.10")
BASH_VERSION='2.05b.7(1)-release'
COLUMNS=80
DIRSTACK=()
EUID=1001
GROUPS=()
HISTFILE=/export/home/pwatters/.bash_history
HISTFILESIZE=500
HISTSIZE=500
HOME=/export/home/pwatters
HOSTNAME=sakura
HOSTTYPE=sparc
HZ=100
IFS=$' \t\n'
LC_COLLATE=en_US.ISO8859-1
LC_CTYPE=en_US.ISO8859-1
LC_MESSAGES=C
LC_MONETARY=en_US.ISO8859-1
LC_NUMERIC=en_US.ISO8859-1
LC_TIME=en_US.ISO8859-1

Although this seems to be a lot of shell variables, the most significant ones include
the following:

BASH The path to the shell on the file system

COLUMNS The columns width for the terminal

DISPLAY The display variable that is used for X11 graphics

HOME The default home directory for the user

HOSTNAME The hostname of the current system

LD_LIBRARY_PATH The path to system and user libraries

LOGNAME The username of the shell owner

MANPATH The path to the system manuals

NNTPSERVER The hostname of the NNTP server

PATH The path that is searched to find applications where no absolute path is
specified on the command line

PPID The parent process ID

TERM The terminal type (usually VT100)

UID The user ID

WINDOWMANAGER The name of the X11 window manager

The values of all shell variables can be set on the command line by using the
export command. For example, if you want to set the terminal type to VT220, you
use this command:

$ TERM=vt220; export TERM

Command Reference
The following commands are commonly used to get the most from the shell. Help for
each of these commands is usually available through the man facility or the GNU info
command.

Source (.)
The source command, represented as a single dot, reads in and executes the lines of a
shell script. The format of this command is

. file

where file is a valid filename that contains a Bourne shell script. The first line should
contain a directive that points to the absolute location of the shell:

#!/bin/sh

158 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

You also can execute Bourne shell scripts by calling them with a new shell invocation,
or by calling them directly if the executable bit is set for the executing user. For example,
the following three commands would each execute the script file myscript.sh:

$. myscript.sh
$ sh myscript.sh
$./myscript.sh

However, only the source command (.) preserves any environment variable settings
made in the script.

basename
The basename command strips a filename of its extension. The format of this
command is

basename filename.ext

where filename.ext is a valid filename like mydata.dat. The basename command parses
mydata.dat, and extracts mydata. Because file extensions are not mandatory in Solaris,
this command is very useful for processing files copied from Windows or MS-DOS.

cat
The cat command prints out the contents of the file, without any special screen-control
features like scrolling backward or forward in a file. The format of this command is as
follows:

cat filename

To display the groups database, for example, you could run the following command:

$ cat /etc/group
root::0:root
other::1:
bin::2:root,bin,daemon
sys::3:root,bin,sys,adm
adm::4:root,adm,daemon
uucp::5:root,uucp
mail::6:root
tty::7:root,tty,adm
lp::8:root,lp,adm
nuucp::9:root,nuucp
staff::10:

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 159

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

cd
The cd command changes the current working directory to a new directory location,
which you can specify in either absolute or relative terms. The format of this command
is as follows:

cd directory

For example, if the current working directory is /usr/local, and you type the command

cd bin

the new working directory would be /usr/local/bin. However, if you type the command

cd /bin

the new working directory would be /bin. For interactive use, relative directory names
are often used; however, scripts should always contain absolute directory references.
Typing cd by itself takes the user to their home directory.

chgrp
The chgrp command modifies the default group membership of a file. The format of
this command is

chgrp group file

where group is a valid group name, defined in the groups database (/etc/groups), and file
is a valid filename. Because permissions can be assigned to individual users or groups
of users, assigning a nondefault group membership can be useful for users who need to
exchange data with members of different organizational units (e.g., the Webmaster who
swaps configuration files with the database administrator and also exchanges HTML
files with Web developers). Only the file owner or the superuser can modify the group
membership of a file.

date
The date command prints the current system date and time. The format of this command
is as follows:

date

The default output for the command is of this form:

Tuesday February 12 13:43:23 EST 2002

160 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

You can also modify the output format by using a number of parameters corresponding
to days, months, hours, minutes, and so on. For example, the command

date '+Current Date: %d/%m/%y%nCurrent Time:%H:%M:%S'

produces the following output:

Current Date: 06/09/00
Current Time:13:45:43

grep
The grep command searches a file for a string (specified by string) and prints the line
wherever a match is found. The format of this command is as follows:

grep string file

The grep command is very useful for interpreting log files, where you just want to
display a line that contains a particular code (e.g., a Web server logfile can be grepped
for the string 404, which indicates a page was not found).

head
The head command displays the first page of a file. The format of this command is as
follows:

head filename

The head command is very useful for examining the first few lines of a very long
file. For example, to display the first page of the name service switch configuration file
(/etc/nsswitch.conf), you could use this command:

$ head /etc/nsswitch.conf
/etc/nsswitch.nisplus:
An example file that could be copied over to /etc/nsswitch.conf; it
uses NIS+ (NIS Version 3) in conjunction with files.
"hosts:" and "services:" in this file are used only if the
/etc/netconfig file has a "-" for nametoaddr_libs of "inet" transports.
the following two lines obviate the "+" entry in /etc/passwd and /etc/group.

less
The less command prints a file on the screen, and it allows you to search backward
and forward through the file. The format of this command is as follows:

less filename

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 161

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

162 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

To scroll through the contents of the system log configuration file (/etc/syslog.conf),
you would use the following command:

less /etc/syslog.conf
#ident "@(#)syslog.conf 1.4 96/10/11 SMI" /* SunOS 5.0 */
Copyright (c) 1991-1993, by Sun Microsystems, Inc.
syslog configuration file.
This file is processed by m4 so be careful to quote ('') names
that match m4 reserved words. Also, within ifdef's, arguments
containing commas must be quoted.
*.notice @loghost
*.err;kern.notice;auth.notice /dev/console
*.err;kern.debug;daemon.notice;mail.crit;daemon.info /var/adm/
messages
*.alert;kern.err;daemon.err operator
*.alert root

The less command has a number of commands that can be issued interactively.
For example, to move forward one window, just type F, or to move back one window,
just type B. less also supports searching with the /pattern command.

ls
The ls command prints the names of files contained in the directory dir (by default, the
contents of the current working directory are displayed). The format of the command is

ls directory

where directory is the name of the directory whose contents you wish to list. For example,
to list the contents of the /var/adm directory, which contains a number of system logs, you
could use the following command:

$ ls /var/adm
aculog log messages.1 passwd utmp wtmp
ftpmessages messages messages.2 spellhist utmpx wtmpx
lastlog messages.0 messages.3 sulog vold.log

mkdir
The mkdir command makes new directory entries. The format of this command is as
follows:

mkdir directory

For example, if the current working directory is /sbin, and you type the command

mkdir oracle

the new directory would be /sbin/oracle. However, if you type the command

mkdir /oracle

the new directory would be /oracle. For interactive use, relative directory names are often
used; however, scripts should always contain absolute directory references.

more
The more command prints the contents of a file, like the less command, but just permits
the scrolling forward through a file. The format of this command is as follows:

more filename

To scroll through the contents of the disk device configuration file (/etc/format.dat),
you would use the following command:

more /etc/format.dat
#pragma ident "@(#)format.dat 1.21 98/01/24 SMI"
Copyright (c) 1991,1998 by Sun Microsystems, Inc.
All rights reserved.
Data file for the 'format' program. This file defines the known
disks, disk types, and partition maps.
This is the list of supported disks for the Emulex MD21 controller.
disk_type = "Micropolis 1355" \

: ctlr = MD21 \
: ncyl = 1018 : acyl = 2 : pcyl = 1024 : nhead = 8 : nsect = 34 \
: rpm = 3600 : bpt = 20832

The more command has a number of subcommands that can be issued interactively.
For example, to move forward one window, just press the SPACEBAR, or to move forward
one line, just press ENTER. The more command also supports searching with the /pattern
command.

pwd
The pwd command prints the current working directory in absolute terms. The format
of the command is as follows:

pwd

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 163

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

For example, if you change the directory to /etc and issue the pwd command, you
would see the following result:

$ cd /etc
$ pwd
/etc

rmdir
The rmdir command deletes a directory. However, the directory concerned must be empty
for the rmdir command to be successful. The format of this command is as follows:

rmdir directory

For example, if the current working directory is /usr/local, and you want to remove
the directory oldstuff, you would use this command:

rmdir oldstuff

However, you could use the command

rmdir /usr/local/oldstuff

to remove the directory as well. For interactive use, relative directory names are often
used; however, scripts should always contain absolute directory references.

tail
The tail command displays the last page of a file. The format of this command is as
follows:

tail filename

The tail command is very useful for examining the last few lines of a very long
file. For example, to display the first page of a Web logfile (/usr/local/apache/logs/access_
log), you could use the following command:

$ tail /usr/local/apache/logs/access_log
192.168.205.238 - - [12/Feb/2002:09:35:59 +1000]
"GET /images/picture10.gif HTTP/1.1" 200 53

192.168.205.238 - - [12/Feb/2002:09:35:59 +1000]
"GET /images/ picture1.gif HTTP/1.1" 200 712

192.168.205.238 - - [12/Feb/2002:09:35:59 +1000]
"GET /images/ picture5.gif HTTP/1.1" 200 7090

192.168.205.238 - - [12/Feb/2002:09:35:59 +1000]
"GET /images/ picture66.gif HTTP/1.1" 200 997

164 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

192.168.205.238 - - [12/Feb/2002:09:35:59 +1000]
"GET /images/ picture49.gif HTTP/1.1" 200 2386

192.168.205.238 - - [12/Feb/2002:09:36:09 +1000]
"GET /servlet/SimpleServlet HTTP/1.1" 200 10497

The tail command also has an option that allows you to continuously monitor
all new entries made to a file. This is very useful for monitoring a live service such as
Apache, where you need to observe any error made in real time. The format for this
command is as follows:

tail –f filename

Summary
In this chapter, we have examined how to manage files and directories, and how to
work with the shell. In addition, we have examined the commands used to write shell
scripts, and other commonly used shell commands. Since the shell is the administrator’s
interface to the operating system, it’s important that you become familiar with shell
commands and procedures.

C h a p t e r 7 : S h e l l s , S c r i p t s , a n d S c h e d u l i n g 165

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 7

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio 166

This page intentionally left blank.

8
Process Management

Processes lie at the heart of modern multiuser operating systems, providing the
ability to run multiple applications and services concurrently on top of the kernel.
In user terms, process management is a central feature of using a single login shell

to start and stop multiple jobs running concurrently, often suspending their execution
while waiting for input. Solaris 10 provides many tools for process management. This
chapter highlights the new process-management tools and command formats, and
discusses the innovative /proc file systems and associated tools that allow administrators
to deal with “zombie” processes.

Key Concepts
One of the appealing characteristics of Solaris and other UNIX-like systems is that
applications can execute (or spawn) other applications: after all, user shells are nothing
more than applications themselves. A shell can spawn another shell or application,
which can spawn another shell or application, and so on. Instances of applications,
such as the Sendmail mail transport agent or the Telnet remote access application, can
be uniquely identified as individual processes and are associated with a unique process
identifier (PID), which is an integer.

You may be wondering why PIDs are not content addressable—that is, why the
Sendmail process cannot be identified as simply Sendmail. Such a scheme would be
quite sensible if it were impossible to execute multiple, independent instances of the
same application (like early versions of the MacOS). However, Solaris allows the same
user or different users to concurrently execute the same application independently, which
means that an independent identifier is required for each process. This also means that
each PID is related to a user identifier (UID) and to that user’s group identifier (GID). The
UID in this case can be either the real UID of the user who executed the process or the
effective UID if the file executed is setUID. Similarly, the GID in this case can be either the
real GID, which is the GID that identifies the group to which the user who executed the
process belongs, or the effective GID if the file executed is setGID. When an application
can be executed as setUID and setGID, other users can execute that application as the user

1 6 7

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8
Blind Folio 167

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

who owns the file. This means that setting a file as setGID for root can be dangerous in
some situations, albeit necessary.

An application, such as a shell, can spawn another application by using the system
call system() in a C program. This is expensive performance-wise, however, because
a new shell process is spawned in addition to the target application. An alternative is to
use the fork() system call, which spawns child processes directly, with applications
executed using exec(). Each child process is linked back to its parent process: if the
parent process exits, the parent process automatically reverts to PID 1, which exits
when the system is shut down or rebooted.

In this section, you’ll look at ways to determine which processes are currently
running on your system and how to examine process lists and tables to determine what
system resources are being used by specific processes.

The main command used to list commands is ps, which is highly configurable and
has many command-line options. These options, and the command format, use System
V–style parameters, like ps –eaf. However, whereas ps takes only a snapshot of the
current process list, many administrators find that they need to interactively monitor
processes on systems that have a high load so that they can kill processes that are
consuming too much memory, or at least assign them a lower execution priority. One
popular process-monitoring tool is top, which is described later in this chapter in the
section “Using the top Program.”

Sending Signals
Since all processes are identifiable by a single PID, the PID can be used to manage that
process, by means of a signal. Signals can be sent to other processes in C programs
using the signal() function, or they can be sent directly from within the shell. Solaris
supports a number of standard signal types that can be used as a means of interprocess
communication.

A common use for signals is to manage user applications that are launched from a
shell. For example, you can send to an application running in the foreground a “suspend”
signal by pressing CTRL-Z at any time. To run this application in the background in the
C-shell, for example, you would need to type bg at the command prompt. A unique
background job number is then assigned to the job. To bring the process back to the
foreground, you type fg n, where n is its job number. You can run as many applications
as you like in the background.

In the following example, httpd is run in the foreground. When you press CTRL-Z,
the process is suspended, and when you type bg, it is assigned the background process
number 1. You can then execute other commands, such as ls, while httpd runs in the
background. When you then type fg, the process is brought once again into the foreground.

client 1% httpd
^z
Suspended
client 2% bg
[1] httpd&

168 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

client 3% ls
httpd.conf access.conf srm.conf
client 4% fg

A useful command is the kill command, which is used to send signals directly to
any process on the system. It is usually called with two parameters—the signal type
and the PID. For example, if you have made changes to the configuration file for the
Internet super daemon, you must send a signal to the daemon to tell it to reread its
configuration file. Note that you don’t need to restart the daemon itself: this is one of
the advantages of a process-based operating system that facilitates interprocess
communication. If inetd had the PID 167, typing

kill -1 167

would force inetd to reread its configuration file and update its internal settings. The –1
parameter stands for the SIGHUP signal, which means “hang up.” However, imagine
a situation in which you want to switch off inetd temporarily to perform a security
check. You can send a kill signal to the process by using the –9 parameter (the
SIGKILL signal):

kill -9 167

Although SIGHUP and SIGKILL are the most commonly used signals in the shell,
several others are used by programmers and are defined in the signal.h header file.
Another potential consequence of sending a signal to a process is that instead of
“hanging up” or “being killed,” the process could exit and dump a core file, which is a
memory image of the process to which the message was sent. This result is useful for
debugging, although too many core files will quickly fill up your file system! You can
always obtain a list of available signals to the kill command by passing the –l option:

$ kill -l
HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE
ALRM TERM USR1 USR2 CLD PWR WINCH URG POLL STOP TSTP CONT
TTIN TTOU VTALRM PROF XCPU XFSZ WAITING LWP FREEZE THAW
RTMIN RTMIN+1 RTMIN+2 RTMIN+3 RTMAX-3 RTMAX-2 RTMAX-1
RTMAX

Procedures
The following procedures are commonly used to manage processes.

Listing Processes
You can use the ps command to list all currently active processes on the local system.
By default, ps prints the processes belonging to the user who issues the ps command:

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 169

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

$ ps
PID TTY TIME CMD
29081 pts/8 0:00 ksh

The columns in the default ps list are the process identifier (PID), the terminal from
which the command was executed (TTY), the CPU time consumed by the process (TIME),
and the actual command that was executed (CMD), including any command-line
options passed to the program.

Alternatively, if you would like more information about the current user’s processes,
you can add the –f parameter:

$ ps -f
UID PID PPID C STIME TTY TIME CMD

pwatters 29081 29079 0 10:40:30 pts/8 0:00 /bin/ksh

Again, the PID, TTY, CPU time, and command are displayed. However, the UID is also
displayed, as is the PID of the parent process identifier (PPID), along with the starting
time of the process (STIME). In addition, a deprecated column (C) is used to display
processor utilization. To obtain the maximum detail possible, you can also use the –l
option, which means “long”—and long it certainly is, as shown in this example:

$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
8 S 6049 29081 29079 0 51 20 e11b4830 372 e11b489c pts/8 0:00 ksh
8 R 6049 29085 29081 0 51 20 e101b0d0 512 pts/8 0:00 bash

Here, you can see the following:

• The flags (F) associated with the processes

• The state (S) of the processes (29081 is sleeping, S, 29085 is running, R)

• The process identifier (29081 and 29085)

• Parent process identifier (29079 and 29081)

• Processor utilization (deprecated)

• Process priority (PRI), which is 51

• Nice value (NI), which is 20

• Memory address (ADDR), which is expressed in hex (e11b4830 and e101b0d0)

• Size (SZ), in kilobytes, which is 372KB and 512KB

• The memory address for sleeping process events (WCHAN), which is e11b489c
for PID 29081

• CPU time used (TIME)

• The command executed (CMD)

170 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

If you’re a system administrator, you’re probably not interested in the status of just
your own processes; you probably want details about all or some of the processes actively
running on the system, and you can do this in many ways. You can generate a process
list using the –A or the –e option, for example, and either of these lists information for
all processes currently running on the machine:

ps -A
PID TTY TIME CMD
0 ? 0:00 sched
1 ? 0:01 init
2 ? 0:01 pageout
3 ? 9:49 fsflush

258 ? 0:00 ttymon
108 ? 0:00 rpcbind
255 ? 0:00 sac
60 ? 0:00 devfseve
62 ? 0:00 devfsadm

157 ? 0:03 automount
110 ? 0:01 keyserv
112 ? 0:04 nis_cache
165 ? 0:00 syslogd

Again, the default display of PID, TTY, CPU time, and command is generated. The
processes listed relate to the scheduler, init, the system logging facility, the NIS cache,
and several other standard applications and services.

It is good practice for you to become familiar with the main processes on your system
and the relative CPU times they usually consume. This can be useful information when
troubleshooting or when evaluating security. One of the nice features of the ps command
is the ability to combine multiple flags to print out a more elaborate process list. For
example, you can combine the –A option (all processes) with the –f option (full details) to
produce a process list with full details. Here’s the full details for the same process list:

ps -Af
UID PID PPID C STIME TTY TIME CMD
root 0 0 0 Mar 20 ? 0:00 sched
root 1 0 0 Mar 20 ? 0:01 /etc/init -
root 2 0 0 Mar 20 ? 0:01 pageout
root 3 0 0 Mar 20 ? 9:51 fsflush
root 258 255 0 Mar 20 ? 0:00 /usr/lib/saf/ttymon
root 108 1 0 Mar 20 ? 0:00 /usr/sbin/rpcbind
root 255 1 0 Mar 20 ? 0:00 /usr/lib/saf/sac -t 300
root 60 1 0 Mar 20 ? 0:00 /usr/lib/devfsadm/devfseventd
root 62 1 0 Mar 20 ? 0:00 /usr/lib/devfsadm/devfsadmd
root 157 1 0 Mar 20 ? 0:03 /usr/lib/autofs/automountd
root 110 1 0 Mar 20 ? 0:01 /usr/sbin/keyserv

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 171

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

root 112 1 0 Mar 20 ? 0:05 /usr/sbin/nis_cachemgr
root 165 1 0 Mar 20 ? 0:00 /usr/sbin/syslogd

Another common use for ps is to print process information in a format that is
suitable for the scheduler:

% ps -c
PID CLS PRI TTY TIME CMD

29081 TS 48 pts/8 0:00 ksh
29085 TS 48 pts/8 0:00 bash

Doing this can be useful when used in conjunction with the priocntl command,
which displays the parameters used for process scheduling. This allows administrators,
in particular, to determine the process classes currently available on the system, or to
set the class of a specific process to interactive or time-sharing. You can obtain a list of
all supported classes by passing the –l parameter to priocntl:

priocntl -l
CONFIGURED CLASSES
==================
SYS (System Class)
TS (Time Sharing)

Configured TS User Priority Range: -60 through 60
IA (Interactive)

Configured IA User Priority Range: -60 through 60
FX (Fixed priority)

Configured FX User Priority Range: 0 through 60

You can combine this with a –f full display flag to ps –c to obtain more information:

$ ps -cf
UID PID PPID CLS PRI STIME TTY TIME CMD
paul 29081 29079 TS 48 10:40:30 pts/8 0:00 /bin/ksh
paul 29085 29081 TS 48 10:40:51 pts/8 0:00 /usr/local/bin/bash

If you want to obtain information about processes being executed by a particular
group of users, this can be specified on the command line by using the –g option,
followed by the GID of the target group. In this example, all processes from users in
group 0 will be printed:

$ ps -g 0
PID TTY TIME CMD
0 ? 0:00 sched
1 ? 0:01 init
2 ? 0:01 pageout
3 ? 9:51 fsflush

172 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

Another common configuration option used with ps is –j, which displays the
session identifier (SID) and the process group identifier (PGID), as shown here:

$ ps -j
PID PGID SID TTY TIME CMD

29081 29081 29081 pts/8 0:00 ksh
29085 29085 29081 pts/8 0:00 bash

Finally, you can print out the status of lightweight processes (LWP) in your system.
These are virtual CPU or execution resources, which are designed to make the best use
of available CPU resources based on their priority and scheduling class. Here is an
example:

$ ps -L
PID LWP TTY LTIME CMD

29081 1 pts/8 0:00 ksh
29085 1 pts/8 0:00 bash

Using the top Program
If you’re an administrator, you probably want to keep an eye on all processes running
on a system, particularly if the system is in production use. Buggy programs can consume
large amounts of CPU time, preventing operational applications from carrying out their
duties efficiently. Monitoring the process list almost constantly is necessary, especially
if performance begins to suffer on a system. Although you could keep typing ps –eaf
every five minutes or so, a much more efficient method is to use the top program to
monitor the processes in your system interactively, and to use its “vital statistics,” such
as CPU activity states, real and virtual memory status, and the load average. In addition,
top displays the details of the leading processes that consume the greatest amount of
CPU time during each sampling period.

The display of top can be customized to include any number of these leading
processes at any one time, but displaying the top 10 or 20 processes is usually sufficient
to keep an eye on rogue processes. The latest version of top can always be downloaded
from ftp://ftp.groupsys.com/pub/top.

top reads the /proc file system to generate its process statistics. This usually means
that top runs as a setUID process, unless you remove the read and execute permissions
for nonroot users and run it only as root. Paradoxically, doing this may be just as
dangerous, because any errors in top may impact the system at large if executed by the
root user. Again, setUID processes are dangerous, and you should evaluate whether the
trade-off between accessibility and security is worthwhile in this case.

One of the main problems with top running on Solaris is that top is very sensitive
to changes in architecture and/or operating system version. This is particularly the
case if the GNU gcc compiler is used to build top, as it has its own set of include files.
These files must exactly match the version of the current operating system, otherwise
top will not work properly: the CPU state percentages may be wrong, indicating that

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 173

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

174 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

processes are consuming all CPU time, when the system is actually idle. The solution is
to rebuild gcc so that it generates header files that are appropriate for your current
operating system version.

Let’s examine a printout from top:

last PID: 16630; load averages: 0.17, 0.08, 0.06 09:33:29
72 processes: 71 sleeping, 1 on cpu
CPU states: 87.6% idle, 4.8% user, 7.5% kernel, 0.1% iowait, 0.0% swap
Memory: 128M real, 3188K free, 72M swap in use, 172M swap free

This summary tells us that the system has 72 processes, with only 1 running
actively and 71 sleeping. The system was 87.6 percent idle in the previous sampling
epoch, and there was little swapping or iowait activity, ensuring fast performance. The
load average for the previous 1, 5, and 15 minutes was 0.17, 0.08, and 0.06 respectively—
this is not a machine that is taxed by its workload. The last PID to be issued to an
application, 16630, is also displayed.

PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND
259 root 1 59 0 18M 4044K sleep 58:49 1.40% Xsun

16630 pwatters 1 59 0 1956K 1536K cpu 0:00 1.19% top
345 pwatters 8 33 0 7704K 4372K sleep 0:21 0.83% dtwm

16580 pwatters 1 59 0 5984K 2608K sleep 0:00 0.24% dtterm
9196 pwatters 1 48 0 17M 1164K sleep 0:28 0.01% netscape

13818 pwatters 1 59 0 5992K 872K sleep 0:01 0.00% dtterm
338 pwatters 1 48 0 7508K 0K sleep 0:04 0.00% dtsession
112 pwatters 3 59 0 1808K 732K sleep 0:03 0.00% nis_cachemgr
157 pwatters 5 58 0 2576K 576K sleep 0:02 0.00% automountd
422 pwatters 1 48 0 4096K 672K sleep 0:01 0.00% textedit

2295 pwatters 1 48 0 7168K 0K sleep 0:01 0.00% dtfile
8350 root 10 51 0 3000K 2028K sleep 0:01 0.00% nscd
8757 pwatters 1 48 10 5992K 1340K sleep 0:01 0.00% dtterm
4910 nobody 1 0 0 1916K 0K sleep 0:00 0.00% httpd
366 pwatters 1 28 0 1500K 0K sleep 0:00 0.00% sdtvolcheck

This top listing shows a lot of information about each process running on the system,
including the PID, the user who owns the process, the nice value (priority), the size of
the application, the amount resident in memory, its current state (active or sleeping),
the CPU time consumed, and the command name. For example, the Apache Web server
runs as the httpd process (PID=4910), by the user nobody, and is 1916KB in size.

Changing the nice value of a process ensures that it receives more or less priority
from the process scheduler. Reducing the nice value ensures that the process priority is
decreased, while increasing the nice value increases the process priority. Unfortunately,
while ordinary users can decrease their nice value, only the superuser can increase the
nice value for a process. In the preceding example for top, the dtterm process is
running with a nice value of 10, which is low. If the root user wanted to increase the
priority of a new dtterm process by 20, they would issue the following command:

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 175

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

nice -–20 dtterm

Reducing the nice value can be performed by any user. To reduce the nice value of a
new top process, the following command would be used:

$ nice –20 top

Now, if you execute an application that requires a lot of CPU power, you will be
able to monitor the impact on the system as a whole by examining the changes in the
processes displayed by top. If you execute the command

$ find . -name apache -print

the impact on the process distribution is immediately apparent:

last PID: 16631; load averages: 0.10, 0.07, 0.06 09:34:08
73 processes: 71 sleeping, 1 running, 1 on cpu
CPU states: 2.2% idle, 0.6% user, 11.6% kernel, 85.6% iowait, 0.0% swap
Memory: 128M real, 1896K free, 72M swap in use, 172M swap free

This summary tells you that the system now has 73 processes, with only 1 running
actively, 1 on the CPU, and 71 sleeping. The new process is the find command, which
is actively running. The system is now only 2.2 percent idle, a large increase on the
previous sampling epoch. There is still no swapping activity, but iowait activity has
risen to 85.6 percent, slowing system performance. The load average for the previous 1,
5, and 15 minutes was 0.10, 0.07, and 0.06 respectively—on the average, this machine is
still not taxed by its workload and wouldn’t be unless the load averages grew to greater
than 1. The last PID to be issued to an application, 16631, is also displayed, and in this
case it again refers to the find command.

PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND
16631 pwatters 1 54 0 788K 668K run 0:00 1.10% find
259 root 1 59 0 18M 4288K sleep 58:49 0.74% Xsun

16630 pwatters 1 59 0 1956K 1536K cpu 0:00 0.50% top
9196 pwatters 1 48 0 17M 3584K sleep 0:28 0.13% netscape
8456 pwatters 1 59 0 5984K 0K sleep 0:00 0.12% dtpad
345 pwatters 8 59 0 7708K 0K sleep 0:21 0.11% dtwm

16580 pwatters 1 59 0 5992K 2748K sleep 0:00 0.11% dtterm
13838 pwatters 1 38 0 2056K 652K sleep 0:00 0.06% bash
13818 pwatters 1 59 0 5992K 1884K sleep 0:01 0.06% dtterm
112 root 3 59 0 1808K 732K sleep 0:03 0.02% nis_cachemgr
337 pwatters 4 59 0 4004K 0K sleep 0:00 0.01% ttsession
338 pwatters 1 48 0 7508K 0K sleep 0:04 0.00% dtsession
157 root 5 58 0 2576K 604K sleep 0:02 0.00% automountd
2295 pwatters 1 48 0 7168K 0K sleep 0:01 0.00% dtfile
422 pwatters 1 48 0 4096K 0K sleep 0:01 0.00% textedit

find now uses 1.1 percent of CPU power, which is the highest of any active process
(i.e., in the “run” state) on the system. It uses 788KB of RAM, less than most other
processes; however, most other processes are in the “sleep” state and do not occupy
much resident memory.

Using the truss Program
If you’ve identified a process that appears to be having problems and you suspect an
application bug is the cause, the solution involves more than just going back to the
source to debug the program or making an educated guess about what’s going wrong.
In fact, one of the great features of Solaris is the ability to trace system calls for every
process running on the system. This means that if a program is hanging, for example,
because it can’t find its initialization file, the failed system call revealed using truss
would display this information. truss prints out each system call, line by line, as it is
executed by the system. The syntax is rather like a C program, making it easy for C
programmers to interpret the output. The arguments are displayed by retrieving
information from the appropriate headers, and any file information is also displayed.

As an example, let’s look at the output from the cat command, which we can use
to display the contents of /etc/resolv.conf, which is used by the Domain Name Service
(DNS) to identify domains and name servers. Let’s look at the operations involved in
this running this application:

truss cat /etc/resolv.conf
execve("/usr/bin/cat", 0xEFFFF740, 0xEFFFF74C) argc = 2
open("/dev/zero", O_RDONLY) = 3
mmap(0x00000000, 8192, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0xEF7B0000
open("/usr/lib/libc.so.1", O_RDONLY) = 4
fstat(4, 0xEFFFF2DC) = 0
mmap(0x00000000, 8192, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) = 0xEF7A0000
mmap(0x00000000, 704512, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) =
0xEF680000
munmap(0xEF714000, 57344)

= 0
mmap(0xEF722000, 28368, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|
MAP_FIXED, 4, 598016) = 0xEF722000
mmap(0xEF72A000, 2528, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|
MAP_FIXED, 3, 0) = 0xEF72A000
close(4) = 0
open("/usr/lib/libdl.so.1", O_RDONLY) = 4
fstat(4, 0xEFFFF2DC) = 0
mmap(0xEF7A0000, 8192, PROT_READ|PROT_EXEC, MAP_PRIVATE|
MAP_FIXED, 4, 0) = 0xEF7A0000
close(4) = 0
open("/usr/platform/SUNW,Ultra-2/lib/libc_psr.so.1", O_RDONLY) = 4
fstat(4, 0xEFFFF0BC) = 0
mmap(0x00000000, 8192, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) = 0xEF790000

176 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

mmap(0x00000000, 16384, PROT_READ|PROT_EXEC, MAP_PRIVATE, 4, 0) =
0xEF780000
close(4) = 0
close(3) = 0
munmap(0xEF790000, 8192) = 0
fstat64(1, 0xEFFFF648) = 0
open64("resolv.conf", O_RDONLY) = 3
fstat64(3, 0xEFFFF5B0) = 0
llseek(3, 0, SEEK_CUR) = 0
mmap64(0x00000000, 98, PROT_READ, MAP_SHARED, 3, 0) = 0xEF790000
read(3, " d", 1) = 1
memcntl(0xEF790000, 98, MC_ADVISE, 0x0002, 0, 0) = 0
domain paulwatters.com
nameserver 192.56.67.16
nameserver 192.56.67.32
nameserver 192.56.68.16
write(1, " d o m a i n p a u l w a t t e r s .".., 98) = 98
llseek(3, 98, SEEK_SET) = 98
munmap(0xEF790000, 98) = 0
llseek(3, 0, SEEK_CUR) = 98
close(3) = 0
close(1) = 0
llseek(0, 0, SEEK_CUR) = 57655
_exit(0)

First, cat is called using execve(), with two arguments (the application name,
cat, and the file to be displayed, /etc/resolv.conf). The arguments to execve() include
the name of the application (/usr/bin/cat), a pointer to the argument list (0xEFFFF740),
and a pointer to the environment (0xEFFFF74C). Next, library files such as /usr/lib/
libc.so.1 are read. Memory operations (such as mmap()) are performed continuously.
The resolv.conf file is opened as read only, after which the contents are literally printed
to standard output. Then the file is closed. truss can be used in this way to trace the
system calls for any process running on your system.

Examples
The following examples demonstrate some advanced process-management features of
Solaris 10.

Using Process File System
Now that you have examined what processes are, you are ready to look at some special
features of processes as implemented in Solaris. One of the most innovative characteristics
of processes under Solaris is the process file system (PROCFS), which is mounted as
the /proc file system. Images of all currently active processes are stored in the /proc file
system by their PID.

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 177

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

Here’s an example: first, a process is identified—in this example, the current Korn
shell for the user pwatters:

ps -eaf | grep pwatters
pwatters 310 291 0 Mar 20 ? 0:04 /usr/openwin/bin/Xsun
pwatters 11959 11934 0 09:21:42 pts/1 0:00 grep pwatters
pwatters 11934 11932 1 09:20:50 pts/1 0:00 –ksh

Now that you have a target PID (11934), you can change to the /proc/11934 directory
and view the image of this process:

cd /proc/11934
ls -l

total 3497
-rw------- 1 pwatters other 1769472 Mar 30 09:20 as
-r-------- 1 pwatters other 152 Mar 30 09:20 auxv
-r-------- 1 pwatters other 32 Mar 30 09:20 cred
--w------- 1 pwatters other 0 Mar 30 09:20 ctl
lr-x------ 1 pwatters other 0 Mar 30 09:20 cwd ->
dr-x------ 2 pwatters other 1184 Mar 30 09:20 fd
-r--r--r-- 1 pwatters other 120 Mar 30 09:20 lpsinfo
-r-------- 1 pwatters other 912 Mar 30 09:20 lstatus
-r--r--r-- 1 pwatters other 536 Mar 30 09:20 lusage
dr-xr-xr-x 3 pwatters other 48 Mar 30 09:20 lwp
-r-------- 1 pwatters other 2016 Mar 30 09:20 map
dr-x------ 2 pwatters other 544 Mar 30 09:20 object
-r-------- 1 pwatters other 2552 Mar 30 09:20 pagedata
-r--r--r-- 1 pwatters other 336 Mar 30 09:20 psinfo
-r-------- 1 pwatters other 2016 Mar 30 09:20 rmap
lr-x------ 1 pwatters other 0 Mar 30 09:20 root ->
-r-------- 1 pwatters other 1440 Mar 30 09:20 sigact
-r-------- 1 pwatters other 1232 Mar 30 09:20 status
-r--r--r-- 1 pwatters other 256 Mar 30 09:20 usage
-r-------- 1 pwatters other 0 Mar 30 09:20 watch
-r-------- 1 pwatters other 3192 Mar 30 09:20 xmap

Each of the directories with the name associated with the PID contains additional
subdirectories, which contain state information, and related control functions. In addition,
a watchpoint facility is provided, which is responsible for controlling memory access.
A series of proc tools interpret the information contained in the /proc subdirectories,
which display the characteristics of each process.

Using proc Tools
The proc tools are designed to operate on data contained within the /proc file system.
Each utility takes a PID as its argument and performs operations associated with the

178 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

PID. For example, the pflags command prints the flags and data model details for the
PID in question.

For the preceding Korn shell example, you can easily print out this status information:

/usr/proc/bin/pflags 29081
29081: /bin/ksh

data model = _ILP32 flags = PR_ORPHAN
/1: flags = PR_PCINVAL|PR_ASLEEP [waitid(0x7,0x0,0x804714c,0x7)]

You can also print the credential information for this process, including the effective
and real UID and GID of the process owner, by using the pcred command:

$ /usr/proc/bin/pcred 29081
29081: e/r/sUID=100 e/r/sGID=10

Here, both the effective and the real UID is 100 (user pwatters), and the effective and
real GID is 10 (group staff).

To examine the address space map of the target process, you can use the pmap
command and all the libraries it requires to execute:

/usr/proc/bin/pmap 29081
29081: /bin/ksh
08046000 8K read/write/exec [stack]
08048000 160K read/exec /usr/bin/ksh
08070000 8K read/write/exec /usr/bin/ksh
08072000 28K read/write/exec [heap]
DFAB4000 16K read/exec /usr/lib/locale/en_AU/en_AU.so.2
DFAB8000 8K read/write/exec /usr/lib/locale/en_AU/en_AU.so.2
DFABB000 4K read/write/exec [anon]
DFABD000 12K read/exec /usr/lib/libmp.so.2
DFAC0000 4K read/write/exec /usr/lib/libmp.so.2
DFAC4000 552K read/exec /usr/lib/libc.so.1
DFB4E000 24K read/write/exec /usr/lib/libc.so.1
DFB54000 8K read/write/exec [anon]
DFB57000 444K read/exec /usr/lib/libnsl.so.1
DFBC6000 20K read/write/exec /usr/lib/libnsl.so.1
DFBCB000 32K read/write/exec [anon]
DFBD4000 32K read/exec /usr/lib/libsocket.so.1
DFBDC000 8K read/write/exec /usr/lib/libsocket.so.1
DFBDF000 4K read/exec /usr/lib/libdl.so.1
DFBE1000 4K read/write/exec [anon]
DFBE3000 100K read/exec /usr/lib/ld.so.1
DFBFC000 12K read/write/exec /usr/lib/ld.so.1
total 1488K

It’s always surprising to see how many libraries are loaded when an application is
executed, especially something as complicated as a shell, leading to a total of 1488KB

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 179

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

memory used. You can obtain a list of the dynamic libraries linked to each process by
using the pldd command:

/usr/proc/bin/pldd 29081
29081: /bin/ksh
/usr/lib/libsocket.so.1
/usr/lib/libnsl.so.1
/usr/lib/libc.so.1
/usr/lib/libdl.so.1
/usr/lib/libmp.so.2
/usr/lib/locale/en_AU/en_AU.so.2

As discussed earlier in the section “Sending Signals,” signals are the way in which
processes communicate with each other, and they can also be used from shells to
communicate with spawned processes (usually to suspend or kill them).

By using the psig command, it is possible to list the signal actions associated with
each process:

$ /usr/proc/bin/psig 29081
29081: /bin/ksh
HUP caught RESTART
INT caught RESTART
QUIT ignored
ILL caught RESTART
TRAP caught RESTART
ABRT caught RESTART
EMT caught RESTART
FPE caught RESTART
KILL default
BUS caught RESTART
SEGV default
SYS caught RESTART
PIPE caught RESTART
ALRM caught RESTART
TERM ignored
USR1 caught RESTART
USR2 caught RESTART
CLD default NOCLDSTOP
PWR default
WINCH default
URG default
POLL default
STOP default
TSTP ignored
CONT default
TTIN ignored
TTOU ignored

180 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

VTALRM default
PROF default
XCPU caught RESTART
XFSZ ignored
WAITING default
LWP default
FREEZE default
THAW default
CANCEL default
LOST default
RTMIN default
RTMIN+1 default
RTMIN+2 default
RTMIN+3 default
RTMAX-3 default
RTMAX-2 default
RTMAX-1 default
RTMAX default

It is also possible to print a hexadecimal format stack trace for the lightweight
process (LWP) in each process by using the pstack command. This can be useful and
can be used in the same way that the truss command was used:

$ /usr/proc/bin/pstack 29081
29081: /bin/ksh
dfaf5347 waitid (7, 0, 804714c, 7)
dfb0d9db _waitPID (ffffffff, 8047224, 4) + 63
dfb40617 waitPID (ffffffff, 8047224, 4) + 1f
0805b792 job_wait (719d) + 1ae
08064be8 sh_exec (8077270, 14) + af0
0805e3a1 ???????? ()
0805decd main (1, 8047624, 804762c) + 705
0804fa78 ???????? ()

Perhaps the most commonly used proc tool is the pfiles command, which
displays all the open files for each process. This is useful for determining operational
dependencies between data files and applications:

$ /usr/proc/bin/pfiles 29081
29081: /bin/ksh
Current rlimit: 64 file descriptors
0: S_IFCHR mode:0620 dev:102,0 ino:319009 UID:6049 GID:7 rdev:24,8

O_RDWR|O_LARGEFILE
1: S_IFCHR mode:0620 dev:102,0 ino:319009 UID:6049 GID:7 rdev:24,8

O_RDWR|O_LARGEFILE
2: S_IFCHR mode:0620 dev:102,0 ino:319009 UID:6049 GID:7 rdev:24,8

O_RDWR|O_LARGEFILE

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 181

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

63: S_IFREG mode:0600 dev:174,2 ino:990890 UID:6049 GID:1 size:3210
O_RDWR|O_APPEND|O_LARGEFILE FD_CLOEXEC

In addition, it is possible to obtain the current working directory of the target
process by using the pwdx command:

$ /usr/proc/bin/pwdx 29081
29081: /home/paul

If you need to examine the process tree for all parent and child processes containing
the target PID, you can use the ptree command. This is useful for determining
dependencies between processes that are not apparent by consulting the process list:

$ /usr/proc/bin/ptree 29081
247 /usr/dt/bin/dtlogin -daemon
28950 /usr/dt/bin/dtlogin -daemon
28972 /bin/ksh /usr/dt/bin/Xsession
29012 /usr/dt/bin/sdt_shell -c unset DT; DISPLAY=lion:0;
29015 ksh -c unset DT; DISPLAY=lion:0;

/usr/dt/bin/dt
29026 /usr/dt/bin/dtsession
29032 dtwm
29079 /usr/dt/bin/dtterm
29081 /bin/ksh
29085 /usr/local/bin/bash
29230 /usr/proc/bin/ptree 29081

Here, ptree has been executed from bash, which was started from the Korn shell
(ksh), spawned from the dtterm terminal window, which was spawned from the
dtwm window manager, and so on. Although many of these proc tools will seem
obscure, they are often very useful when trying to debug process-related application
errors, especially in large applications like database management systems.

Using the lsof Command
The lsof command (lsof stands for “list open files”) lists information about files that
active processes running on Solaris currently have open. The lsof command is not
included in the Solaris distribution; however, the current version can always be
downloaded from ftp://vic.cc.purdue.edu/pub/tools/unix/lsof.

What can you use lsof for? The answer largely depends on how many problems
you encounter that relate to processes and files. Often, administrators are interested in
knowing which processes are currently using a target file or files from a particular
directory. This can occur when a file is locked by one application, for example, but is
required by another application (again, a situation in which two database instances
simultaneously attempt to write to a database system’s data files is one example in

182 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

which this might happen). If you know the path to a file of interest, you can use lsof
to determine which processes are using files in that directory.

To examine the processes that are using files in the /tmp file system, use this:

$ lsof /tmp
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
ssion 338 pwatters txt VREG 0,1 271596 471638794 /tmp (swap)
(unknown) 345 pwatters txt VREG 0,1 271596 471638794 /tmp (swap)
le 2295 pwatters txt VREG 0,1 271596 471638794 /tmp (swap)
le 2299 pwatters txt VREG 0,1 271596 471638794 /tmp (swap)

Obviously, there’s a bug in the routines that obtain the command name (the first four
characters are missing!), but since the PID is correct, this is enough information to
identify the four applications that are currently using files in /tmp. For example,
dtsession (PID 338) manages the CDE session for the user pwatters, who is using a
temporary text file in the /tmp directory.

Another common problem that lsof is used for, with respect to the /tmp file
system, is the identification of processes that continue to write to unlinked files: thus,
space is being consumed, but it may appear that no files are growing any larger! This
confusing activity can be traced back to a process by using lsof. However, rather than
using lsof on the /tmp directory directly, you would need to examine the root directory
(/) on which /tmp is mounted. After finding the process that is writing to an open file,
you can kill the process. If the size of a file is changing across several different sampling
epochs (e.g., by running the command once a minute), you’ve probably found the
culprit:

lsof /
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
(unknown) 1 root txt VREG 102,0 446144 118299 / (/dev/dsk/c0d0s0)
(unknown) 1 root txt VREG 102,0 4372 293504 / (/dev/dsk/c0d0s0)
(unknown) 1 root txt VREG 102,0 173272 293503 / (/dev/dsk/c0d0s0)
sadm 62 root txt VREG 102,0 954804 101535 / (/dev/dsk/c0d0s0)
sadm 62 root txt VREG 102,0 165948 101569 / (/dev/dsk/c0d0s0)
sadm 62 root txt VREG 102,0 16132 100766 / (/dev/dsk/c0d0s0)
sadm 62 root txt VREG 102,0 8772 100765 / (/dev/dsk/c0d0s0)
sadm 62 root txt VREG 102,0 142652 101571 / (/dev/dsk/c0d0s0)

One of the restrictions on mounting a file system is that you can’t unmount that file
system if files are open on it: if files are open on a file system and it is dismounted, any
changes made to the files may not be saved, resulting in data loss. Looking at a process
list may not always reveal which processes are opening which files, and this can be
very frustrating if Solaris refuses to unmount a file system because some files are open.
Again, lsof can be used to identify the processes that are opening files on a specific
file system.

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 183

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

184 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

The first step is to consult the output of the df command to obtain the names of
currently mounted file systems:

$ df -k
Filesystem kbytes used avail capacity Mounted on
/proc 0 0 0 0% /proc
/dev/dsk/c0d0s0 2510214 929292 1530718 38% /
fd 0 0 0 0% /dev/fd
/dev/dsk/c0d0s3 5347552 183471 5110606 4% /usr/local
swap 185524 12120 173404 7% /tmp

If you wanted to unmount the /dev/dsk/c0d0s3 file system but were prevented
from doing so because of open files, you could obtain a list of all open files under /usr/
local by using this command:

$ lsof /dev/dsk/c0d0s3
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
postgres 423 pwatters txt VREG 102,3 1747168 457895 /usr/local (/dev/dsk/
c0d0s3)
d 4905 root txt VREG 102,3 333692 56455 /usr/local (/dev/dsk/c0d0s3)
d 4906 nobody txt VREG 102,3 333692 56455 /usr/local (/dev/dsk/c0d0s3)
d 4907 nobody txt VREG 102,3 333692 56455 /usr/local (/dev/dsk/c0d0s3)
d 4908 nobody txt VREG 102,3 333692 56455 /usr/local (/dev/dsk/c0d0s3)
d 4909 nobody txt VREG 102,3 333692 56455 /usr/local (/dev/dsk/c0d0s3)
d 4910 nobody txt VREG 102,3 333692 56455 /usr/local (/dev/dsk/c0d0s3)
d 4911 nobody txt VREG 102,3 333692 56455 /usr/local (/dev/dsk/c0d0s3)
d 4912 nobody txt VREG 102,3 333692 56455 /usr/local (/dev/dsk/c0d0s3)
d 4913 nobody txt VREG 102,3 333692 56455 /usr/local (/dev/dsk/c0d0s3)

Obviously, all of these processes will need to stop using the open files before the file
system can be unmounted. If you’re not sure where a particular command is running
from, or on which file system its data files are stored, you can also use lsof to check
open files by passing the PID on the command line. First, you need to identify a PID by
using the ps command:

$ ps -eaf | grep apache
nobody 4911 4905 0 Mar 22 ? 0:00 /usr/local/apache/bin/httpd
nobody 4910 4905 0 Mar 22 ? 0:00 /usr/local/apache/bin/httpd
nobody 4912 4905 0 Mar 22 ? 0:00 /usr/local/apache/bin/httpd
nobody 4905 1 0 Mar 22 ? 0:00 /usr/local/apache/bin/httpd
nobody 4907 4905 0 Mar 22 ? 0:00 /usr/local/apache/bin/httpd
nobody 4908 4905 0 Mar 22 ? 0:00 /usr/local/apache/bin/httpd
nobody 4913 4905 0 Mar 22 ? 0:00 /usr/local/apache/bin/httpd
nobody 4909 4905 0 Mar 22 ? 0:00 /usr/local/apache/bin/httpd
nobody 4906 4905 0 Mar 22 ? 0:00 /usr/local/apache/bin/httpd

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 185

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

Now examine the process 4905 for Apache to see what files are currently being
opened by it:

$ lsof -p 4905
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
d 4905 nobody txt VREG 102,3 333692 56455 /usr/local
(/dev/dsk/c0d0s3)
d 4905 nobody txt VREG 102,0 17388 100789 / (/dev/dsk/c0d0s0)
d 4905 nobody txt VREG 102,0 954804 101535 / (/dev/dsk/c0d0s0)
d 4905 nobody txt VREG 102,0 693900 101573 / (/dev/dsk/c0d0s0)
d 4905 nobody txt VREG 102,0 52988 100807 / (/dev/dsk/c0d0s0)
d 4905 nobody txt VREG 102,0 4396 100752 / (/dev/dsk/c0d0s0)
d 4905 nobody txt VREG 102,0 175736 100804 / (/dev/dsk/c0d0s0)

Apache has a number of open files!

Command Reference
The following commands are commonly used to manage processes.

ps
The following table summarizes the main options used with ps.

Option Description

–a Lists most frequently requested processes

–A, –e List all processes

–c Lists processes in scheduler format

–d Lists all processes

–f Prints comprehensive process information

–g Prints process information on a group basis for a single group

–G Prints process information on a group basis for a list of groups

–j Includes SID and PGID in printout

–l Prints complete process information

–L Displays LWP details

–p Lists process details for list of specified processes

–P Lists the CPU ID to which a process is bound

–s Lists session leaders

–t Lists all processes associated with a specific terminal

–u Lists all processes for a specific user

kill
The following table summarizes the main signals used to communicate with processes
using kill.

Signal Code Action Description

SIGHUP 1 Exit Hangup

SIGINT 2 Exit Interrupt

SIGQUIT 3 Core Quit

SIGILL 4 Core Illegal instruction

SIGTRAP 5 Core Trace

SIGABRT 6 Core Abort

SIGEMT 7 Core Emulation trap

SIGFPE 8 Core Arithmetic exception

SIGKILL 9 Exit Killed

SIGBUS 10 Core Bus error

SIGSEGV 11 Core Segmentation fault

SIGSYS 12 Core Bad system call

SIGPIPE 13 Exit Broken pipe

SIGALRM 14 Exit Alarm clock

SIGTERM 15 Exit Terminate

pgrep
The pgrep command is used to search for a list of processes whose names match a
pattern specified on the command line. The command returns a list of corresponding
PIDs. This list can then be piped to another command, such as kill, to perform some
action on the processes or send them a signal.

For example, to kill all processes associated with the name “java,” the following
command would be used:

$ kill –9 `pgrep java`

pkill
The pkill command can be used to send signals to processes that have the same
name. It is a more specific version of pgrep, since it can be used only to send signals,
and the list of PIDs cannot be piped to another program.

To kill all processes associated with the name “java,” the following command
would be used:

$ pkill –9 java

186 P a r t I I : S y s t e m E s s e n t i a l s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

killall
The killall command is used to kill all processes running on a system. It is called by
shutdown when the system is being bought to run-level 0. However, since a signal can
be passed to the killall command, it is possible for a superuser to send a different
signal (other than 9) to all processes. For example, to send a SIGHUP signal to all
processes, the following command could be used:

killall 1

Summary
In this chapter, we have examined how to manage and monitor processes. Since
processes and threads are the entities that actually carry out the execution of
applications, it’s important that you understand how to send signals to manage their
activity.

C h a p t e r 8 : P r o c e s s M a n a g e m e n t 187

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 8

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio 188

This page intentionally left blank.

III
Security

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9
Blind Folio 189

CHAPTER 9
System Security

CHAPTER 10
File System Access Control

CHAPTER 11
Role-Based Access Control

CHAPTER 12
Users, Groups, and the Sun
Management Console

CHAPTER 13
Kerberos and Pluggable
Authentication

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank.

9
System Security

Security is a central concern of system administrators of all network operating
systems, because all services may potentially have inherent flaws or weaknesses
revealed through undetected bugs that can compromise a system. Solaris is no

exception, and new Solaris administrators will find themselves visiting issues that they
may have encountered with other operating systems. For example, Linux, Microsoft
Windows, and Solaris all run database systems that have daemons that listen for
connections arriving through the Internet. These servers may be shipped with default
user accounts with well-known passwords that are not inactivated by local administrators
after configuration and administration. Consequently, exploits involving such services
are often broadcast on Usenet newsgroups, cracking mailing lists, and Web sites. This
chapter covers the basic security requirements for Solaris systems, including assurances
of integrity, authenticity, privacy, trust, and confidentiality. The focus will be on securing
Solaris systems for the enterprise at all levels.

Key Concepts
The following key concepts are important for understanding system security in the
context of Solaris.

Security Requirements
Security from the enterprise perspective is essentially an exercise in risk management,
whether those risks arise from randomly occurring accidental events or intentionally
malevolent events. Examples of accidents include fire, hardware failure, software bugs,
and data entry errors, while malevolence manifests itself in fraud, denial of service,
theft, and sabotage. To some extent, the end result to the enterprise is lost business,
which translates to lost money, regardless of whether a realized risk is accidental or
intentional. However, the legal means of recourse can be quite different. In each case,
data and applications may be deleted or modified, while physical systems may be
damaged or destroyed. For example, Web sites with inadequate access controls on their
source files that are displayed as Web pages are often defaced, with their contents

1 9 1

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9
Blind Folio 191

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

modified for fun or profit. Computer systems that are stolen obviously have to be
replaced, but the amount of reconfiguration required can be significant, as can the
underlying loss of data.

Given that so many “mission critical” systems, such as those in banking and
government, are now completely electronic, how would end users cope with the
complete loss of their records? Worse still, personal data may be exposed to the
world—embarrassing for the subscribers of an “adult” site, very dangerous for
participants of a witness protection program.

Managing risk obviously involves a human element that is beyond the scope of
this book—social-engineering attacks are widespread, and few technological solutions
(except biometrics!) may ameliorate such problems. However, failures attributable to
human factors can be greatly reduced with the kinds of automation and logical evaluation
provided by computation. For example, an automated identification system that recognizes
individuals entering an office suite, classifying them as employees or visitors, would
reduce the requirements on local staff to “know” everybody’s face in the organization.
Because employees may object to the storage of their photographs on a work computer,
you may want to consider using a one-way hash—instead of storing a photograph,
a one-way hash can be computed from the image data and stored, while the original
image is discarded. When an employee enters the building, a hash is computed of that
image, and if a match is made against any of the hashes stored in the database, then
the employee can be positively identified. In this way, organizational security can be
greatly enhanced while not compromising the privacy of individual workers. The
relationship between security and privacy need not be orthogonal, since well-designed
technology can often provide solutions that ensure both privacy and security.

Security Architecture
Solaris security includes the need to protect individual files, as well as entire systems,
from unauthorized access, especially using remote-access tools. However, these individual
actions need to be placed within a context that logically covers all aspects of security,
typically known as levels. A level is an extra barrier that must be breached to obtain
access to data.

In terms of physical security, a bank provides an excellent analogy. Breaking into
a bank’s front counter and teller area is as easy as walking through the door, because
these doors are publicly accessible. However, providing this level of access sometimes
opens doors deeper inside the building. For example, the private banking area, which
may normally be accessed only by staff and identified private banking customers, may
allow access using a smart card. If a smart card is stolen from a staff member, it could
be used to enter the secure area, because the staff member’s credentials would be
authenticated. Entering this level would not necessarily provide access to the vault:
superuser privileges would be required. However, a thorough physical search of the
private banking area might yield the key required for entry, or a brute-force attack on the
safe’s combination might be used to guess the correct combination. Having accessed the
vault, if readily negotiated currency or bullion is contained therein, an intruder
could easily steal it. However, if the vault contains checks that need to be countersigned,

192 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

the intruder may not be able to make use of the contents. The lesson here is simple:
banks provide public services that open up pathways straight to the cash. Banks know
that any or all of the physical security layers may be breached. That’s why the storage
of negotiable securities is always minimized, because any system designed by humans
can be broken by humans, with enough time and patience. The only sensible strategy is
to make sure that external layers are as difficult to breach as possible and to ensure that
security experts are immediately notified of breaches.

Similarly, public file areas, such as FTP and Web servers, are publicly accessible areas
on computer systems that sometimes provide entry to a different level in the system.
An easily guessed or stolen password may provide user-level (but unprivileged) access
to the system. A brute-force attack against the local password database might even
yield the superuser password. Accessing a local database might contain the target
records of interest. However, instead of storing the data plaintext within tables, data
may have been written using a stream cipher, making it potentially very difficult to
obtain the data. However, because 40-bit ciphers have been broken in the past, obtaining
the encrypted data might eventually lead to its dissemination. Again, a key strategy is
to ensure that data is secured by as many external layers as possible, and also that the
data itself is difficult to negotiate.

Increasing the number of levels of security typically leads to a decrease in system
ease-of-use. For example, setting a password for accessing a printer requires users to
remember and enter a password when challenged. Whether printer access needs this
level of security will depend on organizational requirements. For a printer that prints
on plain paper, no password may be needed. However, for a printer that prints on
bonded paper with an official company letterhead, a password should be used to
protect the printer and, optionally, a copy of the file being sent to the printer may need
to be stored securely, for auditing purposes.

For government and military systems, a number of security specifications and
policy documents are available that detail the steps necessary to secure Solaris systems
in “top secret” installations. The U.S. Department of Defense, for example, publishes
the “Orange Book,” formally known as the “Department of Defense Trusted Computer
System Evaluation Criteria.” This publication describes systems that it has evaluated in
terms of different protection levels, from weakest to strongest, including the following:

• Class D Systems that do not pass any tests and are therefore untrusted.
No sensitive data should be stored on Class D systems.

• Class C1 Systems that require authentication based on a user model.

• Class C2 Systems that provide auditing and logging on a per-user basis,
ensuring that file accesses and related operations can always be traced to
the initiating user.

• Class B1 Systems that require security labeling for all files. Labels range
from “top secret” to “unclassified.”

• Class B2 Systems that separate normal system administration duties from
security activities, which are performed by a separate security officer. This level

C h a p t e r 9 : S y s t e m S e c u r i t y 193

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

requires covert channels for data communications and verified testing of an
installation’s security procedures.

• Class B3 Systems that requires that a standalone request monitor be available
to authenticate all requests for file and resource access. In addition, the request
monitor must be secured and all of its operations must be logged.

• Class A1 Systems that are formally tested and verified installations of a Class
B3 system.

All of the strategies that are discussed in this chapter are focused on increasing the
number of layers through which a potential cracker (or disgruntled staff member) must
pass to obtain the data that they are illegally trying to access. Reducing the threat of
remote-access exploits and protecting data are key components of this strategy.

Trusted Solaris
Trusted Solaris implements much stricter controls over UNIX than the standard releases,
and it is capable of meeting B1-level security by default. It is designed for organizations
that handle military-grade or commercially sensitive data. In addition to the mandatory
use of Role-Based Access Control (as reviewed in Chapter 11), Trusted Solaris actually
has no superuser at all: no single user is permitted to have control over every aspect
of system service. This decentralization of authority is necessary in situations where
consensus and/or authorization is required to carry out specific activities. For example,
a system administrator installing a new Web server might inadvertently interfere with
the operations of an existing service. For a server that’s handling sensitive production
data, the results could be catastrophic.

Once a system has been installed in production, it’s crucial to define a set of roles
that specifies what operations need to be performed by a particular individual. For
example, the role of managing a firewall is unrelated to the database administration
role, so the two roles should be separated rather than run from a single superuser
account. In addition, access to files is restricted by special access control lists, which
define file contents as being anything from “unclassified” up to “top secret.” Access
to data that is labeled as more secret requires a higher level of authentication and
authorization than does access to unclassified data.

Four roles are defined by default under Trusted Solaris for system management
purposes:

• Security officer Manages all aspects of security on the system, such as
auditing, logging, and password management

• System manager Performs all system management tasks that are not
related to security, except for installing new software

• Root account Used for installing new software

• Oper account Used for performing backups

194 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

New roles can be created for other tasks, such as database and Web server
administration, where necessary. Some aspects of a Trusted Solaris installation already
form part of a standard Solaris installation. For example, Trusted Solaris requires that
centralized authentication be performed across an encrypted channel using NIS+. This
feature is also available on Solaris, although many sites are now moving to
LDAP-based authentication.

Trust
When two or more parties communicate with each other, they must have some level
of trust. This trust level will determine the extent to which most of the requirements
discussed in this section will be required. For example, if your “trust domain” includes
your lawyer’s network, then the level of authorization required to access resources
inside your network would be lower than the level required if an untrusted entity made a
request for access. Similarly, if a principal is authenticated from a trusted domain, then
they do not need to be separately authenticated for all subsequent resource requests.

The extent to which parties trust each other underlies the different types of security
architectures that can be implemented. If a dedicated ISDN line connects two business
partners, then they may well trust their communications to be more secure than if
connections were being made across the public Internet. Again, it’s a question of assessing
and managing risks systematically before implementing a specific architecture.

Part of the excitement concerning the “Trusted Computing Platform” developed by
Microsoft and others is that the trust equation is reversed between clients and servers,
and becomes more symmetric. Currently, clients trust servers to process and store their
data correctly—so, when you transfer $100 from a savings to a checking account using
Internet banking, you trust that the bank will perform the operation. Indeed, the bank
has sophisticated messaging and reliable delivery systems to ensure that such transactions
are never lost. However, when server data is downloaded to a client, the client is pretty
much free to do what they want to it, and the server is essentially powerless to control
what the client does with this data. For example, imagine that a user pays to download
an MP3 file to her computer from a music retailer. Once that physical file is stored on
the client’s hard drive, it can be easily e-mailed to others or shared using a file-swapping
program. Even if each MP3 file was digitally watermarked on a per-client basis, so that
illegally shared files could be traced back to the original purchaser, this is still not going
to prevent sharing.

So, the notion of making the trust relationship between client and server symmetric
simply means that the client trusts the server to honor certain types of data and operations.
Thus, even if an MP3 file is downloaded to a client’s hard drive, the client operating
system must ensure that this cannot be accessed by any application other than an MP3
player. The only question is whether users will permit this kind of trust level, given
that malicious server applications could potentially take control of the client’s computer.
For example, if an illegal MP3 file were detected on the client’s system, would the server
have the ability, if not the explicit right, to delete it?

C h a p t e r 9 : S y s t e m S e c u r i t y 195

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

Integrity and Accuracy
Integrity refers to whether data is valid or invalid. Invalid data may result from a number
of different sources, both human and computer in origin. For example, many (flawed)
business processes require multiple entry of the same data multiple times, potentially
by multiple users. This can lead to integrity breaches if errors are made. More commonly,
though, communication errors can occur when data is transmitted over a network, or
when data is being transferred in memory. Most network protocols use parity to ensure
data integrity—an extra bit is added to every 8 bits of data, which is used with a checksum
algorithm to determine whether an error has been detected. Parity mechanisms can
detect errors in data but are not capable of fixing errors—typically, a retransmission is
required, but this is better than losing data altogether.

Memory corruption can occur when a program reads memory that is allocated to a
different application or, more seriously, attempts to overwrite data of another application.
Fortunately, most modern memory hardware contains error-correction coding (ECC)
that ensures that data errors can be easily identified and fixed before they cause any
problems.

Since network protocols and hardware protocols generally handle invalid data caused
by system hardware and software, the Application layer is generally where there is
great concern over data integrity, especially where that data has been transmitted over
a network, because data can potentially be intercepted, modified, and then relayed by a
malicious third party (for pleasure or profit). For example, a share-trading application
might require traders to authenticate themselves over a Secure Sockets Layer (SSL)
connection, but then revert to plaintext mode for processing all buy and sell requests,
because SSL is too slow to encrypt all traffic to and from the broker’s Web site, particularly
when thousands of users are trading concurrently. A malicious third party might take
control of a downstream router and write a filter that changes all co-occurrences of “BUY”
and “1000” shares to “10000” shares. Such an attack would be difficult to thwart, unless
SSL was used for all transmissions.

One way to determine data integrity is to use a one-way hash function, like a message
digest. These functions can be computed from a string of arbitrary length and return
an almost unique identifier, such as b6d624gaf995c9e7c7da2a816b7deb33. Even a small
change in the source string changes the computed function, so the message digests can
be used to detect data tampering. There are several algorithms available to compute
such hash functions, including MD5 and SHA-1, which all generate a different bit length
digest—the longest digests provide a relatively stronger guarantee of collision resistance;
that is, when the same digest is computed from the same piece of data. Fortunately, the
probability of doing this is very low. The bit lengths of MD5 and SHA-1 are 128 and 160
bits, respectively.

Accurate data has all the properties of data integrity, plus an assurance that what
a piece of data claims to be is what it actually is. Thus, a username of nine characters
cannot be an accurate login if the maximum length is eight characters. Indeed, the
many buffer-overflow attacks of recent years have exploited excess data length as a key
mechanism for bringing down applications that don’t explicitly check for data accuracy.

196 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

C h a p t e r 9 : S y s t e m S e c u r i t y 197

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

Authenticity and Consistency
An issue related to integrity is authenticity—that is, given a piece of data that has
demonstrated integrity, how do you know that it is authentic? If multiple copies of data
exist, and they all pass integrity checks, how do you know whether they are consistent
with each other? If multiple copies of a piece of data exist, and one or more copies are
inconsistent, how do you establish which one (or more) copies is authentic? The issues
of authenticity and consistency are closely related in distributed systems.

Identification and Authentication
How can you determine whether data is authentic? The most common method is
to authenticate the principal who is presenting the data. The most common form of
authentication is a username and password combination. The username represents the
identity of a specific principal, and is known publicly, while the password is a secret
token that (in theory) is known only by the user. In practice, users create passwords
that can be easily guessed (e.g., birth date, middle name, vehicle registration) or that
are written down somewhere (e.g., on a Post-it Note, a sheet of paper in the top drawer,
or a whiteboard). If the password consists of a string of random characters of sufficient
length that is equally probable as any other random string to be guessed, and if the
password is secret, then the system works well. Defining sufficient length is sometimes
difficult—the UNIX standard for passwords is eight case-sensitive alphanumeric
characters, while most ATM PINs are four digits. Thus, there are 104 (10,000) possible
ATM PIN permutations, while there are approximately 948 (6,095,689,385,410,816)
possible UNIX password permutations.

UNIX authentication typically permits three incorrect logins before a delay of
15 seconds, to prevent brute-force attacks. If an automated sequence of three login
attempts took 1 second, without any delays, then a search of all possible passwords
would take around 193,293,042 years. Of course, there are potentially ways around
this—if the shadow password file can be directly obtained, then the search space can
be partitioned and the generation of candidate passwords can be parallelized. Using
a good password-guessing program like Crack on a fast computer with a shadow password
file can usually yield results within a matter of minutes or hours if passwords are weak.

There are more sophisticated mechanisms for authentication that revolve around two
different strategies—strong identification and strong authentication. Strong identification
typically means using an identifier that cannot be presented by anyone other than the
intended user. These identifiers are usually biometric—iris scans, face recognition, and
fingerprint recognition are becoming more commonly used as identifiers. Of course, there
are concerns that the strength of identification can be easily compromised—an eye could
be plucked and presented to the monitor, or its patterns transcribed holographically.
In these cases, the scanners are sensitive enough to detect whether the eye is living and
will reject scans that do not meet this criteria. Face recognition systems are very reliable
with a small number of samples, but often have problems “scaling up” to identify
individuals within pools of thousands, millions, or even billions of potential users.

198 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

Fingerprint systems have been shown to be weak because an imprint is left on the glass
of the device—a mould can be easily taken and used to produce fake prints that fool
most devices.

While these teething problems should be overcome with further research, it is
always recommended to combine strong identification with strong authentication. The
username and password combination can be greatly enhanced by the use of a one-time
pad, to implement two-factor authentication. Here, a user is authenticated using the
fixed user password—when this is accepted by the system, it computes a second password
that is not transmitted and is (say) time dependent. This password is also generated by
a device or physical pad that the user carries with them. Once the one-time password is
transmitted by the user, and she is authenticated a second time, the password becomes
invalid. The password need not be time based—a random or chaotic function could be
iterated with a different seed or initial parameter to generate a fixed sequence of passwords
for each user. As long as that function remains secret, strong authentication can be assured.

One reason why these strong authentication measures are necessary is that usernames
and passwords transmitted in the clear over a network can be intercepted by a malicious
third party who is promiscuously reading the contents of packets from a network. Thus,
if a sniffer application runs on a router between the client and server, the username and
password can be intercepted. If the link cannot be secured by using a Virtual Private
Network (VPN) of some description, or even a secure client such as Secure Shell (SSH),
then a one-time pad is ideal—all tokens can be intercepted because they are valid for
a single session only; the tokens cannot be used to successfully log in a second time,
because the generated password is invalidated once the first login has been accepted.
Even if the link can be secured, a one-time pad is still useful because the client may not
be trusted, and all keystrokes could be logged and saved for future malicious use. For
example, keyboard listeners installed on Internet café PCs could record username and
password combinations and automatically e-mail them to a cracker. These would be
unusable if a one-time pad were used because of the expiry time of the second factor.

Procedures
The following procedures can be used to implement basic Solaris security measures.

Confidentiality
A secret is a piece of information known only to one or more persons—that is, something
kept hidden from others or known only to oneself or to a few other people. To ensure
secrecy, the data is encoded in a form that can be decoded only by the intended persons.
Cryptology is the field of study underlying the development of new methods of encoding
secrets (cryptology), and inverse methods to break those techniques (cryptanalysis).
Cryptography involves the design of new ciphers and enhancement of existing ciphers,
which are algorithms that convert the source data (plaintext) into a secret (ciphertext).
The encoding process is known as encryption, and the decoding process is called

decryption. A large integer, known as a key, is central to the encryption and decryption
process—and, depending on the algorithm, a different key may be used for encryption
and decryption. Algorithms that use only a single key for encryption and decryption are
called symmetric, while algorithms that use two separate keys are known as asymmetric.

An individual user usually wants to encrypt their own data and ensure secrecy from
everyone else, in which case a symmetric algorithm typically suffices. The drawback for
sharing data secretly with multiple users is that once the key is known to one unauthorized
user, then all users’ data is compromised. This is where asymmetric algorithms come
into play—the encoding key can be compromised, but the data will still be protected
unless the decoding key is known to an attacker, because the decoding key cannot be
derived from the encoding key.

Given that much data in defense, commerce, and government spheres must be kept
secret, it’s little surprise that cryptography is what most lay people associate with security.
However, as you’ve seen from the other requirements of security in this chapter, secrecy
is only one part of the overall equation—if data is inauthentic, inaccurate, and lacks
integrity, then there’s little point in keeping it secret.

This section examines basic aspects of how both symmetric and asymmetric
cryptography are used in modern applications to ensure secrecy of data.

Symmetric Key Cryptography
In UNIX, a simple symmetric key encryption system is made available through the
crypt command. crypt takes a passphrase entered on the command line and uses
it to encrypt plaintext from standard input. The plaintext is passed through a stream
cipher, and crypt then sends the ciphertext to standard output.

Consider a simple example. Imagine that a list of secret agents’ names is stored
in a flat-file database called agents.txt. To protect these identities, you need to encrypt
the data and store the ciphertext in a file called agents.crypt. You also need to select an
appropriate passphrase in order to protect the data—in this case, use a random string
of 78hg65df. Thus, to encrypt the file, you would use the following command:

% crypt 78hg65df < agents.txt > agents.crypt; rm agents.txt

Since the contents of agents.crypt would contain binary data, you could view the
ciphertext using the following command:

% strings agents.crypt
8rgj5kg_-90fg++fg8ijrfssfjghkdfmvv
8dg0gf90ggd,rkf8b8fdk234,k_+_7gfsg
…

To decrypt the ciphertext, and recover the plaintext, the crypt command can also
be used. The passphrase 78hg65df will need to be supplied. If the passphrase is lost,
then the data is not recoverable—unless brute-force cracking is attempted.

C h a p t e r 9 : S y s t e m S e c u r i t y 199

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

It looks like crypt solves all of your secrecy problems, but actually there are several
problems with this simple scenario. The first problem is that when the crypt command
is executed, the passphrase appears in the clear in the process list, making it visible to
any user who is scanning the list on a regular basis for the token “crypt”. A cracker
might be able to determine the average file size on the system and the average time it
takes to encrypt that file size under an average system load. If average encryption time
for an average file is ten minutes, then a simple cron using the command ps –eaf |
grep crypt would intercept many of the crypt invocations. These could be e-mailed
to the attacker when detected, thereby bypassing the secrecy measures implemented.

The second problem with the preceding simple example is that the cipher used by
the crypt program is much less secure than current standards, making it susceptible
to brute-force cracking attacks. Other symmetric key ciphers that could be used include
the 56-bit Data Encryption Standard (DES). A modified DES variant known as triple-DES
encrypts the plaintext, then further encrypts this first ciphertext, and again encrypts
the second ciphertext to yield a third and final ciphertext. Clearly, this is more secure
than one pass—but the success of cryptanalytic attacks depends on the size of the keys
involved, and also on the nature of the plaintext. Many attacks are based on the fact
that in natural language, there are differences in character and word frequency—so the
word “the” appears in natural language much more frequently than “hippopotamus.”
Also, knowing even a small section of the plaintext can assist in cryptanalysis. Imagine
if every company invoice was encrypted—the company’s name would appear on every
invoice and would provide an excellent starting point for examining commonalities
between the ciphertext of all invoices.

If data is only available for a short period of time, and just needs to be scrambled,
then a compression algorithm may be utilized. These make use of the redundancies
previously described to recode the plaintext into a compressed text. By inspection, the
compressed text appears to be ciphertext. There is much interest in combining compression
and cryptography where data security is required, in applications where bandwidth is
limited. For example, studio-quality video streaming should be encrypted between
sender and receiver, but should be compressed as much as possible without sacrificing
quality to minimize bandwidth use.

Asymmetric Key Cryptography
One major limitation of symmetric key cryptography is that the same key is required to
encrypt and decrypt data. This is fine for protecting individual files from unauthorized
users, but many data-protection scenarios require multiple users to interact with each
other, when trust has never been established. For example, if a manager in New York
needs to exchange sales data with a manager in Buffalo, and this data requires encryption,
both managers could simply share the key required to decrypt the data. However, this
approach has two problems. First, users tend to apply the same password and key to
multiple purposes, meaning that one manager might be able to access the other manager’s
files; second, what if more than two managers were involved? Clearly, passing a password
around a user group of 1,000 users is tantamount to having no security at all! A system

200 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

is required that allows individual users to encrypt data using one key, and for the file
to be decrypted using a separate key for each user.

Asymmetric encryption allows separate keys to be used for encrypting and decrypting
data. How is this possible? Basically, every user is assigned a private key, which they
never release to anyone else, and a public key, which is supplied to other users who
need to send the user encrypted data. For example, the New York manager would have
a private key stored on a floppy disk, locked in a safe, as would the Buffalo manager.
Both would also exchange their public keys via e-mail, or another offline method such
as floppy disk, verifying that the keys were genuine by using a key “fingerprints” check
over the telephone. To encrypt a file for the Buffalo manager, the New York manager
would need to use both his/her own private key and the Buffalo manager’s public key.
Conversely, the Buffalo manager would need to use her private key and the New York
manager’s public key to encrypt a file for him. Remember that if you exchange public
keys via e-mail, and have no other method of verifying who is on the other end of the
line, then you’re ripe for a “man in the middle attack,” because the person you think
you are exchanging data with could be an intermediary. For example, imagine if Joe
substitutes his key in place of his manager’s, and manages to place his machine between
a manager’s machine and an external router. Now Joe is able to pretend to be his manager,
issuing his own public key with his manager’s name for which he actually has the
corresponding private key.

The most important feature (or limitation, depending on your requirements) of
asymmetric key cryptography is that obtaining the private key used to encrypt data is
not sufficient to decrypt that data: only the private key of the individual whose public
key was used for signing can be used for this purpose. This can be very important
in situations where data may be compromised in a specific location. For example, an
embassy in a foreign country under threat of attack may decide to encrypt all data by
using the public key of an officer in the State Department in Washington, send it via
e-mail, and then delete the on-site originals. Even if the encrypted data and the embassy’s
private key were obtained by force, they could not be used to decrypt the data.

Of course, asymmetry implies that if you lose your original data accidentally, you
must rely on the public key holder’s private key to decrypt the data. However, at least
one avenue of recourse is available, unlike when using symmetric key cryptography,
where a lost key almost certainly means lost data.

Public Key Cryptography
One of the most commonly used public key systems that uses asymmetric keys is the
Pretty Good Privacy (PGP) application (http://www.pgp.com/). PGP is available for a
wide variety of operating systems, making it very popular among PC and UNIX users,
because data can be exchanged without conversion. PGP works both on the command
line, to facilitate secure storage of files, and as a plug-in to e-mail programs, allowing
messages to be exchanged securely. This ensures that intermediate mail servers and
routers cannot intercept the decrypted contents of transmitted messages, even if they
can intercept packets containing the encrypted data.

C h a p t e r 9 : S y s t e m S e c u r i t y 201

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

To use PGP, each user needs to generate their own public/private key pair. This can
be performed by using the following command:

$ pgp -kg

The following prompt will be displayed:

Choose the type of your public key:
1) DSS/Diffie-Hellman - New algorithm for 5.0 (default)
2) RSA

Choose 1 or 2:

The public key format that you choose will determine what types of block ciphers
can be used to encrypt your data. The DSS/Diffie-Hellman algorithm allows Triple
DES, CAST, or IDEA, while RSA keys work only with IDEA, so most users will want
to select the DSS/Diffie-Hellman algorithm.

Next, you need to select the key size:

Pick your public/private keypair key size:
(Sizes are Diffie-Hellman/DSS; Read the user's guide for more information)
1) 768/768 bits- Commercial grade, probably not currently breakable
2) 1024/1024 bits- High commercial grade, secure for many years
3) 2048/1024 bits- "Military" grade, secure for foreseeable
future(default)
4) 3072/1024 bits- Archival grade, slow, highest security
Choose 1, 2, 3 or 4, or enter desired number of Diffie-Hellman bits
(768 - 4096):

Keep in mind that although a large key provides greater security, it also slows
down operations significantly because it is CPU-intensive. Thus, if your needs are
commercial rather than military, you should use the 768- or 1024-bit key. Military
users should certainly select the largest key size available (currently 4096 bits).

Next, you need to enter a user ID. This should be recognizable by your intended
recipients. For example, a programmer called Yayoi Rei from Rei Corporation would
have a user ID of Yayoi Rei <yayoi@rei.com>. Even in countries in which the family
name is usually written first, the expectation for the key server is that the family name
will appear last, followed by an e-mail address:

You need a user ID for your public key. The desired form for this
user ID is your FULL name, followed by your E-mail address enclosed in
<angle brackets>, if you have an E-mail address. For example:
Joe Smith <user@domain.com>

Enter a user ID for your public key:

202 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

If you wish your key to be valid for a specific time period, you can enter its period
of validity in days next; or if the key is intended to be permanent, you can enter zero
days:

Enter the validity period of your key in days from 0 - 999
0 is forever (and the default):

You need a password to be associated with the private key for future use, and you
will need to enter it twice for verification:

You need a pass phrase to protect your private key(s).
Your pass phrase can be any sentence or phrase and may have many
words, spaces, punctuation, or any other printable characters.
Enter pass phrase:
Enter again, for confirmation:

Finally, a number of random numbers needs to be generated from the intervals
between random key presses on your keyboard. Try to insert some variation in the key
press latency to ensure security:

We need to generate 595 random bits. This is done by measuring the
time intervals between your keystrokes. Please enter some random text
on your keyboard until you hear the beep:

Once the keypair has been created, you can list all the keys on your local keyring by
using the following command:

$ pgp -kl
Type Bits KeyID Created Expires Algorithm Use
sec+ 768 0x71849810 2002-01-07 ---------- DSS Sign & Encrypt
sub 768 0x78697B9D 2002-01-07 ---------- Diffie-Hellman
uid Yayoi Rei <yayoi@rei.com>
1 matching key found

The keypair is now available for use. To generate a copy of your public key for your
correspondents and colleagues to use, you need to extract this from your keyring as
follows:

$pgp -x Yayoi
-----BEGIN PGP PUBLIC KEY BLOCK-----
mQFCBDw5+oURAwDBKeBtW+0PdDvCC7KO1/gUAF9X//uGRhbPkg6m83QzaA7pr6T+
QAVQE4q74NXFCakX8GzmhzHtA2/Hoe/yfpfHGHMhJRZHZIWQWTS6W+r5wHYRSObm
NNNTeJ4C+3/klbEAoP/Mjlim4eMkfvYwNmifTUvak5zRAv48SrXOHmVI+5Mukx8Z
lT7txut60VeYd34QvidwtUbbL7p2IVVa3fGW/gsuo7whb1aW//+5Z/+4wxbaqnu6
WxT5vFObm1sJ7E20OW3SDLxdVjeTlYbzTUfNwbN/KHoUzMsC/2EZ3aDB6mGZuDPL

C h a p t e r 9 : S y s t e m S e c u r i t y 203

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

0SMT8sOoxlbpPouuBxnF/sbcxgOVKkGZDS5XrhodUbp2RUflwFSMyqjbmoqITnNq
xzpSXEhT0odwjjq3YeHj1icBaiy9xB/j0CBXe3QQKAXk5bXMEbQZWWF5b2kgUmVp
IDx5YXlvaUByZWkuY29tPokASwQQEQIACwUCPDn6hQQLAwECAAoJEHCOVqNxhJgQ
riMAn18a5kKYaepNk8BEksMJOTbRgDQmAKC0JD6wvYfo5zmziGr7TAv+uFWN5LkA
zQQ8OfqHEAMA6zd3dxeMkyKJmust3S3IrKvQzMLlMoRuQdb+N2momBYDF1+slo8k
EMK8F/Vrun+HdhJW+hWivgZRhTMe9fm6OL7PDYESkwuQsMizqAJJ1JF0yhbfTwE5
GjdVPcUMyPyTAAICAwCgdBO1XyiPbwdQtjxq+8CZ7uchASvJXsU28OFqbLzNcAW2
Q64lWSs6qr2HNfgf+ikG8S8eVWVKEBgm6md9trr6CK25SYEu4oB3o1f45X4daa/n
iNytKUglPPOJMK/rhJOJAD8DBRg8OfqHcI5Wo3GEmBARAs3mAJ0ZPQjmlYyNsMDY
ZVbR9/q2xQl8gACgkqVCNYR40mPIaxrd5Cw9ZrHqlkQ=
=Gsmt
-----END PGP PUBLIC KEY BLOCK-----

To encrypt a file using standard, symmetric encryption, you simply pass the –c
option on the command line along with the name of the file that you want to encrypt.
This provides Solaris users with an alternative to crypt, where a more secure encryption
algorithm is desired.

$ pgp -c secret.doc
You need a passphrase to encrypt the file
Enter pass phrase:
Enter same passphrase again
Enter pass phrase:
Creating output file secret.pgp

After entering a password to protect the data in secret.doc, the encrypted file secret.pgp is
created. In order to sign the file for another user, you need to pass the –e option, along with
the name of the user from your keyring who will have the power to decrypt your data:

$ pgp -e Henry secret.doc
4096 bits, Key ID 76857743, Created 2002-01-07
"Henry Bolingbroke <henry@bolingbroke.co.uk>"

Creating output file secret.pgp

The file can then be transmitted to Henry by uuencoding it, by sending it as an e-mail
attachment, or by directly generating the file in ASCII format:

$ pgp -ea Henry secret.doc

Disabling IP Ports
The first step in network security is to prevent unauthorized entry by disabling access
to specific IP ports, as defined by individual entries in the services database. This action
prevents specific services from operating, even if the inetd attempts to accept a
connection for a service because it is still defined in /etc/inetd.conf. This section examines
how to disable specific services from inetd, in conjunction with the services database.

204 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

C h a p t e r 9 : S y s t e m S e c u r i t y 205

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

It’s also important to shut down unnecessary services outside of inetd, such as
disabling startup scripts, as discussed in Chapter 4.

The following services are typically enabled in /etc/services and configured in /etc/
inetd.conf. Most sites will want to disable them and install more secure equivalents. For
example, the ftp and telnet services may be replaced by the encrypted secure copy
(scp) and secure shell (ssh) programs, respectively. To disable the ftp, telnet, shell,
login, exec, comsat, talk, uucp, and finger services, you would comment out
their entries in /etc/inetd.conf by inserting a hash character (#) at the first character position
of the line that defines the service. The following configuration enables the ftp, telnet,
shell, login, exec, comsat, talk, uucp, and finger services in /etc/inetd.conf:

ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd -l
telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd
shell stream tcp nowait root /usr/sbin/in.rshd in.rshd
login stream tcp nowait root /usr/sbin/in.rlogind in.rlogind
exec stream tcp nowait root /usr/sbin/in.rexecd in.rexecd
comsat dgram udp wait root /usr/sbin/in.comsat in.comsat
talk dgram udp wait root /usr/sbin/in.talkd in.talkd
uucp stream tcp nowait root /usr/sbin/in.uucpd in.uucpd
finger stream tcp nowait nobody /usr/sbin/in.fingerd in.fingerd

The following configuration disables the ftp, telnet, shell, login, exec,
comsat, talk, uucp, and finger services in /etc/inetd.conf:

#ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd -l
#telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd
#shell stream tcp nowait root /usr/sbin/in.rshd in.rshd
#login stream tcp nowait root /usr/sbin/in.rlogind in.rlogind
#exec stream tcp nowait root /usr/sbin/in.rexecd in.rexecd
#comsat dgram udp wait root /usr/sbin/in.comsat in.comsat
#talk dgram udp wait root /usr/sbin/in.talkd in.talkd
#uucp stream tcp nowait root /usr/sbin/in.uucpd in.uucpd
#finger stream tcp nowait nobody /usr/sbin/in.fingerd in.fingerd

Similarly, the following configuration enables the ftp, telnet, shell, login, exec,
comsat, talk, uucp, and finger services in /etc/services:

ftp 21/tcp
telnet 23/tcp
shell 514/tcp cmd
login 513/tcp
exec 512/tcp
biff 512/udp comsat
talk 517/udp
uucp 540/tcp uucpd
finger stream tcp nowait nobody /usr/sbin/in.fingerd in.fingerd

Similarly, the following configuration disables the ftp, telnet, shell, login, exec,
comsat, talk, uucp, and finger services in /etc/services:

#ftp 21/tcp
#telnet 23/tcp
#shell 514/tcp cmd
#login 513/tcp
#exec 512/tcp
#biff 512/udp comsat
#talk 517/udp
#uucp 540/tcp uucpd
#finger stream tcp nowait nobody /usr/sbin/in.fingerd in.fingerd

Don’t forget that you need to HUP the inetd daemon for these changes to be enabled.

Checking User and Group Identification
The concept of the user is central to Solaris—all processes and files on a Solaris system
are “owned” by a particular user and are assigned to a specific user group. No data
or activities on the system may exist without first establishing a valid user or group.
Managing users and groups as a Solaris administrator can be a challenging activity—
you will be responsible for assigning all the privileges granted or denied to a user or
group of users, and many of these permissions carry great risk. For example, a user
with an inappropriate privilege level may execute inappropriate commands as the
superuser, causing damage to your system.

You can determine which user is currently logged in from a terminal session by
using the id command:

$ id
uid=1001(natashia) gid=10(dialup)

The output shows that the currently logged-in user is natashia, with UID=1001. In addition,
the current group of natashia is a dialup group with GID=10. It is possible for the user
and group credentials to change during a single terminal session. For example, if the
su facility is used effectively to “become” the superuser, the UID and GID associated
with the current terminal session will also change:

$ su root
Password:
id
uid=0(root) gid=1(other)

Here, the root user (UID=0) belonging to the group other (GID=1) has spawned a new
shell with full superuser privileges.

206 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

C h a p t e r 9 : S y s t e m S e c u r i t y 207

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

You can obtain a list of all groups that a user belongs to by using the groups
command. For example, to view all the groups that the root user belongs to, use the
following command:

groups root
other root bin sys adm uucp mail tty lp nuucp daemon

Protecting the Superuser Account
You’ve just examined how to use the su facility to invoke superuser privileges from
an unprivileged account. The user with UID=0 (typically the root user) has unlimited
powers to act on a Solaris system. The root user can perform the following potentially
dangerous functions:

• Add, delete, or modify all other user accounts

• Read and write all files, and create new ones

• Add or delete devices to the system

• Install new system software

• Read everyone’s e-mail

• Snoop network traffic for usernames and passwords of other systems on
the LAN

• Modify all system logs to remove all traces of superuser access

• Pretend to be an unprivileged user and access their accounts on other systems
where login access is authenticated against a username

These powers combine to make the root account sound rather sinister: however,
many of these activities are legitimate and necessary system administration routines
that are undertaken daily. For example, network traffic can be snooped to determine
where network outages are occurring, and copying user files to backup tapes every
night is generally in everyone’s best interest. However, if an intruder gains root access,
they are free to roam the system, deleting or stealing data, removing or adding user
accounts, or installing Trojan horses that can transparently modify the way that your
system operates.

One way to protect against an authorized user gaining root access is to use a hard-to-
guess root password. This makes it difficult for a cracker to use a password-cracking
program to guess your password successfully. The optimal password is a completely
random string of alphanumeric and punctuation characters.

In addition, the root password should never be written down unless it is locked in
the company safe, nor should it be told to anyone who doesn’t need to know it. The
root password must usually be entered twice—just in case you should happen to make
a typographical error, as the characters that you type are masked on the screen.

The root user should never be able to log in using Telnet: instead, the su facility should
be used by individual users to gain root privileges where necessary. This protects the root
account, since at least one other password is required to log in, unless the root user has
access to the console. In addition, the su command should be owned by a sysadmin
group (or similar) so that only those users who need access to the root account should
be able to obtain it. Once su has been used to gain root access, the root user can use su
to spawn a shell with the effective ID of any other user on the system. This is a security
weakness, because the root user could pretend to be another user and perform actions
or modify data which is traceable to the effective user, and not root.

A more practical and secure solution in a large Solaris environment is to use solutions
such as one-time passwords or a mechanism that employs two-factor authentication such
as SecurID. It’s also very important to check for obvious flaws in the content of the
password and group files, such as empty passwords or group affiliations, which should
always be checked and fixed.

Monitoring User Activity
System access can be monitored interactively using a number of measures. For example,
syslog entries can be automatically viewed in real time using this command:

$ tail -f /var/adm/messages

However, most administrators want to view interactively what remote users are
doing on a system at any time. This section examines two methods for viewing remote-
user activity. The command who displays who is currently logged into the system. The
output of who displays the username, connecting line, date of login, idle time, process
ID, and a comment. Here’s an example output:

$ who
root console Nov 22 12:39
natashia pts/0 Nov 19 21:05 (client.site.com)

This command can be automated to update the list of active users. An alternative to
who is the w command, which displays a more detailed summary of the current activity
on the system, including the current process name for each user. The header output
from w shows the current time, the uptime of the current system, and the number of
users actively logged into the system. The average system load is also displayed as a
series of three numbers at the end of the w header, indicating the average number of
jobs in the run queue for the previous 1, 5, and 15 minutes. In addition to the output
generated by who, the w command displays the current foreground process for each user,
which is usually a shell. For example, the following command shows that the root user
has an active perl process, while the user natashia is running the Cornell shell:

7:15pm up 1 day(s), 5:11, 2 users, load average: 1.00, 1.00, 1.01
User tty login@ idle JCPU PCPU what

208 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

root console Thu12pm 3days 6 6 perl
natashia pts/12 Thu11am 8:45 9 /usr/local/bin/tcsh

The w and who commands are useful tools for getting an overview of current usage
patterns on any Solaris system. Another useful command is last, which displays
historical usage patterns for the current system in a sequential format:

$ last
natashia pts/4 hp Wed Apr 11 19:00 still logged in
root console :0 Tue Apr 10 20:11 still logged in
natashia pts/2 nec Tue Apr 10 19:17 - 19:24 (00:06)
natashia pts/6 austin Tue Apr 10 15:53 - 15:53 (00:00)
root console :0 Tue Apr 10 14:24 - 16:25 (02:01)
reboot system boot Tue Apr 10 14:04
natashia pts/5 hp Thu Apr 5 21:38 - 21:40 (00:01)
natashia pts/5 hp Thu Apr 5 21:22 - 21:37 (00:15)
natashia pts/5 10.64.18.1 Thu Apr 5 19:30 - 20:00 (00:30)
natashia pts/5 hp Thu Apr 5 19:18 - 19:29 (00:11)
root console :0 Thu Apr 5 19:17 - 22:05 (4+02:48)
reboot system boot Thu Apr 5 19:14
natashia pts/5 hp Tue Apr 3 16:14 - 18:26 (02:11)
natashia pts/5 hp Tue Apr 3 08:48 - 10:35 (01:47)
root console :0 Tue Apr 3 08:45 - 22:01 (13:15)
reboot system boot Tue Apr 3 08:43
root console :0 Fri Mar 30 18:54 - 19:27 (00:32)
reboot system boot Fri Mar 30 18:46
natashia pts/6 hp Tue Mar 27 20:46 - 21:51 (01:04)
root console :0 Tue Mar 27 19:50 - 21:51 (02:01)
reboot system boot Tue Mar 27 19:48
root console :0 Mon Mar 26 17:43 - 17:47 (00:04)

Securing Remote Access
Remote access is the hallmark of modern multiple-user operating systems such as
Solaris and its antecedents, such as VAX/VMS. Solaris users can concurrently log into
and interactively execute commands on Solaris server systems from any client that
supports Transmission Control Protocol/Internet Protocol (TCP/IP), such as Solaris,
Windows, and Macintosh OS.

This section examines several historically popular methods of remote access, such
as Telnet. It also outlines the much-publicized security holes and bugs that have led to
the innovation of secure remote-access systems, such as SSH. These “safer” systems
facilitate the encryption of the contents of user sessions and/or authentication sequences
and provide an important level of protection for sensitive data. Although remote access
is useful, the administrative overhead in securing a Solaris system can be significant,
reflecting the increased functionality that remote-access services provide.

C h a p t e r 9 : S y s t e m S e c u r i t y 209

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

210 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

Telnet
Telnet is the standard remote-access tool for logging into a Solaris machine from a
client using the original DARPA Telnet protocol. A client can be executed on most
operating systems that support TCP/IP. Alternatively, a Java Telnet client is available
(http://srp.stanford.edu/binaries.html), which is supported on any operating system
that has a browser that runs Java natively or as a plug-in. Telnet is a terminal-like
program that gives users interactive access to a login shell of their choice (for example,
the C-shell, or csh). Most Telnet clients support VT100 or VT220 terminal emulations.
The login shell can be used to execute scripts, develop applications, and read e-mail
and news—in short, everything a Solaris environment should provide to its users, with
the exception of X11 graphics and Open Windows, and, more recently, the common
desktop environment (CDE). A common arrangement in many organizations is for a
Solaris server to be located in a secure area of a building with Telnet-only access allowed.
This arrangement is shown in Figure 9-1.

The sequence of events that occurs during a Telnet session begins with a request
for a connection from the client to the server. The server either responds (or times out)
with a connection being explicitly accepted or rejected. A rejection may occur because
the port that normally accepts Telnet client connections on the server has been blocked
by a packet filter or firewall. If the connection is accepted, the client is asked to enter a
username followed by a password. If the username and password combination is valid, a
shell is spawned, and the user is logged in. This sequence of events is shown in Figure 9-2.

FIGURE 9-1 Typical remote-access topology for client/server technology

C h a p t e r 9 : S y s t e m S e c u r i t y 211

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

The standard port for Telnet connections is 23. Thus, a command like this,

$ telnet server

is expanded to give the effective command:

$ telnet server 23

This means that Telnet can be used as a tool to access a service on virtually any
port. Telnet is controlled by the super Internet daemon (inetd), which invokes the
in.telnetd server. An entry is made in /etc/services that defines the port number for the
Telnet service, which looks like this:

telnet 23/tcp

The configuration file /etc/inetd.conf also contains important details of the services
provided by inetd. The telnet daemon’s location and properties are identified here:

telnet stream tcp nowait root /pkgs/tcpwrapper/bin/tcpd in.telnetd

In this case, you can see that in.telnetd is protected by the use of TCP wrappers, which
facilitate the logging of Telnet accesses through the Solaris syslog facility. In addition,
inetd has some significant historical security holes and performance issues that, although

FIGURE 9-2 Identification and authentication of a Telnet session

mostly fixed in recent years, have caused administrators to shy away from servers invoked
by inetd. The Apache Web server (http://www.apache.org), for example, runs as a
standalone daemon process and does not use inetd.

inetd also controls many other standard remote-access clients, including the
so-called r-commands, including the remote login (rlogin) and remote shell (rsh)
applications. The rlogin application is similar to Telnet in that it establishes a remote
connection through TCP/IP to a server, spawning an interactive login shell. For example,
the command

$ rlogin server

by default produces the response

password:

after which the password is entered, the password is authenticated by the server, and
access is denied or granted. If the target user account has a different name than your
current user account, you can try this:

$ rlogin server –l user

There are two main differences between Telnet and rlogin, however, which are
significant. The first is that rlogin attempts to use the username on your current system
as the account name to connect to on the remote service, whereas Telnet always prompts
for a separate username. This makes remotely logging into machines on a single logical
network with rloginmuch faster than with Telnet. Second, on a trusted, secure network,
it is possible to set up a remote authentication mechanism by which the remote host
allows a direct, no-username/no-password login from authorized clients. This automated
authentication can be performed on a system-wide level by defining an “equivalent”
host for authentication purposes on the server in /etc/hosts.equiv, or on a user-by-user
basis with the file .rhosts. If the file /etc/hosts.equiv contains the client machine name and
your username, you will be permitted to automatically execute a remote login. For
example, if the /etc/hosts.equiv file on the server contains this line,

client

any user from the machine client may log into a corresponding account on the server
without entering a username and password. Similarly, if your username and client
machine name appear in the .rhosts file in the home directory of the user with the same
name on the server, you will also be permitted to remotely log in without an identification/
authentication challenge. This means that a user on the remote system may log in with
all the privileges of the user on the local system, without being asked to enter a username
or password—clearly a dangerous security risk. The sequence of identification and
authentication for rlogin is shown in Figure 9-3.

212 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

C h a p t e r 9 : S y s t e m S e c u r i t y 213

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

Remote-shell (rsh) connects to a specified hostname and executes a command. rsh
is equivalent to rlogin when no command arguments are specified. rsh copies its
standard input to the remote command, the standard output of the remote command
to its standard output, and the standard error of the remote command to its standard
error. Interrupt, quit, and terminate signals are propagated to the remote command. In
contrast to commands issued interactively through rlogin, rsh normally terminates
when the remote command does.

As an example, the following command executes the command df –k on the server,
returning information about disk slices and creating the local file server.df.txt that contains
the output of the command:

$ rsh server df -k > server.df.txt

Clearly, rsh has the potential to be useful in scripts and automated command processing.

Vulnerabilities
One of the unfortunate drawbacks of the Telnet system is that usernames and, especially,
unencrypted passwords are transmitted in cleartext around the network. Thus, if you
were using a Telnet client to connect from a cyber café in Paris to a server in New York,
your traffic might pass through 20 or 30 routers and computers, all of which can be

FIGURE 9-3 Identification and authentication sequence for rlogin

214 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

programmed to “sniff” the contents of network packets. A sample traceroute of the
path taken by packets from AT&T to Sun’s Web page looks like this:

$ traceroute www.sun.com
Tracing route to wwwwseast.usec.sun.com [192.9.49.30]
over a maximum of 30 hops:
1 184 ms 142 ms 138 ms 202.10.4.131
2 147 ms 144 ms 138 ms 202.10.4.129
3 150 ms 142 ms 144 ms 202.10.1.73
4 150 ms 144 ms 141 ms ia4.optus.net.au [202.139.32.17]
5 148 ms 143 ms 139 ms 202.139.1.197
6 490 ms 489 ms 474 ms sf1.optus.net.au [192.65.89.246]
7 526 ms 480 ms 485 ms gn.cwix.net [207.124.109.57]
8 494 ms 482 ms 485 ms core7.SanFrancisco.cw.net [204.70.10.9]
9 483 ms 489 ms 484 ms core2.SanFrancisco.cw.net

[204.70.9.132]
10 557 ms 552 ms 561 ms xcore3.Boston.cw.net [204.70.150.81]
11 566 ms 572 ms 554 ms sun.Boston.cw.net [204.70.179.102]
12 577 ms 574 ms 558 ms wwwwseast.usec.sun.com [192.9.49.30]

Trace complete.

That’s a lot of intermediate hosts, any of which could potentially be sniffing passwords
and other sensitive data. If the network packet that contains the username and password
is sniffed in this way, a rogue user could easily log into the target account using a Telnet
client. This risk has led to the development of SSH and similar products that encrypt
the exchange of username and password information between client and server, making
it difficult for sniffers to extract useful information from network packets. OpenSSH, an
open source version of SSH, is now supplied with Solaris.

Although rlogin is the fastest kind of remote login possible, it can be easily exploited
on systems that are not trusted and secure. Systems that are directly connected to the
Internet, or those that form part of a subnet that is not firewalled, should never be
considered secure. These kinds of configurations can be dangerous in some circumstances,
even if they are convenient for remotely administering many different machines.

The most dangerous use of /etc/hosts.equiv occurs, for example, when the file contains
the single line

+

This allows any users from any host that has equivalent usernames to remotely log in.
The .rhosts file is also considered dangerous in some situations. For example, it is

common practice in some organizations to allow the root and privileged users to permit
automatic logins by root users from other machines by creating a /.rhosts file. A more
insidious problem can occur when users define their own .rhosts files, however, in their
own home directories. These files are not directly controlled by the system administrator
and may be exploited by malicious remote users. One way to remove this threat is to
enforce a policy of disallowing user .rhosts files and activating a nightly cron job to

search for and remove any files named .rhosts in the user directories. A cron entry for
a root like this

0 2 * * * find /staff –name .rhosts –print –exec rm{} \;

should execute this simple find and remove command every morning at 2 A.M. for all
user accounts whose home directories lie within the /staff partition.

Secure Shell
OpenSSH (or just plain SSH) is a secure client and server solution that facilitates the
symmetric and asymmetric encryption of identification and authentication sequences
for remote access. It is designed to replace the Telnet and rlogin applications on the
client side, with clients available for Solaris, Windows, and many other operating
systems. On the server side, it improves upon the nonsecure services supported by
inetd, such as the r-commands. Figure 9-4 shows a typical SSH client session from a
Windows client.

SSH uses a generic Transport layer encryption mechanism over TCP/IP, which uses
either the popular Blowfish algorithm or the U.S. government–endorsed triple-DES
algorithm for the encryption engine. This is used to transmit encrypted packets whose
contents can still be sniffed like all traffic on the network by using public key cryptography,
implementing the Diffie-Hellman algorithm for key exchange. Thus, the contents of
encrypted packets appear to be random without the appropriate “key” to decrypt them.

C h a p t e r 9 : S y s t e m S e c u r i t y 215

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

FIGURE 9-4 Typical SSH client session

The use of encryption technology makes it extremely unlikely that the contents of
the interactive session will ever be known to anyone except the client and the server.
In addition to the encryption of session data, identification and authentication sequences
are also encrypted using RSA encryption technology. This means that username and
password combinations also cannot be sniffed by a third party. SSH also provides
automatic forwarding for graphics applications, based around the X11 windowing
system, which is a substantial improvement over the text-only Telnet client.

The sequence of events for establishing an SSH client connection to a server is
demonstrated in Figure 9-5, for the standard username/password authentication, and
proceeds as follows:

1. The client connects to a server port (usually port 22, but this can be adapted
to suit local conditions) and requests a connection.

2. The server replies with its standard public RSA host key (1024 bits), as well
as another RSA server key (768 bits) that changes hourly. Since the server
key changes hourly, even if the key for the traffic of one session was cracked,
historic data would still remain encrypted, limiting the utility of any such
attack.

3. The server can be configured to reject connections from hosts that it doesn’t
know about, but by default, it will accept connections from any client.

4. If the connection is accepted, the client generates a session key composed of a
256-bit random number and chooses an encryption algorithm that the server
supports (triple-DES or Blowfish).

5. The client encrypts the session key using RSA, using both the host and server
key, and returns the encrypted key to the server.

6. The server decrypts the session key and encryption is enabled between the
client and server.

7. If the default authentication mechanism is selected, the client passes the
username and password for the server across the secure channel.

SSH supports public key–based authentication: it is easy to disable the username/
password authentication sequence by permitting logins to clients that have an appropriate
private RSA key, as long as the server has a list of accepted public keys. However, if a
client computer is stolen, and the private key is retrieved by a rogue user, access to the
server can be obtained without a valid username and password combination.

On the client side, a knwnhsts.txt or known_hosts file is created and server keys are
recorded there. Entries look like this:

server 1024 35 0744831885522065092886345918214809000874876031312
6632026365561406995692291726767198155252016701986067549820423736
3937365939987293508473066069722639711474295242507691974151195842
9560631766264598422692206187855359804332680624600001698251375726
2927556592987704211810142126175715452796748871506131894685401576
4183

216 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

In addition, a private key for the client is stored in Identity, and a public key for the
client is stored in Identity.pub. Entries in this file are similar to the server key file:

1024 37 25909842022319975817366569029015041390873694788964256567
2146422966722622743739836581653452906032808793901880289422764252
4259614636549518998450524923811481002360439473852363542223359868
1146192539619481853094466819335629797741580708609505877707742473
7311773531850692230437799694611176912728474735224921771041151
Paul Watters

It is sensible in a commercial context to enforce a policy of SSH-only remote access
for interactive logins. This can easily be enforced by enabling the SSH daemon on the
server side and removing entries for the Telnet and rlogin services in /etc/services and
/etc/inetd.conf. Now that OpenSSH is supplied with Solaris, there is no excuse for not
deploying SSH across all hosts in your local network. Also, there are many items in the
/etc/ssh/ssh_config and /etc/ssh/sshd_config files that can be configured, such as whether
X11 can be forwarded, or whether to support IPv4, IPv6, or both.

Examples
The following examples show how to implement basic security measures for Solaris.

Ensuring Physical Security
It may seem obvious, but if an intruder can physically access your system, then they
may be able to take control of your system without the root password, bypassing all the
software-based controls that normally limit such activity. How is this possible? If the

C h a p t e r 9 : S y s t e m S e c u r i t y 217

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

FIGURE 9-5 Authenticating an SSH connection

218 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

intruder has access to a bootable CD-ROM drive and a bootable CD-ROM (of Solaris,
Linux, or any other operating system that can mount UFS drives), it’s a trivial matter to
enter the following command at the OpenBoot prompt and start the system without a
password:

ok boot cdrom

Once the system has booted from the CD-ROM drive, a number of options are
available to the intruder:

• FTP any file on the system to a remote system.

• Copy any file on the system to a mass storage device (such as a DAT tape).

• Format all the drives on the system.

• Launch a distributed denial of service (DDoS) attack against other networks,
which you will be blamed for.

Of course, the possibilities are endless, but the result is the same. You may ask why
compromising a system in this way is so easy. One good reason is that if you forget
your root password, you can boot from the CD-ROM, mount the boot disk, and manually
edit the shadow password file.

This requirement doesn’t really excuse poor security, and the OpenBoot monitor
provides some options to secure the system. There are three security levels available:

• None Surprisingly, this is the default. No password is required to execute any
of the commands in OpenBoot. This is convenient but dangerous, for the reasons
outlined earlier.

• Command This level needs a password to be entered for all commands except
boot and go. Thus, details of the SCSI bus and network traffic can’t be observed
by the casual browser, but an intruder could still boot from the CD-ROM.

• Full This level requires a password for every command except go, including
the boot command. Thus, even if the system is interrupted and rebooted using
the boot command, only the default boot device will be available through go.

To set the security level, use the eeprom command. To set the command level, use
the following command:

eeprom security-mode=command

Or, to set the command level, use the following command:

eeprom security-mode=full

The password for the command and full security levels must be set by using the
eeprom command:

C h a p t e r 9 : S y s t e m S e c u r i t y 219

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

eeprom security-password
Changing PROM password:
New password:
Retype new password:

Note that if the root password and the full-level password are lost, there is no way
to recover the system by software means. You will need to order a new PROM from
Sun.

Security Auditing
After installing a new Solaris system and applying the local security policy, you must
perform a security audit to ensure that no known vulnerabilities exist in the system,
particularly threats posed by remote access. As examined earlier in this chapter, there
are a number of strategies, such as switching off ports, that should be adopted prior
to releasing a system into production and making it accessible through the Internet.

A security audit should first examine what services are being offered and determine
an action plan based on services that should be disabled. In addition, monitoring and
logging solutions should be installed for services that are sanctioned, so that it is possible
at all times to determine what activity is occurring on any service. For example, a DoS
attack may involve hitting a specific port (such as port 80, the Web server port) with a
large number of packets, aimed at reducing overall performance of the Web server and
the host system. If you don’t have logs of all this activity, it will be difficult to determine why
your system performance is slow and/or where any potential attacks have originated—
that’s why TCP wrappers are so important. The final phase of a security audit involves
comparing the current list of services running on the system to the security bulletins that
are released by the Computer Emergency Response Team (CERT) (http://www.cert.org/)
and similar computer security groups. After determining the versions of software
running on your system, you should determine which packages require patching and/
or upgrading in order to eliminate the risks from known vulnerabilities.

SAINT
Running a security audit and implementing solutions based on the audit can be a time-
consuming task. Fortunately, a number of tools are available that can significantly
reduce the amount of time required to conduct security audits and cross-check existing
applications with known security holes. One of these programs is called SAINT (Security
Administrator’s Integrated Network Tool), which is freely available from World Wide
Digital Security at http://www.saintcorporation.com/products/saint_engine.html.
SAINT, currently in version 3.0, is based in part on an earlier auditing tool known as
SATAN. Both SATAN and SAINT have the ability to scan all of your system services
and identify potential and/or known vulnerabilities. These are classified according
to their risk: Some items may be classified as critical, requiring immediate attention,
whereas other items may come in the form of suggestions rather than requirements.
For example, while many local services are vulnerable to a buffer overflow, where the
fixed boundaries on an array are deliberately overwritten by a remote client to “crash”

the system, other issues, such as the use of r-commands, may be risky but acceptable
in suitably protected LANs. Thus, SAINT is not prescriptive in all cases, and suggested
actions are always to be performed at the discretion of the local administrator.

Some administrators are concerned that using programs such as SAINT actually
contributes to cracking and system break-ins, because they provide a ready-made toolkit
that can be used to identify system weaknesses in preparation for a break-in. However,
if sites devote the necessary resources to monitoring system usage and identifying potential
security threats, the risk posed by SAINT is minimal (particularly if its “suggestions”
are acted upon). Indeed, World Wide Digital Security actually offers a Web version
of SAINT (called WebSAINT) as the basis for security consulting. For a fee, they will
conduct a comprehensive security audit of your network, from the perspective of a
remote (rather than a local) user. This can be very useful when attempting to identify
potential weaknesses in your front-line systems, such as routers, gateways, and Web
servers.

This section examines how to install and configure the SAINT program and how to
run an audit on a newly installed Solaris 10 system. This will reveal many of the common
issues that arise when Solaris is installed out of the box. Most of these issues are covered
by CERT advisories. Sun often releases patches very soon after a CERT vulnerability is
discovered on shipped Solaris products. For example, a patch is available for a well-known
vulnerability existing in the Berkeley Internet Daemon (BIND) package, which matches
IP addresses with Fully Qualified Domain Names (FQDNs) (http://www.cert.org/
advisories/CA-1999-14.html). However, some CERT advisories are of a more general
nature, because no specific code fix will solve the problem. One example is the
identification of a DDoS system known as Stacheldraht, which combines the processing
power and network resources of a group of systems (which are geographically distributed)
and can prevent Web servers from serving pages to clients (http://www.cert.org/
advisories/CA-2000-01.html). CERT releases advisories on a regular basis, so it’s
advisable to keep up-to-date with all current security issues by reading CERT’s news.

One of the great strengths of the SAINT system is that it has an extensive catalog of
CERT advisories and in-depth explanations of what each CERT advisory means for the
local system. Every SAINT vulnerability is associated with a CVE number that matches
descriptions of each security issue from the Common Vulnerabilities and Exposures
database (http://cve.mitre.org/). Each identified vulnerability contains a hyperlink back
to the CVE database, so that information displayed about every issue is updated directly
from the source. New patches and bug fixes are also listed.

SAINT has the ability to identify security issues for the following services:

• Domain Name Service (DNS) Responsible for mapping the FQDN of Internet
hosts to a machine-friendly IP address. In particular, BIND, which is commonly
used for DNS resolution, is susceptible to vulnerabilities.

• File Transfer Program (FTP) Allows remote users to retrieve files from the
local file system. FTP has historically been associated with serious daemon
buffer-overflow problems.

220 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

• Internet Message Access Protocol (IMAP) Supports advanced e-mail
exchange facilities between mail clients and mail servers. Like FTP, IMAP has
buffer-overflow issues, which have previously allowed remote users to execute
privileged commands arbitrarily on the mail server.

• Network File System (NFS) service Shares disk partitions to remote client
systems. NFS service is often misconfigured to provide world read access to
all shared volumes, when this access should be granted only to specific users.

• Network Information Service (NIS) A distributed network service that shares
maps of users, groups, and passwords between hosts to minimize administrative
overheads. NIS can be compromised if a rogue user can detect the NIS service
operating.

• Sendmail Mail Transport Agent (MTA) Once allowed Solaris commands to
be embedded within e-mails, which were executed without authentication on
the server side.

SAINT works by systematically scanning ports for services that have well-known
exploits, and then reporting these exploits back to the user. In addition, it runs a large
number of password checks for default passwords on system accounts, or accounts
that often have no passwords. SAINT checks all the services and exploits that it knows
about, and the database of known exploits grows with each new release. SAINT also
tests the susceptibility of your system to DoS attacks, where a large number of large-sized
packets are directed to a specific port on your system. This tactic is typically used against
Web servers, where some high-profile cases in recent years have highlighted the inherent
weakness of networked systems that allow traffic on specific ports without some kind
of regulation. Many of the system daemons checked by SAINT have a so-called “buffer
overflow” problem, where a system may be crashed because memory is overwritten
with arbitrary values outside the declared size of an array. Without appropriate bounds
checking, passing a GET request to a Web server of 1025 bytes when the array size is
1024 would clearly result in unpredictable behavior, because the C language does not
prevent a program from doing this. Because Solaris daemons are typically written in C,
a number of them have been fixed in recent years to prevent this problem from occurring
(but you may be surprised at just how often new weaknesses are exposed).

You can download the latest release of SAINT from the SAINT corporation web site.
To run SAINT, you need to install the GNU C compiler or use the Sun C compiler. The
Perl interpreter and Netscape Web browser supplied with Solaris 10 are also required.
After using make to build the SAINT binary, you can start SAINT by typing this command:

./saint

This starts up the Netscape Web browser.
SAINT has several pages, including Data Management, Target Selection, Data Analysis,

and Configuration Management. You can visit these pages sequentially to conduct your
audit. The Data Management page, shown in Figure 9-6, allows you to create a new

C h a p t e r 9 : S y s t e m S e c u r i t y 221

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

SAINT database in which to store the results of your current audit. You can also open
an existing SAINT database if you have created one previously, and/or you can merge
data from other SAINT scans.

Next, you need to use the Target Selection page to identify the host system that you
wish to scan using SAINT, as shown in Figure 9-7. Here, you need to enter the FQDN
of the host that you wish to scan. If you have a large number of hosts to scan, it may be
more useful to create a file containing a list of hosts. This file could then be used by a
system behind the firewall to identify locally visible weaknesses, and used by a system
external to the firewall to reveal any threats visible to the outside world. You may also
elect to scan all hosts in the LAN, which should be performed only after hours, because
it places a heavy load on network bandwidth.

222 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

FIGURE 9-6 SAINT Data Management page

On the Target Selection page, you also need to select a scanning level option, which
include the following:

• Light scanning Difficult to detect

• Normal scanning Easy to detect

• Heavy scanning Won’t crash Windows NT targets

• Heavy+ scanning May well crash Windows NT targets

There is a final option that just checks the “top ten” security flaws, as identified by
the report at http://www.sans.org/top20/top10.php. These flaws include BIND weaknesses,
vulnerable CGI programs, Remote Procedure Call (RPC) weaknesses, Sendmail buffer

C h a p t e r 9 : S y s t e m S e c u r i t y 223

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

FIGURE 9-7 SAINT Target Selection page

224 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

overflow, mountd exploits, UNIX NFS exports, user IDs (especially root/administrator
with no passwords), IMAP and POP buffer-overflow vulnerabilities, and SNMP
community strings set to public and private.

Always remember that attempting to break in to a computer system is a criminal
offense in many jurisdictions: You should obtain written authorization from the owner
of your system before embarking on a security-related exercise of this kind; otherwise,
it may be misconstrued as a real attack.

Once the target selection is complete, the data collection process begins by executing
a number of scripts on the server and reporting the results through the Web browser.
Data is collected by testing many different Solaris services, including ping, finger,
RPC, login, rsh, sendmail, tooltalk, snmp, and rstatd.

SAINT uses several different modules to probe vulnerabilities in the system, including
tcpscan, udpscan, and ddos, which scan for TCP and UDP DoS issues, respectively.
In addition, a number of well-known username and password combinations are also
attempted in order to break into an account—you would imagine that root/root would
never be used as a username and password combination, but it does happen.

Once all the data has been collected, the results of the scan are then displayed on
the Data Analysis page, as shown in Figure 9-8. It is possible to list vulnerabilities by
their danger level, by the type of vulnerability, or by the number of vulnerabilities in
a specific category. Most administrators will want to deal with the most dangerous
vulnerabilities, so the first option, By Approximate Danger Level, should be selected.
In addition, it is possible to view information about the target system by class of service,
the type of system, domain name, subnet, and by its hostname.

Vulnerabilities are listed in terms of danger level: critical problems, areas of concern,
and potential problems. For the local host okami, which was a standard Solaris install
out-of-the-box, two critical problems were identified, both associated with gaining root
access via buffer overflow:

• The CDE-based Calendar Manager service may be vulnerable to a buffer-
overflow attack, as identified in CVEs 1999-0320 and 1999-0696. The Calendar
Manager is used to manage appointments and other date/time–based functions.

• The remote administration daemon (sadmind) may be vulnerable to a buffer-
overflow attack, as described in CVE 1999-0977. The remote administration
daemon is used to manage system administration activities across a number
of different hosts.

There were also two areas of concern identified, with information-gathering
vulnerabilities exposed:

• The finger daemon returned personal information about users that could be
used to stage an attack. For example, the home directory, full name, and project
were displayed (CVE 1999-0612).

• The remote users list daemon was active, providing a list of users on
the system to any remote user (CVE 1999-0626). Like the finger daemon,
information gathered from the ruserd could be used to stage an attack.

Two possible vulnerabilities were identified:

• The chargen program is vulnerable to UDP flooding used in DoS attacks, such
as Fraggle (CVE 1999-0103).

• The sendmail server allows mail relaying, which may be used by remote users
to forward mail using the server. This makes it easy for companies promoting
spam to make it appear as if their mail originated from your server.

Six recommendations were made to limit Internet access, including stopping all the
“r” services. These make it easy for a remote user to execute commands on the local
system, such as spawning a shell or obtaining information about system load, but have
been used in the past to break into systems. In addition, some sendmail commands (such

C h a p t e r 9 : S y s t e m S e c u r i t y 225

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

FIGURE 9-8 SAINT Data Analysis page

as EXPN and VRFY) are allowed by the sendmail configuration: this allows remote
users to obtain a list of all users on the current system, which is often the first step to
obtaining their passwords.

If you are concerned that a rogue user may be using SAINT against your network,
you may download and run one of the many SAINT-detecting programs (http://ciac
.llnl.gov/ciac/ToolsUnixNetMon.html). These tools monitor TCP traffic to determine
whether or not a single remote machine is systematically scanning the ports within
a specified timeframe. Obviously, such programs are useful for detecting all kinds of
port scanning.

Command Reference
The following commands are commonly used to secure Solaris systems.

aset
The Automated Security Enhancement Tool (aset) is supplied by Sun as a multilevel
system for investigating system weaknesses. In addition to reporting on potential
vulnerabilities, aset can actually fix problems that are identified. There are three
distinct operational levels for aset:

• Low level Undertakes a number of checks and reports any vulnerabilities
found. No remedial action is performed.

• Medium level Undertakes a moderate number of checks and reports any
vulnerabilities found. Restricts system access to some services and files.

• High level Undertakes a wide range of checks and reports any vulnerabilities
found. Implements a restrictive security policy by enforcing pessimistic access
permissions.

Low-level reports are recommended to be run as a weekly cron job, allowing
administrators to determine if newly installed applications, services, or patches have
compromised system security. In contrast, a medium-level aset run should be performed
on all newly installed systems that lie behind a firewall. For all systems that are directly
connected to the Internet, such as Web and proxy servers, a high-level aset run should
be performed directly after installation. This ensures that many of the default system
permissions that are assigned to system files are reduced to an appropriate scope. It is
possible to modify the asetenv file to change the actions that are performed when aset
is executed. The individual tasks performed by aset include the following:

tune Checks all file permissions

cklist Validates system directories and file permissions

usrgrp Checks user accounts and groups for integrity

sysconf Verifies the system files stored in /etc

226 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

env Parses environment variables stored in configuration files

eeprom Checks the security level of the OpenBoot PROM monitor

firewall Determines whether the system is secure enough to operate as a packet filter

TCP Wrappers
Logging access information can reveal whether an organization’s networks have
an authentication problem. In addition, specific instances of unauthorized access to
various resources can be collated and, using statistical methods, can be assessed for
regular patterns of abuse. Monitoring of log files can also be used by applications to
accept or reject connections, based on historical data contained in centralized logging
mechanisms provided under Solaris, such as the syslogd system-logging daemon.

One reason why access monitoring is not often discussed is that implementations
of the standard UNIX network daemons that are spawned by the Internet super server
inetd (discussed earlier) do not have a provision to write directly to a syslog file.
Later Internet service daemons, such as the Apache Web server, run as standalone
services not requiring inetd, but have enhanced logging facilities that are used to
track Web site usage.

Wietse Venema’s TCP Wrappers are a popular method of enabling daemons
launched from inetd to log their accepted and rejected connections, because the
wrapper programs that are installed for each service do not require alterations to
existing binary software distributions or to existing configuration files. You can
download TCP Wrappers in source form from ftp://ftp.porcupine.org/pub/security/
index.html.

In their simplest form, TCP wrappers are used for monitoring only, but they could
be used to build better applications that can reject connections on the basis of failed
connections. For example, a flood of requests to log in using rsh from an untrusted
host could be terminated after three failed attempts from a single host. TCP wrappers
work by compiling a replacement daemon that points to the “real” daemon file, often
located in a subdirectory below the daemon wrappers. The wrappers log the date and
time of a service request, with a client hostname and whether the request was rejected
or accepted. The current version of TCP Wrappers supports the SVR4 (System V
Release 4) TLI network programming interface under Solaris, which has equivalent
functionality to the Berkeley socket programming interface. In addition, the latest
release supports access control and detection of host address or hostname spoofing.
The latter is particularly important in the context of authentication services that provide
access to services based on IP subnet ranges or specific hostnames in a LAN; if these
are spoofed, and access is granted to a rogue client, the entire security infrastructure
has failed. It is critical to detect and reject any unauthorized connections at any early
stage, and TCP wrappers are an integral part of this mechanism.

When writing access information to syslog, the output looks like this:

Nov 18 11:00:52 server in.telnetd[1493]: connect from client.site.com
Nov 18 11:25:03 server in.telnetd[1510]: connect from workstation.site.com

C h a p t e r 9 : S y s t e m S e c u r i t y 227

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

Nov 18 11:25:22 server in.telnetd[1511]: connect from client.site.com
Nov 18 12:16:30 server in.ftpd[1556]: connect from workstation.site.com

These entries indicate that between 11:00 A.M. and 1:00 P.M. on November 18, clients
connected using Telnet from client.site.com and workstation.site.com. In addition, there
was an FTP connection from workstation.site.com. Although this section has examined
wrappers only for in.ftpd and in.telnetd, wrappers can be compiled for most services
launched from inetd, including finger, talk, tftp (trivial FTP), and rsh (remote
shell).

Summary
In this chapter, you have learned about the basic security services and paradigms that
underlie Solaris and its ability to withstand many common attacks while still providing
many networked services.

228 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 9

10
File System Access Control

One of the aspects of Solaris that is most confusing for novice users is the Solaris
file access permissions system. The basic approach to setting and interpreting
relative file permissions is to use a set of symbolic codes to represent users and

permission types. However, even advanced users may find it difficult to understand
the octal permission codes that are used to set absolute permissions. When combined
with a default permission mask set in the user’s shell (the umask), octal permission codes
are more powerful than symbolic permission codes. In this chapter, we examine how
to set and manage basic access controls.

Key Concepts
The following key concepts are required knowledge for understanding access controls.

Symbolic File Permissions
The Solaris file system permits three basic kinds of file access—the ability to read (r),
to write (w), and to execute (x) a file or directory. These permissions can be granted
exclusively or nonexclusively on individual files, or on a group of files specified by a
wildcard (*). These permissions can be set by using the chmod command, in combination
with the + operator. Permissions can be easily removed with the chmod command by
using the – operator.

For example, to set read permissions (for the current user) on the file /usr/local/lib/
libproxy.a, you would use this command:

$ chmod +r /usr/local/lib/libproxy.a

or to set read permissions for all users on the file /usr/local/lib/libproxy.a, you would use
this command:

$ chmod a+r /usr/local/lib/libproxy.a

2 2 9

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10
Blind Folio 229

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

To remove read permissions on the file /usr/local/lib/libproxy.a for all users who are
not members of the current user’s default group, you would use this command:

$ chmod o-r /usr/local/lib/libproxy.a

This does not remove the group and user read permissions that were set previously.
Similarly, you can set execute and write permissions. For example, to set execute
permissions on the /usr/local/bin/gcc files, for each class of user (current user, group, and
world), you would use the following commands:

$ chmod u+x /usr/local/bin/gcc

$ chmod g+x /usr/local/bin/gcc

$ chmod o+x /usr/local/bin/gcc

To explicitly remove write permissions on the /usr/local/bin/gcc files for each class
of user (current user, group, and world), you would use these commands:

$ chmod u-w /usr/local/bin/gcc

$ chmod g-w /usr/local/bin/gcc

$ chmod o-w /usr/local/bin/gcc

It makes sense to combine these settings into a single command:

$ chmod oug-w /usr/local/bin/gcc

The rationale behind using read and write permissions should be clear: permitting
read access on a file allows an identified user to access the text of a file by reading it
byte by byte; write access permits the user to modify or delete any file on which the
write permission is granted, regardless of who originally created the file. Thus, individual
users can create files that are readable and writeable by any other user on the system.

The permission to execute a file must be granted on scripts (such as shell scripts or
Perl scripts) in order for them to be executed; compiled and linked applications must also
have the execute bit set on a specific application. The executable permission must also
be granted on the special files that represent directories on the file system, if the directory’s
contents are to be accessed by a specific class of user.

The different options available for granting file access permissions can sometimes
lead to interesting but confusing scenarios. For example, permissions can be set to allow
a group to delete a file, but not to execute it. More usefully, a group might be given execute
permission on an application, but be unable to write over it. In addition, setting file

230 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

permissions by using relative permission strings, rather than absolute octal permission
codes, means that permissions set by a previous change of permission command (i.e.,
chmod) are not revoked by any subsequent chmod commands.

However, the permissions themselves are only half the story. Unlike single-user file
systems, permissions on Solaris are associated with different file owners (all files and
processes on a Solaris system are “owned” by a specific user). In addition, groups of
users can be granted read, write, and execute permissions on a file or set of files stored
in a directory. Or, file permissions can be granted on a system-wide basis, effectively
granting file access without respect to file ownership. Because file systems can be exported
using NFS and/or Samba, it’s bad practice to grant system-wide read, write, and execute
permissions on any file, unless every user needs access to that file. For example, all users
need to read the password database (/etc/passwd), but only the root user should have
read access to the shadow password database (/etc/shadow). Blindly exporting all files
with world read, write, or execute permissions on a NFS-shared volume is inviting
trouble.

The three file system categories of ownership are defined by three permission-setting
categories: the user (u), who owns the file; group members (g), who have access to the
file; and all other users (o) on the system. The group specified by g can be the user’s
primary group (as defined in /etc/passwd), or a secondary group to which the file has
been assigned (defined in /etc/group). Remember that there are ultimately few secrets on
a Solaris file system: The root user has full access at all times (read, write, and execute)
on all files on the file system: even if a user removes all permissions on a file, the rule
of root is absolute. If the contents of a file really need to be hidden, encrypting a file’s
contents using PGP, crypt, or similar is best. A root user can also change the ownership
of a file—thus, a user’s files do not absolutely belong to a specific user. The chown
command can be used only by the superuser for this purpose.

Policies regarding default file permissions need to be set selectively in different
environments. For example, in a production Web server system that processes sensitive
and personal data, access should be denied by default to all users except those required
to conduct online transactions (e.g., the “apache” user for the Apache Web server).
On a system that supports team-based development, permissions obviously need to
be set that allow the exchange of data between team partners but prevent the access
to development files by others. Very few Solaris systems would allow a default world-
writeable policy on any file system, except for the temporary swap (/tmp) file system.

Enforcing system-wide permissions is possible by using a default umask, which sets
the read, write, and execute permissions on all new files created by a specific user. If a
user wishes to use a umask other than the default system-wide setting, the user can
achieve this by setting it on the command line when required, or in the user’s shell
startup file (e.g., .kshrc for Korn shell).

We start our examination of Solaris file permissions by examining how to create
files, set permissions, change ownerships and group memberships, and how to use the
ls command to examine existing file permissions. All of these commands can be used
by nonprivileged users, except for the chown command.

C h a p t e r 1 0 : F i l e S y s t e m A c c e s s C o n t r o l 231

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

Procedures
You need to know the following procedures to be able to understand the shell and file
permissions.

Octal File Permissions
Some expert users prefer not to separate user and permission information by using the
user symbols (o, u, g) and the permission symbols (r, w, x). Instead, these users choose
to use a numeric code to combine both user and permission information. If you use a
lot of common permissions settings, it may be easier for you to remember a single octal
code than to work out the permissions string symbolically. The octal code consists of
three numbers, which represent owner permissions, group permissions, and other user
permissions, respectively (from left to right). Using the equivalence of 4 = r, 2 = w, and
1 = x, any cumulative combination of these provides the octal mode.

For example, to set a file to have read, write, and execute permissions for the file
owner, you can use the octal code 700 with the chmod command:

$ chmod 700 *

You can now check to see if the correct permissions have been granted:

$ ls -l
total 4
drwx------ 2 root users 4096 Jun 8 20:10 test
-rwx------ 1 root users 0 Jun 8 20:10 test.txt

You can also grant read, write, and execute permissions to members of the group
users by changing the middle number from 0 to 7:

$ chmod 770 *

Again, the changes are reflected in the symbolic permissions string displayed by ls:

$ ls -l
total 4
drwxrwx--- 2 root users 4096 Jun 8 20:10 test
-rwxrwx--- 1 root users 0 Jun 8 20:10 test.txt

If you want to grant read, write, and execute permissions to all users, simply change
the third permissions number from 0 to 7:

$ chmod 777 *

232 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

Now, all users on the system have read, write, and execute permissions on all files
in the directory:

$ ls -l
total 4
drwxrwxrwx 2 root users 4096 Jun 8 20:10 test
-rwxrwxrwx 1 root users 0 Jun 8 20:10 test.txt

Of course, the codes that can be used to specify permissions are usually not just 0 or 7.
For example, the code 5 gives read and execute access, but not write access. So, if you
wanted to grant read and execute access to members of the group, but deny write access,
you could use the code 750:

$ chmod 750 *

This produces the following result:

$ ls -l
total 4
drwxr-x--- 2 root users 4096 Jun 8 20:10 test
-rwxr-x--- 1 root users 0 Jun 8 20:10 test.txt

If you wanted to remove all access permissions from the files in the current directory,
you could use the code 000 (you should not normally need to do this):

$ chmod 000 *

Let’s examine the result of the command:

$ ls -l
total 4
d--------- 2 root users 4096 Jun 8 20:10 test
---------- 1 root users 0 Jun 8 20:10 test.txt

All access permissions have been removed, except for the directory indicator on the
special file test. Note the main difference between setting files using symbolic codes rather
than octal codes: symbolic codes are relative; numeric codes are absolute. This means
that unless you explicitly revoke a file permission when setting another using symbolic
codes, it will persist. Thus, if a file already has group write access, and you grant group
execute access (or remove group execute access), the write access permission is not removed.
However, if you specify only group execute access using an octal code, the group write
access is automatically removed if it has been previously set (i.e., when using the symbolic

C h a p t e r 1 0 : F i l e S y s t e m A c c e s s C o n t r o l 233

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

codes, the administrator has more granularity in assigning permissions). You may well
find that in startup scripts and situations where the permissions are unknown in advance,
using octal codes is wiser.

Setting Default Permissions (umask)
You can enforce system-wide permissions by using a default “user mask” (umask), which
sets the read, write, and execute permissions on all new files created by a specific user.
If a user wants to use a umask other than the default system-wide setting, he or she
can achieve this by setting it on the command line when required, or in the user’s shell
startup file (e.g., .kshrc for Korn shell), or in the global system default file, /etc/default/
login. In addition, the mask that is set for the current user can be displayed by using
the umask command by itself.

Like file permissions, the umask is set using octal codes. There are two different
strategies for computing umasks. For directories, you must subtract the octal value of
the default permission you want to set from octal 777; for files, you often subtract the
octal value of the default permission you want to set from octal 666. For example, to set
the default permission to 444 (all read only), you would subtract 444 from 666 for files,
to derive the umask of 222. For the default permission 600 (user read/write, no other
access), you would subtract 600 from 666, leaving a umask of 066 (which often is displayed
as 66). The two mask modes are 2 for read and 4 for write.

If you want all users to have full access permissions on all files that you create, except
executable permissions, you would set the umask to 000 (666 – 000 = 666):

$ umask 000

Let’s examine the results, after creating a file called data.txt, after setting the umask
to 000:

$ touch data.txt
$ ls -l
total 4
-rw-rw-rw- 1 root users 0 Jun 8 20:20 data.txt

Everyone now has full access permissions. However, you are more likely to set a
umask such as 022, which would give new files the permissions 755 (777 – 022 = 755).
This would give the file owner read, write, and execute access, but only read permissions
for group members and other users:

$ umask 022

If you now create a new file called newdata.txt with the new umask, you should
see that the default permissions have changed:

234 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

$ touch newtest.txt
$ ls -l

total 4
-rw-r--r-- 1 root root 0 Jun 8 20:21 newdata.txt
-rwxrwxrwx 1 root users 0 Jun 8 20:20 data.txt

If you’re more conservative and don’t want to grant any access permissions to other
users (including group members), you can set the umask to 077, which still gives the file
owner full access permissions:

bash-2.03$ umask 077

Let’s see what happens when you create a new file called lastminute.txt:

bash-2.03$ touch lastminute.txt
bash-2.03$ ls -l
total 4
-rw-r--r-- 1 root root 0 Jun 8 20:21 newdata.txt
-rw------- 1 root root 0 Jun 8 20:22 lastminute.txt
-rwxrwxrwx 1 root users 0 Jun 8 20:20 data.txt

The new file has full access permissions for the owner, but no access permissions
for other users. Resetting the umask does not affect the permissions of other files that
have already been created.

setUID and setGID Permissions
The file permissions we’ve covered so far are used by users in their day-to-day file-
management strategies. However, administrators can use a different set of file permissions
that allows files to be executed as a particular user (setUID) and/or as a member
of a particular group (setGID). These facilities are very powerful, because they allow
unprivileged users to gain access to limited superuser privileges in many cases, without
requiring superuser authentication. For example, the volume daemon (vold) allows
unprivileged users logged into the console to mount and unmount CD-ROMs and
floppy disks, an operation that required superuser privileges in previous Solaris
releases. Here, the effective user ID is set to 0, meaning that unprivileged users can
effectively run processes as root.

The downside to this is obvious: setGID and setUID permissions open a Pandora’s
box in terms of security, because normal authentication procedures are bypassed. For
example, imagine a device management tool that needed to run as setUID 0 in order to
read and write device files. If the tool had a standard feature of many UNIX programs,
the ability to spawn a shell, the shell spawned would have full root privileges, rather
than the privileges of the original user. For this reason, some administrators refuse to

C h a p t e r 1 0 : F i l e S y s t e m A c c e s s C o n t r o l 235

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

allow setGID and setUID permissions to be set. The find command, for example, can
be used to scan all local file systems and show files with setUID or setGID privileges:

find / -local -type f \(-perm -4000 -o -perm -2000 \) -print

You can determine whether a file is setUID by root by first checking for files that are
owned by root and then checking whether those files have the s flag assigned to the user’s
permissions. For example, if a file-management tool called filetool were setUID root,
the following directory listing would clearly indicate this property:

-r-sr-sr-x 3 root sys 1220334 Jul 18 11:01 /usr/local/bin/filetool

The first s in the permissions table refers to setUID root. In addition, this file is also
setGID for the sys group, which is indicated by the second s in the permissions table.

The setUID bit can be set by using a command like this

chmod u+s file.txt

where file.txt is the file that requires setUID to be set.
The setGID bit can be set by using a command like this

chmod g+s file.txt

where file.txt is the file that requires setGID to be set. Setting chmod o+s has no impact
on the file.

Sticky Bit Permissions
A network administrator once explained to me that sticky bits were those bits that slowed
down network transmission rates, because they were highly attracted to magnetic qualities
of the Ethernet. This is not true! A sticky bit is a special permission that prevents files
in common file areas from being deleted by other users. For example, a download area
consisting of a large, 10GB partition may be set aside for user downloads, which are not
counted against individual user quotas. This means that users could download up to
10GB of data without infringing on their allocated directory space. However, although
a shared public file area sounds like a great idea, it would be unwise to allow users to
overwrite one another’s files. In this case, the sticky bit can be set on the top-level directory
of the public file area, allowing only users who created individual files to delete them.

You can set the sticky bit by using a command like this

chmod +t somedir

where somedir is the directory that requires the sticky bit to be set.

236 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

Example
The following example demonstrates how to use the shell.

Access Control Lists
One problem with assigning file access permissions is that users other than one’s self
fall into two categories: group members or nongroup members. Thus, if you want to
make some files available to one group of users but not to another group of users, you
need to ask the system administrator to create a group for you. Of course, the main
problem with the random group-creation approach is group sprawl—administrators
are generally unwilling to create groups at the request of users because of the overhead
in administering potentially hundreds of different groups on each system, and since the
number of groups that one user can be in is limited.

The best solution to the problem is to structure group membership to reflect
organizational divisions and to use access control lists (ACLs) to manage file access.
While it may seem like creating more work to have two sets of file access permissions
operating, in reality it’s the simplest solution for users who don’t require superuser
permissions.

To grant the user charles read-only access to the file secret.doc, which is owned by
the user ainsley and has read-write permissions only for ainsley, the following command
would be executed by ainsley:

$ setfacl -m user:charles:r-- secret.doc

Alternatively, to allow charles to have read-write access to the file, the following
command can be used:

$ setfacl -m user:charles:rw- secret.doc

When an ACL has been set, the file listing shows a + symbol at the end of the
permissions string:

ls -l /home/charles/secret.doc
-rw-------+ 1 charles admin 105433 Jan 24 12:07

/home/charles/secret.doc

The output of getfacl for a file (/etc/passwd in this example) looks like this:

$ getfacl /etc/passwd
file: /etc/passwd
owner: root
group: sys
user::rw-

C h a p t e r 1 0 : F i l e S y s t e m A c c e s s C o n t r o l 237

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

group::r-- #effective:r--
mask:r--
other:r--

Command Reference
The following command is commonly used to work with access controls.

ls
The ls command is the main directory and file permission listing program used in
Solaris. When displaying a long listing, it prints file access permissions, user and group
ownerships, file size and creation date, and the filename. For example, for the password
file /etc/passwd, the output from ls would look like this:

$ ls –l /etc/passwd
-r--r--r-- 1 root other 256 Sep 18 00:40 passwd

This directory entry can be read from left to right in the following way:

• The password file is not a directory, indicated by the first -. This could also
indicate a character or block special device.

• The password file has read-only permissions for the owner r-- (but not execute
or write permissions).

• The password file has read-only permissions for group members r--.

• The password file has read-only permissions for other staff r--.

• The password file is owned by the root user.

• The password file has other group permissions.

• The password file size is 256 kilobytes.

• The password file was created on September 18, at 00:40 A.M.

• The name of the password file is passwd.

The permissions string shown changes depending on the permissions that have been
set by the owner. For example, if the password file had execute and write permissions
for the root user, then the permissions string would read –rwxr--r--, rather than just
–r--r--r--. Each of the permissions can be set using symbolic or octal permission
codes, by using the chmod command.

You’ve seen how a normal file looks under ls, but let’s compare this with a directory
entry, which is a special kind of file that is usually created by the mkdir command:

mkdir samples

238 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

You can check the permissions of the directory entry by using the ls command:

ls -l
total 8
drwxrwxr-x 2 root other 512 Sep 5 13:41 samples

The directory entry for the directory samples can be read from left to right in the
following way:

• The directory entry is a special file denoted by a leading d.

• The directory entry has read, write, and execute permissions for the owner rwx.

• The directory entry has read, write, and execute permissions for group
members rwx.

• The directory entry has read and execute permissions for other staff r-x.

• The directory entry is owned by the root user.

• The directory entry has other group permissions.

• The directory entry size is 512 kilobytes.

• The directory entry was created on September 5, at 1:41 P.M.

• The name of the directory is samples.

For a directory to be accessible to a particular class of user, the executable bit must
be set using the chmod command.

Summary
In this chapter, we have examined the basic facilities for user-based access controls
provided in Solaris. While these controls are important, they have been enhanced with
the inclusion of Role-Based Access Control (RBAC), which is covered in Chapter 11.

C h a p t e r 1 0 : F i l e S y s t e m A c c e s s C o n t r o l 239

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 10

This page intentionally left blank.

11
Role-Based Access Control

One of the most frustrating aspects of setting a strict security policy is that some
actions that require a form of access privilege must occasionally be undertaken
by nonprivileged users. Although you don’t want normal users to have all of root’s

privileges, for obvious reasons, there are occasions when normal users could conveniently
and securely perform certain actions without jeopardizing system integrity. In other
words, a number of specific roles require superuser privileges, which you may need
to grant to users who should not have complete root access.

In early Solaris versions, the solution to this problem was to prevent normal users
from having any kind of privileged access. Normal users, for example, could not eject
a floppy disk or CD-ROM drive without root access! However, this draconian solution
just led to the root password being shared around to every user who needed to eject a
floppy (not very security-conscious!). Alternatively, applications can be compiled as setuid
root, allowing an unprivileged user to execute specific commands as the root user, without
requiring a password. This approach is fine, as long as the scope of the application is
restricted. A given user running any application with the setuid bit can cause a buffer
overflow to compromise and obtain overall privileged access. For example, any application
that allows the effective user to spawn a shell is not suited to be setuid root, because an
unprivileged user could then spawn a root shell without a password. Relying on a single
superuser to protect a system’s resources is one of the great strengths and weaknesses
of UNIX and UNIX-like systems.

More often than not, operations on a system can be classified as being associated with
a specific role. For example, a network administrator who is responsible for backups
needs write access really only to tape devices, not to any local file systems, other than for
spooling. Thus, a backup “role” can have its scope limited in a way that doesn’t overlap
with a printer administrator, who needs to be able to manage print jobs and write to
spooling areas, while being denied write access to tape drives. Identifying tasks and roles
is the first step to ensuring that privileges are granted only to those who need them.

Three approaches are commonly used to provide “role-based” access to Solaris
systems: installing Trusted Solaris, installing sudo, or using the Role-Based Access
Control (RBAC) features built into Solaris. Using Trusted Solaris requires a new operating
system installation, to take advantage of its role-based features, which build on top of

2 4 1

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11
Blind Folio 241

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

RBAC by introducing security labels, ranging from “top secret” to “unclassified.” In
contrast, sudo is a small utility that you can download and install, providing a simple
role-based access system. However, RBAC provides a system for role-based access that
is integrated into the operating system, providing a superior solution to sudo.

Key Concepts
The following key concepts will assist you to understand RBAC.

sudo
sudo allows privileged roles to be assigned to various users by maintaining a database
of privileges mapped to usernames. These privileges are identified by sets of different
commands listed in the database. In order to access a privileged item, a qualified user
simply needs to re-enter their own password (not the root password) after the command
name has been entered on the command line. sudo permits a user to format disks,
for instance, but have no other root privileges. sudo can be obtained from http://
www.courtesan.com/sudo/.

One of the most useful features of sudo is its logging. By maintaining a logfile of all
operations performed using the sudo facility, system administrators can audit the logfile
and trace any actions that may have had unintended consequences. This is something
that the normal su facility does not provide. Alternatively, patterns of malicious behavior
can also be identified: sudo logs all successful and unsuccessful attempts to perform
privileged actions. This can be very important in a security context, because brute-force
attacks against weak passwords of unprivileged accounts might now be able to access
some superuser functions through sudo. Thus, if the user nobody is given access via sudo
to format disks, and the password for the user nobody is guessed, an intruder would be
able to format disks on the system without requiring the root password. In addition,
because the effective user ID of a user executing a privileged application through sudo
is set to zero (i.e., the superuser), such applications should not allow shells to be spawned.

All of the roles in sudo are independent. Thus, granting one or more roles to one
user and one or more roles to another is possible. User roles can be shared, or they may
be completely separate. For example, the user harry may have the privilege to format
disks, and the user butler may have the privilege to both format disks and write to tape
drives. To access these privileges, harry and butler do not need to know the root password.

sudo has some limitations, and that’s why you need RBAC. For example, it’s not
possible to stipulate that a user can only execute a single command on a specific file or
set of files, and have no other privileges. It might be possible to wrap up some commands
and permissions in a shell script, but doing this on a per-user, per-file basis would be
time-consuming.

RBAC
Role-Based Access Control (RBAC) was first introduced in Solaris 8 as a means
of defining roles for managing a specific task or set of tasks, based on a set of

242 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

administrator-defined profiles. Although the RBAC implementation supplied with
Solaris is a Sun-specific product, it is based on a standard developed by NIST (see
http://csrc.nist.gov/rbac/ for more information). Broadly defined, access control extends
beyond the notion of administrative access: it can be defined as the ability to create, read,
update, and delete data from a system. Standard file system permissions are based on
this principle: various users and groups have access permissions to data stored in files
based on a permission string that is associated with every file on the file system. However,
although file access can be easily demarcated along organizational lines, deciding who
should and who should not have administrative access to execute applications can be a
more complex issue. What if a secretary needs to have “root access” to a system to add
or delete users as they join an organization? Data entry of this kind seems like a reasonable
task for a secretary, but it is usually assigned to system administrators, because it requires
root access. RBAC allows tasks like these to be separated from other tasks that do
require a high level of technical knowledge, such as managing metadevices.

Roles
The first stage of implementing RBAC is to define roles, which are then assigned to
individual users. Access rights to various resources can then be associated with a specific
role name. As with any organization, change to roles and the users who are associated
with roles is inevitable, so the process for reflecting these changes in the list of roles and
users needs to be as easy to implement as possible. In addition, individual tasks are not
always easy to associate with a single role: indeed, in a large organization, some tasks
will be performed by a number of different employees. It’s also possible to assign specific
authorizations to specific users, bypassing roles, but this defeats the whole “role-based”
purpose of RBAC, and is not recommended.

One way of dealing with task overlap is to introduce the notion of hierarchies:
profiles and authorizations at the bottom of a conceptual hierarchy are “inherited”
by the assignment of a role at a higher level. For example, a role defined as “backup
maintainer” involves running ufsdump, which in turn requires write access to the tape
device. Thus, the backup role inherently requires access to lower-level profiles for which
new roles do not need to be separately defined. Another role, such as “device manager,”
may also require write access to the tape device, through the tapes command. Again,
no separate role is required to be created for those tasks that form part of the role by
inference. However, although Solaris RBAC does support hierarchies of profiles and
authorizations, it does not support hierarchies of roles. When a user assumes a role, the
effect is all-or-nothing: no inheritance of roles is allowed.

By default, Solaris 10 supports three different system-management roles:

• Primary Administrator (PA) Assigns rights to other users and is responsible
for security

• System Administrator (SA) Is responsible for day-to-day administration that
is not security-related

• Operator Performs backups and device maintenance

C h a p t e r 1 1 : R o l e - B a s e d A c c e s s C o n t r o l 243

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

Figure 11-1 shows the hierarchy of rights associated with the different roles. The
distinction between PA and SA will depend on the local security policy. For example,
whereas the default PA role permits both adding users and changing passwords, the
default SA role does not permit password modifications. However, for many sites, denying
SAs access to passwords would be impractical. One of the great benefits of RBAC is that
the rights granted to different profiles can be easily modified and customized to suit local
requirements. Parallels can be drawn with Trusted Solaris and the assignment of tasks
with different levels of authority to completely different roles.

Profiles
Associated with the concept of overlapping roles are the notions of authority and
operational responsibility. Two individuals may use similar roles to carry out mutually
exclusive operations. For example, a clerk in a supermarket may be allowed to enter cash
transactions into the cash register, but only a supervisor can void transactions already
entered. Conversely, a supervisor cannot enter cash transactions, because the organizational
requirements mandate a separation of supervisory and procedural roles, even though
both operate on the same set of data and devices. Clearly, these roles and their associated
operations must be defined offline before being implemented using the Solaris RBAC
facility.

A profile is a specific command or set of commands for which an authorization can
be granted. These authorizations are linked together to form a role, which is in turn
associated with a single user, or a number of different users, as shown in Figure 11-2.
Profiles can list files as well, and can be executed several ways:

• The new pfexec command can be used to execute a single command contained
in a profile.

• Commands in profiles can be executed through new, restricted versions of the
standard shells, such as pfsh (profile Bourne shell) and pfcsh (profile C shell).

• A new user account for each role can be created, with its own home directory and
password. To execute commands contained in a profile, users who have access
to the role can just su to the new account—they are not allowed to log in directly.
Note that if two users su to the same role account, they will both be operating
on the same files and could potentially overwrite each other’s data. The same
is true for the normal root account. However, one difference between using su
to access a role and using su to access a normal account is auditing—all of the
operations carried out when using su to access a role are logged with the user’s
original UID. Thus, the operations of individual users who access roles can be
logged (and audited) distinctively.

NOTEOTE You can’t directly log in to a role account.

244 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

Authorizations
Let’s look more closely at authorizations before examining how they are assigned to
different roles. An authorization is a privilege, defined in the file /etc/security/auth_attr,
that is granted to a role to allow that role to perform operations. Some applications
allow RBAC authorizations to be checked before allowing an action to be performed,
including the device-management commands (e.g., allocate and deallocate), as
well as the batch-processing commands (e.g., at, crontab).

C h a p t e r 1 1 : R o l e - B a s e d A c c e s s C o n t r o l 245

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

FIGURE 11-2 Profiles and authorizations are associated with roles that are granted to individual users.

FIGURE 11-1
Hierarchy of rights
associated with
the different roles

Authorizations have a form similar to Internet domain names: reading from left to
right, the company name is followed by more specific package and function information.
For example, net.cassowary.* is an authorization that pertains to any function supplied by
the vendor cassowary.net. By default, all Solaris packages are identified by the prefix solaris.
Thus, the authorization for changing passwords is identified as solaris.admin.usermgr.pswd
rather than the longer com.sun.solaris.admin.usermgr.pswd.

Many authorizations are fine-grained, allowing read access but not write access, and
vice versa. For example, a Primary Administrator may have the solaris.admin.usermgr.read
and solaris.admin.usermgr.write authorizations that allow read and write access, respectively,
to user configuration files. However, an SA may be granted the solaris.admin.usermgr.read
authorization but not the solaris.admin.usermgr.write authorization, effectively preventing
him or her from changing the contents of user configuration files, even if they have read
access to the same files. The following examples show some of the common solaris.admin
authorizations currently defined:

solaris.admin.fsmgr.:::Mounts and Shares::
solaris.admin.fsmgr.read:::View Mounts and Shares::help=AuthFsmgrRead.html
solaris.admin.fsmgr.write:::Mount and Share Files::help=AuthFsmgrWrite.html
solaris.admin.logsvc.:::Log Viewer::
solaris.admin.logsvc.purge:::Remove Log Files::help=AuthLogsvcPurge.html
solaris.admin.logsvc.read:::View Log Files::help=AuthLogsvcRead.html
solaris.admin.logsvc.write:::Manage Log Settings::help=AuthLogsvcWrite.html
solaris.admin.serialmgr.:::Serial Port Manager::
solaris.admin.usermgr.:::User Accounts::
solaris.admin.usermgr.pswd:::Change Password::help=AuthUserMgrPswd.html
solaris.admin.usermgr.read:::View Users and Roles::
help=AuthUsermgrRead.html

solaris.admin.usermgr.write:::Manage Users::help=AuthUsermgrWrite.html

You can see that several authorizations have been defined for solaris.admin, including
file system management (fsmgr), logging system management (logsvc), port management
(serialmgr), and user management (userxmgr). The corresponding help files are also listed.

An important aspect of authorizations is the capability to transfer permissions to other
users by using the grant keyword. Once grant is attached to the end of an authorization
string, it enables the delegation of authorizations to other users. For example, the
solaris.admin.usermgr.grant authorization, in conjunction with solaris.admin.usermgr.pswd,
allows password changing to be performed by a delegated user.

How do roles, profiles, and authorizations fit together? Figure 11-3 shows the flow
of data from authorizations and command definitions, through to the association of
authorizations to specific profiles, which are in turn utilized by users who have been
assigned various roles. The sense in which RBAC abstracts users from directly using
commands and authorizations is shown by the dotted lines in the diagram. In this
diagram, it is easy to see how central roles are in systems where profiles for different
tasks are well defined.

246 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

Operations
The following operations are commonly performed when implementing RBAC.

sudo
The sudo facility is configured by the file /etc/sudoers. This file contains a list of all users
who have access to the sudo facility and defines their privileges. A typical entry in /etc/
sudoers looks like this:

jdoe ALL=(ALL) ALL

This entry gives the user jdoe access to all applications as the superuser. For the user
jdoe to run commands as the superuser, she simply needs to prefix the command string
with sudo. Thus, to execute the format command as root, jdoe would enter the following
command string:

$ sudo format

C h a p t e r 1 1 : R o l e - B a s e d A c c e s s C o n t r o l 247

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

FIGURE 11-3 Integrating roles, profiles, and authorizations

The following output will then be displayed:

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these two things:

#1) Respect the privacy of others.
#2) Think before you type.

Password:

If jdoe correctly types in her normal password, the format command will execute with
root privileges. If jdoe incorrectly types her password up to three times, the following
messages appear after each prompt:

Take a stress pill and think things over.
Password:
You silly, twisted boy you.
Password:
He has fallen in the water!
Password not entered correctly

At this point, an alert is e-mailed to the superuser, informing them of the potential
security breach—repeated login attempts of this kind may signal a password-guessing
attack by a rogue user. Equally, it could indicate that someone is incorrectly typing their
password (perhaps the CAPS LOCK key is on) or that they are entering the root password
rather than their own.

In order to list all of the privileges currently allowed for a user, that user simply needs
to run sudo with the –l option:

$ sudo -l
You may run the following commands on this host:

(ALL) ALL

In addition to granting full superuser access, sudo can more usefully delegate
authority to specific individuals. For example, you can create command aliases that
correspond to the limited set of commands that sudoers can execute:

Cmnd_Alias TCPD=/usr/sbin/tcpd

In this case, you are giving users control over the TCP daemon. You can also specify
a group of users other than ALL that share the ability to execute different classes of
commands:

User_Alias DEVELOPERS=pwatters,tgibbs
User_Alias ADMINS=maya,natashia

248 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

Thus, the DEVELOPERS group can be assigned access to specific facilities that are not
available to ADMINS. Putting it all together, you can create complex user specifications
like this:

ADMINS ALL=(ALL) NOPASSWD: ALL
DEVELOPERS ALL=TCPD

This specification allows ADMINS to perform operations without a password, while
giving developers privileges to operate on the TCP daemon. Notice that we’ve included
administrators in the user specification, even though these users probably know the
root password. This is because sudo leaves an audit trail for every command executed,
meaning that you can trace actions to a specific user account. This makes it easy to find
out which individual is responsible for system problems. Of course, these administrators
can just use the su facility to bypass the sudo facility, if they know the root password.
This is the main drawback of using sudo on Solaris—it is not integrated into the operating
system, but rather is just an application.

RBAC
Common operations performed in the context of RBAC include setting up profiles and
defining roles. The following commands are commonly used:

• smexec Create, read, update, and delete rows in the exec_attr database

• smmultiuser Perform batch functions

• smuser Perform operations on user accounts

• smprofile Create, read, update, and delete profiles in the prof_attr database

• smrole Create, read, update, and delete role accounts

• rolemod Modify roles

• roledel Delete roles

• roleadd Add roles

The prof_attr database contains all of the profile definitions for the system. For example,
profiles might be created for the Primary Administrator, System Administrator, Operator,
Basic Solaris User, and Printer Manager. A special profile is the All Rights profile, which
is associated with all commands that have no security restrictions enforced on their use.
This is the default profile, which covers all commands not designated as requiring specific
authorization. In contrast, the PA is granted explicit rights over all security-related
commands and operations, as defined by the solaris.* authorization. The PA can then
delegate tasks to other users where appropriate if the solaris.grant authorization is granted.
The scope of the PA can be limited if this role is considered too close in power to the
superuser.

The SA, in contrast, has a much more limited role. Specific authorizations are granted
to the SA, rather than using wildcards to allow complete access. Typical commands

C h a p t e r 1 1 : R o l e - B a s e d A c c e s s C o n t r o l 249

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

defined in this profile allow auditing and accounting, printer administration, batch
processing, device installation and configuration, file system repairs, e-mail administration,
name and directory service configuration, process administration, and new software
installation and configuration. The Operator profile has very few privileges at all: only
printer and backup administration is permitted. Note that the Operator is not allowed
to restore data: this privilege is reserved for the SA or PA. As an alternative to the
Operator, the Printer Manager profile allows only printer administration tasks to be
performed. Typical authorizations that are permitted include solaris.admin.printer.delete,
solaris.admin.printer.modify, and solaris.admin.printer.read, encompassing commands like
lpsched, lpstat, and lpq.

A slightly different approach is taken for the definition of the Basic Solaris User:
this policy is contained within the policy.conf file. Typical authorizations permitted for
the Basic Solaris User include the following:

solaris.admin.dcmgr.read solaris.admin.diskmgr.read solaris.admin.fsmgr.read

solaris.admin.logsvc.read solaris.admin.printer.read solaris.admin.procmgr.user

solaris.admin.prodreg.read solaris.admin.serialmgr.read solaris.admin.usermgr.read

solaris.compsys.read solaris.jobs.user solaris.profmgr.read

Database Reference
The following reference provides details on the different databases that are used
with RBAC.

user_attr
The user_attr file is the RBAC user database. This file primarily shows the relationship
between the user and profiles that apply to the user. It contains a single entry by default,
which defines the security information for every user that has access to RBAC. The
following entry gives the root user permission to do everything on the system:

root::::type=normal;auths=solaris.*,solaris.grant;profiles=All

Clearly, if the power of root were to be reduced, solaris.* would need to be replaced
with something more restricted in scope, such as solaris.admin.*. For an explanation of
the fields not shown, please see the man page.

auth_attr
The auth_attr file is the RBAC authorization database. This file primarily depicts the
available authorizations. It contains lists of all authorizations defined on the system.
Some sample entries are shown here:

solaris.admin.fsmgr.:::Mounts and Shares::
solaris.admin.fsmgr.read:::View Mounts and Shares::help=

250 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

AuthFsmgrRead.html
solaris.admin.fsmgr.write:::Mount and Share Files::help=
AuthFsmgrWrite.html
solaris.admin.logsvc.:::Log Viewer::
solaris.admin.logsvc.purge:::Remove Log Files::help=
AuthLogsvcPurge.html
solaris.admin.logsvc.read:::View Log Files::help=AuthLogsvcRead.html
solaris.admin.logsvc.write:::Manage Log Settings::help=
AuthLogsvcWrite.html
solaris.admin.serialmgr.:::Serial Port Manager::
solaris.admin.usermgr.:::User Accounts::
solaris.admin.usermgr.pswd:::Change Password::help=AuthUserMgrPswd.html
solaris.admin.usermgr.read:::View Users and Roles::
help=AuthUsermgrRead.html
solaris.admin.usermgr.write:::Manage Users::help=AuthUsermgrWrite.html

prof_attr
The prof_attr file is the RBAC profile database. This file displays the relationship
between the profiles and the corresponding authorizations. Sample prof_attr entries
for the Basic Solaris User, User Management, and User Security are shown here:

Basic Solaris User:::Automatically assigned rights:
auths=solaris.profmgr.read,solaris.jobs.users,
solaris.admin.usermgr.read,solaris.admin.logsvc.read,
solaris.admin.fsmgr.read,solaris.admin.serialmgr.read,
solaris.admin.diskmgr.read,solaris.admin.procmgr.user,
solaris.compsys.read,solaris.admin.printer.read,
solaris.admin.prodreg.read,solaris.admin.dcmgr.read;
profiles=All;help=RtDefault.html
User Management:::Manage users, groups, home directory:
auths=profmgr.read,solaris.admin.usermgr.write,
solaris.admin.usermgr.read;help=RtUserMngmnt.html
User Security:::Manage passwords, clearances:
auths=solaris.role.*,solaris.profmgr.*,solaris.admin.usermgr.*;
help=RtUserSecurity.html

exec_attr
The exec_attr file is the RBAC command database. It contains lists of commands associated
with a specific profile. For example, a set of entries for the User Manager profile would
look like this:

User Management:suser:cmd:::/etc/init.d/utmpd:uid=0;gid=sys
User Management:suser:cmd:::/usr/sbin/grpck:euid=0
User Management:suser:cmd:::/usr/sbin/pwck:euid=0

C h a p t e r 1 1 : R o l e - B a s e d A c c e s s C o n t r o l 251

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

Example
Although much of the material in this chapter is conceptual, the following example shows
you how to use RBAC practically. For each role that you want to create, you should
develop a planning table and then follow the steps required to configure and activate the
role on the system. By preplanning roles, scripts can be created to automate the process
across a number of different servers. An example of planning table entries is shown here:

Role Purpose/Description Users Assigned Commands Used

User Administration Add users to the
system

paul, nalneesh useradd, usermod,
userdel, pwck,

Web Management Allow the Web server
to be operated

paul, jane, jessica httpd, apachectl

Once you’ve identified the roles, users, and commands, the following three steps need
to be taken:

1. Create each role using the smrole command.

2. Create each profile using smprofile.

3. Assign each user to the role using smrole.

4. Verify the changes in the files.

Command Reference
The following reference provides details on the different commands that are used
with RBAC.

smexec
The smexec command is used to create, update, and delete rows in the exec_attr database.
One of three options must be passed to the command upon execution: add, which adds
an entry; delete, which deletes an entry; or modify, which updates an entry. In order to use
smexec, the user must have the solaris.profmgr.execattr.write authorization. There are two
sets of parameters that can be passed to smexec (depending on which option has been
selected): authorization parameters and specific parameters for each option.

The authorization parameters are common to each option, and they specify the
following characteristics:

–domain The domain to be administered

–hostname:port The hostname and port on which operations are to be performed
(default port is 898)

–rolepassword The password for role authentication

252 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

–password The password for the user rather than the role

–rolename The name of the role

–username The name of the user

For adding entries using smexec add, the following parameters can be passed on
the command line:

–c Specifies the full path to the new command name to be added

–g Specifies the effective GID for executing the new command

–G Specifies the actual GID for executing the new command

–n Specifies the profile name with which the command is associated

–t cmd Specifies that the operation is a command

–u Specifies the effective UID for executing the new command

–U Specifies the actual UID for executing the new command

An example smexec add operation looks like this:

smexec add -hostname localhost -password xyz123 -username root -- -n
"Print Manager" -t cmd -c /usr/sbin/lpsched -u 0 -g 0

This entry adds the capability to start the printing service to the Printer Manager
profile, with the effective UID and GID of 0 (i.e., root).

For removing entries using smexec delete, the following parameters can be passed
on the command line:

–c Specifies the full path to the command name to be deleted

–n Specifies the profile name with which the command is currently associated

–t cmd Specifies that the operation is a command

To remove the entry for lpsched, you would use the following command:

smexec delete -hostname localhost -password xyz123 -username root -- -n
"Print Manager" -t cmd -c /usr/sbin/lpsched

For changing entries using smexec modify, the following parameters can be passed
on the command line:

–c Specifies the full path to the command name to be modified

–g Specifies the modified effective GID for executing the new command

–G Specifies the modified actual GID for executing the new command

C h a p t e r 1 1 : R o l e - B a s e d A c c e s s C o n t r o l 253

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

–n Specifies the modified profile name with which the command is associated

–t cmd Specifies that the operation is a command

–u Specifies the modified effective UID for executing the new command

–U Specifies the modified actual UID for executing the new command

An example smexec modify operation looks like this:

smexec modify -hostname localhost -password xyz123 -username root -- -n
"Print Manager" -t cmd -c /usr/some/new/path/lpsched -u 0 -g 0

This entry modifies the command to start the printing service for the Printer Manager
profile, from the path /usr/sbin/lpsched to /usr/some/new/path/lpsched.

smmultiuser
The smmultiuser command is used to perform batch functions, such as adding or
deleting a large number of users. This is particularly useful when a file already exists that
specifies all of the required user data. For instance, a backup system may need a setup
that is similar to a current production system. Rather than just copying the file systems
directly, all of the operations associated with new account creation can be performed,
such as creating home directories. In addition, the file that specifies the user data can
be updated to include pathname changes. For example, if the original system’s home
directories were exported using NFS, they could be mounted under the /export mount
point on the new system, and the data in the user specification file could be updated
accordingly before being processed; or if mount points were to change at a later time,
user data on the system could be modified by using the smmultiuser command as well.

Like smexec, smmultiuser has three options, one of which must be passed to the
command upon execution: add, which adds multiple user entries; delete, which deletes one
or more user entries; or modify, which modifies a set of existing entries. In order to use
smmultiuser to change passwords, the user must have the solaris.admin.usermgr.pswd
authorization. Two sets of parameters—authorization parameters and operation
parameters—can be passed to smmultiuser, depending on which option has been
selected.

The authorization parameters are common to each option, and they specify the
following characteristics:

–domain The domain to be administered

–hostname:port The hostname and port on which operations are to be performed
(default port is 898)

–password The password for the user rather than the role

–rolename The name of the role

–rolepassword The password for role authentication

254 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

–trust Required when operating in batch mode

–username The name of the user

For add, delete, and modify operations using smmultiuser, the following parameters
can be passed on the command line:

–i Specifies the input file to be read, which contains data for all entries to be
added, modified, or deleted

–L Specifies the name of the logfile that records whether individual operations
in the batch job were a success or failure

In the following example, a set of records is read in from /home/paul/newaccounts.txt
and added to the system:

smmultiuser add -hostname localhost -p xyz123 -username root -- -I
/home/paul/newaccounts.txt

smuser
The smuser command is used to perform operations on user accounts, whether the data
is retrieved from the local user databases or from NIS/NIS+. Although it is similar to
smmultiuser, it is generally used only to add single users rather than a set of users in
batch mode. In addition to adding, deleting, and modifying user records, existing user
data can be retrieved and listed. One of four options must be passed to the command
upon execution: add, which adds an entry; delete, which deletes an entry; list, which lists
all existing entries; or modify, which updates an entry. In order to use smuser add, delete,
or modify, the user must have the solaris.profmgr.execattr.write authorization. However,
only the solaris.admin.usermgr.write authorization is required to list entries.

There are two sets of parameters that can be passed to smuser (depending on
which option has been selected): authorization parameters and specific parameters for
each option. The authorization parameters are common to each option, and they specify
the following characteristics:

–domain The domain to be administered. This can be the local databases (file),
NIS (nis), NIS+ (nisplus), DNS (dns), or LDAP (ldap). To administer the
host foxtrot.cassowary.net using LDAP, you would specify the domain
as ldap://foxtrot/cassowary.net.

–hostname:port The hostname and port on which operations are to be performed.
The default port is 898.

–password The password for the user rather than the role.

–rolename The name of the role.

–rolepassword The password for role authentication.

–username The name of the user.

C h a p t e r 1 1 : R o l e - B a s e d A c c e s s C o n t r o l 255

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

For adding entries using smuser add, the parameters are similar to those discussed
for adding users using useradd, as described in Chapter 12. The following parameters
can be passed on the command line:

–c Specifies an account description, such as “Joe Bloggs”

–d Specifies the user’s home directory

–e Specifies the account expiration date

–f Specifies a limit on the number of inactive days before an account is expired

–F Specifies a full name for the account, which must not be used by another account
within the domain

–g Specifies the account GID

–n Specifies the account name

–P Specifies the account password

–s Specifies the default shell

–u Specifies the account UID

An example smuser add command is shown here:

smuser add -H localhost -p xyz123 -u root -- -F "Paul Watters"
-n walrus -c "Paul A Watters Director" –P jimmy123 –g 10 –u 1025

This command adds an account called walrus to the system for Paul Watters, with the
password jimmy123. The UID for the account is 1025, and the GID is 10.

For removing entries using smuser delete, only the –n parameter, specifying the
account name, needs to be passed on the command line. The following command would
remove the account for walrus on the localhost:

smuser delete -H localhost -p xyz123 -u root -- -n walrus

The smuser list command can display a list of users without any parameters,
by using a command like this:

smuser list -H localhost -p xyz123 -u root –-

For modifying entries using smuser modify, the same parameters can be passed
on the command line as for smuser add, with any new supplied values resulting in the
appropriate fields being updated. For example, to modify the default shell for a user to
the Korn shell, the following command would be used:

smuser update -H localhost -p xyz123 -u root -- -n walrus –s /bin/ksh

256 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

smprofile
The smprofile command is used to create, list, update, and delete profiles in the prof_
attr database, using smprofile add, smprofile list, smprofile modify, and
smprofile delete, respectively. The authorization arguments are similar to those
used for smuser and smexec. For adding entries using smprofile add, the following
parameters can be passed on the command line:

–a Adds a single authorization or a set of authorizations

–d Adds a description for the new profile

–m Specifies the path to the HTML help file associated with the profile

–n Specifies a name for the profile

An example smprofile add command is shown here:

smprofile add -H localhost -p xyz123 -u root -- -n "Password Manager" \
-d "Change user passwords" -a solaris.admin.usermgr.pswd \
-m PasswordManager.html

This command adds a profile for the Password Manager who has the authorization
solaris.admin.usermgr.pswd to change passwords.

For listing entries using smprofile list, only the –n parameter can be passed on
the command line, which optionally specifies the name of the profile to list. An example
smprofile list command is shown here:

smprofile list -H localhost -p xyz123 -u root --

For modifying entries using smprofile modify, the same parameters can be
passed on the command line as for smprofile add. Any parameters specified will
result in the corresponding field being updated. An example smprofile modify
command is shown here:

smprofile modify -H localhost -p xyz123 -u root -- \
-n "Password Manager" -d "Modify user passwords

This example changes the description for the profile Password Manager.
For deleting entries using smprofile delete, only the –n parameter can be passed

on the command line, which specifies the name of the profile to delete. An example
smprofile delete command is shown here:

smprofile delete -H localhost -p xyz123 -u root -- \
-n "Password Manager"

C h a p t e r 1 1 : R o l e - B a s e d A c c e s s C o n t r o l 257

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

smrole
The smrole command is used to perform operations on role accounts. It is generally used
to add single roles rather than a set of roles in batch mode. In addition to adding, deleting,
and modifying role account records, existing role data can be retrieved and listed. One
of four options must be passed to the command upon execution: add, which adds an entry;
delete, which deletes an entry; list, which lists all existing entries; or modify, which updates
an entry. In order to use smrole add, delete, or modify, the user must have the
solaris.role.write authorization. However, only the solaris.admin.usermgr.read authorization
is required to list entries. There are two sets of parameters that can be passed to smrole
(depending on which option has been selected): authorization parameters and specific
parameters for each option. The authorization parameters are similar to those used for
smuser.

For adding entries using smrole add, the following parameters can be passed on
the command line:

–c Specifies a role account description, such as “System Manager”

–d Specifies the role account’s home directory

–G Specifies any secondary GIDs for the role account, because the primary GID is always
sysadmin

–n Specifies the role name

–P Specifies the account password

–s Specifies the default shell

–u Specifies the account UID

An example smrole add command is shown here:

smrole add -H localhost -p xyz123 -u root -- -F "System Manager" \
-n bofh –P abc123 –G 10 –u 666

This command adds an account called bofh to the system for System Manager, with
the password jimmy123. The UID for the account is 666, and the secondary GID is 10.

For removing entries using smrole delete, only the –n parameter, specifying the
role account name, needs to be passed on the command line. The following command
would remove the account for bofh on the localhost:

smrole delete -H localhost -p xyz123 -u root -- -n bofh

The smrole list command can display a list of roles without any parameters,
by using a command like this:

smrole list -H localhost -p xyz123 -u root –-

258 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

For modifying entries using smrole modify, the same parameters can be passed on
the command line as for smrole add, with any new supplied values resulting in the
appropriate fields being updated. For example, to modify the default shell for a role to
the Bourne shell, the following command would be used:

smrole update -H localhost -p xyz123 -u root -- -n walrus –s /bin/sh

Summary
In this chapter, we have examined some alternative models of access control that are
based around roles rather than users. This approach provides a useful abstraction that
caters to situations in which individual users are deleted, but the applications that they
run or the files that they own must be preserved or kept running.

C h a p t e r 1 1 : R o l e - B a s e d A c c e s s C o n t r o l 259

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 11

This page intentionally left blank.

12
Users, Groups, and the

Sun Management Console

The concept of the user is central to Solaris—all processes and files on a Solaris system
are “owned” by a particular user and are assigned to a specific user group. No data
or activities on the system may exist without a valid user or group. Managing

users and groups as a Solaris administrator can be a challenging activity—you will be
responsible for assigning all of the privileges granted or denied to a user or group of
users, and many of these permissions carry great risk. For example, a user with an
inappropriate privilege level may execute commands as the superuser, causing damage
to your system. In this chapter, you will learn how to add users to the system and add
and modify groups. In addition, the contents and structure of key user databases,
including the password, shadow password, and group files, are examined in detail.

In the past, several attempts have been made to develop an extensible, easy-to-use GUI
for managing individual Solaris systems and groups of Solaris systems. Until recently, the
admintool was the main GUI administration tool supplied with the Solaris distribution.
However, since the Solaris 8 Admin Pack release, a new tool has been made available—
the Solaris Management Console (SMC). This chapter examines all of the functionality
available through the SMC to manage individual servers and groups of servers.

Key Concepts
The following concepts are required knowledge for managing users and groups, and
for using the SMC.

Users
All users on a Solaris system have a number of unique identifiers and characteristics
that can be used to distinguish individual users from one another and to logically group
related users. Most physical users of a Solaris system have a unique login assigned to

2 6 1

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12
Blind Folio 261

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

262 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

them, which is identified by a username with a maximum of eight characters. Once
a user account is created, it can be used for the following purposes:

• Spawning a shell

• Executing applications interactively

• Scheduling applications to run at specific times and on specific dates

• Accessing database applications and other system services

In addition to user accounts, Solaris also uses a number of predefined system accounts
(such as root, daemon, bin, sys, lp, adm, and uucp) to perform various kinds of routine
maintenance, including the following:

• Allocating system resources to perform specific tasks

• Running a mail server

• Running a Web server

• Managing processes

Users may access a Solaris system by accessing the console, or through a remote
terminal, in either graphical or text mode. In each case, a set of authentication credentials
is presented to the system, including the username and password. When entered, a user’s
password is compared to an encrypted string stored in the password database (/etc/passwd)
or the shadow password database (/etc/shadow). Once the string entered by the user
has been encrypted, it is matched against the already encrypted entry in the password
database. If a match is made, authentication occurs, and the user may spawn a shell.

A Solaris username may have a maximum of eight characters, as may a Solaris
password. Because the security of a Solaris system relies heavily on the difficulty of
guessing passwords, user policies should be developed to either recommend or enforce
the use of passwords containing random or semirandom character strings. The specific
characteristics of the password can be defined in the /etc/default/passwd file.

A number of other user characteristics are associated with each user, in addition
to a username and password. These features include the following:

• User ID (UID) A unique integer that begins with the root user (UID=0), with
other UIDs typically (but not necessarily) being allocated sequentially. Some
systems reserve all UIDs below 1023 for system accounts (e.g., the “apache” user
for managing the Apache Web server); UIDs 1023 and above are available for
ordinary users. The UID of 0 designates the superuser account, which is typically
called “root.”

• A flexible mechanism for distinguishing different classes of users, known
as groups Groups are not just sets of related users. The Solaris file system allows
for group-designated read, write, and execute file access for groups, in addition
to permissions granted to the individual user and to all users. Every UID is
associated with a primary group ID (GID); however, UIDs may also be associated
with more than one secondary group.

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 263

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

• Home directory The default file storage location for all files created by a
particular user. If the automounter is used, then home directories may be
exported using NFS on /home. When a user spawns a login shell, the current
working directory is always the home directory.

• Login shell Can be used to issue commands interactively or to write simple
programs. A number of different shells are available under Solaris, including
the Bourne shell (sh), C-shell (csh), the Bourne Again Shell (bash), and the
Cornell shell (tcsh). The choice of shell depends largely on personal preference,
user experience with C-like programming constructs, and terminal handling.

• Comment Typically, this is the user’s full name, such as “Paul Watters.”
However, system accounts may use names that describe their purpose (e.g.,
the comment “Web Server” might be associated with the apache user).

Groups
Solaris provides a facility for identifying sets of related users into groups. Each user is
associated with a primary GID, which is associated with a name. The group name and
GID can be used interchangeably. In addition, users can be associated with one or more
secondary groups. This flexibility means that although a user might have a primary
group membership based on their employment or organizational status (e.g., “staff” or
“managers”), they can actively share data and system privileges with other groups based
on their workgroup needs (e.g., “sales” or “engineer”).

All information about groups in Solaris is stored in the groups database (/etc/group).
The following is a typical set of groups:

cat /etc/group
root::0:root
other::1:
bin::2:root,bin,daemon
sys::3:root,bin,sys,adm
adm::4:root,adm,daemon
uucp::5:root,uucp
mail::6:root
tty::7:root,tty,adm
lp::8:root,lp,adm
nuucp::9:root,nuucp
staff::10:paul,maya,brad,natashia
postgres:a.mBzQnr1ei2D.:100:postgres, paul
daemon::12:root,daemon
sysadmin::14:
nobody::60001:
noaccess::60002:
nogroup::65534:

You can see that the lower group numbers are associated with all the system functions
and accounts, such as the bin group, which has the members root, bin, and daemon, and

264 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

the sys group, which has the members root, bin, sys, and adm. Higher-numbered groups,
such as staff, contain several different users, such as paul, maya, brad, and natashia. Notice
also that paul has a secondary group membership in the postgres group, giving him
database access privileges. A group password can also be set for each group to restrict
access, although most groups don’t use this facility. In this group database, you can see
that the postgres group is the only group that has an encrypted password (a.mBzQnr1ei2D.).

You can obtain a list of all groups that a user belongs to by using the groups command.
For example, to view all the groups that the root user belongs to, use this command:

groups root
other root bin sys adm uucp mail tty lp nuucp daemon

Passwords
All Solaris users have a username and password associated with their account, except
where a user account has been explicitly locked (designated *LK*) or a system account
has been specified not to have a password at all (NP). Many early exploits of Solaris
systems were associated with default passwords used on some system accounts, and
the most common method of gaining unauthorized access to a Solaris system remains
password cracking and/or guessing. This section examines the password database
(/etc/passwd) and its more secure counterpart, the shadow database (/etc/shadow). It also
presents strategies for making passwords safer.

The standard password database is stored in the file /etc/passwd, and it looks like this:

cat /etc/passwd
root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:
sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:
uucp:x:5:5:uucp Admin:/usr/lib/uucp:
nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
listen:x:37:4:Network Admin:/usr/net/nls:
nobody:x:60001:60001:Nobody:/:
noaccess:x:60002:60002:No Access User:/:
nobody4:x:65534:65534:SunOS 4.x Nobody:/:
postgres:x:1001:100:Postgres User:/usr/local/postgres:/bin/sh
htdig:x:1002:10:htdig:/opt/www:/usr/local/bin/bash
apache:x:1003:10:apache user:/usr/local/apache:/bin/sh

You have already seen some of the fields shown here when adding users to the system:

• The username field, which has a maximum of eight characters.

• The encrypted password field, which in a system using shadow passwords
is crossed with an x.

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 265

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

• The user ID field, which contains the numeric and unique UID.

• The primary group ID field, which contains the numeric GID.

• The user comment, which contains a description of the user.

• The path to the user’s home directory.

• The user’s default shell.

In older versions of Solaris, the encrypted password field would have contained
an encrypted password string like X14oLaiYg7bO2. However, this presented a security
problem, because the login program required all users to have read access to the
password file:

ls -l /etc/passwd
-rw-r--r-- 1 root sys 605 Jul 24 11:04 /etc/passwd

Thus, any user with the lowest form of privilege would be able to access the encrypted
password field for the root user and attempt to gain root access by guessing the password.
A number of programs were specifically developed for this purpose, such as crack, which
takes a standard Solaris password file and uses a dictionary and some clever lexical rules
to guess passwords (note that crack is not supplied with the Solaris distribution). Once
a rogue user obtains a root password, he or she may perform any operation on a Solaris
system, including formatting hard disks, installing Trojan horses, launching attacks on
other systems, and so on.

The cryptographic algorithm used by Solaris is not easy to crack. Indeed, a brute-force
guess of a password composed of a completely random set of characters would take many
CPU years to compute. The task would be made even more difficult (if not impossible) if
the root password were changed weekly, again with a random set of characters. However,
the reality is that most users enter passwords that are easily guessed from a dictionary
or from some knowledge about the user. Because users are constantly required to use PINs
and passwords, they generally choose passwords that are easy to remember. However,
easily remembered passwords are also the easiest to crack.

Solaris has reduced the chances of a rogue user obtaining the password file in the
first place, by implementing a shadow password facility. This creates a file called /etc/
shadow, which is similar to the password file (/etc/passwd), but is readable only by root
and contains the encrypted password fields for each UID. Thus, if a rogue user cannot
obtain the encrypted password entries, using them as the basis for a “crack” attack is
very difficult.

UNIX passwords are created by calling the crypt function, which requires a salt and
the password to create an encrypted string. Because the crypt function is one-way (i.e.,
it is not mathematically reversible), there is no corresponding function called decrypt.
Thus, the only way to obtain a password from an encrypted string is by passing the salt
plus a “guess string” containing what you think the password might be and seeing if the
encrypted string generated matches the one stored in the shadow password file. In this
case, “guess strings” are often generated by reading a dictionary file containing thousands
of possible passwords or by using a list of commonly used passwords (such as “root,”
“system,” “manager,” “tiger,” and so on).

266 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

Introduction to SMC
The Solaris Management Console (SMC) is designed as a replacement for the admintool,
which was used in versions of Solaris prior to Solaris 9. admintool provided a limited
and nonextensible set of tools for GUI system management. The motivation for providing
GUI tools to seasoned command-line hackers may seem unclear—however, SMC provides
methods for managing a large number of servers from a single interface and provides
easy methods for extending the functionality of the core interface. This means you can
add customized applications to the toolbox, or to the collection of administration
applications for a specific system, by using the appropriate commands. SMC may not
be of great benefit to administrators who manage a single system—it is an advanced
tool that suits sites that deal with large numbers of systems.

SMC allows you to manage system and application packages, along with users and
groups. You can manage multiple systems from a single system and user interface based
on Java. SMC enables you to reboot or shut down managed systems, set their root
passwords, enable Point-to-Point Protocol (PPP) support, and administer naming services
like Domain Name Service (DNS). You can review processes in real time, along with
system resources, such as virtual and physical memory.

The following administrative tasks can be performed by software contained within
SMC toolboxes:

• Assign rights and roles to users

• Configure and format new disks for the system, including laying out partitions
and copying configurations from one disk to another in preparation for RAID

• Create a single user account or generate multiple accounts using a consistent
specification

• Create new groups or modify existing groups

• Create user policies and apply them

• Execute jobs in real time or schedule them for regular, repeated execution

• Install support for serial ports, modems, and related Physical layer technologies
such as PPP

• Monitor processes and search for resumed, deleted, or suspended processes

• Review system logs and search for anomalous or suspicious entries

• Set up mailing lists

• View mounted file systems

These management operations and applications are not provided intrinsically
by SMC—however, SMC provides an interface to access them.

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 267

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

Procedures
The following procedures must be performed to add users and groups to the system.

Adding Users
Adding a user to a Solaris system is easy; however, this operation may be performed
only by the root user. There are two options. The first option is to edit the /etc/passwd file
directly, which includes incrementing the UID, adding the appropriate GID, adding a
home directory (and remembering to physically create it on the file system), inserting
a comment, and choosing a login name. In addition, you must set a password for the
user by using the passwd command.

Does this sound difficult? If so, you should consider using the second option: the
automated useradd command, which does all the hard work for you, as long as you
supply the correct information. The useradd command has the following format:

useradd -u uid -g gid -d home_directory -s path_to_shell
-c comment login_name

Let’s add a user to the system and examine the results:

useradd -u 1004 -g 10 -d /opt/www -s /bin/sh -c
"Web User" www

Here, you are adding a Web user called www with the UID 1004, GID 10, the home
directory /opt/www, and the Bourne shell as their login shell.

At the end of the useradd script, an appropriate line should appear in the /etc/
passwd file, as follows:

grep www /etc/passwd
www:x:1004:10:Web User:/opt/www:/bin/sh

However, the useradd command may fail under the following conditions:

• The UID that you specified has already been taken by another user. UIDs may
be recycled, as long as precautions are taken to ensure that a previous owner
of the UID no longer owns files on the file system.

• The GID that you specified does not exist. Verify its entry in the groups database
(/etc/group).

• The comment contains special characters, such as double quotes (“”), exclamation
marks (!), or slashes (/).

• The shell that you specified does not exist. Check that the shell actually exists in the
path specified and that the shell has an entry in the shells database (/etc/shells).

268 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

Modifying User Attributes
Once you have created a user account, you can change any of its characteristics by directly
editing the password database (/etc/passwd) or by using the usermod command. For
example, if you wanted to modify the UID of the www account from 1004 to 1005, you
would use this command:

usermod -u 1005 www

Again, you can verify that the change has been made correctly by examining the entry
for www in the password database:

grep www /etc/passwd
www:x:1005:10:Web User:/opt/www:/bin/sh

Remember that if you change a UID or GID, you must manually update existing
directory and file ownerships by using the chmod, chgrp, and chown commands where
appropriate.

Once a user account has been created, the next step is to set a password, which you
can perform by using the passwd command:

passwd user

where user is the login name for the account whose password you want to change. In
all cases, you are required to enter the new password twice—if you happen to make a
typing error, the password will not be changed, and you will be warned that the two
password strings entered do not match. Here’s an example for the user www:

passwd www
New password:
Re-enter new password:
passwd(SYSTEM): They don't match; try again.
New password:
Re-enter new password:
passwd (SYSTEM): passwd successfully changed for www

After a password has been entered for a user, such as the www user, it should appear
as an encrypted string in the shadow password database (/etc/shadow):

grep www /etc/shadow
www:C4dMH8As4bGTM:::::::

Once a user has been granted an initial password, he or she may then enter a new
password by using the passwd command with no options.

Deleting Users
Now imagine that one of your prized employees has moved on to greener pastures
unexpectedly—although you will eventually be able to change the ownership on all of

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 269

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

his or her files, you cannot immediately restart some production applications. In this case,
you can temporarily disable logins to a specific account by using a command like this:

passwd -l natashia

This command would lock natashia’s account until the root user once again used the
passwd command on this account to set a new password.

A locked account can be identified in the password database by the characters LK:

grep natashia /etc/shadow
natashia:*LK*:::::::

You can unlock the account by either removing the *LK* entry manually or by setting
a password.

Once all of the user’s files have been backed up, and any active processes have
been killed by the superuser, the user account may be permanently deleted by using
the userdel command. For example, to delete the user account natashia and remove
that user’s home directory and all the files underneath that directory, you would use
this command:

userdel -r natashia

Or, you could edit both the password and shadow password databases and remove
the appropriate lines containing the entries for the user natashia. You would also need to
manually remove the user’s home directory and all of her files underneath that directory.
Note that this procedure works only if the user database is the traditional UNIX local
DB—it does not work with user DBs like LDAP and NIS/NIS+.

There are also several system accounts, including adm, bin, listen, nobody, lp, sys, and
uucp, that should remain locked at all times to prevent interactive logins.

Adding Groups
To add a new group to the system, you may either manually edit the /etc/group file or
use the groupadd command, which has the following syntax:

/usr/sbin/groupadd -g gid group_name

Thus, to add a group called managers to the system, with a GID of 500, you would
use this command:

groupadd -g 500 managers

You would then be able to verify the new group’s existence by searching the groups
database:

grep managers /etc/group
managers::500:

The groupadd command will fail if the GID that you specify has already been
allocated to an existing group or if the group_name is greater than eight characters.

Managing Groups
If you want to change your group from primary to secondary during an interactive
session to ensure that all the files that you create are associated with the correct GID,
you need to use the newgrp command. For example, the root user has the following
primary group membership:

id
uid=0(root) gid=0(root)

However, if the root user wishes to act as a member of another group, such as sys, you
would have to use the following command:

newgrp sys

The effective GID would then change to sys:

id
uid=0(root) gid=3(sys)

NOTEOTE If a password is set on the target group, a non-root user would have to enter that
password to change the effective group.

Any operations (such as creating files) that the root user performs after using newgrp
will be associated with the GID of 3 (sys) rather than 0 (root). For example, if you created a
new file with the primary group, the group associated with the new file would be GID 0:

touch root.txt
ls -l root.txt

-rw-r--r-- 1 root root 0 Oct 12 11:17 root.txt

However, if the root user then changes groups to sys and creates a new file, the group
associated with the file will be sys rather than root:

newgrp sys
touch sys.txt
ls -l sys.txt
-rw-r--r-- 1 root sys 0 Oct 12 11:18 sys.txt

Starting the SMC
The SMC operates by collecting data from systems, providing an interface for viewing
that data, and allowing administrative tasks to be executed on the basis of that data.
Different servers can store localized toolboxes. Alternatively, if a high-resolution graphics
card or monitor is not available, then SMC can be started with a command-line interface.

270 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

The command that starts the SMC is /usr/sadm/bin/smc. This assumes that SMC is to
be opened for operations. An alternative mode of operation is provided by the smc edit
mode, where toolboxes can be modified or updated. The following options are available
to the smc command when starting up:

• –auth-data Allows authentication data to be read from a file.

• –toolbox Stipulates the name of a toolbox to read in from a file. Alternatively,
a URL can be specified that points to the location of a toolbox.

• –domain Designates the domain name for the systems that are being managed.
LDAP, DNS, NIS, and NIS+ domains are supported. The form of the URL for
a DNS domain cassowary.net and the host midnight would be dns:/midnight/
cassowary.net.

• –hostname:port Nominates the hostname and port number of the server
to manage. The default port number is 898.

• –J Passes any command-line options to the Java Virtual Machine, such as
the initial and maximum heap sizes.

• –rolepassword Specifies a password for the role rolename.

• –password Specifies a password for username.

• –rolename Specifies a role to execute SMC.

• –t Executes SMC in terminal mode.

• –trust Allows all downloaded code to be trusted.

• –tool Specifies a tool to be executed.

• –username Specifies a username with which SMC is to be executed.

• –yes Answers yes, by default, to all interactive questions.

The format of data in an auth-data file is as follows:

hostname=ivana
username=root
password=my1asswd
rolename=su
rolepassword=su1asswd

Of course, any auth-data file should be read-only by root, or by the user who is
assigned the role of SMC management. However, there is always an inherent risk in
storing passwords in plain text in a file on any file system, since it could be removed
and mounted on another system and its contents read directly. Alternatively, gaining
unauthorized access to the auth-data file may allow a cracker to obtain administrative
access to a large number of servers whose authentication tokens are stored in the file. One
file is normally created for every server whose credentials must be locally stored.

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 271

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

272 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

Examples
The following examples demonstrate how to work productively with SMC.

Working with the SMC
When you start the SMC, you are presented with a login screen (after a very long
wait when used for the first time), as shown in Figure 12-1. This screen allows you to
connect through to the server specified on the command line, or in the text box, and
authenticate yourself as the administrator. Generally, the username will be root, but
it could be any nonprivileged user who has been assigned administrative roles.

FIGURE 12-1 SMC login screen

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 273

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

The main screen for the SMC is shown in Figure 12-2. As you see, there are three
menus (Console, View, and Help), two tabs (Applications View and SMC Server View),
a navigation pane on the left side, a view pane on the right side, and a status and
information pane in the lower-right corner. By default, Applications View is enabled.
To switch to SMC Server View, simply click the SMC Server View tab.

In Applications View, shown in Figure 12-3, a number of broad headings are used
to differentiate the applications used to manage the system. Each of these headings can
be activated by clicking the appropriate text or folder icon in the navigation pane, after
which a list of applications and application types appears in the view pane. As shown
in the navigation pane, the classes of applications supported by SMC include Connectivity,
Documentation, Infrastructure, Jobs, Security, Software, and User & Group.

FIGURE 12-2 SMC main screen

274 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

There are several different Connectivity applications supported by SMC. These are
shown in the view pane after selecting the Connectivity heading or folder icon, as shown
in Figure 12-3. Supported applications include DNS Client, Default Routing, Network
Interface, PPP Configuration, and Point to Point Protocol.

FIGURE 12-3 SMC Applications View

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 275

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

In the Documentation class of applications, shown in Figure 12-4, only the Answerbook
is supported.

FIGURE 12-4 SMC Documentation applications

276 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

The Infrastructure class of applications, shown in Figure 12-5, includes AdminSuite,
Admintool, Performance Meter, Shutdown/Restart Computer, Terminal, and Workstation
Information.

FIGURE 12-5 SMC Infrastructure applications

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 277

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

In the Jobs class of applications, shown in Figure 12-6, only the Process Manager
is supported by default.

FIGURE 12-6 SMC Jobs applications

278 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

In the Security class of applications, shown in Figure 12-7, only the Kerberos v5 server
(SEAM) is supported by default.

FIGURE 12-7 SMC Security applications

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 279

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

The Software class of applications, shown in Figure 12-8, supports DNS Server,
Software Manager, and Solaris Product Registry.

FIGURE 12-8 SMC Software applications

280 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

In the User & Group class of applications, shown in Figure 12-9, only the Change
Root Password operation is supported by default.

Every application listed underneath each main application class heading can be
configured by the administrator, by double-clicking the appropriate heading and selecting

FIGURE 12-9 SMC User & Group applications

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 281

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

the software product to be configured. This operation is shown in Figure 12-10 for the DNS
Server software package underneath the Software applications heading. The parameters
that can be modified include the application name, the server name on which it is to be
executed, and the user who will run the application.

FIGURE 12-10 SMC application configuration

The list of applications in each category is limited to those installed by default in the
Solaris installation. However, SMC becomes really useful only after a number of new
applications are included in the toolbox. These can be configured on a per-system basis
rather than having a “one size fits all” toolbox configuration. For example, a backup
server might have Legato administration options added to SMC, while a database server
might have the Oracle administration options integrated into SMC.

To add a new application to an existing category, select Console | Add Application,
as shown in Figure 12-11. Alternatively, if you want to remove an existing application
from an existing SMC category, select the application in the view pane and then select
Console | Remove Application. Finally, if you just want to modify the configuration
of an existing application in an existing application category, select Console | Modify
Application.

When you choose to add an application, the Add Application dialog box appears, as
shown in Figure 12-12. Here, you can choose the application type, application category,

282 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

FIGURE 12-11 SMC Console menu

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 283

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

user to run the application as, and the application name. In addition, you can specify the
executable path, any optional command-line arguments, and whether or not to use the
default icon or a customized icon.

When removing an application, the Remove Application dialog box is displayed.
Here, you must choose whether to remove the application’s SMC entry or whether to
cancel the application removal, as shown here:

When you choose to modify an application, the Modify Application dialog box appears,
as shown in Figure 12-13. Here, you can modify the application type, application category,
user to run the application as, and the application name. In addition, you can modify
the executable path, any optional command-line arguments, and whether or not to use
the default icon or a customized icon.

FIGURE 12-12
SMC Add
Application
dialog box

284 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

One of the main benefits of the SMC application is that multiple servers can be added
into the pool of servers managed from a single interface, as shown in Figure 12-14. This
reduces administrative overhead, especially in large installations where literally hundreds
of servers may need to be managed by a single administrator or team of administrators.

FIGURE 12-13
SMC Modify
Application
dialog box

FIGURE 12-14
SMC Add Server
dialog box

C h a p t e r 1 2 : U s e r s , G r o u p s , a n d t h e S u n M a n a g e m e n t C o n s o l e 285

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

Command Reference
The following commands are used to manage users on Solaris systems.

pwck
The pwck command is used to verify the accuracy of the password file. It reads /etc/
passwd, verifies that the expected number of fields exist for each entry in the file, and
validates the contents of the username, UID, and GID fields. It also checks whether
the home directory exists and whether the default shell noted is a valid shell.

grpck
The grpck command is similar to the pwck command; you can use it to verify the accuracy
of the group file. It reads /etc/group, verifies that the expected number of fields exist for
each entry in the file, and validates the contents of the group name and GID fields. It also
creates a list of usernames defined in the group and checks that these are contained in
the /etc/passwd file. If not, an error is reported, because an old user account may have been
deleted from /etc/passwd but may still be listed in a group.

pwconv
You can use the pwconv command to convert systems that do not have a shadow password
file to use password shadowing. Most (if not all) modern systems would use password
shadowing. However, if the /etc/shadow file does not exist, the encrypted password is
stripped from /etc/passwd, and is replaced by x, indicating that the password for each
user is shadowed. A shadow password file would then be created using the encrypted
passwords extracted from the password file.

However, a more common use of pwconv is to update the shadow password file
with entries that have been created manually in /etc/passwd. Although this is not the
recommended method of adding users to the system, some sites have scripts that create
blocks of new user accounts by generating sequential usernames with generic group and
password information. In such cases, it would be necessary to run pwconv after the script
has been executed, to ensure that entries created in /etc/passwd are correctly transferred
to /etc/shadow.

SMC Initialization
There are a number of different Java options that may be useful for the initialization
of the SMC that can be passed using the –J option. These options include

• –Xmixed Runs in mixed mode execution

• –Xint Runs in interpreted mode

• –Xbootclasspath Lists directories in which to search for classes for bootstrapping

• –Xbootclasspath/a Appends directories in which to search for classes
for bootstrapping

• –Xbootclasspath/p Prepends directories in which to search for classes
for bootstrapping

• –Xnoclassgc Switches off garbage collection

• –Xincgc Switches on progressive garbage collection

• –Xbatch Switches off compilation in the background

• –Xms Sets an initial size for the Java heap

• –Xmx Sets a maximum size for the Java heap

• –Xss Sets a size for the Java thread stack

• –Xprof Displays CPU profiling output

• –Xrunhprof Displays heap or monitor profiling output

• –Xdebug Allows debugging remotely

• –Xfuture Enforces strict checking

• –Xrs Minimizes native calls

Summary
In this chapter, you have examined the basic procedures for managing users and groups
on a Solaris system. Since all processes and threads are executed with a real or effective
user and group ID, it’s important for you to understand how to manage these entities
effectively.

SMC is a powerful and versatile tool for managing multiple systems from a single
interface where different systems can be customized to administer their own local
applications as well as a set of common applications. This flexibility gives SMC a number
of advantages over the admintool, or command-line administration. For more
information on SMC, read the administrator’s guide on http://docs.sun.com.

286 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 12

13
Kerberos and

Pluggable Authentication

Chapter 9 examined username and password authentication, in the context
of system and network security, as a built-in feature of Solaris. However, in
cross-platform environments, gaining access to more flexible and distributed

authentication is necessary for scalability. In this chapter, the basic concepts of Sun’s
version of MIT Kerberos (known as the Sun Enterprise Authentication Mechanism,
or SEAM), are introduced for distributed authentication, followed by a review of the
Pluggable Authentication Module (PAM) that allows system administrators to specify
the authentication that they want to use. PAM allows drop-in replacement for existing
authentication systems without having to reconfigure services or applications that
require authentication.

Key Concepts
The following concepts provide a foundation for implementing pluggable and distributed
authentication services in Solaris. Note that related hardware authentication issues,
such as the use of smart cards, are beyond the scope of this chapter. However, readers
interested in the use of card-based credentials should read the Solaris Smartcard
Administration Guide at http://docs.sun.com.

Kerberos
Distributed services and applications require distributed authentication. While single-
purpose tools like the secure shell (SSH) can be used as tools for remote access between
a single client and multiple servers, maintaining local databases of keys on every client
machine is costly in terms of disk space and network traffic. There is an argument
that such information should always be distributed across the network, but the level
of redundancy that SSH requires for installations of 1,000+ clients is inefficient. For

2 8 7

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13
Blind Folio 287

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

consistency’s sake, providing a single sign-on mechanism ensures that credentials used
by a number of common services are authenticated in a dependable way.

One alternative to using SSH servers as the primary means of authentication across
a network is to use a centralized authentication system such as Kerberos, which grew
out of the Athena Project at the Massachusetts Institute of Technology (MIT). Kerberos
is a network authentication protocol that is designed to provide strong authentication
for client/server applications by using secret-key cryptography, which is similar to
that provided by SSH. However, the main difference between the two systems is that
whereas authentication is performed by the target server when using SSH, a Kerberos
authentication server can provide services to many different servers for a large number of
clients by using a Key Distribution Center (KDC). Thus, the many-to-many relationships
realized in the Kerberos authentication database makes the network authentication
process more streamlined and efficient. Kerberos also supports data integrity checks
through message digests and data transmission privacy through encryption.

Kerberos is also designed to provide authentication to hosts inside and outside
a firewall, since many attacks may originate in internal networks that are normally
considered trusted. In addition, Release 5 introduced the notion of realms, which are
external but trusted networks, with authentication being extended beyond the firewall.
Another advantage of the Kerberos system is that the protocol has been published and
widely publicized, and a free implementation (including source code) is available from
MIT (http://web.mit.edu/network/kerberos-form.html).

Kerberos is based around a key distribution, certificate granting, and a validation
system called “tickets.” If a client machine wants to make a connection to a target
server, it requests a ticket from a centralized authentication server, which is physically
the same machine as the target server, but is logically quite separate. An encrypted
ticket is produced by the authentication server that authorizes the client to request a
specific service from a specific host, generally for a specific time period. This is similar
to a parking-ticket machine that grants the drivers of motor vehicles permission to park
in a specific street for one or two hours only. Release 5 of Kerberos supports tickets that
can be renewed on request. Tickets may also be transferred across different machines
without reauthentication, and may be issued before they are valid timewise.

When authentication is requested from the authentication server, a session key is
created by that server, which is based on your password that it retrieves from your
username and a random value that represents the requested service. The session key is
like a voucher that the client then sends to a ticket-granting server, which then returns
a ticket that can be used to access the target server. Clearly, there is some overhead
in making a request to an authentication server, a ticket-granting server, and a target
server. However, the overhead is well worth the effort if important data is at risk of
interception. The sequence of events leading to authentication is shown in Figure 13-1.

A significant limitation of Kerberos is that all applications that use its authentication
services must be “Kerberized”: that is, significant changes must be made to the
application’s source code in order for it to use Kerberos services. Solaris 10 provides
Kerberized versions of the following applications:

288 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

• ftp

• rcp

• rdist

• rlogin

• rsh

• telnet

Every host, user, or service that interacts with the KDC is known as a principal. The
principal includes both a user’s realm and their current instance, or role. Thus, pwatters/
root@cassowary.net identifies the user pwatters having the current instance root in the
realm cassowary.net, while pwatters/ftp@cassowary.net would denote the same physical
user with the current instance of an FTP user.

PAM
The goal of the Pluggable Authentication Module (PAM) is to enable a stack framework
for providing authentication services without requiring applications themselves to be
modified. Historically, gaining improvements in distributed authentication, for example,
has been very difficult because clients and servers need to be modified at the source level.
For example, to use Kerberos, clients need to be Kerberized, which is difficult if you

C h a p t e r 1 3 : K e r b e r o s a n d P l u g g a b l e A u t h e n t i c a t i o n 289

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

FIGURE 13-1 Distributed mechanisms for Kerberos 5 authentication

only have access to application binaries. PAM ensures that there is an appropriate level
of abstraction between the interface for authentication and its underlying implementation.
Thus, an authentication service can be modified, upgraded, or changed without disturbing
the applications and services that utilize authentication services. PAM provides support
for password, session, credential, and account management.

Let’s look at an example of PAM usage. Applications that require user logins—such
as telnet, ftp, login, etc.—require that users authenticate themselves with a username
and password. But what if you want to apply a different authentication system for ftp
logins compared to telnet logins? With the default Solaris authentication system, you
can’t, but PAM allows you to. PAM also supports the use of multiple passwords for
sensitive applications, and possibly multiple authentication types. For example, you
could be asked to supply a credential (something you own), such as a smart card, supply
a password (something you know), and pass a biometric face scan (something you are).
This three-way process would provide the highest level of authentication possible—but
might land you in trouble if you forget your smart card!

PAM’s stack is shown in Figure 13-2. You can see two applications (telnet and rsh)
using the PAM library, which is configured by /etc/pam.conf, making use of two alternative
authentication systems—Kerberos (module pam_krb5.so.1) and LDAP (module pam_
ldap.so.1). rsh could be configured to use LDAP, while telnet could be configured to
use Kerberos (or both, if multiple authentication is required). If multiple authentication
systems are used, then users may need to remember multiple passwords.

One very important problem to note is that if you change authentication services
for remote access, and you only have remote access to a system, and you make a mistake
when configuring /etc/pam.conf, you may need to reboot the system into single-user
mode and change the incorrect settings. This is very important when your systems are
rack-mounted or located in an off-site facility. You should always keep the editing window
for pam.conf open while testing a new connection in a second window.

290 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

FIGURE 13-2 PAM stack structure for flexible authentication

Procedures
The following procedures demonstrate how to configure Kerberos and PAM services
on Solaris systems.

Kerberos
Kerberos is managed by several different applications, including the following:

• The management daemon, kadmind

• The ticketing daemon, krb5kdc

• The management application, kadmin

• Utilities such as ktutil and kdb5_util

• A GUI for administration, gkadmin, shown in Figure 13-3

Kerberos configuration, shown next, is reasonably straightforward given appropriate
network resources. All configuration files are stored in /etc/krb5. The main configuration
file is /etc/krb5/krb5.conf, which contains entries that define the realms that the server

C h a p t e r 1 3 : K e r b e r o s a n d P l u g g a b l e A u t h e n t i c a t i o n 291

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

FIGURE 13-3 Kerberos management tool, gkadmin

is associated with, including the name of the primary and secondary KDC, and the
admin server.

[libdefaults]
default_realm = CASSOWARY.NET

[realms]
CASSOWARY.NET = {

kdc = KERBEROS1.CASSOWARY.NET
KERBEROS2.CASSOWARY.NET
admin_server = KERBEROS1.CASSOWARY.NET

}

[logging]
default = FILE:/var/krb5/kdc.log
kdc = FILE:/var/krb5/kdc.log
kdc_rotate = {

period = 1d
versions = 10

}

[appdefaults]
kinit = {

renewable = true
forwardable= true

}
gkadmin = {

help_url = http://docs.sun.com:80/ab2/coll.384.1/SEAM/
@AB2PageView/1195
}

This configuration is for a default domain called cassowary.net, which has a logical
admin and KDC server called kerberos1.cassowary.net, and a backup KDC server called
kerberos2.cassowary.net. The configuration also sets a number of variables related to
logging, including how often to rotate the logs and how many versions to retain before
deletion. Individual applications such as kinit and gkadmin can also have their
parameters set in the file.

The KDC is configured by the file /etc/krb5/kdc.conf:

[kdcdefaults]
kdc_ports = 88,750

[realms]
CASSOWARY.NET = {

profile = /etc/krb5/krb5.conf
database_name = /var/krb5/principal
admin_keytab = /etc/krb5/kadm5.keytab

292 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

acl_file = /etc/krb5/kadm5.acl
kadmind_port = 749
max_life = 8h 0m 0s
max_renewable_life = 7d 0h 0m 0s
default_principal_flags = +preauth

}

This configuration for CASSOWARY.NET defines the profile and database names,
port numbers, etc. for the KDC administration. The access control list (ACL) file for
administration authorizations within the domain is also contained in the acl_file.

To initialize the primary KDC, you use the kdb5_util command:

/usr/sbin/kdb5_util create -r CASSOWARY.NET -s
Initializing database '/var/krb5/principal' for realm 'CASSOWARY.NET',
master key name 'K/M@CASSOWARY.NET'
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:

Next, you add entries to the /etc/krb5/kadm5.acl file for the principals who have
permissions to administer the database. The following entry gives pwatters/admin@
CASSOWARY.NET unlimited authority to modify the database and associated policies:

pwatters/admin@CASSOWARY.NET *

To add this principal to the database, you use the kadmin.local command, and
type in addprinc pwatters/admin when prompted:

kadmin.local
Authenticating as principal pwatters/admin@CASSOWARY.NET with password.
kadmin.local: addprinc pwatters/admin
Enter password for principal "pwatters/admin@CASSOWARY.NET":
Re-enter password for principal "pwatters/admin@CASSOWARY.NET":
Principal "pwatters/admin@CASSOWARY.NET" created.

At the kadmin.local prompt, you next need to initialize the keytab files for basic
administrative operations for the administrator:

kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kadmin/
kerberos1.cassowary.net
Entry for principal kadmin/kerberos1.cassowary.net with kvno 3,
encryption type
DES-CBC-CRC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab changepw/kdc1.example.com
Entry for principal kadmin/kerberos1.cassowary.net with kvno 3,

C h a p t e r 1 3 : K e r b e r o s a n d P l u g g a b l e A u t h e n t i c a t i o n 293

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

encryption type
DES-CBC-CRC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
kadmin.local: ktadd -k /etc/krb5/kadm5.keytab kadmin/changepw
Entry for principal kadmin/kerberos1.cassowary.net with kvno 3,
encryption type
DES-CBC-CRC added to keytab WRFILE:/etc/krb5/kadm5.keytab.
kadmin.local:quit

The KDC can now be started by using the following commands:

/etc/init.d/kdc start
/etc/init.d/kdc.master start

As with any security service, there are risks that should be noted before
implementation. In particular, there have been bugs in syslog that can lead to a
possible denial-of-service attack. This risk highlights the potential for attacks against
a centralized service being the weakest point of the Kerberos system. Even if the
authentication server and target server were operational, for example, a sustained
flood of requests to a ticket-granting server can halt any network-based service
that requires authentication.

PAM
The /etc/pam.conf file contains a set of entries that associates services and applications
requiring authentication with specific PAM modules. Each entry consists of a space or
tab-limited tokens representing the following:

• The name of the application or service requiring authentication

• The type of PAM module required

• A flag that determines the failure modes for the entry

• The path to the PAM library

• Any other options

There are several module types that are supported by PAM, including the following:

• Authentication modules (auth) Implement user-based authentication

• Account modules (account) Implement more general account management
activities, such as password aging

• Password modules (password) Implement password modifications

• Session modules (session) Support login sessions

294 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

Obviously, a service may require some or all of these functions—each module requires
one entry for each service it is associated with in /etc/pam.conf.

The following list shows some commonly used applications requiring authentication
and their matching module types:

Application Module Types

cron auth, account

dtlogin auth, account, session

dtsession auth

ftp auth, account, session

init session

login auth, account, session

passwd auth, password

ppp auth, account, session

rlogin auth, account, session

rsh auth, account, session

sac auth, account, session

sshd auth, account, password, session

telnet auth, account, session

Five flags control operational and failure modes for PAM. These flags define how to
handle a successful or failed authentication. For example, you may provide multiple means
of authentication, but require only that one is satisfied for the user to be authenticated, or
you might require that all must be satisfied before a user is authenticated. The following are
the flags supported by PAM:

• binding If authentication is successful, skip any other modules listed and
report the user as authenticated, but return a failure if not authenticated.

• required If authentication is not successful, check all others, but report the
authentication as failed.

• requisite If authentication is not successful, check no others, and report the
authentication as failed.

• optional If authentication is not successful, check all others, and report the
authentication as successful if any other means succeeds.

• sufficient If authentication is successful, skip any others listed and report
the user as authenticated, but check all other means if failure is recorded.

C h a p t e r 1 3 : K e r b e r o s a n d P l u g g a b l e A u t h e n t i c a t i o n 295

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

The actual means of authentication supported by PAM include the following
authentication modules:

Module Description

pam_authtok_check.so.1 Manages passwords

pam_authtok_get.so.1 Implements password querying

pam_authtok_store.so.1 Supports authentication modifications

pam_dhkeys.so.1 Used for Diffie-Hellman authentication in secure RPC

pam_dial_auth.so.1 Supports login authentication

pam_krb5.so.1 Core Kerberos authentication modules

pam_ldp.so.1 Main LDAP authentication module

pam_passwd_auth.so.1 Supports passwd authentication

pam_rhosts_auth.so.1 Provides equivalent host and automatic logins using ~/.rhosts
and /etc/host.equiv files

pam_roles.so.1 Role-based account management

pam_sample.so.1 Testing facility

pam_smartcard.so.1 Facilitates smart-card authentication

pam_unix_account.so.1 Provides UNIX-style password management

pam_unix_auth.so.1 Provides UNIX-style authentication support

pam_unix_cred.so.1 Provides UNIX-style credential support

pam_unix_session.so.1 Provides UNIX-style session administration

Examples
The following examples demonstrate how to configure PAM for both Kerberized and
non-Kerberized services for distributed and flexible authentication services.

Non-Kerberized Services
The login service can be set up to invoke the pam_authtok_get.so.1 module first and,
if it succeeds, then invoke all the other modules. If invoking pam_authtok_get.so.1 fails,
then the other modules are not invoked—and because they must all succeed for the
authentication to succeed, the authentication fails. The following example shows how
this can be implemented in /etc/pam.conf:

login auth requisite pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_cred.so.1
login auth required pam_unix_auth.so.1
login auth required pam_dial_auth.so.1

296 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

The rlogin service is similar to the login configuration, but has a sufficient condition
attached to the pam_rhosts_auth.so.1 module that is invoked first. If this is successful,
then no further modules are invoked; otherwise, the rlogin authentication sequence
follows the standard login sequence previously described. The following example
shows how this can be implemented in /etc/pam.conf:

rlogin auth sufficient pam_rhosts_auth.so.1
rlogin auth requisite pam_authtok_get.so.1
rlogin auth required pam_dhkeys.so.1
rlogin auth required pam_unix_cred.so.1
rlogin auth required pam_unix_auth.so.1

The rsh service has fewer restrictions than rlogin—if the pam_rhosts_auth.so.1
module fails to authenticate, then the pam_unix_cred.so.1 module is invoked, as shown
in the following /etc/pam.conf example:

rsh auth sufficient pam_rhosts_auth.so.1
rsh auth required pam_unix_cred.so.1

Other services, such as PPP, follow their own paths—password prompting by pam_
authtok_get.so.1 is a prerequisite to the use of Diffie-Hellman key support for authentication,
and so on, as shown in the following example:

ppp auth requisite pam_authtok_get.so.1
ppp auth required pam_dhkeys.so.1
ppp auth required pam_unix_cred.so.1
ppp auth required pam_unix_auth.so.1
ppp auth required pam_dial_auth.so.1

Kerberized Services
To configure broad support for Kerberized services in /etc/pam.conf, the following
configuration can be used:

login auth optional pam_krb5.so.1
other auth optional pam_krb5.so.1
cron account optional pam_krb5.so.1
other account optional pam_krb5.so.1
other session optional pam_krb5.so.1
other password optional pam_krb5.so.1

This links services like login and cron to the underlying Kerberos authentication
module. For each Kerberized application, there is an auth required condition for pam_
authtok_get.so.1 and for pam_unix_auth.so.1, in addition to an auth binding condition for

C h a p t e r 1 3 : K e r b e r o s a n d P l u g g a b l e A u t h e n t i c a t i o n 297

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

pam_krb5.so.1. The following examples show the configuration for krlogin, but it
would be the same for krsh and ktelnet with the appropriate service name changes:

krlogin auth required pam_unix_cred.so.1
krlogin auth binding pam_krb5.so.1
krlogin auth required pam_unix_auth.so.1

Command Reference
The following commands are used to interact with Kerberos.

kadmin
The kadmin command is used to manage local Kerberos services, by administering
keytabs, principals, and policies. There are two versions of kadmin available: kadmin
.local is used only on the master KDC and does not require authentication. However,
kadmin, when executed on any other server, requires Kerberos authentication across a
secure link. Once logged in, the following prompt is displayed, ready for commands to
be entered:

kadmin:

When kadmin starts up, it checks the value of the USER environment variable to
determine the principal name. For example, if USER=pwatters, then the principal name
would be pwatters/admin. Alternatively, the –p option can be passed to kadmin when
starting up, followed by the principal name. In addition, if a realm other than the default
is to be administered, the realm name must be supplied on the command line after the
–r option is passed. The user will be prompted for a password, unless one has been
passed on the command line with the –w option. Thus, to start kadmin for the realm
cassowary.net with the principal pwatters/admin and the password 6fgj4gsd, the following
command would be used:

kadmin -p pwatters/admin -r CASSOWARY.NET -w 6fgj4gsd

The following options are supported by kadmin:

Option Description

list_requests Displays all kadmin commands

add_principal Adds a new principal

get_privs Displays the ACLs for the current principal

–expire Sets the principal’s effective end date

–pwexpire Sets the principal’s password effective end date

–maxlife Specifies an upper time limit for tickets

298 P a r t I I I : S e c u r i t y

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

Option Description

–maxrenewlife Specifies an upper time limit for ticket renewal

–policy Sets the policy name

–pw Sets the principal’s password

delete_principal Completely removes a principal

modify_principal Updates the principal’s characteristics

get_principal Displays the principal’s characteristics

list_principals Prints all known principal names

add_policy Attaches a new policy

delete_policy Completely removes a policy

get_policy Displays the characteristics of a policy

list_policy Displays policy names

ktadd Attaches a principal to a keytab

ktadd Removes a principal from a keytab

kdb5_util
The kdb5_util program is used to manage the Kerberos database files. It accepts
the database name as an argument on the command line after the –d option has been
passed. One of the following options must also be included to perform a specific action:

Option Description

create Creates a new database

destroy Deletes an existing database

stash Initializes a stash file to store the master key for the database

dump Exports the database to ASCII format

load Imports the database from ASCII format

Summary
In this chapter, you learned how to configure Kerberized applications for strong
authentication. This is an important aspect of Solaris security; however, not all
networked applications are Kerberized at this point in time.

C h a p t e r 1 3 : K e r b e r o s a n d P l u g g a b l e A u t h e n t i c a t i o n 299

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 13

This page intentionally left blank.

IV
Managing Devices

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14
Blind Folio 301

CHAPTER 14
Device and Resource
Management

CHAPTER 15
Installing Disks and File
Systems

CHAPTER 16
File System and Volume
Management

CHAPTER 17
Roll-Based Access Control

CHAPTER 18
Printer Management

CHAPTER 19
Pseudo File Systems and
Virtual Memory

CHAPTER 20
System Logging, Accounting,
and Tuning

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank.

14
Device and Resource

Management

One of the most important but most challenging roles of a system administrator
is device management. Devices, in this context, can be defined as both physical
and logical entities that together constitute a hardware system. Although some

operating systems hide device configuration details from all users (even administrators!) in
proprietary binary formats, Solaris device configuration is easy to use, with configuration
information stored in special files known as device files. In addition to providing the
technical background on how device files operate and how device drivers can be installed,
this chapter provides practical advice on installing standard devices, such as new hard
drives, as well as more modern media, like CD-Rs and Zip drives.

Solaris 10 now supports the dynamic reconfiguration of many systems’ devices on
some SPARC platforms, particularly in the medium-level server range and above. This
allows administrators to remove faulty hardware components and replace them without
having to power down a system or perform a reconfiguration boot, the latter of which
is necessary for older systems. This is particularly significant for systems that have
high redundancy of system components to guarantee uptime under all but the most
critical of circumstances.

Key Concepts
The following key concepts are central to understanding devices.

Device Files
Device files are special files that represent devices in Solaris 10. Device files reside in
the /dev directory and its subdirectories (such as /dev/dsk), while the /devices directory is
a tree that completely characterizes the hardware layout of the system in the file system
namespace. Although initially it may seem confusing that separate directories exist for
devices and for system hardware, the difference between the two systems will become

3 0 3

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14
Blind Folio 303

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

apparent in the discussion that follows. Solaris 10 refers to both physical and logical
devices in three separate ways: with physical device names, physical device files, and
logical device names (which are described in the next section).

Physical device names are easily identified because they are long strings that
provide all details relevant to the physical installation of the device. Every physical
device has a physical name. For example, an SBUS could have the name /sbus@1f,0,
while a disk device might have the name /sbus@1f,0/SUNW,fas@2,8800000/sd@1,0.
Physical device names are usually displayed at boot time and when using selected
applications that access hardware directly, such as format.

On the other hand, physical device files, which are located in the /devices directory,
comprise an instance name that is an abbreviation for a physical device name, which
can be interpreted by the kernel. For example, the SBUS /sbus@1f,0 might be referred to
as sbus, and a device disk /sbus@1f,0/SUNW,fas@2,8800000/sd@1,0 might be referred to
as sd1. The mapping of instance names to physical devices is not hard-wired: the /etc/
path_to_inst file always contains these details, keeping them consistent between boots,
and is shown in Chapter 15.

/dev and /devices Directories
In addition to physical devices, Solaris 10 also needs to refer to logical devices. For
example, physical disks may be divided into many different slices, so the physical disk
device will need to be referred to using a logical name. Logical device files in the /dev
directory are symbolically linked to physical device names in the /devices directory. Most
user applications refer to logical device names. A typical listing of the /dev directory has
numerous entries that look like this:

arp ptys0 ptyyb rsd3a sd3e ttyu2
audio ptys1 ptyyc rsd3b sd3f ttyu3
audioctl ptys2 ptyyd rsd3c sd3g ttyu4
bd.off ptys3 ptyye rsd3d sd3h ttyu5
be ptys4 ptyyf rsd3e skip_key ttyu6
bpp0 ptys5 ptyz0 rsd3f sound/ ttyu7
…

Many of these device filenames are self-explanatory:

• /dev/console represents the console device—error and status messages are usually
written to the console by daemons and applications using the syslog service. /dev/
console typically corresponds to the monitor in text mode; however, the console is
also represented logically in windowing systems, such as OpenWindows, where
the command server% cmdtool -C brings up a console window.

• /dev/hme is the network interface device file.

• /dev/dsk contains device files for disk slices.

304 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

• /dev/ttyn and /dev/ptyn are the n terminal and n pseudo-terminal devices
attached to the system.

• /dev/null is the end point of discarded output; many applications pipe their
output.

The drvconfig command creates the /devices directory tree, which is a logical
representation of the physical layout of devices attached to the system, and pseudo-drivers.
drvconfig is executed automatically after a reconfiguration boot. It reads file permission
information for new nodes in the tree from /etc/minor_perm, which contains entries like

sd:* 0666 httpd staff

where sd is the node name for a disk device, 0666 is the default file permission, httpd
is the owner, and staff is the group.

Storage Devices
Solaris 10 supports many different kinds of mass-storage devices, including SCSI hard
drives (and IDE drives on the x86 platform), reading and writing standard and rewriteable
CD-ROMs, Iomega Zip and Jaz drives, tape drives, DVD-ROMs, and floppy disks. Hard
drives are the most common kinds of storage devices found on a Solaris 10 system,
ranging from individual drives used to create system and user file systems, to highly
redundant, server-based RAID systems. These RAID configurations can comprise a set
of internal disks, managed through software (such as DiskSuite), or high-speed, external
arrays, like the A1000, which include dedicated RAM for write-caching. Because disk
writing is one of the slowest operations in any modern server system, this greatly increases
overall operational speed.

Hard drives have faced stiff competition in recent years, with new media such as
Iomega Zip and Jaz drives providing removable media for both random and sequential
file access. This makes Zip and Jaz drives ideal media for archival backups, competing
with the traditional magnetic tape drives. The latter have largely been replaced in modern
systems by the digital audio tape (DAT) system, which has high reliability and data
throughput rates (especially the DDS-3 standard).

This section looks at the issues surrounding the installation and configuration of
storage devices for Solaris 10, providing practical advice for installing a wide range of
hardware.

Hard Drives
When formatted for operation with Solaris 10, hard disks are logically divided into one
or more slices (or partitions), on which a single file system resides. File systems contain
sets of files, which are hierarchically organized around a number of directories. Solaris 10
contains a number of predefined directories that often form the top level of a file system
hierarchy. Many of these directories lie one level below the root directory, often denoted
by /, which exists on the primary system disk of any Solaris 10 system. In addition to a
primary disk, many Solaris 10 systems have additional disks that provide storage space

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 305

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

306 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

for user and daemon files. Each file system has a mount point that is usually created
in the top level of the root file system. For example, the /export file system is obviously
mounted in the top level of /. The mount point is created by using the mkdir command:

mkdir /export

In contrast, the /export/home file system, which usually holds the home directories
of users and user files, is mounted in the top level of the /export file system. Thus, the
mount point is created by using the following command:

mkdir /export/home

A single logical file system can be created on a single slice, but cannot exist on
more than one slice, unless there is an extra level of abstraction between the logical
and physical file systems (for example, a virtual disk is created using DiskSuite,
which spans many physical disks). A physical disk can also contain more than one
slice. On SPARC architecture systems, eight slices can be used, numbered zero
through seven. On Intel architecture systems, however, ten slices are available,
numbered zero through nine.

The actual assignment of logical file systems to physical slices is a matter of
discretion for the individual administrator, and although there are customary
assignments recommended by Sun and other hardware vendors, a specific site policy,
or an application’s requirements, might necessitate the development of a local policy.
For example, database servers often make quite specific requirements about the
allocation of disk slices to improve performance. However, with modern, high-
performance RAID systems, these recommendations are often redundant. Because
many organization have many different kinds of systems deployed, it is useful to
maintain compatibility between systems as much as possible. For more details, see
the “Disk Space Planning” section of Chapter 3.

CD-ROMs
A popular format of read-only mass storage on many servers is the compact disc–
read-only memory (CD-ROM). Although earlier releases of Solaris worked best with
Sun-branded CD-ROM drives, as of Solaris 2.6, Solaris 10 fully supports all SCSI-2
CD-ROM drives. For systems running older versions of Solaris, it may still be possible
to use a third-party drive, but the drive must support 512-byte sectors (the Sun standard).
A second Sun default to be aware of is that CD-ROM drives must usually have the SCSI
target ID of 6, although this limitation has again been overcome in later releases of the
kernel. However, a number of third-party applications with “auto detect” functions
may still expect to see the CD-ROM drive at SCSI ID 6.

A number of different CD-ROM drive formats are also supported with the mount
command, which is used to attach CD-ROM drives to the file system. It is common
to use the mount point /cdrom for the primary CD-ROM device in Solaris 10 systems,
although it is possible to use a different mount point for mounting the device by using
a command-line argument to mount.

Zip and Jaz Drives
There are two ways to install Zip and Jaz drives: by treating the drive as a SCSI disk,
in which case format data needs to be added to the system to recognize it, or by using
Andy Polyakov’s ziptool, which formats and manages protection modes supported by
Zip 100 and Jaz 1GB/2GB drives. Both of these techniques support only SCSI and not
parallel port drives.

Treating the Zip 100 SCSI drive or the Jaz 1GB drive as a normal SCSI device is the
easiest approach, because there is built-in Solaris 10 support for these SCSI devices.
However, only standard, non-write-protected disks can be used.

Tape Drives
Solaris 10 supports a wide variety of magnetic tapes using the remote magtape (rmt)
protocol. Tapes are generally used as backup devices rather than as interactive storage
devices. What they lack in availability they definitely make up for in storage capacity:
many DAT drives have capacities of 24GB, making it easy to perform a complete
backup of many server systems on a single tape. This removes the need for late-night
monitoring by operations staff to insert new tapes when full, as many administrators
will have experienced in the past.

Device files for tape drives are found in the /dev/rmt directory. They are numbered
sequentially from 0, so default drives generally are available as /dev/rmt/0. Low-density
drives can be specified by adding l to the device filename, with medium-density drives
having m added. For example, a medium-density drive at location 0 would be written
as /dev/rmt/0m, and a low-density drive at location 1 would be written as /dev/rmt/1l. By
default, the tape will be rewound when being written to—to specify that a tape should
not be rewound, simply add n to the device name. Thus, a medium-density drive at
location 0 with no rewind would be written as /dev/rmt/0mn.

To back up to a remote drive, use the command ufsdump, which is an incremental
file system dumping program. For example, to create a full backup of the /dev/rdsk/
c0t1d0s1 file system to the tape system /dev/rmt/0, simply use the following command:

ufsdump 0 /dev/rmt/0 /dev/rdsk/c0t1d0s1

This command specifies a level 0 (i.e., complete) dump of the file system, specifying the
target drive and data source as /dev/rmt/0 and /dev/rdsk/c0t1d0s1, respectively. To check
the status of a tape drive at any time, you can use the mt command:

mt -f /dev/rmt/0 status

Floppy Disks
Floppy disk drives (1.44MB capacity) are standard on both SPARC and Intel architecture
systems. In addition, by using the Volume Manager, detecting and mounting floppy
disks is straightforward. Insert the target disk into the drive, and use this command:

volcheck

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 307

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

This checks all volumes that are managed by volume management and mounts any
valid file system that is found. The mount point for the floppy drive is determined
by the settings in /etc/vfstab:

fd - /dev/fd fd - no -

Refer to the section “Adding Devices” for information on entering disk information
into the virtual file system database and for more details on configuring the /etc/vfstab
file. A very useful feature of volcheck is to automatically check for new volumes; for
example,

volcheck -i 60 -t 3600 /dev/diskette0 &

works in the background to check every minute whether a floppy is in the drive.
However, this polling takes place only for one hour unless renewed.

CD-ROMs and DVD-ROMs
CD-ROMs are supported directly by the operating system in SPARC architectures and
do not require any special configuration, other than the usual process of initializing the
system for a reconfiguration reboot, powering down the system, attaching the CD-ROM
device to the SCSI bus, and powering on the system. It is not necessary to use format
or newfs to read the files on the CD-ROM, nor is it usually necessary to manually mount
the file system, because the Volume Manager (vold) is usually enabled on server systems.

A common problem for Solaris 10 x86 users is that there are few tested and supported
CD-ROM brands for installing the operating system (although most fully compliant
ATA/ATAPI CD-ROMs should work). The older Sound Blaster IDE interface for CD-ROMs
does not appear to be suitable, although support may be included in a later release (the
Alternate Status register is apparently not implemented on the main integrated circuit
for the controller board). It is always best to check the current Hardware Compatibility
List (HCL) from the Sun site.

Many recent SPARC and Intel systems come installed with a DVD-ROM drive.
Although the drive cannot be used yet to play movies, it can be effectively used as a
mass-storage device, with a capacity equal to several individual CD-ROMs. Future
releases of Solaris may include a DVD player and support for the newer DVD-RAM
technology.

CD-Rs and CD-RWs
Solaris 10 supports both reading and writing to CD-ROMs. In addition to the CD-R
(CD-recordable) format, Solaris 10 also supports CD-RW (CD-rewritable), previously
known as CD-erasable. It is a new optical-disc specification created by the industry
organization Optical Storage Technology Association (OSTA, http://www.osta.org).
You can hook up many SCSI CD-R and CD-RW devices to a SPARC system to SCSI
device ID 6, and they will function as a normal CD-ROM drives.

308 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

Although the technical capability to support any SCSI-based device is a given for
the operating system, finding software to adequately support it usually is a potentially
limiting factor for nonstandard hardware. Fortunately, many different open-source and
commercial editions of CD-recording software are available for the Solaris 10 platform.
The best application is cdrecord, by Jörg Schilling, which you can download from ftp://
ftp.fokus.gmd.de/pub/unix/cdrecord/. It is freeware, and it makes use of the real-time
scheduler in Solaris 10. It also compiles on the Solaris 10 x86 platform, and can create
both music and data discs. Although it has a rather clunky command-line interface, it
has more features than some of the commercial systems, including the ability to do the
following:

• Simulate a recording for test purposes (–dummy option)

• Use a single CD for multiple recording sessions (–multi option)

• Manually fix the disk, if you want to view data from an open session
on a normal CD–ROM (–fix option)

• Setting the recording speed factor (–speed option)

If you prefer a commercial system, GEAR PRO UNIX is also available (http://
www.gearsoftware.com/products/prounix/index.cfm), as well as Creative Digital
Research’s CDR Publisher (http://www.cdr1.com/), which is available through Sun’s
Catalyst program. For more general information about the CD recording process, see
Andy McFadden’s very comprehensive FAQ at http://www.cdrfaq.org/.

Procedures
The following procedures demonstrate how to manage system devices.

Adding Devices
In many cases, adding new devices to a Solaris 10 system is straightforward, because
most devices connect to the SCSI bus, which is a standard interface. The steps involved
usually include preparing the system for a reconfiguration boot, powering down the
system, connecting the hardware device, noting the SCSI device number, powering on
the system, and using the zformat command, if necessary, to create a file system. This
section examines the procedure for adding disks to both SPARC and Intel architecture
machines and highlights potential problems that may occur.

Hard Drives
Hard disk installation and configuration on Solaris 10 is often more complicated than on
other UNIX systems. However, this complexity is required to support the sophisticated
hardware operations typically undertaken by Solaris 10 systems. For example, Linux
refers to hard disks using a simple BSD-style scheme: /dev/hdn are the IDE hard disks
on a system, and /dev/sdn are the SCSI hard disks on a system, where n refers to the

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 309

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

hard disk number. A system with two IDE hard disks and two SCSI hard disks will
therefore have the following device files configured:

/dev/hda
/dev/hdb
/dev/sda
/dev/sdb

Partitions created on each drive are also sequentially numbered: if /dev/hda is the
boot disk, it may contain several partitions on the disk, reflecting the basic UNIX system
directories:

/dev/hda1 (/ partition)
/dev/hda2 (/usr)
/dev/hda3 (/var)
/dev/hda4 (swap)

Instead of simply referring to the disk type, disk number, and partition number, the
device filename for each partition (slice) on a Solaris 10 disk contains four identifiers:
controller (c), target (t), disk (d), and slice (s). Thus, the device file,

/dev/dsk/c0t3d0s0

identifies slice 0 of disk 0, controller 0 at SCSI target ID 3. To complicate matters further,
disk device files exist in both the /dev/dsk and /dev/rdsk directories, which correspond to
block device and raw device entries, respectively. Raw and block devices refer to the
same physical partition, but are used in different contexts: using raw devices allows
only operations of small amounts of data, whereas a buffer can be used with a block
device to increase the data read size. It is not always clear whether to use a block or
raw device interface; however, low-level system commands (like the fsck command,
which performs disk maintenance) typically use raw device interfaces, whereas commands
that operate on the entire disk (such as df, which reports disk usage) most likely use
block devices.

To install a new hard drive on a Solaris 10 system, just follow these steps:

1. Prepare the system for a reconfiguration boot by issuing the command

server# touch /reconfigure

2. Synchronize disk data and power down the system using the commands

server# sync; sync; sync; shutdown

3. Switch off power to the system and attach the new hard disk to the external
SCSI chain, or install it internally into an appropriate disk bay.

4. Check that the SCSI device ID does not conflict with any existing SCSI devices.
If a conflict exists, simply change the ID by using the switch.

310 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 311

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

5. Power on the system and use the boot command to load the kernel, if the
OpenBoot monitor appears:

ok boot

The next step—assuming that you have decided which partitions you want to
create on your drive, using the information supplied earlier—is to run the format
program. In addition to creating slices, format also displays information about
existing disks and slices and can be used to repair a faulty disk. When format is
invoked without a command-line argument,

format

it displays the current disks and asks the administrator to enter the number of the disk
to format. Selecting a disk for formatting at this point is nondestructive, so even if you
make a mistake, you can always exit the format program without damaging data. For
example, on an Ultra 5 system with three 10G SCSI disks, format opens with this screen:

Searching for disks...done
AVAILABLE DISK SELECTIONS:
0. c0t1d0 <SUN10 cyl 2036 alt 2 hd 14 sec 72>
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/
sd@1,0
1. c0t2d0 <SUN10 cyl 2036 alt 2 hd 14 sec 72>
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/
sd@2,0
2. c0t3d0 <SUN10 cyl 2036 alt 2 hd 14 sec 72>
/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000/
sd@3,0
Specify disk (enter its number):

It is also possible to pass a command-line option to format, comprising the disk
(or disks) to be formatted; for example:

format /dev/rdsk/c0t2d0

After selecting the appropriate disk, the message

[disk formatted]

appears if the disk has previously been formatted. This is an important message, because
it is a common mistake to misidentify a target disk from the available selection of both
formatted and unformatted disks. The menu looks like this:

FORMAT MENU:
disk - select a disk
type - select (define) a disk type
partition - select (define) a partition table

312 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

current - describe the current disk
format - format and analyze the disk
fdisk - run the fdisk program
repair - repair a defective sector
show - translate a disk address
label - write label to the disk
analyze - surface analysis
defect - defect list management
backup - search for backup labels
verify - read and display labels
save - save new disk/partition definitions
volname - set 8-character volume name
!<cmd> - execute <cmd>, then return
quit

format>

If the disk has not been formatted, the first step is to prepare the disk to contain
slices and file systems by formatting the disk. To do so, issue the command format:

format> format
Ready to format. Formatting cannot be interrupted
and takes 15 minutes (estimated). Continue? yes

The purpose of formatting is to identify defective blocks and mark them as bad,
and generally to verify that the disk is operational from a hardware perspective. Once
this has been completed, new slices can be created and sized by using the partition
option at the main menu:

format> partition

In this case, we want to create a new slice 5 on disk 0 at target 3, which will be used
to store user files when mounted as /export/home, and corresponding to block device /
dev/dsk/c0t3d0s5. After determining the maximum amount of space available, enter that
size in gigabytes (in this case, 10GB) when requested to do so by the format program
for slice 5 (enter 0 for the other slices). If the disk is not labeled, you will also be prompted
to enter a label, which contains details of the disk’s current slices, which is useful for
recovering data. This is an important step, because the operating system will not be
able to find any newly created slices if the volume is not labeled. To view the disk label,
use the prtvtoc command. Here’s the output from the primary drive in an x86 system:

prtvtoc /dev/dsk/c0d0s2
* /dev/dsk/c0d0s2 partition map
*
* Dimensions:
* 512 bytes/sector
* 63 sectors/track
* 255 tracks/cylinder

* 16065 sectors/cylinder
* 1020 cylinders
* 1018 accessible cylinders
*
* Flags:
* 1: unmountable
* 10: read-only
*
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Directory

0 2 00 48195 160650 208844 /
1 7 00 208845 64260 273104 /var
2 5 00 0 16354170 16354169
3 3 01 273105 321300 594404
6 4 00 594405 1317330 1911734 /usr
7 8 00 1911735 14442435 16354169 /export/home
8 1 01 0 16065 16064
9 9 01 16065 32130 48194

The disk label contains a full partition table, which can be printed for each disk by
using the print command:

format> print

For the 1.05GB disk, the partition table looks like this:

Part Tag Flag Cylinders Size Blocks
0 root wm 0 0 (0/0/0) 0
1 swap wu 0 0 (0/0/0) 0
2 backup wm 0 - 3732 (3732/0/0) 2089920
3 unassigned wm 0 0 (0/0/0) 0
4 unassigned wm 0 0 (0/0/0) 0
5 home wm 0 - 3732 1075MB (3732/0/0) 2089920
6 usr wm 0 0 (0/0/0) 0
7 unassigned wm 0 0 (0/0/0) 0

After saving the changes to the disk’s partition table, exit the format program and
create a new UFS file system on the target slice by using the newfs command:

newfs /dev/rdsk/c0t3d0s5

After a new file system is constructed, it is ready to be mounted. First, a mount point
is created:

mkdir /export/home

followed by the appropriate mount command:

mount /dev/dsk/c0t3d0s5 /export/home

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 313

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

At this point, the disk is available to the system for the current session. However, if
you want the disk to be available after reboot, you need to create an entry in the virtual
file systems table, which is created from the /etc/vfstab file. An entry like this,

/dev/dsk/c0t3d0s5 /dev/rdsk/c0t3d0s5 /export/home ufs 2 yes -

contains details of the slice’s block and raw devices, the mount point, the file system type,
instructions for fsck, and, most importantly, a flag to force mount at boot.

For an x86 system, the output of format looks slightly different, given the differences
in the way that devices are denoted:

AVAILABLE DISK SELECTIONS:
0. c0d0 <DEFAULT cyl 1018 alt 2 hd 255 sec 63>

/pci@0,0/pci-ide@7,1/ata@0/cmdk@0,0
Specify disk (enter its number):

The partition table is similar to that for the SPARC architecture systems:

partition> print
Current partition table (original):
Total disk cylinders available: 1018 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks
0 root wm 3 - 12 78.44MB (10/0/0) 160650
1 var wm 13 - 16 31.38MB (4/0/0) 64260
2 backup wm 0 - 1017 7.80GB (1018/0/0) 16354170
3 swap wu 17 - 36 156.88MB (20/0/0) 321300
4 unassigned wm 0 0 (0/0/0) 0
5 unassigned wm 0 0 (0/0/0) 0
6 usr wm 37 - 118 643.23MB (82/0/0) 1317330
7 home wm 119 - 1017 6.89GB (899/0/0) 14442435
8 boot wu 0 - 0 7.84MB (1/0/0) 16065
9 alternates wu 1 - 2 15.69MB (2/0/0) 32130

Installing a Zip/Jaz Drive
The steps for installation are similar for both the Zip and Jaz drives:

1. Set the SCSI ID switch to any ID that is not reserved.

2. Attach the Zip or Jaz drive to your SCSI adapter or chain and ensure that it
has power.

3. Create a device entry in /etc/format.dat by editing the file and inserting the
following for a Zip drive:

disk_type="Zip 100"\
:ctlr=SCSI\
:ncyl=2406:acyl=2:pcyl=2408:nhead=2\
:nsect=40:rpm=3600:bpt=20480

partition="Zip 100"\

314 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

:disk="Zip 100":ctlr=SCSI\
:2=0,192480
:2=0,1159168

For a Jaz drive, enter the following information in /etc/format.dat:

disk_type="Jaz 1GB"\
:ctlr=SCSI\
:ncyl=1018:acyl=2:pcyl=1020:nhead=64\
:nsect=32:rpm=3600:bpt=16384

partition="Jaz 1GB"\
:disk="Jaz 1GB":ctlr=SCSI\
:2=0,2084864

4. Perform a reconfiguration boot by typing

ok boot -r

at the OpenBoot prompt, or by using these commands from a superuser shell:

server# touch /reconfigure
server# sync; sync; init 6

The drive should now be visible to the system. To actually use the drive to mount
a volume, insert a Zip or Jaz disk into the drive prior to booting the system. After
booting, run the format program:

format

5. Assuming that the sd number for your drive is 3, select this sd as the disk to be
formatted. Create the appropriate partition using the partition option, then create
an appropriate label for the volume and quit the format program.

6. Next, create a new file system on the drive by using the newfs command; for
example:

newfs -v /dev/sd3c

7. After creating the file system, you can mount it by typing

mount /dev/sd3c /mount_point

where /mount_point is something self-documenting (such as /zip or /jaz). You
need to create this before mounting by typing the following:

mkdir /zip

or

mkdir /jaz

An alternate and more flexible approach is to use the ziptool program, which
is available at http://fy.chalmers.se/~appro/ziptool.html. For Solaris 2.6 and greater,
ziptool supports all Zip and Jaz drive protection modes, permits unconditional low-
level formatting of protected disks, and supports disk labeling and volume management.
The program has to be executed with root privileges regardless of the access permissions

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 315

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

316 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

set on the SCSI disk device driver’s entries in /devices. Consequently, if you want to let
all users use ziptool, you must install it as set-root-uid:

/usr/ucb/install -m 04755 -o root ziptool /usr/local/bin

NOTEOTE You should note that running setuid programs has security implications.

After downloading and unpacking the sources, you can compile the program by
using this command:

gcc -o ziptool ziptool.c -lvolmgt

Of course, you need to ensure that the path to libvolmgt.a is in your LD_LIBRARY_PATH
(usually /lib):

ziptool device command

where device must be the full name of a raw SCSI disk file, such as /dev/rsdk/c0t5d0s2,
and command is one or more of the following:

rw Unlocks the Zip disk temporarily

RW Unlocks the Zip disk permanently

ro Puts the Zip disk into read-only mode

RO Puts the Zip disk into a read-only mode that is password protected

WR(*) Protects the disk by restricting reading and writing unless a password is entered

eject Ejects the current Zip disk

noeject Stops the Zip disk from being ejected

You can find further information on installing Jaz and Zip drives on the Iomega
support Web site.

Examples
The following examples demonstrate how to manage devices.

Checking for Devices
Obtaining a listing of devices attached to a Solaris 10 system is the best way to begin
examining this important issue. In Solaris 10, you can easily obtain system configuration
information, including device information, by using the print configuration command
on any SPARC or Intel architecture system:

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 317

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

prtconf

On an Ultra 5 workstation, the system configuration looks like this:

SUNW,Ultra-5_10
packages (driver not attached)

terminal-emulator (driver not attached)
deblocker (driver not attached)
obp-tftp (driver not attached)
disk-label (driver not attached)
SUNW,builtin-drivers (driver not attached)
sun-keyboard (driver not attached)
ufs-file-system (driver not attached)

chosen (driver not attached)
openprom (driver not attached)

client-services (driver not attached)
options, instance #0
aliases (driver not attached)
memory (driver not attached)
virtual-memory (driver not attached)
pci, instance #0

pci, instance #0
ebus, instance #0

auxio (driver not attached)
power (driver not attached)
SUNW,pll (driver not attached)
se, instance #0
su, instance #0
su, instance #1
ecpp (driver not attached)
fdthree (driver not attached)
eeprom (driver not attached)
flashprom (driver not attached)
SUNW,CS4231, instance #0

network, instance #0
SUNW,m64B, instance #0
ide, instance #0

disk (driver not attached)
cdrom (driver not attached)
dad, instance #0
atapicd, instance #2

pci, instance #1
pci, instance #0

pci108e,1000 (driver not attached)
SUNW,hme, instance #1
SUNW,isptwo, instance #0

sd (driver not attached)
st (driver not attached)

SUNW,UltraSPARC-IIi (driver not attached)
pseudo, instance #0

Never panic about the message that a driver is “not attached” to a particular device.
Because device drivers are loaded only on demand in Solaris 10, only those devices that
are actively being used will have their drivers loaded. When a device is no longer being
used, the device driver is unloaded from memory. This is a very efficient memory
management strategy that optimizes the use of physical RAM by deallocating memory
for devices when they are no longer required. In the case of Ultra 5, you can see in the
preceding code that devices like the PCI bus and the IDE disk drives have attached device
drivers, and they were being used while prtconf was running.

For an x86 system, the devices found are quite different:

System Configuration: Sun Microsystems i86pc
Memory size: 128 Megabytes
System Peripherals (Software Nodes):
i86pc

+boot (driver not attached)
memory (driver not attached)

aliases (driver not attached)
chosen (driver not attached)
i86pc-memory (driver not attached)
i86pc-mmu (driver not attached)
openprom (driver not attached)
options, instance #0
packages (driver not attached)
delayed-writes (driver not attached)
itu-props (driver not attached)
isa, instance #0

motherboard (driver not attached)
asy, instance #0
lp (driver not attached)
asy, instance #1
fdc, instance #0

fd, instance #0
fd, instance #1 (driver not attached)

kd (driver not attached)
bios (driver not attached)
bios (driver not attached)
pnpCTL,0041 (driver not attached)
pnpCTL,7002 (driver not attached)
kd, instance #0
chanmux, instance #0

pci, instance #0
pci8086,1237 (driver not attached)

318 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

pci8086,7000 (driver not attached)
pci-ide, instance #0

ata, instance #0
cmdk, instance #0
sd, instance #1

pci10ec,8029 (driver not attached)
pci5333,8901 (driver not attached)

used-resources (driver not attached)
objmgr, instance #0
pseudo, instance #0

At Boot Time
The OpenBoot monitor has the ability to diagnose hardware errors on system devices
before booting the kernel. This can be particularly useful for identifying bus connectivity
issues, such as unterminated SCSI chains, but also some basic functional issues, such as
whether devices are responding. Issuing the command

ok reset

will also force a self-test of the system.
Just after booting, it is also useful to review the system boot messages, which you

can retrieve by using the dmesg command or by examining the /var/log/messages file.
This displays a list of all devices that were successfully attached at boot time, and any
error messages that were detected. The following is the dmesg output for a SPARC
Ultra architecture system:

dmesg
Jan 17 13:06
cpu0: SUNW,UltraSPARC-IIi (upaid 0 impl 0x12 ver 0x12 clock 270 MHz)
SunOS Release 5.10 Version Generic_103640-19
[UNIX(R) System V Release 4.0]
Copyright (c) 1983-2004, Sun Microsystems, Inc.
mem = 131072K (0x8000000)
avail mem = 127852544
Ethernet address = 8:0:20:90:b3:23
root nexus = Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 270MHz)
pci0 at root: UPA 0x1f 0x0
PCI-device: pci@1,1, simba #0
PCI-device: pci@1, simba #1
dad0 at pci1095,6460 target 0 lun 0
dad0 is /pci@1f,0/pci@1,1/ide@3/dad@0,0

<Seagate Medalist 34342A cyl 8892 alt 2 hd 15 sec 63>
root on /pci@1f,0/pci@1,1/ide@3/disk@0,0:a fstype ufs
su0 at ebus0: offset 14,3083f8
su0 is /pci@1f,0/pci@1,1/ebus@1/su@14,3083f8
su1 at ebus0: offset 14,3062f8

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 319

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

su1 is /pci@1f,0/pci@1,1/ebus@1/su@14,3062f8
keyboard is </pci@1f,0/pci@1,1/ebus@1/su@14,3083f8>
major <37> minor <0>

mouse is </pci@1f,0/pci@1,1/ebus@1/su@14,3062f8>
major <37> minor <1>

stdin is </pci@1f,0/pci@1,1/ebus@1/su@14,3083f8>
major <37> minor <0>

SUNW,m64B0 is /pci@1f,0/pci@1,1/SUNW,m64B@2
m64#0: 1280x1024, 2M mappable, rev 4754.9a
stdout is </pci@1f,0/pci@1,1/SUNW,m64B@2> major <8> minor <0>
boot cpu (0) initialization complete - online
se0 at ebus0: offset 14,400000
se0 is /pci@1f,0/pci@1,1/ebus@1/se@14,400000
SUNW,hme0: CheerIO 2.0 (Rev Id = c1) Found
SUNW,hme0 is /pci@1f,0/pci@1,1/network@1,1
SUNW,hme1: Local Ethernet address = 8:0:20:93:b0:65
pci1011,240: SUNW,hme1
SUNW,hme1 is /pci@1f,0/pci@1/pci@1/SUNW,hme@0,1
dump on /dev/dsk/c0t0d0s1 size 131328K
SUNW,hme0: Using Internal Transceiver
SUNW,hme0: 10 Mbps half-duplex Link Up
pcmcia: no PCMCIA adapters found

dmesg first performs a memory test, sets the Ethernet address for the network
interface, and then initializes the PCI bus. Setting the Ethernet address is critical on
SPARC systems, because the Ethernet interfaces will have the same address stored in
PROM. An IDE disk is then recognized and mapped into a physical device, and the
appropriate partitions are activated. The standard input devices (keyboard and mouse)
are then activated, and the boot sequence is largely complete. However, the output is
slightly different for the x86 system:

Jan 17 08:32
SunOS Release 5.10 Version Generic [UNIX(R) System V Release 4.0]
Copyright (c) 1983-2004, Sun Microsystems, Inc.
mem = 130688K (0x7fa0000)
avail mem = 114434048
root nexus = i86pc
isa0 at root
pci0 at root: space 0 offset 0

IDE device at targ 0, lun 0 lastlun 0x0
model ST310230A, stat 50, err 0

cfg 0xc5a, cyl 16383, hd 16, sec/trk 63
mult1 0x8010, mult2 0x110, dwcap 0x0, cap 0x2f00
piomode 0x200, dmamode 0x200, advpiomode 0x3
minpio 240, minpioflow 120
valid 0x7, dwdma 0x407, majver 0x1e

ata_set_feature: (0x66,0x0) failed

320 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

ATAPI device at targ 1, lun 0 lastlun 0x0
model CD-912E/ATK, stat 50, err 0

cfg 0x85a0, cyl 0, hd 0, sec/trk 0
mult1 0x0, mult2 0x0, dwcap 0x0, cap 0xb00
piomode 0x200, dmamode 0x200, advpiomode 0x1
minpio 209, minpioflow 180
valid 0x2, dwdma 0x203, majver 0x0

PCI-device: ata@0, ata0
ata0 is /pci@0,0/pci-ide@7,1/ata@0
Disk0: <Vendor 'Gen-ATA ' Product 'ST310230A '>
cmdk0 at ata0 target 0 lun 0
cmdk0 is /pci@0,0/pci-ide@7,1/ata@0/cmdk@0,0
root on /pci@0,0/pci-ide@7,1/ide@0/cmdk@0,0:a fstype ufs
ISA-device: asy0
asy0 is /isa/asy@1,3f8
ISA-device: asy1
asy1 is /isa/asy@1,2f8
Number of console virtual screens = 13
cpu 0 initialization complete - online
dump on /dev/dsk/c0d0s3 size 156 MB

Note that dmesg may be deprecated in future releases, with other applications
writing to /var/adm/messages through syslogd.

While the System Is Up
If you are working remotely on a server system, and you are unsure of the system
architecture, the command

arch –k

returns Sun4u on the Ultra 5 system, but Sun4m on a SPARC 10 system. For a complete
view of a system’s device configuration, you may also want to try the sysdef command,
which displays more detailed information concerning pseudo-devices, kernel loadable
modules, and parameters. Here’s the sysdef output for an x86 server:

sysdef
sysdef
*
* Hostid
*
0ae61183

*
* i86pc Configuration
*
*
* Devices
*

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 321

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

+boot (driver not attached)
memory (driver not attached)

aliases (driver not attached)
chosen (driver not attached)
i86pc-memory (driver not attached)
i86pc-mmu (driver not attached)
openprom (driver not attached)
options, instance #0
packages (driver not attached)
delayed-writes (driver not attached)
itu-props (driver not attached)
…
*
* System Configuration
*
swap files

swapfile dev swaplo blocks free
/dev/dsk/c0d0s3 102,3 8 321288 321288

The key sections in the sysdef output are details of all devices, such as the PCI bus,
and pseudo-devices for each loadable object path (including /kernel and /usr/kernel).
Loadable objects are also identified, along with swap and virtual memory settings.
Although the output may seem verbose, the information provided for each device can
prove to be very useful in tracking down hardware errors or missing loadable objects.

Command Reference
The following command can be used to manage system devices.

format
The format command displays the following options:

disk Nominates a disk to format

type Specifies a disk type

partition Specifies a partition table

current Specifies the current disk

format Formats the current disk

fdisk Executes the fdisk program against the current disk

repair Repairs a faulty sector on the current disk

show Translates a disk address

label Writes a disk label

analyze Analyzes errors

defect Lists problems

322 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

backup Examines backup labels

verify Verifies labels

save Saves new partition data

volname Sets a volume name

!<cmd> Runs command in a shell

quit Exits application

Summary
In this chapter, you have learned how to configure devices and manage system resources
for the Intel and SPARC platforms. You have seen how mass storage devices such as hard
drives can be easily configured and how you can review that configuration.

C h a p t e r 1 4 : D e v i c e a n d R e s o u r c e M a n a g e m e n t 323

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 14

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio 324

This page intentionally left blank.

15
Installing Disks and

File Systems

Disks are the most commonly used persistent storage devices attached to Solaris 10
systems. A wide variety of disks and disk types are available, including those
using the Small Computer System Interface (SCSI, pronounced “scuzzy”) and

Integrated Device Electronics (IDE) interfaces, with a variety of sustained data transfer
rates (exceeding 10,000 RPM in some cases). This chapter examines how to install disks
and create file systems using standard Solaris 10 commands.

Key Concepts
Solaris file systems are generally of the type UFS (for UNIX File System), although other
file system types can be defined in /etc/default/fs. UFS file systems are found on hard disks
that have both a raw and block device interface on Solaris, as found in the /dev/rdsk and
/dev/dsk directories, respectively. Every partition created on a Solaris file system has its
own entry in /dev/dsk and /dev/rdsk.

A UFS file system contains the following elements:

• A boot block, which contains booting data if the file system is bootable

• A super block, which contains the location of inodes, the size of the file system,
the number of blocks, and the status

• Inodes, which store the details of files on the file system

• Data blocks, which store the files

Physical and Logical Device Names
One of the most challenging aspects of Solaris hardware to understand is the set of
naming convention used by Solaris to refer to devices. Solaris uses a specific set of naming
conventions to associate physical devices with instance names on the operating system.
For administrators who are new to Solaris, these conventions can be incredibly confusing.

3 2 5

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15
Blind Folio 325

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

326 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

In addition, devices can also be referred to by their device name, which is associated
with a device file created in the /dev directory after configuration. For example, a hard
disk may have the physical device name /pci@1f,0/pci@1,1/ide@3/dad@0,0, which is
associated with the device file /dev/dsk/c0t0d0. In some versions of Microsoft Windows,
disks are simply labeled by their drive letter (C:, D:, E:, and so on), while in Linux, device
files are much simplified (for example, /dev/hda for an IDE hard disk or /dev/sda for a
SCSI hard disk).

The benefit of the more complex Solaris logical device names and physical device
references is that they make it easy to interpret the characteristics of each device by
looking at its name. For the preceding disk name example (/pci@1f,0/pci@1,1/ide@3/
dad@0,0), you can see that the IDE hard drive is located on a Peripheral Component
Interconnect (PCI) bus at target 0. When you view the amount of free disk space on
the system, for example, it is easy to identify slices on the same disk by looking at the
device name:

df -k
Filesystem kbytes used avail capacity Mounted on
/proc 0 0 0 0% /proc
/dev/dsk/c0t0d0s0 1982988 615991 1307508 33% /
fd 0 0 0 0% /dev/fd
/dev/dsk/c0t0d0s3 1487119 357511 1070124 26% /usr
swap 182040 416 181624 1% /tmp

Here, you can see that /dev/dsk/c0t0d0s0 and /dev/dsk/c0t0d0s3 are slice 0 and slice 3 of the
disk /dev/dsk/c0t0d0.

Creating a File System
To create a new UFS file system, you first must partition a disk into different slices. You
can then use these slices to create new file systems by using the mkfs or newfs command.
For example, the following two commands are equivalent for the purposes of creating
a new file system on the partition c0t0d0s1:

newfs /dev/rdsk/c0t0d0s1
mkfs -F ufs /dev/rdsk/c0t0d0s1

Examples
The following sections provide some real-world examples for installing disks and file
systems.

Monitoring Disk Usage
The most commonly used command for monitoring disk space usage is /usr/bin/df, which
by default displays the number of free blocks and files on all currently mounted volumes.
Alternatively, many administrators create an alias for df in their shell initialization script

C h a p t e r 1 5 : I n s t a l l i n g D i s k s a n d F i l e S y s t e m s 327

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

(e.g., ~/.cshrc for C-shell), such as df -k, which displays the amount of free disk space in
kilobytes. The basic output for df for a SPARC system looks like this:

server# df
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s0 245911 30754 190566 14% /
/dev/dsk/c0t0d0s4 1015679 430787 523952 46% /usr
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
/dev/dsk/c0t0d0s3 492871 226184 217400 51% /var
/dev/md/dsk/d1 4119256 3599121 478943 89% /opt
swap 256000 43480 212520 17% /tmp
/dev/dsk/c0t2d0s3 4119256 3684920 393144 91% /disks/vol1
/dev/md/dsk/d0 17398449 12889927 4334538 75% /disks/vol2
/dev/md/dsk/d3 6162349 5990984 109742 99% /disks/vol3
/dev/dsk/c1t1d0s0 8574909 5868862 1848557 77% /disks/vol4
/dev/dsk/c2t3d0s2 1820189 1551628 177552 90% /disks/vol5
/dev/dsk/c1t2d0s0 4124422 3548988 575434 87% /disks/vol6
/dev/dsk/c2t2d0s3 8737664 8281113 456551 95% /disks/vol7
/dev/md/dsk/d2 8181953 6803556 1296578 84% /disks/vol8

For an Intel system, the output is similar, although disk slices have a different
naming convention:

server# df
Filesystem kbytes used avail capacity Mounted on
/proc 0 0 0 0% /proc
/dev/dsk/c0d0s0 73684 22104 44212 34% /
/dev/dsk/c0d0s6 618904 401877 161326 72% /usr
fd 0 0 0 0% /dev/fd
/dev/dsk/c0d0s1 29905 4388 22527 17% /var
/dev/dsk/c0d0s7 7111598 9 7040474 1% /export/home
swap 222516 272 222244 1% /tmp

df has a number of command-line options that can used to customize the collection
and display of information. For example, this code prints usage data for all file systems:

server# df –a
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s0 245911 30754 190566 14% /
/dev/dsk/c0t0d0s4 1015679 430787 523952 46% /usr
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
/dev/dsk/c0t0d0s3 492871 226185 217399 51% /var
/dev/md/dsk/d1 4119256 3599121 478943 89% /opt
swap 256000 43480 212520 17% /tmp
/dev/dsk/c0t2d0s3 4119256 3684920 393144 91% /disks/vol1
/dev/md/dsk/d0 17398449 12889927 4334538 75% /disks/vol2

/dev/md/dsk/d3 6162349 5990984 109742 99% /disks/vol3
/dev/dsk/c1t1d0s0 8574909 5868862 1848557 77% /disks/vol4
/dev/dsk/c2t3d0s2 1820189 1551628 177552 90% /disks/vol5
/dev/dsk/c1t2d0s0 4124422 3548988 575434 87% /disks/vol6
auto_direct 4124560 3469376 613944 85% /disks/www
auto_direct 0 0 0 0% /disks/ftp
server:vold(pid329)

0 0 0 0% /vol
/dev/dsk/c2t2d0s3 8737664 8281113 456551 95% /disks/vol7
/dev/md/dsk/d2 8181953 6803556 1296578 84% /disks/vol8

It prints even those file systems that have their “ignore” option set in their entries in
/etc/mnttab:

server# cat /etc/mnttab
/dev/dsk/c0t0d0s0 / ufs rw,suid,dev=800000,

largefiles 944543087
/dev/dsk/c0t0d0s4 /usr ufs rw,suid,dev=800004,

largefiles 944543087
/proc /proc proc rw,suid,dev=29c0000 944543087
fd /dev/fd fd rw,suid,dev=2a80000 944543087
/dev/dsk/c0t0d0s3 /var ufs rw,suid,dev=800003,

largefiles 944543087
/dev/md/dsk/d1 /opt ufs suid,rw,largefiles,dev=1540001 944543105
swap /tmp tmpfs ,dev=1 944543105
/dev/dsk/c0t2d0s3 /disks/vol1 ufs suid,rw,

largefiles,dev=800013 944543105
/dev/md/dsk/d0 /disks/vol2 ufs nosuid,rw,

largefiles, dev=1540000 944543105
/dev/md/dsk/d3 /disks/vol3 ufs nosuid,rw,

largefiles,dev=1540003 944543106
/dev/dsk/c1t1d0s0 /disks/vol4 ufs nosuid,rw,

largefiles,dev=800080 944543105
/dev/dsk/c2t3d0s2 /disks/vol5 ufs nosuid,rw,

largefiles,dev=80010a 944543106
/dev/dsk/c1t2d0s0 /disks/vol6 ufs suid,rw,

largefiles,dev=800088 944543106
auto_direct /disks/www autofs ignore,direct,

nosuid,dev=2c00001 944543181
auto_direct /disks/ftp autofs ignore,direct,

nosuid,dev=2c00002 944543181
server:vold(pid329) /vol nfs ignore,

dev=2bc0002 944543192
/dev/dsk/c2t2d0s3 /disks/vol7 ufs nosuid,rw,

largefiles,dev=800103 944548661
/dev/md/dsk/d2 /disks/vol8 ufs nosuid,rw,

largefiles, dev=1540002 944553321

328 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

C h a p t e r 1 5 : I n s t a l l i n g D i s k s a n d F i l e S y s t e m s 329

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

To avoid delays in printing resource information on NFS-mounted volumes, it is
also possible to check local file systems with this command:

df –l
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s0 245911 30754 190566 14% /
/dev/dsk/c0t0d0s4 1015679 430787 523952 46% /usr
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
/dev/dsk/c0t0d0s3 492871 226184 217400 51% /var
/dev/md/dsk/d1 4119256 3599121 478943 89% /opt
swap 256000 43488 212512 17% /tmp
/dev/dsk/c0t2d0s3 4119256 3684920 393144 91% /disks/vol1
/dev/md/dsk/d0 17398449 12889901 4334564 75% /disks/vol2
/dev/md/dsk/d3 6162349 5990984 109742 99% /disks/vol3
/dev/dsk/c1t1d0s0 8574909 5868862 1848557 77% /disks/vol4
/dev/dsk/c2t3d0s2 1820189 1551628 177552 90% /disks/vol5
/dev/dsk/c1t2d0s0 4124422 3548988 575434 87% /disks/vol6
/dev/dsk/c2t2d0s3 8737664 8281113 456551 95% /disks/vol7
/dev/md/dsk/d2 8181953 6803556 1296578 84% /disks/vol8

A block device can be specified on the command line, and its individual usage
measured; for example, consider this code for a slice on controller 1:

df /dev/dsk/c1d0d2
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c1t1d0s0 8574909 5868862 1848557 77% /disks/vol4

Users can also check the status of the disks holding their individual user directories
and files by using df. For example, this code will display the disk space usage for the
disk on which the home directory exists for user pwatters:

df /staff/pwatters
Filesystem kbytes used avail capacity Mounted on
/dev/md/dsk/d0 17398449 12889146 4335319 75% /disks/vol2

The following code checks the size of the partition on which the temporary mailbox
for the user pwatters was created by the elm mail-reading program. This is a good thing
to check if you intend to send a lot of e-mail messages!

df /tmp/mbox.pwatters
Filesystem kbytes used avail capacity Mounted on
swap 256000 45392 210608 18% /tmp

Another way of obtaining disk space usage information with more directory-by-
directory detail is by using the /usr/bin/du command. This command prints the sum of
the sizes of every file in the current directory and performs the same task recursively for
any subdirectories. The size is calculated by summing all of the file sizes in the directory,
where the size for each file is rounded up to the nearest 512-byte block. For example,
taking a du of the /etc directory looks like this:

cd /etc
du
14 ./default
7 ./cron.d
6 ./dfs
8 ./dhcp
...
2429 .

Thus, /etc and all of its subdirectories contain a total of 2,429 512-byte blocks of data.
Of course, this kind of output is fairly verbose and is probably not much use in its
current form.

Command Reference
The following commands are commonly used for managing and installing file systems.

The /etc/path_to_inst File
A list of mappings between physical devices to instance names is always kept in the
/etc/path_to_inst file. The following example reviews the device to instance name mapping
for a SCSI-based SPARC system:

"/sbus@1f,0" 0 "sbus"
"/sbus@1f,0/sbusmem@2,0" 2 "sbusmem"
"/sbus@1f,0/SUNW,fas@2,8800000" 1 "fas"
"/sbus@1f,0/SUNW,fas@2,8800000/ses@f,0" 1 "ses"
"/sbus@1f,0/SUNW,fas@2,8800000/sd@1,0" 16 "sd"
"/sbus@1f,0/SUNW,fas@2,8800000/sd@0,0" 15 "sd"
"/options" 0 "options"
"/pseudo" 0 "pseudo"

You can see entries for the network interface /sbus@1f,0/SUNW,hme@2,8c00000, as well
as the floppy disk /sbus@1f,0/SUNW,fdtwo@f,1400000 and the SBUS sbus@1f,0.

For a PCI local bus–based system such as a Sun Blade 100, the output would look
like this:

"/pci@1f,0" 0 "pcipsy"
"/pci@1f,0/isa@7" 0 "ebus"

330 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

"/pci@1f,0/isa@7/power@0,800" 0 "power"
"/pci@1f,0/isa@7/dma@0,0" 0 "isadma"
"/pci@1f,0/isa@7/dma@0,0/parallel@0,378" 0 "ecpp"
"/pci@1f,0/isa@7/dma@0,0/floppy@0,3f0" 0 "fd"
"/pci@1f,0/isa@7/serial@0,2e8" 1 "su"
"/pci@1f,0/isa@7/serial@0,3f8" 0 "su"
"/pci@1f,0/pmu@3" 0 "pmubus"
"/pci@1f,0/pmu@3/i2c@0" 0 "smbus"
"/pci@1f,0/pmu@3/i2c@0/temperature@30" 0 "max1617"
"/pci@1f,0/pmu@3/i2c@0/card-reader@40" 0 "scmi2c"
"/pci@1f,0/pmu@3/i2c@0/dimm@a0" 0 "seeprom"
"/pci@1f,0/pmu@3/fan-control@0" 0 "grfans"
"/pci@1f,0/pmu@3/ppm@0" 0 "grppm"
"/pci@1f,0/pmu@3/beep@0" 0 "grbeep"
"/pci@1f,0/ebus@c" 1 "ebus"
"/pci@1f,0/usb@c,3" 0 "ohci"
"/pci@1f,0/usb@c,3/mouse@2" 0 "hid"
"/pci@1f,0/usb@c,3/keyboard@4" 1 "hid"
"/pci@1f,0/firewire@c,2" 0 "hci1394"
"/pci@1f,0/ide@d" 0 "uata"
"/pci@1f,0/ide@d/dad@0,0" 0 "dad"
"/pci@1f,0/ide@d/sd@1,0" 0 "sd"
"/pci@1f,0/sound@8" 0 "audiots"
"/pci@1f,0/SUNW,m64B@13" 0 "m64"
"/pci@1f,0/network@c,1" 0 "eri"
"/pci@1f,0/pci@5" 0 "pci_pci"
"/options" 0 "options"
"/SUNW,UltraSPARC-IIe@0,0" 0 "us"
"/pseudo" 0 "pseudo"

You can see that all the sbus entries have been replaced by the pci entries and that
the network interface is no longer a hme, but an eri (“/pci@1f,0/network@c,1” 0 “eri”).
In addition, some completely new types of hardware, such as a smart-card reader
(“/pci@1f,0/pmu@3/i2c@0/card-reader@40” 0 “scmi2c”), are also available.

dmesg
The dmesg command is often used to determine whether specific device drivers for
network interfaces and mass-storage devices have been correctly loaded at boot time.
While its functions have largely been taken over by the syslog daemon (syslogd),
dmesg provides a useful record of error and status messages printed by the kernel.

When the system boots, several status messages of log level kern.notice will be
recorded and can be subsequently retrieved by using dmesg:

Jan 15 14:23:16 austin genunix: [ID 540533 kern.notice] SunOS Release
5.10 Version Generic_108528-06 64-bit

Jan 15 14:23:16 austin genunix: [ID 784649 kern.notice] Copyright

C h a p t e r 1 5 : I n s t a l l i n g D i s k s a n d F i l e S y s t e m s 331

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

332 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

1983-2001 Sun Microsystems, Inc. All rights reserved.
Jan 15 14:23:16 austin genunix: [ID 678236 kern.info] Ethernet

address = 0:3:ba:4:a4:e8
Jan 15 14:23:16 austin unix: [ID 389951 kern.info] mem =

131072K (0x8000000)
Jan 15 14:23:16 austin unix: [ID 930857 kern.info] avail mem = 121085952

You can see that a 64-bit kernel has been loaded successfully, for SunOS 5.10 (Solaris 10).
Sun’s copyright banner is also recorded, along with the Ethernet address of the primary
network interface card (0:3:ba:4:a4:e8), the amount of installed RAM, and the amount of
currently available RAM after the kernel has been loaded.

Before the kernel begins loading device drivers, it performs an integrity check to
determine whether any naming conflicts exist. If a conflict is found, it is logged for
future reference and action:

May 15 14:23:16 austin genunix: [ID 723599 kern.warning]
WARNING: Driver alias "cal" conflicts with an existing
driver name or alias.

You can see that the device driver alias cal has been used more than once, giving rise to
a naming conflict.

Next, details about the system architecture and its main bus type are displayed:

Jan 15 14:23:16 austin rootnex: [ID 466748 kern.info]
root nexus = Sun Blade 100 (UltraSPARC-IIe)

Jan 15 14:23:16 austin rootnex: [ID 349649 kern.info]
pcipsy0 at root: UPA 0x1f 0x0

Jan 15 14:23:16 austin genunix: [ID 936769 kern.info] pcipsy0 is /
pci@1f,0
Jan 15 14:23:16 austin pcipsy: [ID 370704 kern.info]

PCI-device: pmu@3, pmubus0
Jan 15 14:23:16 austin pcipsy: [ID 370704 kern.info]

PCI-device: ppm@0, grppm0
Jan 15 14:23:16 austin genunix: [ID 936769 kern.info]

grppm0 is /pci@1f,0/pmu@3/ppm@0

You can see that the system is a Sun Blade 100 and that its PCI bus architecture has been
correctly identified.

The next stage involves identifying the hard drives attached to the system, as
follows:

Jan 15 14:23:27 austin pcipsy: [ID 370704 kern.info]
PCI-device: ide@d, uata0

Jan 15 14:23:27 austin genunix: [ID 936769 kern.info]
uata0 is /pci@1f,0/ide@d

C h a p t e r 1 5 : I n s t a l l i n g D i s k s a n d F i l e S y s t e m s 333

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

Jan 15 14:23:28 austin uata: [ID 114370 kern.info] dad0 at pci10b9,52290
Jan 15 14:23:28 austin uata: [ID 347839 kern.info] target 0 lun 0
Jan 15 14:23:28 austin genunix: [ID 936769 kern.info]

dad0 is /pci@1f,0/ide@d/dad@0,0
Jan 15 14:23:28 austin dada: [ID 365881 kern.info]

<ST315320A cyl 29649 alt 2 hd 16 sec 63>
Jan 15 14:23:29 austin swapgeneric: [ID 308332 kern.info]

root on /pci@1f,0/ide@d/disk@0,0:a fstype ufs

The IDE hard drive installed on the system has been correctly detected (/pci@1f,0/ide@d/
dad@0,0) and has the label ST315320A cyl 29649 alt 2 hd 16 sec 63. In addition, the file
system type has been identified as native UFS.

The status of every device on the system is logged during device driver loading,
so it’s possible to use the dmesg command to determine whether drivers have been
correctly loaded. In the following entry, the Fiber Distributed Data Interface (FDDI)
cannot be activated because it is not correctly installed:

Jan 15 14:26:38 austin smt: [ID 272566 kern.notice]
smt0: nf FDDI driver is not active.
Initialization of this driver cannot be completed.

mkfile
The mkfile command creates a file of a specified size that is padded with zeros. File
sizes can be specified in gigabytes (g), megabytes (m), bytes (b), or kilobytes (k). For
example, to create a 1GB file in /tmp/newfile, you would use the following command:

newfile 1g /tmp/newfile

If disk blocks should not be allocated until a request from an application, then pass
the –n option on the command line. This conserves disk space while ensuring that the
file created does not exceed its maximum flagged size.

mkfs
The mkfs command creates a new file system on the raw disk device specified on the
command line. The file system type is determined by the contents of the file /etc/default/fs.
In most Solaris systems, the contents of this file are “LOCAL=ufs”, indicating that UFS
file systems are the default. If a different file system type is to be created, then the –F
option can be passed on the command line, followed by the file system type. For example,
to create a file system of type pcfs which uses a standard FAT type on a floppy disk, you
would use the following command:

mkfs -F pcfs /dev/rdiskette

A number of aliases to the mkfs command are also available, which you can use
to create file systems of different types directly. These commands include

• mkfs_udfs Creates a Universal Disk File System (UDFS) format file system

• mkfs_pcfs Creates a FAT format file system

• mkfs_ufs Creates a UFS format file system

In addition, passing the –m option displays the complete command string that was
used to create the file system. This is useful for extracting and storing the command
string in a script to re-create the file system on another disk.

newfs
The newfs command uses the mkfs command to create UFS file systems. The main
difference between the two commands is the number of parameters that can be passed to
newfs to tune the file system during creation. The following parameters can be used
to specify file system parameters:

• –a n Specifies n blocks to be held in reserve to replace bad blocks

• –b n Sets the block size on the file system to be n bytes

• –c n Indicates that n cylinders should be allocated to each cylinder group

• –C n Specifies n as the maximum number of contiguous disk blocks per file

• –d n Sets the rotational delay to n milliseconds

• –f n Sets the smallest disk fragment for a single file to n bytes

• –i n Specifies that n bytes should be allocated to each inode

• –m n Specifies that n percent of the physical file system should be reserved
as free

• –n n Sets the number of different group cylinder rotations to n

• –r n Sets the disk speed to n revolutions per minute

• –s n Sets the disk size to n sectors

• –t n Specifies that n tracks be allocated to each cylinder

For most applications, the defaults selected by newfs will provide adequate
performance. However, some specialized applications do require smaller or larger disk
minimum fragments or block size for their file systems, and these can easily be set during
file system creation.

lofiadm
The lofiadm command is used to initialize a file on an existing partition that is labeled
as a raw device, by using the loopback file device driver. You can then create a new file
system on the device by using newfs or mkfs as if it were a separate partition. This can

334 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

be useful if a new partition needs to be created, but the disk cannot be easily reformatted,
particularly if it’s only required temporarily.

To create a file system on a file, you should use the mkfile command to create a
file to be a specific size. Next, you need to make the association between the file and
the loopback file device driver. For example, if the file /tmp/datafile was created with
mkfile, the following command would create the association:

lofiadm -a /tmp/datafile /dev/lofi/2

Finally, you can create a new file system by using the newfs command:

newfs /dev/rlofi/2
newfs: construct a new file system /dev/rlofi/2: (y/n)? y

You can then mount the file system on a mount point (such as /testdata) as required:

mount /dev/lofi/2 /testdata

When the file system is no longer required, you can use the umount command
to remove the file system from operation, while you can use the lofiadm command to
remove the association between the file and the loopback file device driver:

umount /testdata
lofiadm -d /tmp/datafile

swap
The swap command is used to add virtual RAM to a system. Virtual RAM is typically
used to provide memory for process execution when physical memory has been exhausted.
Disk blocks are used to simulate physical memory locations, using an interface that is
invisible to the user. Thus, users never need to be concerned about the type of RAM that
their process is addressing. While virtual memory allows a system’s effective capacity
to be increased to many times its physical capacity, it is much slower than physical RAM.
When a system experiences peak demands for memory, causing virtual memory to be
used, the CPU must work harder to support virtual memory operations. Coupled with
the relatively slow speed of disk writing, this has a significant impact on performance.
When virtual memory is being utilized, and many new memory access calls are made
along with normal file reading and writing, so-called “disk thrashing” (the excessive
use of virtual memory) can occur, since the number of disk operations requested far
exceeds the capacity of the disk to read and write. If this is a common occurrence, then
you should install extra physical RAM into the system and/or tune the file system with
tunefs.

Virtual memory should generally be added to the system at twice the physical RAM
installed. Thus, for a 256MB system, you should initialize 512MB of virtual memory. To

C h a p t e r 1 5 : I n s t a l l i n g D i s k s a n d F i l e S y s t e m s 335

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

336 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

add virtual memory, you should use the mkfile command to create an empty file of
the required size. Next, use the swap command to add the file into the pool of available
disk space. For example, if two swap files are created on different file systems for
redundancy (such as /u1/swap and /u2/swap), you can add them to the swap space pool
by using the following commands:

swap -a /u1/swap
swap -a /u2/swap

To verify that the swap has been correctly added to the pool, use the following
command:

swap –l

If you have a dedicated slice set aside for swap, then you can simply pass the block
device name on the command line:

swap –a /dev/dsk/c1t1d2s1

To remove a file (or device) from the swap pool, you need to pass the –d option on
the command line. Thus, to remove /u1/swap and /dev/dsk/c1t1d2s1 from the swap pool,
you would use the following commands:

swap -d /u1/swap
swap –d /dev/dsk/c1t1d2s1

The file /u1/swap can now be safely deleted, and the slice /dev/dsk/c1t1d2s1 can be
safely used for other purposes. Note that labeling a disk as a swap is very useful, as
this allows you to use space near the center of the disk for swap.

sync
The sync command is generally executed prior to a shutdown or halt, to flush all disk
buffers and to write the super block. This ensures that data integrity is preserved when
the system is rebooted or where the run level is modified. It is simply executed without
options, as shown here:

sync

tunefs
The tunefs command allows you to tune a file system’s performance to specific
requirements. The key settings that can be modified are optimization for speed of

execution or amount of disk space required. Generally, unless a system is critically low
on disk space, it is best to optimize for speed. The following options are supported:

• –a n Specifies that n blocks be written before a pause in rotation

• –e n Specifies n as the maximum number of contiguous disk blocks per file

• –d n Sets the rotational delay to n milliseconds

• –m n Specifies that n percent of the physical file system should be reserved
as free

• –o key Optimizes the file system for a key that is either “time” or “space”

Summary
In this chapter, you have examined how to install, configure, and optimize file systems
using UFS. In addition, when physical memory is lacking, virtual RAM can be configured
to allow more applications to be executed at the expense of consuming disk space.

C h a p t e r 1 5 : I n s t a l l i n g D i s k s a n d F i l e S y s t e m s 337

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 15

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio 338

This page intentionally left blank.

16
File System and Volume

Management

Once disks have been installed and formatted, a number of further operations must
be performed to allow them to be used. For a start, the superuser must manually
mount the disks and create an entry created in /etc/vfstab for each new partition.

Alternatively, disks may need to be unmounted for maintenance using the fsck program.
However, if file system journaling is enabled in /etc/vfstab, then the need for fsck is
reduced. Finally, setting up volume management is critical to the enterprise, since the
logical sizes of disks can be extended, and/or redundancy can be implemented.

All of these topics are examined in this chapter.

Key Concepts
The following concepts are required knowledge for managing disks, file systems, and
volumes.

Mounting Local File Systems
Solaris (UNIX File System, or UFS) file systems are mapped in a one-to-one relationship
to physical slices, which makes it easy for you to associate file systems with partitions,
even if the physical and logical device references are complex. For example, the slice
/dev/dsk/c0t3d0s5 may be mounted on the mount point /export/home.

Mount points are simply empty directories that have been created using the mkdir
command. One of the nice features of the UFS is that it has a one-to-many mapping to
potential mount points: this means that a file system can be mounted, and its files and
directories can be manipulated, unmounted, and then remounted on a different mount
point. All of the data that was modified when the file system was mounted using a
different mount point are retained. For example, if you mount /dev/dsk/c0t3d0s5 on
/export/home, create a directory called pwatters (that is, /export/home/pwatters), unmount

3 3 9

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16
Blind Folio 339

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

the file system, and then remount it on /usr/local, the content of the folder pwatters will
still be available, albeit with a new absolute path (/usr/local/pwatters).

Unmounting Local File Systems
In normal operations, a file system is mounted at boot time if its mount point and options
are specified in the virtual file systems table (/etc/vfstab). The file system is unmounted
before the system is shut down. However, at times, you may find it necessary to unmount
a file system manually. For example, if you need to check the file system’s integrity by
using the fsck command, you must unmount the target file system. Alternatively, if
you are going to modify the mount point of a file system, you need to unmount the file
system from its current mount point and remount it on the new mount point. You cannot
mount a file system on two different mount points.

Creating Entries in /etc/vfstab
Although you’ve used the mount command to manually mount file systems, it’s preferable
to simply create an entry in /etc/vfstab to mount the file system automatically after boot.
Alternatively, if you are going to make a number of entries in /etc/vfstab, and the system
is not going to be rebooted for some time, then you can use the following command to
mount any entries in /etc/vfstab that have not already been mounted:

mountall

Take a look at an example entry in /etc/vfstab:

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
/dev/dsk/c0t0d0s5 /dev/rdsk/c0t0d0s5 /usr ufs 2 yes –

This example shows an entry for the raw disk device /dev/rdsk/c0t0d0s5, mounted on /usr,
standard UFS file system, mounted at boot time, with no options. In addition, the raw
device on which fsck operates is /dev/rdsk/c0t0d0s5, where an fsck file system check is
required. The Options field contains a comma-delimited list of mounting options, which
are equivalent to those used for the mount command (see the “Command Reference”
section, later in the chapter, for details on the mount command). In addition to UFS file
systems, file systems of other types can be mounted, including special types such as
swap space or NFS-mounted volumes.

Fixing Problems by Using fsck
/usr/sbin/fsck is a file system checking and repair program that’s commonly found on
Solaris and other UNIX platforms. The program is usually executed by the superuser
while the system is in a single-user mode state (for example, after you enter run-level S),
but it can also be executed on individual volumes during multiuser run levels.

340 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

There is one “golden rule” of which you must be aware while using fsck: never apply
fsck to a mounted file system. Doing so would leave the file system in an inconsistent
state and cause a kernel panic—that’s why running fsck on a mounted file system now
causes the fsck command to abort with this message: /dev/dsk/… Is a Mounted File
System, Ignored. Any fixes to potential problems on a mounted file system could end
up creating more damage than the original problem. This section examines the output
of fsck and some examples of common problems. It also investigates how fsck repairs
corrupt and inconsistent disk data.

Although Solaris 10 still retains fsck, the program is necessary only for Solaris 2.6
and previous releases—with later releases, logging is provided for UNIX file systems and
should always be turned on. Thus, before any changes are made to a file system, details
of the change are recorded in a log prior to their physical application. While this consumes
some extra CPU and disk overhead (approximately 1 percent of disk space on each
volume with logging enabled is required), it does ensure that the file system is never
left in an inconsistent state. In addition, boot time is reduced, because fsck does not
need to be executed.

Why do inconsistencies occur in the first place? In theory, they shouldn’t, but they
can occur under three common scenarios:

• If the Solaris server has been switched off like an old MS-DOS machine, without
being powered down first

• If a system is halted without synchronizing disk data (it is advisable that you
explicitly use sync before shutting down using halt)

• If hardware defects are encountered, including damage to disk blocks and heads,
which can be caused by moving the system and/or by power surges

These problems are realized as corruption to the internal set of tables that every UNIX
file system keeps to manage free disk blocks and inodes, which leads to blocks that are
free being reported as already allocated and, conversely, to some blocks occupied by a
program being recorded as free. This is obviously problematic for mission-critical data,
which is a good reason to add RAID storage (or at least reliable backups). If you suspect
physical damage, then you should perform surface analysis of the hard disk by using
the disckscan command.

The first step to running fsck is to enable file system checking during bootup. To
do this, you need to specify an integer value in the fsck field in the virtual file system
configuration file /etc/vfstab. Entering 1 in this field ensures sequential fsck checking,
while entering 2 does not ensure sequential checking, as shown in the following example:

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#
/dev/dsk/c1t2d1s3 /dev/rdsk/c1t2d1s3 /usr ufs 2 yes -/
-

C h a p t e r 1 6 : F i l e S y s t e m a n d V o l u m e M a n a g e m e n t 341

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

After you enable fsck for a particular file system, you can execute it on that system.
fsck checks the integrity of several features of the file system, the most significant of
which is the superblock that stores summary information for the volume. Since the
superblock is the most modified item on the file system being written and rewritten
when data is changed on a disk, it is the most commonly corrupted feature. However,
copies of the superblock are stored in many different locations to ensure that it can be
reliably retrieved. The checks that fsck performs on the superblock include the following:

• A check of the file system size, which obviously must be greater than the size
computed from the number of blocks identified in the superblock

• A check of the total number of inodes, which must be less than the maximum
number of inodes

• A tally of reported free blocks and inodes

If any of these values is identified as corrupt by fsck, the superuser can select one
of the many superblock backups that were created during initial file system creation as
a replacement for the current superblock. We will examine superblock corruption and
how to fix it in the section “fsck Operations,” later in the chapter.

In addition to the superblock, fsck also checks the number and status of cylinder
group blocks, inodes, indirect blocks, and data blocks. Since free blocks are located by
maps stored in the cylinder group, fsck verifies that all the blocks marked as free are
not actually being used by any files—if they are, files could be corrupted. If all blocks
are correctly accounted for, fsck determines whether the number of free blocks plus
the number of used blocks equals the total number of blocks in the file system. If fsck
detects any incongruity, the maps of unallocated blocks are rebuilt, although there is
obviously a risk of data loss whenever a disagreement over the actual state of the file
system is encountered. fsck always uses the actual count of inodes and/or blocks if
the superblock information is wrong, and it replaces the incorrect value if this is verified
by the superuser.

When fsck examines inodes, it does so sequentially and aims to identify
inconsistencies in format and type, link count, duplicate blocks, bad block numbers,
and inode size. Inodes should always be in one of three states: allocated (used by a file),
unallocated (not used by a file), or partially allocated. Partially allocated means that
during an allocation or deallocation procedure, data has been left behind that should
have been deleted or completed. Alternatively, partial allocation could result from a
physical hardware failure. In both cases, fsck attempts to clear the inode.

The link count is the number of directory entries that are linked to a particular inode.
fsck always checks that the number of directory entries listed is correct by examining
the entire directory structure, beginning with the root directory, and tallying the number
of links for every inode. Clearly, the stored link count and the actual link count should
agree; however, the stored link count occasionally differs from the actual link count.
This could result from a disk not being synchronized before a shutdown, for example,
and while changes to the file system have been saved, the link count has not been
correctly updated. If the stored count is not zero but the actual count is zero, disconnected

342 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

files are placed in the lost+found directory found in the top level of the file system
concerned. In other cases, the actual count replaces the stored count.

An indirect block is a pointer to a list of every block claimed by an inode. fsck checks
every block number against a list of allocated blocks: if two inodes claim the same block
number, that block number is added to a list of duplicate block numbers. The administrator
may be asked to choose which inode is correct—obviously, picking the correct inode is
a difficult and dangerous decision that usually indicates that it’s time to verify files
against backups.

fsck also checks the integrity of the actual block numbers, which can also become
corrupt. Block numbers should always lie in the interval between the first data block
and the last data block. If a bad block number is detected, the inode is cleared.

Directories are also checked for integrity by fsck. Directory entries are equivalent
to other files on the file system, except they have a different mode entry in the inode.
fsck checks the validity of directory data blocks, checking for the following problems:
unallocated nodes associated with inode numbers; inode numbers that exceed the
maximum number of inodes for a particular file system; incorrect inode numbers for
the standard directory entries “.” and “..”; and directories that have been accidentally
disconnected from the file system.

fsck examines each disk volume in five distinct stages:

1. Checks blocks and sizes.

2. Verifies path names.

3. Examines connectivity.

4. Investigates reference counts.

5. Checks the cylinder groups.

What Is RAID?
Solaris servers are often set up to be highly available, which means that the databases,
application servers, and distributed applications that they host must be accessible to
clients at all times. Such applications and services are often deployed on Solaris because
of the fail-over technologies provided by Sun’s hardware offerings. For example, many
high-end SPARC systems feature dual power supplies and allow for the installation of
many hard disks in a single cabinet.

Production systems invariably experience two kinds of capacity problems. First, the
largest file size that can be supported by the system is the size of an individual hard drive.
This means, for example, that database servers that require multiple mount points must
be located on a single file system for storing extremely large data files. Having 20 hard
disks in this context is only as useful as having one. One solution is to wait until hard
disks with higher capacities are manufactured; however, relying on future hardware
updates is not feasible for systems that have immediate deployment requirements. What
is required is some way of splitting physical data storage across several physical disk
volumes, while providing a single logical interface for access.

C h a p t e r 1 6 : F i l e S y s t e m a n d V o l u m e M a n a g e m e n t 343

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

The second problem that arises is that hard disks and other physical media
inevitably fail after periods of heavy use. Even if quality hard drives have a mean time
between failures (MTBF) of several years, this is an average figure: some drives last ten
years, others last only one. Again, Sun Microsystems hardware provides some relief here:
it is possible to “hot swap” hard drives, for example, without having to shut down the
system and reboot. The faulty drive is simply removed and replaced by the new drive.
Once backups have been loaded, the system will be available again. However, this is the
best-case scenario, and the success of hot swapping ultimately depends on the RAID
configuration.

Restoring disk contents from backups might take several hours, and customers
often complain of downtime counted in minutes. While restoring from backups is an
excellent strategy for countering catastrophic failure, it is simply not an option for a
production system that is experiencing single disk failures. What is required is some
level of content redundancy that retains more than one copy of a system’s data across
different disks.

To solve the capacity and redundancy problem, Solaris provides support for the
redundant array of inexpensive disks (RAID) standard. RAID defines a number of
different levels that provide various types of striping and mirroring. In this context, striping
is the process of spreading data across different physical disks while presenting a single
logical interface for the logical volume. Thus, a striped disk set containing four 18GB
drives would have a total logical capacity of 72GB. This configuration is shown in
Figure 16-1.

A different approach is offered by mirroring, with which a logical volume’s contents
are copied in real time to more than one physical device. Thus, four 18GB drives could
be mirrored to provide two completely redundant 18GB volumes. This means that if
one disk fails, its mirror is automatically used to continue to create, read, update, and
delete operations on the file system, while the disk is physically replaced (again, with
no reboot required). This kind of seamless operation requires minimal downtime. This
configuration is shown in Figure 16-2.

344 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

FIGURE 16-1
Striped disk
configuration

Alternatively, the four disks could be configured so that a 36GB striped volume could
be created, combining the capacities of two disks, while the remaining two disks could be
used to mirror this striped volume. Thus, the system is provided with a logical 36GB
volume that also features complete redundancy. This configuration is shown in Figure 16-3.

Six major RAID levels are supported by DiskSuite, the tool used to set up mirrored
and striped virtual file systems on Solaris. RAID Level 0 is the primary striping level and
allows a virtual file system to be constructed of several physical disks. Their capacities
are effectively combined to produce a single disk with a large capacity. In contrast, RAID
Level 1 is the primary mirroring level: all data that is written to the virtual file system

C h a p t e r 1 6 : F i l e S y s t e m a n d V o l u m e M a n a g e m e n t 345

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

FIGURE 16-2
Mirrored disk
configuration

FIGURE 16-3 Striped and mirrored disk configuration

is also copied in real time to a separate physical disk that has the same capacity as the
original. This level has the slowest performance for writes, because all data must be
written twice to two different disks; it also costs the most, because each drive to be
mirrored uses a second drive that cannot be used for any other purpose. However, full
redundancy can be achieved using RAID Level 1, and read performance is very good.

The remaining RAID levels are variations on these two themes. RAID Level 2 is a
secondary mirroring level that uses Hamming codes for error correction. RAID Levels 3
and 4 are secondary striping levels, writing parity information to a single drive, but
writing all other data to multiple physical disks.

In contrast, RAID Level 5 is a striping and mirroring level that allows data, including
parity information, to be written to different disks. RAID 5 offers the best solution for
systems that require both mirroring and striping.

The RAID levels are summarized in Table 16-1.

Procedures
The following procedures are commonly used for installing disks and file systems.

Mounting a File System
The following procedure can be used to mount a local file system:

mkdir /export/home
mount /dev/dsk/c0t3d0s5 /export/home
cd /export/home
mkdir pwatters
ls
pwatters
cd /; umount /export/home

346 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

Level Description

0 Primary striping level, allowing a single virtual file system to be constructed
of multiple physical disks

1 Primary mirroring level, where all data written to a virtual file system is copied
in real time to a separate mirroring disk

2 A secondary mirroring level, which uses Hamming codes for error correction

3 A secondary striping level, which writes parity information to a single drive,
but writes all other data to multiple drives

4 A secondary striping level, which writes parity information to a single drive,
but writes all other data to multiple drives

5 A striping and mirroring level, which allows data to be written to different
disks, including parity information

TABLE 16-1 Commonly Used RAID Levels

C h a p t e r 1 6 : F i l e S y s t e m a n d V o l u m e M a n a g e m e n t 347

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

mkdir /usr/local
mount /dev/dsk/c0t3d0s5 /usr/local
cd /usr/local
ls
pwatters

The mkdir command is used to create mount points, which are equivalent to
directories. If you wish to make a mount point one level below an existing directory,
you can use the mkdir command with no options. However, if you want to make a
mount point several directory levels below an existing directory, you need to pass the
option –p to the mkdir command. For example, the following command creates the
mount point /staff, since the parent / directory already exists:

mkdir /staff

However, to create the mount point /staff/nfs/pwatters, you would use the –p option
if the directory /staff/nfs did not already exist:

mkdir -p /staff/nfs/pwatters

Once a mount point has been created, you use the mount command to attach the
file system to the mount point. For example, to mount the file system /dev/dsk/c0t3d0s5
on the mount point /export/home, you would use the following command:

mount /dev/dsk/c0t3d0s5 /export/home

The mount command assumes that a UFS file system will be mounted. If the target
file system is non-UFS, you need to pass an option specifying the file system type on the
command line by using the –F options. Supported file system types include the following:

• nfs Network File System (NFS)

• pcfs MS-DOS–formatted file system

• s5fs System V–compliant file system

Details of all currently mounted files are kept in the /etc/mnttab file. This file should
never be directly edited by the superuser. The /etc/mnttab file will contain entries similar
to the following:

cat /etc/mnttab
/dev/dsk/c0t0d0s0 / ufs rw,intr,largefiles,suid,dev=1100000 921334412
/proc /proc proc dev=2280000 922234443
fd /dev/fd fd rw,suid,dev=2240000 922234448
mnttab /etc/mnttab mntfs dev=2340000 922234442
swap /tmp tmpfs dev=1 922234451
/dev/dsk/c0t0d0s5 /usr ufs rw,intr,onerror=panic,suid,dev=1100005
922234441

Configuring /etc/vfstab
If you want a disk to be available after reboot, you must create an entry in the virtual
file systems table (/etc/vfstab). An entry like this,

/dev/dsk/c0t3d0s5 /dev/rdsk/c0t3d0s5 /export/home ufs 2 yes -

contains details of the slice’s block and raw devices, the mount point, the file system
type, instructions for fsck, logging, and a flag to force mount at boot. These options
are largely equivalent to those used with the mount command.

All file systems, including floppy disks, can be listed in the virtual file systems
table. The mount point configuration for the floppy drive is typically similar to the
following:

fd - /dev/fd fd - no -

Instead of mounting file systems individually by using the mount command, you
can mount all file systems defined in /etc/vfstab by using the mountall command:

mountall
mount: /tmp already mounted
mount: /dev/dsk/c0t0d0s5 is already mounted

This attempts to mount all listed file systems, and reports file systems that have
previously been mounted. Obviously, file systems that are currently mounted cannot
be mounted twice.

Setting Up RAID
The first step in setting up any kind of RAID system is to install the DiskSuite packages
and prepare the disks for mirroring or striping by formatting them. Primary disks and
their mirrors must be set up with exactly the same partition structure to ensure that
virtual file systems can be created that are compatible with both the primary and mirror.

Once you have installed the DiskSuite packages, you need to prepare disks that
will be used with DiskSuite. This preparation includes creating state database replicas
for virtual file systems used on the system. Ideally, these state database replicas will be
distributed across each controller and/or disk so that maximum redundancy can be
achieved. A small partition must be created on each disk that will contain the state
database (typically around 5MB).

For example, to create a state database replica on the file system /dev/dsk/c1t0d0s7, you
would use the following command:

metadb -c 3 -a -f /dev/dsk/c1t0d0s7 /dev/dsk/c0t0d0s7

348 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

This creates three replicas on each of the two disks specified (/dev/dsk/c1t0d0s7 and /dev
/dsk/c0t0d0s7). Note that two controllers are used rather than one.

If no existing state database replicas can be found, the following message will be
displayed:

metadb: There are no existing databases

Striping
To enable striping, you need to create configurations for the virtual file systems that you
want to use. These can be permanently recorded in the DiskSuite configuration file (md.tab).
For example, the striping configuration shown earlier in Figure 16-1 involving four 18GB
disks could have its configuration recorded with the following entry, assuming the
virtual file system (s5) has the path /dev/md/dsk/d5:

d5 4 1 c1t1d0s5 1 c1t2d0s5 1 c2t1d0s5 1 c2t2d0s5

Here, the four physical disks involved are /dev/dsk/c1t1d0s5, /dev/dsk/c1t2d0s5, /dev/dsk
/c2t1d0s5, and /dev/dsk/c2t2d0s5. To ensure that the virtual file system is mounted at boot
time, it could be included in the /etc/vfstab file, just like a normal file system. Indeed, only
an entry for /dev/md/dsk/d5 should appear in /etc/vfstab after striping is complete, and the
entries for /dev/dsk/c1t1d0s5, /dev/dsk/c1t2d0s5, /dev/dsk/c2t1d0s5, and /dev/dsk/c2t2d0s5
should be commented out.

To initialize the d5 metadevice, use this command:

metainit d5

If this commands succeeds, you simply treat the new metadevice as if it were a new file
system and initialize a UFS on it:

newfs /dev/md/rdsk/d5

Next, you create an appropriate mount point for the device (such as /staff) and mount
the metadevice:

mkdir /staff
mount /dev/md/dsk/d5 /staff

The striped volume d5 is now ready for use.

Mirroring
To create a mirror between two file systems, you follow a procedure similar to creating
an entry in the md.tab file. For example, if you want to create a mirror of /dev/dsk/c1t1d0s5
with /dev/dsk/c0t1d0s5 (note the different controller), you would need to create a virtual

C h a p t e r 1 6 : F i l e S y s t e m a n d V o l u m e M a n a g e m e n t 349

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

350 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

file system (d50) that mirrored the primary file system (d52) to its mirror (d53). You would
need to make the following entries in md.tab:

d50 -m /dev/md/dsk/d52 /dev/md/dsk/d53
d52 1 1 /dev/dsk/c1t1d0s5
d53 1 1 /dev/dsk/c0t1d0s5

To initialize the d5 metadevice, you would use this command:

metainit d50
metainit d52
metainit d53

If this commands succeeds, you simply treat the new metadevice as if it were a new file
system and initialize a UFS on it:

newfs /dev/md/rdsk/d50
newfs /dev/md/rdsk/d52
newfs /dev/md/rdsk/d53

Next, you create an appropriate mount point for the device (such as /work) and
mount the metadevice:

mkdir /work
mount /dev/md/dsk/d50 /work

The mirrored volume d50 is now ready for use. It is also possible to configure RAID
5 using a similar process.

Examples
The following examples provide some real-world cases for installing disks and file
systems.

Using umount
Unmounting local file systems is easy using the umount command. You simply specify
the file system to be unmounted on the command line. For example, to unmount the
file system mounted on /export/home, you would use the following command:

umount /export/home

However, if there are open files on the file system, or users logging into their home
directories on the target file system, it’s obviously a bad idea to unmount the file system

without giving users some kind of notice—in fact, it’s just not possible. It’s also important
to determine whether other processes are using files on the file system. In fact, umount
requires that no processes have files open on the target file system. You can use the
fuser command to determine which users are accessing a particular file system. For
example, to determine whether any processes have open files on the /export/home partition,
you could use the following command:

fuser -c /export/home

To give a listing of the UIDs associated with each process, the following command
could be used:

fuser -c -u /export/home

To warn users about the impending unmounting of the file system, you can use the
wall command to send a message to all logged-in users. For example, the following
message could be sent:

wall
Attention all users
/export/home is going down for maintenance at 6:00 p.m.
Please kill all processes accessing this file system (or I will)

At 6 P.M., a fuser check should show that no processes are accessing the file system.
However, if some users did not heed the warning, the fuser command can be used
to kill all processes that are still active:

fuser -c -k /export/home

This is obviously a drastic step, but it may be necessary in emergency or urgent repair
situations.

To save time, if you wish to unmount all user file systems (excluding /, /proc, /usr,
and /var), you could use the umountall command:

umountall

This command unmounts only file systems that are listed in the virtual file system table,
subject to the aforementioned exclusions.

fsck Operations
This section examines a full run of fsck, outlining the most common problems and
how they are rectified. It also presents some examples of less-commonly encountered
problems.

C h a p t e r 1 6 : F i l e S y s t e m a n d V o l u m e M a n a g e m e n t 351

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

352 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

On a SPARC 20 system, fsck for the / file system looks like this:

** /dev/rdsk/c0d0s0
** Currently Mounted on /
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
FREE BLK COUNT(S) WRONG IN SUPERBLK
SALVAGE?

Clearly, the actual block count and the block count recorded in the superblock are at odds
with each other. At this point, fsck requires superuser permission to install the actual
block count in the superblock, which the administrator indicates by pressing Y.

The scan continues with the /usr partition:

1731 files, 22100 used, 51584 free (24 frags, 6445 blocks,
0.0% fragmentation)

** /dev/rdsk/c0d0s6
** Currently Mounted on /usr
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups

FILE SYSTEM STATE IN SUPERBLOCK IS WRONG; FIX?

In this case, the file system state in the superblock records is incorrect, and again,
the administrator is required to give consent for it to be repaired.

The scan then continues with the /var and /export/home partitions:

26266 files, 401877 used, 217027 free (283 frags, 27093 blocks,
0.0% fragmentation)

** /dev/rdsk/c0d0s1
** Currently Mounted on /var
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
1581 files, 4360 used, 25545 free (41 frags, 3188 blocks,
0.1% fragmentation)

** /dev/rdsk/c0d0s7

** Currently Mounted on /export/home
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
2 files, 9 used, 7111589 free (13 frags, 888947 blocks,
0.0% fragmentation)

Obviously, the /var and /export/home partitions have passed examination by fsck and are
intact. However, the fact that the / and /usr file systems were in an inconsistent state
suggests that the file systems were not cleanly unmounted, perhaps during the last
reboot. Fortunately, the superblock itself was intact. However, this is not always the case.

In the following example, the superblock of /dev/dsk/c0t0d0s2 has a bad “magic
number,” indicating that it is damaged beyond repair:

fsck /dev/dsk/c0t0d0s2
BAD SUPER BLOCK: MAGIC NUMBER WRONG
USE ALTERNATE SUPER-BLOCK TO SUPPLY NEEDED INFORMATION

eg. fsck [-F ufs] -o b=# [special ...]
where # is the alternate super block. SEE fsck_ufs(1M).

In this case, you need to specify one of the alternative superblocks that were created
by the newfs command. When a file system is created, a message appears about the
creation of superblock backups:

super-block backups (for fsck -b #) at:
32, 5264, 10496, 15728, 20960, 26192, 31424, 36656, 41888,
47120, 52352, 57584, 62816, 68048, 73280, 78512, 82976, 88208,
93440, 98672, 103904, 109136, 114368, 119600, 124832, 130064,
135296, 140528, 145760, 150992, 156224, 161456.

In the preceding example, you may need to specify one of these alternative superblocks
so that the disk contents are once again readable. If you didn’t record the superblock
backups during the creation of the file system, you can easily retrieve them by using
the newfs command (and using –N to prevent the creation of a new file system):

newfs -Nv /dev/dsk/c0t0d0s2

Once you have determined an appropriate superblock replacement number (which
should be a higher number, to prevent overwriting, such as 32 in this example), use fsck
again to replace the older superblock with the new one:

fsck -o b=32 /dev/dsk/c0t0d0s2

C h a p t e r 1 6 : F i l e S y s t e m a n d V o l u m e M a n a g e m e n t 353

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

354 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

Disks that have physical hardware errors often report being unable to read inodes
beyond a particular point. For example, this error message

Error reading block 31821 (Attempt to read from file system
resulted in short read) while doing inode scan. Ignore error
<y> ?

stops the user from continuing with the fsck scan and correcting the problem. This
is probably a good time to replace a disk rather than attempt any corrective action.
Never be tempted to ignore these errors and hope for the best—especially in commercial
organizations; you will ultimately have to take responsibility for lost and damaged data.
Users will be particularly unforgiving if you had advance warning of a problem.

Here is an example of what can happen if a link count problem exists:

fsck /
** /dev/rdsk/c0t1d0s0
** Currently Mounted on /
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
LINK COUNT DIR I=4 OWNER=root MODE=40700
SIZE=4096 MTIME=Nov 1 11:56 1999 COUNT 2 SHOULD BE 4
ADJUST? y

If the adjustment does not fix the error, use find to track down the problem file
and delete it:

find / -mount -inum 4 -ls

The problem file should be in the lost+found directory for the partition in question
(in this case, /lost+found).

Having duplicate inodes can also create a problem:

** Phase 1 - Check Blocks and Sizes
314415 DUP I=5009
345504 DUP I=12011
345505 DUP I=12011
854711 DUP I=91040
856134 DUP I=93474
856135 DUP I=93474

C h a p t e r 1 6 : F i l e S y s t e m a n d V o l u m e M a n a g e m e n t 355

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

This problem is often encountered in systems using Solaris 2.5 and 2.6, although the
problem is not usually seen in systems running Solaris 7, 8, or 9; an upgrade may
correct the problem.

Command Reference
The following command is typically used to manage volumes and file systems.

mount
The mount command, executed without any options, provides a list of all mounted file
systems:

mount
/ on /dev/dsk/c0t0d0s0 read/write/setuid/intr/largefiles/onerror=

panic on Tue Jul 10 09:10:01 2001
/usr on /dev/dsk/c0t0d0s6 read/write/setuid/intr/largefiles/

onerror=panic on Tue Jul 10 09:10:02 2001
/proc on /proc read/write/setuid on Tue Jul 10 09:10:03 2001
/etc/mnttab on mnttab read/write/setuid on Tue Jul 10 09:10:04 2001
/tmp on swap read/write/setuid on Tue Jul 10 09:10:05 2001
/export/home on /dev/dsk/c0t0d0s7 read/write/setuid/intr/largefiles

/onerror=panic on Tue Jul 10 09:10:06 2001

The mount command has several options, which are described next. These can also
be used to specify mounting options in /etc/vfstab.

bg Specifies to continue to attempt mounting in the background if mounting initially
fails. Useful for mounting NFS volumes where the server is temporarily unavailable.
The default is fg, which attempts to mount in the foreground.

hard Specifies that hard mounting will be attempted, where requests to mount are
continually sent. The alternative is soft, which just returns an error message.

intr Allows keyboard commands to be used during mounting. To switch this off,
use nointr.

largefiles Enables support for large file systems (those greater than 2GB). To remove
support for large file systems, use the nolargefiles option.

logging Allows a log of all UFS transactions to be maintained. In the event of a system
crash, you can consult the log and verify all transactions. This virtually eliminates
the need to run lengthy fsck passes on file systems at boot. The default option
is nologging, because logs occupy around 1 percent of file system space.

noatime Prevents access timestamps from being touched on files. This significantly speeds
up access times on large file systems with many small files.

remount Permits a file system’s properties to be modified while it is still mounted,
reducing downtime.

retry Specifies the number of attempts that should be made to remount a file system.

rw Specifies that the file system is to be mounted as read-write. Some file systems,
however, are read-only (such as CD-ROMs). In such cases, the ro option should
be specified (writing to a read-only file system is not physically possible).

suid Permits set user ID applications to be executed from the file system, while nosuid
prevents set user ID applications from executing. This is an important feature that
can be used to prevent misuse of SUID by ordinary systems users. It overrides
the suid bit on files.

Summary
In this chapter, you have examined how to implement advanced file system repair and
integrity checking, and how to configure RAID. Most enterprise systems use RAID to
ensure high availability, especially in a shared disk environment.

356 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 16

17
Backup and Recovery

Software and hardware failures are an unfortunate fact of life in the IT industry, and
panic can result when missing or corrupt data is revealed during a peak service
period. However, a system crash or a disk failure should not be a cause for alarm:

instead, it should be the signal to a well-armed and well-prepared administrator to
determine the cause of the problem, rectify any hardware faults, and restore any lost
data by using a recovery procedure. This general procedure can be followed regardless
of whether user files or database tables have been lost or corrupted.

Fortunately, Solaris provides a wide variety of backup and restore software that can
be used in conjunction with any number of media—for example, magnetic and digital
audio tapes, writeable CD-ROMs, DVDs, and redundant hard drives. This chapter
examines the development and implementation of snapshot, backup and recovery
procedures with Solaris and reviews some of the popular backup and recovery freeware
and commercial tools.

Key Concepts
The following concepts are required knowledge for implementing efficient backup and
recovery services.

Understanding Backups
In many company networks, valuable data is stored on Solaris server systems in user
files and database tables. The variety of information stored is endless: personnel files,
supplier invoices, receipts, and all kinds of intellectual property. In addition, many
organizations provide some kind of service that relies on server uptime and information
availability to generate income or maintain prestige. For example, if a major business-
to-consumer Web site like Amazon.com or business-to-business hub like Office.com
experiences downtime, every minute that the system is unavailable costs money in lost
sales, frustrated consumers, and reduced customer confidence. On the other hand, a
government site such as the Government Accountability Office (http://www.gao.gov/)
provides valuable advice to government, business, and consumers, and is expected to

3 5 7

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17
Blind Folio 357

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

be available continuously. The reputation of online service providers can suffer greatly
if servers go down. It is not enough, however, to ensure that a service is highly available;
the data it provides also needs to be valid, which is why regular data backup needs
to occur.

On a smaller scale, but just as significant, is a department server, which might provide
file serving, authentication services, and print access for several hundred PC systems
or Sun Rays. If the server hard disk crashes, the affected users who can’t read their mail or
retrieve their files are going to be inconvenienced if system data cannot be restored in
a timely fashion.

This chapter examines the background and rationale for providing a reliable backup
and restore service that will ensure a high level of service provision, even in the event
of hardware failure.

Analyzing Backup Requirements
The first requirement of a backup service is the ability to restore a dysfunctional system
to a functional state as quickly as possible. The relationship between time of restoration
and user satisfaction is inverse, as shown in Figure 17-1: the longer a restore takes, the
angrier users will become, while the rapid restoration of service will give users confidence.
For this reason, many sites take incremental backups of their complete file systems each
night but may take a weekly “full dump” snapshot that can be used to rapidly rebuild
an entire system from a single tape or disk.

The second requirement for a backup service is data integrity: it is not sufficient just
to restore some data and hope that it’s close enough to the original. It is essential that
all restored data actually be usable by applications as if no break in service had occurred.
This is particularly important for database applications that may have several kinds of
files associated with them. Table indices, data files, and rollback segments must all be

358 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

FIGURE 17-1
The relationship
between time to
restore and user
satisfaction

synchronized if the database is to operate correctly, and user data must be consistent
with the internal structure and table ownership rights. If files are simply backed up onto
disk while the database is open, these files can be restored, but the database system may
not be able to use them.

It is essential that you understand the restoration and data integrity requirements for
all key applications on your system and identify any risks to service provision associated
with data corruption. Thus, a comprehensive backup and restore plan should include
provision for regular cold and warm dumps of databases to a file system that is regularly
backed up.

A third requirement for a backup and restore service is flexibility: data should be
recorded and compressed on media that can potentially be read on a different machine,
using a different operating system. In addition, using alternative media for concurrent
backups is also useful for ensuring availability in case of hardware failure of a backup
device. For example, you may use a CD-ROM as your main backup device for nightly
incremental backups, but you may also decide to use a DDS-3 DAT tape drive to create
a full dump of the database on a weekly basis. If your server is affected by a power surge,
the DAT drive is damaged, and a replacement will take one week to arrive, you can use
the CD-ROM dump as a fallback, even though it may not be completely up-to-date.

Determining a Backup Strategy
Typical backup and restore strategies employ three related methods for recording data
to any medium:

• Full dumps

• Incremental dumps

• Snapshots

A full dump involves taking a copy of an entire file system, or set of file systems,
and copying it to a backup medium. Historically, large file systems take a long time to
back up because of slow tape speeds and poor I/O performance, which can be improved
by using the incremental method.

An incremental dump is an iterative method that involves taking a baseline dump
on a regular basis (usually once every week) and then taking another dump of only
those files that have changed since the previous full dump. Although this approach may
require the maintenance of complex lists of files and file sizes, it reduces the overall
time to back up a file system because, on most file systems, only a small proportion of
the total number of files changes from week to week. This reduces the overall load on the
backup server and improves tape performance by minimizing friction on drive heads.
However, using incremental backups can increase the time to restore a system, as up to
seven (one for each day of the week) backup tapes must be processed to restore data
files fully. Seven tapes are required so that a single tape can be assigned to each day.
Therefore, using incremental dumps enables you to strike a balance between convenience
and the requirement for a speedy restore in the event of an emergency. Many sites use a

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 359

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

360 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

combination of incremental and full daily dumps on multiple media to ensure that full
restores can be performed rapidly and to ensure redundant recording of key data.

A snapshot is a very fast way to store recovery metadata for a UNIX File System (UFS)
on a raw device or within an existing file system. Every time a change is made to data
or metadata on the “snapped” file system, the original data is copied to the snapshot
copy before the modification is processed. This means that if you overwrite or delete a
file accidentally, you can easily retrieve it from the snapshot; so, a snapshot is more like
a backup that occurs in real time. A snapshot is incremental, too, because it only occurs
when data changes. Using snapshots for retrieval is much faster than going to backup
tapes, because the data is stored on a mounted file system. However, as you can appreciate,
if your disk contents change frequently, then a large amount of online storage is required
to implement snapshotting.

After deciding on an incremental or full dump backup strategy, and appropriate
use of snapshots, you need to plan how backups can be integrated into an existing
network. There are four possible configurations that can be considered: The simplest
approach is to attach a single backup device to each server so that the server acts as its
own backup host:

This approach is appealing because it allows data to be backed up and restored using
the same device, without any requirement for network connectivity. However, this
architecture has poor scaling capacity and does not provide for redundancy through
the use of multiple backup devices. This can be rectified by including multiple backup
devices for a single host:

The cost of maintaining single or multiple backup devices for each server in an
organization can be expensive. To reduce cost, many organizations centralize the
management and storage of data for entire departments or sites on a single server.
This approach is shown in Figure 17-2.

In this configuration, multiple client machines’ hard drives are backed up to a central
Solaris server, which can also be attached to multiple backup devices to provide various
levels of redundancy for more- or less-significant data. For example, data from user PCs
may not require the double or triple redundancy that financial records need. The freeware
software product AMANDA, reviewed later in this chapter, is ideal for backing up
multiple clients through a single server.

In recent years, storage area networks (SANs) have been employed to solve wide
area storage problems. In a SAN, backup management and data storage is distributed
across multiple backup hosts and devices. Thus, a client’s data could potentially be stored
on many different backup servers, and management of that data could be performed
from a remote manager running on the client. This configuration is shown in Figure 17-3.

For example, a VERITAS client for Windows called Backup Exec can connect to
many different Solaris servers through a Server Message Block (SMB), backing up data
to multiple mediums. Other server-side packages, such as Legato NetWorker, offer
distributed management of all backup services. Both products are reviewed later in this
chapter. New to the game are Sun’s Java-based Jiro and Jini technologies, which implement
the proposed Federated Management Architecture (FMA) standard. FMA is a proposal

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 361

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

FIGURE 17-2
Centralized backup
server with multiple
storage devices

FIGURE 17-3
Distributed storage
and management
of backup services

362 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

for implementing distributed storage across networks in a standard way, and it is receiving
support from major hardware manufacturers such as Hitachi, Quantum, VERITAS, and
Fujitsu for future integration with their products. More information on Jiro and FMA
can be found at http://www.jiro.com/.

Selecting Backup Tools
If you want to use anything other than the standard UNIX backup tools, many freeware
and commercial packages are available, depending on what facilities you require. For
example, the AMANDA freeware program centralizes the storage and control for backup
and restore of remote machines. However, it does not support distributed storage, in
which the two commercial vendors, VERITAS Software and Legato Systems, specialize.
VERITAS Software and Legato Systems are far and away the leading vendors in the
automated enterprise-wide backup and restore application arena, since they provide
failover and clustering capabilities along with backup and restore.

AMANDA
AMANDA, the Advanced Maryland Automatic Network Disk Archiver, is a backup
system that follows the scheme of using a centralized backup server for multiple clients,
shown previously in Figure 17-2. It can back up client drives from any operating system
that supports SMB, including Solaris, Linux, and Windows NT clients. Although
AMANDA was designed to operate with a single tape drive, it can be configured to
use multiple tape drives and other backup devices.

One advantage of AMANDA over other backup systems is that it provides
management of native Solaris backup and restore commands; this means that
AMANDA backup files are tar files that can be manually extracted and viewed without
using the AMANDA system if it is not available for some reason. This is particularly
significant for full dumps that must be restored to a “green fields” server that does not yet
have AMANDA installed. AMANDA can be downloaded from http://www.amanda.org,
and answers to questions are available at http://amanda.sourceforge.net/fom-serve/
cache/1.html.

The AMANDA approach to backups is a solution based on cron scheduling of tar
commands: It has an efficient scheduling and storage management system that involves
spooling both incremental and full dumps to a “holding disk” on the backup server.
The data is not written directly to the backup device, so a better logical separation exists
between the preparation of backup files and the actual recording process. This separation
is particularly important when using CD-R (CD-recordable) technology, because of the
buffer overrun problem: If data is not made available to the CD-R device quickly enough,
it fails to write a track, and the disc is wasted because data cannot be rewritten to it. If the
backup file is prepared in advance on the holding disk, most of the overhead involved
in copying the backup file to the backup device is removed.

AMANDA’s other advantage is its efficient scheduling of dumps to the backup
device. Simply performing an incremental dump each night, followed by a Sunday

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 363

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

night full dump, is wasteful because only a few files may have changed on the server.
While this approach is standard among many backup programs, AMANDA introduces
the concept of a dump cycle, which minimizes the total number of dumps performed by
estimating the time taken to dump any particular file. It attempts to balance total backup
times across different days, based on past performance of a particular device.

While this feature is efficient, it may seem initially confusing to many administrators.
Unfortunately, it is not possible to set up AMANDA in the traditional way, whereby a full
dump is performed on weekends and incremental dumps are performed each weeknight,
and this may be inappropriate for organizations that have a strict policy regarding backup
scheduling. In addition, AMANDA has a further limitation in that it cannot back up a
file system that is larger than the size of a single backup medium; for large disks (18GB
and larger), AMANDA may be used only with the latest Digital Audio Tapes (DATs) and
Digital Linear Tapes (DLTs), and not with quarter-inch cartridge (QIC) tapes or CD-R
technology. While small drives and partitions can be backed up using these devices, it
is obviously a limitation for organizations with large data-handling requirements.

Legato NetWorker
Legato’s NetWorker storage management product is a commercial product that is often
supplied with database server packages like Oracle. It is similar to AMANDA in that it
prefers centralized over distributed control of all backup resources, in contrast to the
VERITAS product, which is reviewed next. However, unlike AMANDA, multiple backup
servers can exist as long as they are controlled by a central backup server. This approach
was outlined in Figure 17-3. NetWorker is well known for its ability to back up data from
and restore data to different clients, even those running different operating systems. This
feature can be useful, for example, when you’re upgrading client operating systems
migrating from Linux to Solaris, because a complete reinstall of user packages and files
is not necessary; they can be simply retrieved from a central NetWorker server.

To make it easy for Windows and other PC users to integrate neatly within an
enterprise server environment, Legato also supplies a Windows NT client, which is
shown in Figure 17-4.

For more information about Legato products, visit http://www.legato.com/.

VERITAS NetBackup
While AMANDA is focused on a single backup server that provides services to many
clients, VERITAS provides a distributed backup management system, known as
NetBackup, which can be used to process terabytes of data from many different clients
across many different backup servers and multiple devices. This is similar to the approach
outlined in Figure 17-3 and is aimed at maximizing the utilization of existing resources,
such as tape drives and CD-R devices, no matter where they are located on a corporate
intranet or even across the Internet. In addition, NetBackup provides the greatest amount

of choices for clients, who can seamlessly manage their own backups across multiple
hosts and devices.

NetBackup also includes support for many server-side database systems, such as
Oracle, dispensing with the need to perform separate warm dumps to backed-up files.
NetBackup uses a set of storage rules on the server side to determine how files and data
sources of various types are managed. These can be configured remotely by network
administrators from any client that has access to the backup servers. VERITAS, like
Legato, supplies several clients that make it easier for PC clients to operate within a
larger storage management framework.

Backup Exec is the VERITAS Windows NT client that can be used to back up local
files to a remote server running NetBackup. Figure 17-5 shows the easy-to-use interface
for the Backup Exec client.

Similar to RAID, backup devices can be used concurrently to store data from different
clients transparently through multiplexing; there is a logical separation between the client
and what storage may be optimal with respect to the particular strengths and weaknesses
of any one server. In addition, load can be balanced much more evenly across backup
devices without concern for the capacity of any one particular drive. Thus, unlike
AMANDA, it is easy to back up a single large partition using NetBackup.

Further information about NetBackup can be found at http://www.veritas.com/.

364 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

FIGURE 17-4 Legato NetWorker client

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 365

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

Procedures
The following procedures should be followed to perform backup and restore operations.

Selecting a Backup Medium
When selecting a backup medium, you should always attempt to best meet the
requirements of rapid restoration, data integrity, and flexibility. The following are
the four main media currently in use:

• Tapes

• Disk drives

• CD writing and rewriting technologies (CD-R and CD-RW)

• DVD writing and rewriting technologies (DVD-R and DVD-RW)

FIGURE 17-5 VERITAS Backup Exec client

366 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

Capacity and reliability criteria must also be considered: for example, while tapes
are generally considered reliable for bulk storage, tape drives are much slower than a
hard drive. However, a 20GB tape is much cheaper than an equivalent-capacity hard
drive; the cost of any backup solution must be weighed against the value of the data
being stored. It is also important to consider the size of the data being backed up, and
how often data changes on a hard disk. These parameters affect how large the tapes need
to be to store incremental dumps. For more information on choosing a bulk storage device,
see the FAQ for the USENET forum comp.arch.storage at http://alumni.caltech.edu/
~rdv/comp-arch-storage/FAQ-1.html.

Tapes
Solaris supports tape drives from the old archive QIC 150 1/4-inch tape drives (with
a maximum 250MB capacity), up to modern DAT and DLT systems. A QIC is a low-
end drive that takes a two-reel cassette; QICs were used widely in many early Sun
workstations. DAT tapes for Digital Data Storage 2 (DDS-2) drives have a capacity of 4
to 8GB, while tapes for the newer DDS-3 standard have 12 to 24GB capacity, depending
on compression ratios. DDS-2 drives can typically record between 400 and 800 KBps,
again depending on compression ratios. The transition from analog to digital encoding
methods has increased the performance and reliability of tape-based backup methods,
and they are still the most commonly used methods today. On the other hand, DLT drives
have been popular in the enterprise because of their very large storage capacities: for
example, a Compaq 1624 DLT drive can store from 35 to 70GB, depending on compression,
which is much more than DAT drives can store. DLT drives also feature much higher
transfer rates of from 1.25 to 2.5 Mbps. Of course, DLT drives are more expensive than
DAT drives, and DAT drives have always been more costly than a QIC, although a QIC
is generally much too small to be useful for most systems today. Today’s new technologies,
such as Advanced Intelligent Tape (AIT), Linear Tape-Open (LTO), and SuperDLT (SDLT),
have capacities and transfer speeds of a few hundred gigabytes per tape—equal to the
performance and capacities of the hard disks used ten years ago.

Hard Drives
Because hard drives have the fastest seek times of all backup media, they are often used
to store archives of user files that are copied from client drives using an SMB protocol
service. In addition, hard drives form the basis of RAID systems. Thus, an array of RAID
drives can work together as a single, logical storage device, collectively acting as a single
storage system that can withstand the loss of one or more of its constituent devices. For
example, if a single drive is damaged by a power surge, depending on the level of RAID
protection, your system may be able to continue its functions with a minimum of
administrator interference, with no impact on functionality, until the drive is replaced.

Many systems now support hot swapping of drives, so that the faulty drive can
be removed and replaced, with the new drive coming seamlessly online. You may be
wondering, in the days of RAID, why would anybody consider still using backups: the
answer is that entire RAID arrays are just as vulnerable to power surges as a single drive,

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 367

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

so in the event of a full hardware failure, all of your data could still be lost unless it is
stored safely offsite on a tape or CD-ROM. To circumvent concurrent drive corruption
at the end of a disk’s life, many administrators use drives of equivalent capacities from
different manufacturers, some new and some used, in a RAID array. This ensures that
drives are least likely to fail concurrently.

RAID Levels 0 and 1 are most commonly used. RAID Level 0 involves parallelizing
data transfer between disks, spreading data across multiple drives, thereby improving
overall data transmission rates. This technique is known as striping. However, while
RAID Level 0 can write multiple disks concurrently, it does not support redundancy,
which is provided with RAID Level 1. This level makes an identical copy of a primary
disk onto a secondary disk. This kind of mirroring provides complete redundancy: if
the primary disk fails, the secondary disk is able to provide all data contained on the
primary disk. Because striping and mirroring consume large amounts of disk space, they
are costly to maintain per megabyte of actual data. Thus, higher RAID levels attempt to
use heuristic techniques to provide similar functionality to the lower RAID levels, while
reducing the overall cost. For example, RAID Level 4 stores parity information on a
single drive, which reduces the overall amount of disk space required but is more risky
than RAID Level 1.

Software RAID solutions typically support both striping and mirroring. This speeds
up data writing and makes provisions for automating the transfer of control from the
primary disk to the secondary disk in the event of a primary disk failure. In addition,
many software solutions support different RAID levels on different partitions on a disk,
which may also be useful in reducing the overall amount of disk space required to store
data safely. For example, while users might require access to a fast partition using RAID
Level 0, another partition may be dedicated to a financial database that requires mirroring
(thus RAID Level 1). Sun’s DiskSuite product is currently one of the most popular
software RAID solutions.

Alternatively, custom hardware RAID solutions are also proving popular, because
of the minimal administrative overhead involved with installing and configuring such
systems. While not exactly “plug and play,” external RAID arrays such as the StorEdge
A1000 include many individual disks that can be used to support both mirroring and
striping, with data transfer rates of up to 40 Mbps. In addition, banks of fast-caching
memory (up to 80MB) speed up disk writes by temporarily storing them in RAM before
writing them to one or more disks in the array. This makes the RAID solution not only
safe but significantly faster than a normal disk drive.

CD-R, CD-RW, DVD-R, and DVD-RW
CD writing and rewriting devices are rapidly gaining momentum as desktop backup
systems that are cheap, fast, and, in the case of CD-RW, reusable. CD-R and CD-RW
devices are reviewed in Chapter 14. These devices serve two distinct purposes in backup
systems: while CD-RW discs are useful for day-to-day backup operations because they
can be reused, CD-R technology is more useful for archiving and auditing purposes.
For example, many organizations outsource their development projects to third-party

contractors; in such a case, it is useful for both the contractor and the client to have an
archival copy of what has been developed, in case there is some later disagreement
concerning developmental goals and milestones. On the other hand, contracts involved
with government organizations may require regular snapshots to satisfy auditing
requirements. Since CD-R is a write-once, read-only technology, it is best suited to this
purpose. CD-R is wasteful as a normal backup medium, because CD-Rs can be used
only once. CD-RWs can be rewritten hundreds of times, with more than 600MB of
storage capacity.

DVD-R and DVD-RW are now replacing CD-R and CD-RW as the main distribution
and backup media, respectively, for Solaris. These discs have approximately 4.7GB
capacity in a single-layer drive, and more than 9GB in a dual-layer drive. While originally
intended for storing video data, DVD-R and DVD-RW can now store any type of data.

Backup and Restore
Backup and restore software falls into three categories:

• Standard Solaris tools like tar, dd, cpio, ufsdump, and ufsrestore. These
tools are quite adequate for backing up single machines with multiple backup
devices.

• Centralized backup tools like AMANDA and Legato NetWorker, which are useful
for backing up multiple machines through a single backup server.

• Distributed backup tools like VERITAS NetBackup, which are capable of remotely
managing storage for multiple machines.

This section examines the standard Solaris backup and restore tools that are generally
used for single machines with one or two backup devices. In addition, these tools are
often useful for normal users to manage their own accounts on the server. For example,
users can create tape archives using the tar command, whose output can be written to
a single disk file. This is a standard way of distributing source trees in the Solaris and
broader UNIX community. Users can also make copies of disks and tapes using the dd
command. It is also possible to back up database files in combination with standard
Solaris tools. For example, Oracle server is supplied with an exp utility, which can be
used to archive the database while it is still running:

exp system/manager FULL=Y

Here, system is the username for an administrator with DBA privileges, and manager is
the password. This will create a file called expat.dmp, which can then be scheduled to be
backed up every night using a cron job, like so:

0 3 * * * exp system/manager FULL=Y

368 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 369

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

Some sites take full data dumps every night, which involves transferring an entire
file to a backup medium. This produces a small amount of system overhead if the archive
is only a few megabytes in size, but for a database with a tablespace of 50GB, this would
place a great strain on a backup server, especially if it is being used for other purposes.
Thus, it might be more appropriate to take an incremental dump that records only data
that has changed. Incremental dumps will be discussed later in the “Using ufsdump
and ufsrestore” section.

Using tar
The tar (“tape archive”) command is used to create a tape archive or to extract the files
contained on a tape archive. Although tar was originally conceived with a tape device
in mind, any device can hold a tar file, including a normal disk file system. This is why
many users have adopted tar as their standard archiving utility, even though it does
not perform compression like the Zip tools for PCs. Tape archives are easy to transport
between systems using FTP or secure copy in binary transfer mode, and they are the
standard means of exchanging data between Solaris systems.

As an example, the following script creates a tar file of the /opt/totalnet package.
First, it checks the potential size of the tape archive by using the du command:

$ cd /opt/totalnet
$ du
4395 ./bin
367 ./lib/charset
744 ./lib/drv
434 ./lib/pcbin
777 ./lib/tds
5731 ./lib
5373 ./sbin
145 ./man/man1
135 ./man/man1m
281 ./man
53 ./docs/images
56 ./docs
15837 .

The estimated size of the archive is therefore 15,387 blocks. This could also have been
achieved by using the command du –s, which just computes the size, without printing
details of directory sizes. To create a tape archive in the /tmp directory for the whole
package, including subdirectories, you would execute the following command:

tar cvf /tmp/totalnet.tar *
a bin/ 0K
a bin/atattr 54K
a bin/atconvert 58K
a bin/atkprobe 27K

a bin/csr.tn 6K
a bin/ddpinfo 10K
a bin/desk 17K
a bin/ipxprobe 35K
a bin/m2u 4K
a bin/maccp 3K
a bin/macfsck 3K
a bin/macmd 3K
a bin/macmv 3K
a bin/macrd 3K
a bin/macrm 3K
a bin/nbmessage 141K
a bin/nbq 33K
a bin/nbucheck 8K
a bin/ncget 65K
a bin/ncprint 66K
a bin/ncput 65K
a bin/nctime 32K
a bin/nwmessage 239K
a bin/nwq 26K
a bin/pfinfo 70K
a bin/ruattr 122K
a bin/rucopy 129K
a bin/rudel 121K
a bin/rudir 121K
a bin/ruhelp 9K
a bin/u2m 4K
a bin/rumd 120K
a bin/rumessage 192K
a bin/ruprint 124K
a bin/rurd 120K
a bin/ruren 121K
...

To extract the tar file’s contents to disks, execute the following command:

cd /tmp
tar xvf totalnet.tar

x bin, 0 bytes, 0 tape blocks
x bin/atattr, 54676 bytes, 107 tape blocks
x bin/atconvert, 58972 bytes, 116 tape blocks
x bin/atkprobe, 27524 bytes, 54 tape blocks
x bin/csr.tn, 5422 bytes, 11 tape blocks
x bin/ddpinfo, 9800 bytes, 20 tape blocks
x bin/desk, 16456 bytes, 33 tape blocks
x bin/ipxprobe, 35284 bytes, 69 tape blocks
x bin/m2u, 3125 bytes, 7 tape blocks
x bin/maccp, 2882 bytes, 6 tape blocks

370 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

P:\010Comp\CompRef8\998-5\ch17.vp
Monday, December 20, 2004 9:32:38 AM

Color profile: Disabled
Composite Default screen

x bin/macfsck, 2592 bytes, 6 tape blocks
x bin/macmd, 2255 bytes, 5 tape blocks
x bin/macmv, 2866 bytes, 6 tape blocks
x bin/macrd, 2633 bytes, 6 tape blocks
x bin/macrm, 2509 bytes, 5 tape blocks
x bin/nbmessage, 143796 bytes, 281 tape blocks
x bin/nbq, 33068 bytes, 65 tape blocks
x bin/nbucheck, 7572 bytes, 15 tape blocks
x bin/ncget, 66532 bytes, 130 tape blocks
x bin/ncprint, 67204 bytes, 132 tape blocks
x bin/ncput, 65868 bytes, 129 tape blocks
x bin/nctime, 32596 bytes, 64 tape blocks
x bin/nwmessage, 244076 bytes, 477 tape blocks
x bin/nwq, 26076 bytes, 51 tape blocks
x bin/pfinfo, 71192 bytes, 140 tape blocks
x bin/ruattr, 123988 bytes, 243 tape blocks
x bin/rucopy, 131636 bytes, 258 tape blocks
x bin/rudel, 122940 bytes, 241 tape blocks
x bin/rudir, 123220 bytes, 241 tape blocks
x bin/ruhelp, 8356 bytes, 17 tape blocks
x bin/u2m, 3140 bytes, 7 tape blocks
x bin/rumd, 122572 bytes, 240 tape blocks
x bin/rumessage, 195772 bytes, 383 tape blocks
x bin/ruprint, 126532 bytes, 248 tape blocks
x bin/rurd, 122572 bytes, 240 tape blocks
x bin/ruren, 123484 bytes, 242 tape blocks
...

Tape archives are not compressed by default in Solaris. However, they could be
compressed with the normal Solaris compress utility:

$ compress file.tar

This will create a compressed file called file.tar.Z. Alternatively, the GNU gzip utility
often achieves better compression ratios than a standard compress, so it should be
downloaded and installed. When executed, the gzip command creates a file call
file.tar.gz:

$ gzip file.tar

Although Solaris does come with tar installed, it is advisable to download, compile,
and install GNU tar, because of the increased functionality that it includes with respect
to compression. For example, to create a compressed tape archive file.tar.gz, use the z flag
in addition to the normal cvf flags:

$ tar zcvf file.tar *

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 371

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

Using cpio
cpio is used for copying file archives and is much more flexible than tar, because a
cpio archive can span multiple volumes. cpio can be used in three different modes:

• Copy in mode (cpio –i) Extracts files from standard input, from a stream
created by cat or similar

• Copy out mode (cpio –o) Obtains a list of files from standard input and
creates an archive from these files, including their path name

• Copy pass mode (cpio –p) Equivalent to copy out mode, except that no
archive is actually created

The basic idea behind using cpio for archiving is to generate a list of files to be
archived, print it to standard output, and then pipe it through cpio in copy out mode.
For example, to archive all the text files in your home directory and store them in an
archive called myarchive in the /staff/pwatters directory, you would use this command:

$ find . -name '*.txt' -print | cpio -oc > \
/staff/pwatters/myarchive

Recording headers in ASCII is portable and is achieved by using the –c option. When
the command completes, the number of blocks required to store the files is reported:

8048 blocks

The files themselves are stored in text format with an identifying header, which you
can examine with cat or head:

$ head myarchive
0707010009298a00008180000011fc0000005400000001380bb9b600001e9b0
00000550000000000000000000000000000001f00000003Directory/file.
txtThe quick brown fox jumps over the lazy dog.

Since recording headers in ASCII is portable, files can actually be extracted from the
archive by using the cat command:

$ cat myarchive | cpio -icd "*"

This extracts all files and directories as required (specified by using the–d option). It
is just as easy to extract a single file. To extract Directory/file.txt, you use this command:

$ cat myarchive | cpio -ic "Directory/file.txt"

If you are copying files directly to tape, it is important that you use the same blocking
factor when you retrieve or copy files from the tape to the hard disk that you used when

372 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

you copied files from the hard disk to the tape. If you use the defaults, there should be no
problems, although you can specify a particular blocking factor by using the –B directive.

Using dd
The dd program copies raw disk or tape slices block-by-block to other disk or tape slices;
it is like cp for slices. It is often used for backing up disk slices to other disk slices and/or
to a tape drive, and for copying tapes. To use dd, you must specify an input file, if, an
output file, of, and a block size. For example, to copy the root partition (/) on /dev/rdsk/
c1t0d0s0 to /dev/rdsk/c1t4d0s0, you can use this command:

dd if=/dev/rdsk/c1t0d0s0 of=/dev/rdsk/c1t4d0s0 bs=128k

To make the new partition bootable, you also need to use the installboot command
after dd. Another use for dd is to back up tape data from one tape to another tape. This
is particularly useful for re-creating archival backup tapes that may be aging. For example,
to copy from tape drive 0 (/devrmt/0) to tape drive 2 (/dev/rmt/2), use this command:

dd if=/dev/rmt/0h of=/dev/rmt/1h

It is also possible to copy the contents of a floppy drive by redirecting the contents
of the floppy disk and piping it through dd:

dd < /floppy/floppy0 > /tmp/floppy.disk

Taking a Snapshot
The Solaris command for taking snapshots is fssnap. The following example shows
a snapshot stored in the “backing-store” of /snap for the / file system:

fssnap -o backing-store=/snap /
/dev/fssnap/0

The path to the backing-store can be a local file system, or even one remotely mounted
over NFS to a RAID file system, providing high availability and large amounts of storage
for remote systems on a central server. The preceding operation can be repeated for each
of the file systems you want to snap, as shown next for the /export file system:

fssnap -o backing-store=/snap /export
/dev/fssnap/1

To examine the status of the snapshot, you can use the enquiry mode of fssnap:

fssnap -i /
Snapshot number : 0
Block Device : /dev/fssnap/0

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 373

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

374 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

Raw Device : /dev/rfssnap/0
Mount point : /
Device state : idle
Backing store path : /snap/snapshot0
Backing store size : 4096 KB
Maximum backing store size : Unlimited
Snapshot create time : Wed Jun 30 12:05:02 2004
Copy-on-write granularity : 64 KB

If you don’t have access to a RAID system for storing snapshots, you can always
archive them using a normal ufsdump backup, as shown next for the / file system
snapshot:

ufsdump 0cu /dev/rmt/0 'fssnap -F ufs -o raw,bs=/snap,unlink /dev/rdsk/c0t0d0s0'

Examples
The following examples show how to perform backup and restore operations.

Using ufsdump and ufsrestore
ufsdump and ufsrestore are standard backup and restore applications for UNIX file
systems. ufsdump is often set to run from cron jobs late at night to minimize load on
server systems. ufsrestore is normally run in single-user mode after a system crash.
ufsdump can be run on a mounted file system; however, it may be wise to unmount it
first, perform a file system check (using fsck), remount it, and then perform the backup.

The key concept in planning ufsdumps is the dump level of any particular backup.
The dump level determines whether ufsdump performs a full or incremental dump. A
full dump is represented by a dump level of 0, while the numbers 1 through 9 can be
arbitrarily assigned to incremental dump levels. The only restriction on the assignment
of dump level numbers for incremental backups is their numerical relationship to each
other: a high number should be used for normal daily incremental dumps, followed
once a week by a lower number that specifies that the process should be restarted.
This approach uses the same set of tapes for all files, regardless of which day they were
recorded on. For example, Monday through Saturday would have a dump level of 9,
while Sunday would have a dump level of 1. After cycling through incremental backups
during the weekdays and Saturday, the process starts again on Sunday.

Some organizations like to separate each day’s archive in a single tape. This makes
it easier to recover work from an incremental dump, where speed is important, and/or
whether or not backups from a particular day need to be retrieved. For example, one user
may want to retrieve a version of a file that was edited on a Wednesday and the following
Thursday, but want only the version prior to the latest (Wednesday). The Wednesday
tape can then be used in conjunction with ufsdump to retrieve the file. A weekly full
dump is scheduled to occur on Sunday, when few people are using the system. Thus,

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 375

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

Sunday would have a dump level of 0, followed by Monday, Tuesday, Wednesday,
Thursday, and Friday with dump levels of 5, 6, 7, 8, and 9, respectively. To signal the end
of a backup cycle, Saturday then has a lower dump level than Monday, which could
be 1, 2, 3, or 4.

Prior to beginning a ufsdump, it is often useful to estimate the size of a dump to
determine how many storage tapes will be required. This estimate can be obtained by
dividing the size of the partition by the capacity of the tape. For example, to determine
how many tapes would be required to back up the /dev/rdsk/c0t0d0s4 file system, use this:

ufsdump S /dev/rdsk/c0t0d0s4
50765536

The approximately 49MB on the drive will therefore easily fit onto a QIC, DAT, or
DLT tape. To perform a full dump of an x86 partition (/dev/rdsk/c0d0s0) at Level 0, you
can use the following approach:

ufsdump 0cu /dev/rmt/0 /dev/rdsk/c0d0s0
DUMP: Writing 63 Kilobyte records
DUMP: Date of this level 0 dump: Mon Feb 03 13:26:33 1997
DUMP: Date of last level 0 dump: the epoch
DUMP: Dumping /dev/rdsk/c0d0s0 (solaris:/) to /dev/rmt/0.
DUMP: Mapping (Pass I) [regular files]
DUMP: Mapping (Pass II) [directories]
DUMP: Estimated 46998 blocks (22.95MB).
DUMP: Dumping (Pass III) [directories]
DUMP: Dumping (Pass IV) [regular files]
DUMP: 46996 blocks (22.95MB) on 1 volume at 1167 KB/sec
DUMP: DUMP IS DONE
DUMP: Level 0 dump on Mon Feb 03 13:26:33 1997

The parameters passed to ufsdump include 0 (dump level), c (cartridge: blocking
factor 126), and u (updates the dump record /etc/dumpdates). The dump record is used
by ufsdump and ufsrestore to track the last dump of each individual file system:

cat /etc/dumpdates
/dev/rdsk/c0t0d0s0 0 Wed Feb 2 20:23:31 2000
/dev/md/rdsk/d0 0 Tue Feb 1 20:23:31 2000
/dev/md/rdsk/d2 0 Tue Feb 1 22:19:19 2000
/dev/md/rdsk/d3 0 Wed Feb 2 22:55:16 2000
/dev/rdsk/c0t0d0s3 0 Wed Feb 2 20:29:21 2000
/dev/md/rdsk/d1 0 Wed Feb 2 21:20:04 2000
/dev/rdsk/c0t0d0s4 0 Wed Feb 2 20:24:56 2000
/dev/rdsk/c2t3d0s2 0 Wed Feb 2 20:57:34 2000
/dev/rdsk/c0t2d0s3 0 Wed Feb 2 20:32:00 2000
/dev/rdsk/c1t1d0s0 0 Wed Feb 2 21:46:23 2000

/dev/rdsk/c0t0d0s0 3 Fri Feb 4 01:10:03 2000
/dev/rdsk/c0t0d0s3 3 Fri Feb 4 01:10:12 2000

ufsdump is flexible because it can be used in conjunction with rsh (remote-shell)
and remote access authorization files (.rhosts and /etc/hosts.equiv) to log on remotely to
another server and dump the files to one of the remote server’s backup devices. However,
the problem with this approach is that using .rhosts leaves the host system vulnerable to
attack: if an intruder gains access to the client, he can remotely log onto a remote backup
server without a username and password. The severity of the issue is compounded by
the fact that a backup server that serves many clients has access to most of those clients’
information in the form of tape archives. Thus, a concerted attack on a single client,
leading to an unchallenged remote logon to a backup server, can greatly expose an
organization’s data. The problems associated with remote access and authorization are
covered in depth in Chapter 16; however, a secure shell (SSH) tool can be used to overcome
the need to use the remote commands. By combining ssh and ufsdump, you can create
a full dump of a file system from a client, transfer it securely to the backup server, and
then copy it to the backup server’s remote devices:

ufsdump 0f - / | ssh server "dd of=/dev/rmt/0 bs=24b conv=sync"

A handy trick often used by administrators is to use ufsdump to move directories
across file systems. A ufsdump is taken of a particular file system, which is then piped
through ufsrestore to a different destination directory. For example, to move existing
staff files to a larger file system, use these commands:

mkdir /newstaff
cd /staff
ufsdump 0f - /dev/rdsk/c0t0d0s2 | (cd /newstaff; ufsrestore xf -)

Users of ufsdump should be aware of the buffer overflow vulnerability that exists
in some versions of ufsdump supplied with Solaris 2.6 and Solaris 7. This vulnerability
permits rogue local users to obtain root access under some conditions. A patch is available
from SunSolve (http://sunsolve.sun.com/), and a full explanation of the problem can be
found at the SecurityFocus Web site, http://www.securityfocus.com/bid/680.

After backing up data using ufsdump, it easy to restore the same data using the
ufsrestore program. To extract data from a tape volume on /dev/rmt/0, use this
command:

ufsrestore xf /dev/rmt/0
You have not read any volumes yet.
Unless you know which volume your file(s) are on you should start
with the last volume and work towards the first.
Specify next volume #: 1
set owner/mode for '.'? [yn] y

376 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

ufsrestore then extracts all the files on that volume. However, you can also list
the table of contents of the volume to standard output, if you are not sure of the contents
of a particular tape:

ufsrestore tf /dev/rmt/0
1 ./openwin/devdata/profiles
2 ./openwin/devdata
3 ./openwin
9 ./lp/alerts
1 ./lp/classes
15 ./lp/fd
1 ./lp/forms
1 ./lp/interfaces
1 ./lp/printers
1 ./lp/pwheels
36 ./lp
2 ./dmi/ciagent
3 ./dmi/conf
6 ./dmi
42 ./snmp/conf

Command Reference
The following command can be used to back up and restore Solaris file systems.

ufsrestore
ufsrestore supports an interactive mode, which has online help to assist you in
finding the correct volume from which you can restore:

ufsrestore i
ufsrestore > help
Available commands are:

ls [arg] - list directory
cd arg - change directory
pwd - print current directory
add [arg] - add 'arg' to list of files to be extracted
delete [arg] - delete 'arg' from list of files to be

extracted
extract - extract requested files
setmodes - set modes of requested directories
quit - immediately exit program
what - list dump header information
verbose - toggle verbose flag (useful with ''ls'')
help or '?' - print this list

If no 'arg' is supplied, the current directory is used
ufsrestore >

C h a p t e r 1 7 : B a c k u p a n d R e c o v e r y 377

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

Summary
In this chapter, you have examined the basic steps and technologies that can be used to
back up a system offline. This approach to data integrity ensures that data can be retrieved
in the case of catastrophic failure, but online (RAID) approaches may be more suited for
mirroring data to protect against hardware failure.

378 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 17

18
Printer Management

Solaris supports a wide variety of printers, whose details are stored in the terminfo
database (/usr/share/lib/terminfo). Most plaintext and PostScript printers are supported.
However, some older SPARC-specific printing hardware, which relied on the

proprietary NeWSPrint software, is no longer supported. To install a printer for Solaris
correctly, you must verify that a driver exists in the terminfo database, as this defines
printer interface data.

Key Concepts
This chapter examines printing using the lp command, checking printer status with
lpstat, setting up printer classes, and using lpadmin to manage a printer. In addition,
it explores supported Solaris printers and the terminfo database, configuring name
services for printing, setting printer environment variables, and using tools to add and
configure printers. Most commands used to manage print services are located in the
/usr/lib/lp and /usr/sbin directories, while user print commands can be found in /usr/bin.

You need to keep several important system configurations in mind when you’re
planning to set up printing services on a Solaris system. First, you must ensure that
plenty of disk space is available in the /var partition, so that print jobs may be spooled
in /var/spool (spool is an acronym for “system peripheral operation offline”). This is
particularly important when your system is spooling PostScript print jobs, which may
be several megabytes in size. When several PostScript jobs are submitted concurrently,
the system will require 10 to 20MB of disk space. Second, you need to ensure that
sufficient physical RAM is available; otherwise, spooling will be slowed down by the
use of virtual RAM. If you must use virtual RAM for spooling, you need to ensure that
enough virtual RAM is available (you can add more by using the swap command). In
addition, if print jobs are spooling, invest in some fast Small Computer System Interface
(SCSI) disks for the /var partition: 10,000-RPM disks are now available as standard in
all new UltraSPARC systems, and these give excellent print spooling performance.

A large set of configuration files for printing is located under the /etc/lp directory.
These files specify how print services are to be executed for all installed printers. The
/etc/lp/classes directory may contain files that define printer classes, while the /etc/lp/fd

3 7 9

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18
Blind Folio 379

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

directory may contain files that define print filters. A list of these filters is maintained in
the file /etc/lp/filter.table, while locally developed forms are stored in /etc/lp/forms. Print
cartridge data is located under the /etc/lp/pwheels directory, while configuration data for
supported printers is stored in the /etc/lp/printers directory.

Procedures
The following procedures will enable you to install and configure a printer for Solaris.

Determining Whether a Printer Is Supported
The terminfo database is just a set of hierarchical directories that contains files that
define communication settings for each printer type. Printers from different vendors
are defined in files that sit in a subdirectory whose name is defined by the first letter
of the vendor’s name. Thus, the directory /usr/share/lib/terminfo contains the following
entries:

ls /usr/share/lib/terminfo
1 3 5 7 9 a b d f g h j l m o p r s u w y
2 4 6 8 A B c e G H i k M n P q S t v x z

For example, if you wanted to see which Epson printers are supported under
Solaris 10, you would change to the root directory of the terminfo database and then
to the subdirectory in which Epson drivers are found (/usr/share/lib/terminfo/e). This
directory contains drivers for the following printers:

$ ls -l
total 80
-rw-r--r-- 2 bin bin 1424 Sep 1 1998 emots
-rw-r--r-- 2 bin bin 1505 Sep 1 1998 env230
-rw-r--r-- 2 bin bin 1505 Sep 1 1998 envision230
-rw-r--r-- 1 bin bin 1717 Sep 1 1998 ep2500+basic
-rw-r--r-- 1 bin bin 1221 Sep 1 1998 ep2500+color
-rw-r--r-- 1 bin bin 1093 Sep 1 1998 ep2500+high
-rw-r--r-- 1 bin bin 1040 Sep 1 1998 ep2500+low
-rw-r--r-- 2 bin bin 971 Sep 1 1998 ep40
-rw-r--r-- 2 bin bin 971 Sep 1 1998 ep4000
-rw-r--r-- 2 bin bin 971 Sep 1 1998 ep4080
-rw-r--r-- 2 bin bin 971 Sep 1 1998 ep48
-rw-r--r-- 1 bin bin 2179 Sep 1 1998 epson2500
-rw-r--r-- 1 bin bin 2200 Sep 1 1998 epson2500-80
-rw-r--r-- 1 bin bin 2237 Sep 1 1998 epson2500-hi
-rw-r--r-- 1 bin bin 2257 Sep 1 1998 epson2500-hi80
-rw-r--r-- 2 bin bin 1209 Sep 1 1998 ergo4000
-rw-r--r-- 1 bin bin 1095 Sep 1 1998 esprit
-rw-r--r-- 1 bin bin 929 Sep 1 1998 ethernet

380 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

-rw-r--r-- 1 bin bin 927 Sep 1 1998 ex3000
-rw-r--r-- 2 bin bin 1053 Sep 1 1998 exidy
-rw-r--r-- 2 bin bin 1053 Sep 1 1998 exidy2500

You can see that the Epson 2500, for example, has its settings contained within the file
ep2500+basic. However, several other versions of the printer driver are available, including
ep2500+color and ep2500+high.

Setting Up Printer Classes
A set of printers can be grouped together to form a class. When you set up a printer
class, users can specify the class (rather than individual printers) as the destination
for a print request. This can be useful, for example, when the printers are located
in different buildings, or where the printing load needs to balanced across multiple
printers. These class definitions are stored in the directory /etc/lp/classes.

A file is created for each printer class, with the filename set to the name of the class.
The file contains a list of all printers belonging to the class. To add a printer to the class,
you can either manually edit the appropriate class file or use the lpadmin command.
For example, either of the following commands would add the printer hp2 to the class
bubblejets:

cat "hp2" >> /etc/lp/classes/bubblejets
lpadmin -p hp2 -c bubblejets

Examples
The following examples demonstrate how to set up print services for Solaris.

Configuring Print Services
The place to start configuring print services is the configuration of the printers entry
in the /etc/nsswitch.conf file, where your local naming service is used to resolve printer
names. For example, if you use only file-based naming resolution, the printers entry
in /etc/nsswitch.conf file would look like this:

printers: files

Alternatively, if you use Network Information Service (NIS), the entry would look
like this:

printers: files nis

Finally, if you use NIS+, the entry would contain the following:

printers: nisplus files xfn

C h a p t e r 1 8 : P r i n t e r M a n a g e m e n t 381

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

382 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

It is also possible that individual users will define printers in the file ~/.printers, in
which case, the /etc/nsswitch.conf printer configuration entry determines the order in which
the ~/.printers file should be consulted.

For individual users, the environment variables LPDEST and PRINTER can be set to
indicate which printer should be used as the default. For example, the following command
sets the default printer for the current user to be the local hp1 printer:

$ PRINTER=hp1; export PRINTER

The LPDEST environment variable can be set in the same manner:

$ LPDEST=hp1; export LPDEST

Adding a Local Printer
Next, you need to examine entries within the /etc/printers.conf file, which determines,
for file-based name resolution, which printers are available to users of the local system.
These printers may be connected locally through the parallel port, or they could be
mounted remotely by using the Network File System (NFS) or Samba. A typical /etc/
printers.conf file looks like this:

$ cat /etc/printers.conf
hp1:\

:bsdaddr=pserver,hp1,Solaris:\
:description=HP Primary:

hp2:\
:bsdaddr=pserver,hp2,Solaris:\
:description=HP Secondary:

_default:\
:use=hp1:

There are two printers defined in the printers.conf file: hp1 (default) and hp2. Each
entry in the /etc/printers.conf file should have its own directory created under the /etc/lp/
printers directory. A number of files can exist in this directory for each printer, including
the following:

• alert.sh Shell script that responds to alerts

• alert.var Contains alert variables

• comment Name of printer

• configuration Individual printer configuration file

• users.deny List of users who are denied access to the printer

• users.grant List of users who are granted access to the printer

C h a p t e r 1 8 : P r i n t e r M a n a g e m e n t 383

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

A sample configuration file (/etc/lp/printers/hp1) for the printer hp1 is shown here:

Banner: on: always
Content types: PS
Device: /dev/term/a
Interface: /usr/lib/lp/model/standard
Modules: default
Printer type: PS

This configuration states that banners are always printed, PostScript and ASCII files
are supported, the device /dev/term/a is used to send print output, and the standard
interface (/usr/lib/lp/model/standard) will be used with default modules.

Accessing Remote Printers
To access a central print service from a client, you can use the lpadmin command to
set up an association. To allow local access to a printer called samuel on the host mason,
you would execute the following command from the client:

lpadmin -p samuel -s mason

Optionally, you can associate a description with the printer samuel:

lpadmin -p samuel -D "epson 2500 on mason"

Users on the local system should now be able to obtain status information for the
printer samuel:

lpstat -p samuel
printer samuel is idle. enabled since Jan 24 14:28 2004. available.

Using Forms and Filters
Many businesses deal with form letters as a matter of course. These are predesigned
templates for creating bulk copies of letters and other types of forms. Users are responsible
for creating their own forms, by defining characteristics such as character size, ink color,
page length, and page width. Forms can be set up to support preprinted stationery,
in which users insert text within predefined areas. The following form can be used
to print a standard two-page financial summary, 48 lines length, and 80 characters in
width. The character pitch size is 12, with characters being printed in black Courier.

Page length: 48
Page width: 60
Number of pages: 2

384 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

Line pitch: 6
Character pitch: 12
Character set choice: courier
Ribbon color: black
Comment:
Financial summary form

If the form is stored in the file /etc/lp/forms/financial.fmd, then the lpforms
command can be used to make the form available for use:

lpforms -f financial -F /etc/lp/forms/financial.fmd

To use the form, any existing forms must first be unmounted and any jobs that have
been sent to the printer must be rejected. This allows customized stationery to be loaded.
Once the form has been loaded into the system, print requests can be accepted once again.
The following example shows the command sequence for loading the form financial.fmd
for the printer ainsley, after first unmounting the bank.fmd form:

reject ainsley
lpadmin -p ainsley -M -f bank
lpadmin -p ainsley -M -f financial
accept ainsley

Print filters extend the concept of a UNIX filter, since output from a print request
is piped through a print filter as standard input, to produce a modified version of the
original text. Typically, some kind of transposition or interpretation occurs between
input and output. Commonly used filters include those that convert ditroff, dmd, plot,
and tek files to PostScript. New filters can be added to the system by using the lpfilter
command. For example, if you developed a new image processing system that prepared
documents in a format called “fract,” a new filter to convert these files to PostScript
could be installed by using the following command:

lpfilter –f fract –F /etc/lp/fd/fract.fd

You can use the following command to delete this filter when it is no longer required:

lpfilter –f fract -x

Command Reference
The following commands can be used to manage Solaris printing.

Solaris Print Manager
The Solaris print manager provides a more sophisticated view of current printer settings
by displaying a list of all printers that are known to the local system, as well as their

configuration settings. (There is an equivalent GNOME print manager.) You can set
display options for the print manager that make it easy to customize views based on
local site preferences. Figure 18-1, for example, shows the default view on a network
that has three printers available: yasimov, henryov, and prova. The entry [Empty] appears
next to the icon for each printer because no jobs are currently being processed by any of
the printers. The details of print jobs can be minimized for each printer by clicking the
minus (–) symbol next to the appropriate icon.

You can open the printer Properties window for each printer defined on the system.
For the printer yasimov, the current properties are shown in Figure 18-2.

Several key characteristics are noted in the Properties window:

• The icon label, which is usually the name of the printer (yasimov)

• The icon set to be used for the printer

• A description of the printer

• The name of the printer queue

• The status of the printer queue

• The name of the printer device

• The status of the printer device

C h a p t e r 1 8 : P r i n t e r M a n a g e m e n t 385

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

FIGURE 18-1 Viewing configured printers

It is possible to further modify the display of printer sets in print manager by
selecting View | Set Options, as shown in Figure 18-3.

The following options are available:

• Whether to use large icons or small icons to represent printers, and whether
to display each printer’s name only or its full details

• Whether to show all jobs on the printer or only the jobs of the current user

• Whether to display various flags when errors are encountered

• How often to update the display of printers on the system

lp
The lp (line printer) commands predate the admintool and Solaris Print Manager
interfaces and are most likely to be used by experienced Solaris administrators. They
are typically used to add and delete local and remote printer entries and to perform
a number of other administrative tasks.

After a printer is configured, it’s then easy to submit jobs, as demonstrated in the
following examples. To submit a PostScript job to the printer hp1 on the local server,
use the command

$ lp -d hp1 file.ps

After the job has been spooled, the printer will interpret the PostScript commands
embedded in the file correctly. If your printer does not support PostScript, you will be
printing the embedded PostScript codes and not the rendered document. The –d flag is

386 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

FIGURE 18-2
Viewing printer
properties for
printer yasimov

used to specify the name of the printer (hp1). If a printer is not specified, the job will
be sent to the default printer.

A similar command can be used to spool a text file to the same printer:

$ lp file.txt

A large number of options can be passed to lp for various purposes. For example,
instead of issuing the lp command 50 times to print 50 copies of a report, you could
use the following command:

$ lp –n 50 report.txt

Alternatively, if you are printing a large job, you can use the –m option to specify
that you want to be notified by e-mail when the job has finished printing:

$ lp –m bigjob.ps

As an alternative to lp, you can use the POSIX style of printing to submit jobs. This
involves specifying both the print server and printer name, rather than just the printer
name. This ensures that no conflict exists between printers of the same name that are
attached to different hosts. For example, the server admin could have a printer called
hp1, as could the server finance: if you pass –d hp1 on the command line with lp, which
printer would be selected for your job? To make sure the correct printer is used, you
need to specify both the server and printer on the command line.

For the host admin, here is the PostScript example again, this time using the POSIX-
compliant format:

$ lpr -P admin:hp1 file.ps

C h a p t e r 1 8 : P r i n t e r M a n a g e m e n t 387

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

FIGURE 18-3
Setting print
manager options

If you want to print to the hp1 server attached to the server finance, you could use
the following command instead:

$ lpr -P finance:hp1 file.ps

cancel
A print job can be easily cancelled by using the cancel command and passing the
job’s ID to the command. For example, to cancel the job hp1-212, you would use the
following command:

cancel hp1-212

lpadmin
lpadmin is a printing administration utility that is used to add and configure printers.
Adding a printer or modifying its operating characteristics is usually performed with a
number of lpadmin commands.

To set a printer name and port, use the following command:

lpadmin -p hp2 -v /dev/null

This command sets the port to /dev/null for the printer hp2.
To specify the printer software type to be used, use the following command:

lpadmin -p hp2 -m netstandard

This command would force the hp2 printer to use the netstandard printing software.
To set the protocol and timeout parameters, use the following command:

lpadmin -p hp2 -o dest=montana:hp2 -o protocol=tcp -o timeout=5

This command specifies that hp2 (being mounted from the server montana) would use
the TCP protocol and would have a timeout of 5 seconds.

If the hp2 printer is no longer attached to the system, its data could be removed with
the following command:

lpadmin -x hp2

If a printer is temporarily unavailable due to maintenance, you can use the reject
command to prevent new jobs being sent to a local printer. In the following example,
the hp2 printer is temporarily removed from access:

reject hp2

388 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

The disable command is used to stop all print jobs from proceeding. Thus, to
disable all print jobs on the printer hp2, use the following command:

disable hp2

To add a more meaningful description to a printer entry, you can include an optional
description string. For example, to add the description “HP printer on montana” to the
hp2 printer, you would use the following command:

lpadmin -p hp2 -D "HP printer on montana"

By default, a banner page is printed when using the lp print commands. To disable
the banner page from printing, perhaps to conserve paper, you can set the nobanner
option. For example, to set the nobanner option on hp2, you would use this command:

lpadmin -p hp2 -o nobanner=never

Alternatively, to make banner printing optional on hp2, use the following
command:

lpadmin -p hp2 -o nobanner=optional

If you want to refer to a remote printer as if it were a locally attached printer, you
can do so by using lpadmin. In the following example, the server montana has the
printer wyoming attached, so you can add it using this command:

lpadmin -p wyoming -s montana

lpstat
The lpstat command can be used to verify that a printer is available for printing.
The following example verifies whether the printer wyoming is available for printing:

$ lpstat –D -p wyoming
printer wyoming is idle. enabled since Dec 07 17:23 2001. available.

The lpstat command returns a description of any error conditions that exist for
the printer. For example, if there is a paper misfeed in the printer, the following error
message will be displayed:

lpstat -D -p wyoming
printer wyoming faulted. enabled since Dec 07 17:23 2001. available.
unable to print: paper misfeed jam

C h a p t e r 1 8 : P r i n t e r M a n a g e m e n t 389

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

Summary
In this chapter, you have examined how to configure print services for a Solaris system.
The Solaris Print Manager provides a convenient alternative to traditional
command-line printer setup.

390 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 18

19
Pseudo File Systems
and Virtual Memory

While file systems are designed to store files, they can also be used for a number
of related purposes, such as storing the process tree or allowing virtual
memory to be created from disk blocks; or they can be used in a process file

system. This chapter examines these two novel applications of file systems.

Key Concepts
The following concepts are required knowledge for installing pseudo file systems and
virtual memory.

Pseudo File Systems
A pseudo file system is a file system that is literally a file system but has a different
purpose than just storing files. One of the core pseudo file systems used in Solaris is
the process file system (PROCFS), which is mounted on /proc. Most modern operating
systems have a process model. However, Solaris implements some of its own special
features of processes, as described in this section. The PROCFS is one of the most
innovative characteristics of processes in Solaris. The state of all normal threads and
processes is stored on the PROCFS. Each entry in the top-level file system corresponds
to a specific process ID (PID), under which a number of subdirectories contain all state
details. Applications and system services can communicate with the PROCFS as if it
were a normal file system. Thus, state persistence can be provided by using the same
mechanism as normal file storage. Images of all currently active processes are stored
in the /proc file system by their PID.

The internals of the PROCFS can seem a little complicated; fortunately, Solaris
provides a number of tools to work with the /proc file system. Here’s an example of
how process state is persisted on the PROCFS. First, a process is identified, which in

3 9 1

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 19
Blind Folio 391

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

392 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 19

this example is the current Korn shell (ksh) for the user pwatters through a normal
process list display:

ps -eaf | grep pwatters
pwatters 310 291 0 Mar 20 ? 0:04 /usr/openwin/bin/Xsun
pwatters 11959 11934 0 09:21:42 pts/1 0:00 grep pwatters
pwatters 11934 11932 1 09:20:50 pts/1 0:00 ksh

Now that you have a target PID (11934), you can change to the /proc/11934 directory
and view the image of this process:

cd /proc/11934
ls -l
total 3497
-rw------- 1 pwatters other 1769472 Mar 30 09:20 as
-r-------- 1 pwatters other 152 Mar 30 09:20 auxv
-r-------- 1 pwatters other 32 Mar 30 09:20 cred
--w------- 1 pwatters other 0 Mar 30 09:20 ctl
lr-x------ 1 pwatters other 0 Mar 30 09:20 cwd ->
dr-x------ 2 pwatters other 1184 Mar 30 09:20 fd
-r--r--r-- 1 pwatters other 120 Mar 30 09:20 lpsinfo
-r-------- 1 pwatters other 912 Mar 30 09:20 lstatus
-r--r--r-- 1 pwatters other 536 Mar 30 09:20 lusage
dr-xr-xr-x 3 pwatters other 48 Mar 30 09:20 lwp
-r-------- 1 pwatters other 2016 Mar 30 09:20 map
dr-x------ 2 pwatters other 544 Mar 30 09:20 object
-r-------- 1 pwatters other 2552 Mar 30 09:20 pagedata
-r--r--r-- 1 pwatters other 336 Mar 30 09:20 psinfo
-r-------- 1 pwatters other 2016 Mar 30 09:20 rmap
lr-x------ 1 pwatters other 0 Mar 30 09:20 root ->
-r-------- 1 pwatters other 1440 Mar 30 09:20 sigact
-r-------- 1 pwatters other 1232 Mar 30 09:20 status
-r--r--r-- 1 pwatters other 256 Mar 30 09:20 usage
-r-------- 1 pwatters other 0 Mar 30 09:20 watch
-r-------- 1 pwatters other 3192 Mar 30 09:20 xmap

Each of the directories with the name associated with the PID contains additional
subdirectories that contain state information and related control functions. For example,
the status file contains entries that refer to a structure that defines state elements,
including the following:

• Process flags

• Process ID

• Parent process ID

• Process group ID

• Session ID

• Thread ID

• Process pending signal set

• Process heap virtual address

• Process stack size

• User and system CPU time

• Total child process user and system CPU time

• Fault traces

The process flag definitions contained in the structure define specific process state
characteristics, including:

• PR_ISSYS System process flag

• PR_VFORKP Vforked child parent flag

• PR_FORK Inherit-on-fork flag

• PR_RLC Run-on-last-close flag

• PR_KLC Kill-on-last-close flag

• PR_ASYNC Asynchronous-stop flag

• PR_MSACCT Microstate accounting on flag

• PR_MSFORK Post-fork microstate accounting inheritance flag

• PR_BPTADJ Breakpoint on flag

• PR_PTRACE Ptrace-compatibility on flag

In addition, a watchpoint facility is provided, which is responsible for controlling
memory access. A series of proc tools interprets the information contained in the /proc
subdirectories, which display the characteristics of each process.

Procedures
The following procedures allow you to work with pseudo file systems under Solaris.

proc Tools
The proc tools are designed to operate on data contained within the /proc file system.
Each utility takes a PID as its argument and performs operations associated with the
PID. For example, the pflags command prints the flags and data model details for
the PID in question. For the preceding Korn shell example, you can easily print out
this status information:

/usr/proc/bin/pflags 29081
29081: /bin/ksh

C h a p t e r 1 9 : P s e u d o F i l e S y s t e m s a n d V i r t u a l M e m o r y 393

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 19

data model = _ILP32 flags = PR_ORPHAN
/1: flags = PR_PCINVAL|PR_ASLEEP [waitid(0x7,0x0,0x804714c,0x7)]

You can also print the credential information for this process, including the effective
and real UID and group ID (GID) of the process owner, by using the pcred command:

/usr/proc/bin/pcred 29081
29081: e/r/suid=100 e/r/sgid=10

Here, both the effective and the real UID is 100 (user pwatters), and the effective and
real GID is 10 (group staff).

To examine the address space map of the target process, you can use the pmap
command:

/usr/proc/bin/pmap 29081
29081: /bin/ksh
08046000 8K read/write/exec [stack]
08048000 160K read/exec /usr/bin/ksh
08070000 8K read/write/exec /usr/bin/ksh
08072000 28K read/write/exec [heap]
DFAB4000 16K read/exec /usr/lib/locale/en_AU/en_AU.so.2
DFAB8000 8K read/write/exec /usr/lib/locale/en_AU/en_AU.so.2
DFABB000 4K read/write/exec [anon]
DFABD000 12K read/exec /usr/lib/libmp.so.2
DFAC0000 4K read/write/exec /usr/lib/libmp.so.2
DFAC4000 552K read/exec /usr/lib/libc.so.1
DFB4E000 24K read/write/exec /usr/lib/libc.so.1
DFB54000 8K read/write/exec [anon]
DFB57000 444K read/exec /usr/lib/libnsl.so.1
DFBC6000 20K read/write/exec /usr/lib/libnsl.so.1
DFBCB000 32K read/write/exec [anon]
DFBD4000 32K read/exec /usr/lib/libsocket.so.1
DFBDC000 8K read/write/exec /usr/lib/libsocket.so.1
DFBDF000 4K read/exec /usr/lib/libdl.so.1
DFBE1000 4K read/write/exec [anon]
DFBE3000 100K read/exec /usr/lib/ld.so.1
DFBFC000 12K read/write/exec /usr/lib/ld.so.1
total 1488K

It’s always surprising to see how many libraries are loaded when an application is
executed, especially something as complicated as a shell, leading to a total of 1,488KB
memory used in the preceding example. You can use the pldd command to obtain a
list of the dynamic libraries linked to each process:

/usr/proc/bin/pldd 29081
29081: /bin/ksh

394 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 19

C h a p t e r 1 9 : P s e u d o F i l e S y s t e m s a n d V i r t u a l M e m o r y 395

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 19

/usr/lib/libsocket.so.1
/usr/lib/libnsl.so.1
/usr/lib/libc.so.1
/usr/lib/libdl.so.1
/usr/lib/libmp.so.2
/usr/lib/locale/en_AU/en_AU.so.2

Signals are the way in which processes communicate with each other, and can also
be used from shells to communicate with spawned processes (usually to suspend or kill
them). However, by using the psig command, it is possible to list the signals associated
with each process:

/usr/proc/bin/psig 29081
29081: /bin/ksh
HUP caught RESTART
INT caught RESTART
QUIT ignored
ILL caught RESTART
TRAP caught RESTART
ABRT caught RESTART
EMT caught RESTART
FPE caught RESTART
KILL default
BUS caught RESTART
SEGV default
SYS caught RESTART
PIPE caught RESTART
ALRM caught RESTART
TERM ignored
USR1 caught RESTART
USR2 caught RESTART
CLD default NOCLDSTOP
PWR default
WINCH default
URG default
POLL default
STOP default
TSTP ignored
CONT default
TTIN ignored
TTOU ignored
VTALRM default
PROF default
XCPU caught RESTART
XFSZ ignored
WAITING default
LWP default

396 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 19

FREEZE default
THAW default
CANCEL default
LOST default
RTMIN default
RTMIN+1 default
RTMIN+2 default
RTMIN+3 default
RTMAX-3 default
RTMAX-2 default
RTMAX-1 default
RTMAX default

It is also possible to print a hexadecimal format stack trace for the lightweight processes
(LWPs) in each process by using the pstack command. This can be useful in the same way
that the truss command was used:

/usr/proc/bin/pstack 29081
29081: /bin/ksh
dfaf5347 waitid (7, 0, 804714c, 7)
dfb0d9db _waitpid (ffffffff, 8047224, 4) + 63
dfb40617 waitpid (ffffffff, 8047224, 4) + 1f
0805b792 job_wait (719d) + 1ae
08064be8 sh_exec (8077270, 14) + af0
0805e3a1 ???????? ()
0805decd main (1, 8047624, 804762c) + 705
0804fa78 ???????? ()

Perhaps the most commonly used proc tool is the pfiles command, which displays
all of the open files for each process. This may be useful for determining operational
dependencies between data files and applications, but is limited because the filenames
are not listed:

/usr/proc/bin/pfiles 29081
29081: /bin/ksh
Current rlimit: 64 file descriptors
0: S_IFCHR mode:0620 dev:102,0 ino:319009 uid:6049 gid:7 rdev:24,8

O_RDWR|O_LARGEFILE
1: S_IFCHR mode:0620 dev:102,0 ino:319009 uid:6049 gid:7 rdev:24,8

O_RDWR|O_LARGEFILE
2: S_IFCHR mode:0620 dev:102,0 ino:319009 uid:6049 gid:7 rdev:24,8

O_RDWR|O_LARGEFILE
63: S_IFREG mode:0600 dev:174,2 ino:990890 uid:6049 gid:1 size:3210

O_RDWR|O_APPEND|O_LARGEFILE FD_CLOEXEC

C h a p t e r 1 9 : P s e u d o F i l e S y s t e m s a n d V i r t u a l M e m o r y 397

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 19

In addition, you can obtain the current working directory of the target process by
using the pwdx command:

/usr/proc/bin/pwdx 29081
29081: /home/paul

If you need to examine the process tree for all parent and child processes containing
the target PID, you can do so by using the ptree command. This is very useful for
determining dependencies between processes that are not apparent by consulting the
process list:

/usr/proc/bin/ptree 29081
247 /usr/dt/bin/dtlogin -daemon
28950 /usr/dt/bin/dtlogin -daemon
28972 /bin/ksh /usr/dt/bin/Xsession
29012 /usr/dt/bin/sdt_shell -c unset DT; DISPLAY=lion:0;
29015 ksh -c unset DT; DISPLAY=lion:0;

/usr/dt/bin/dt
29026 /usr/dt/bin/dtsession
29032 dtwm
29079 /usr/dt/bin/dtterm
29081 /bin/ksh
29085 /usr/local/bin/bash
29230 /usr/proc/bin/ptree 29081

Here, ptree has been executed from the Bourne Again Shell (bash), which was started
from the Korn shell (ksh), which was spawned from the dtterm terminal window,
which was spawned from the dtwm window manager, and so on.

Although many of these proc tools may seem obscure, they are often very useful
when you are trying to debug process-related application errors, especially in large
applications like database management systems.

Virtual Memory
The swap command is used to add virtual RAM to a system. Virtual RAM is typically
used to provide memory for process execution when physical memory has been exhausted.
Disk blocks are used to simulate physical memory locations using an interface that is
invisible to the user. Thus, users never need to be concerned about the type of RAM
that their process is addressing.

While virtual memory allows a system’s effective capacity to be increased to many
times its physical capacity, it is much slower than physical RAM. When a system
experiences peak demands for memory, causing virtual memory to be used, the CPU
must work harder to support virtual memory operations. Coupled with the relatively
slow speed of disk writing, this has a significant impact on performance. When virtual

memory is being used, and many new memory access calls are made along with normal
file reading and writing, so-called “disk thrashing” can occur, since the number of disk
operations requested far exceeds the capacity of the disk to read and write. If disk
thrashing is a common occurrence, then you should install extra physical RAM in the
system or tune the file system with tunefs.

It is important to note that virtual memory should generally be added to the system
at twice the physical RAM installed. Thus, for a 256MB system, 512MB of virtual memory
should be initialized. To add virtual memory, you should use the mkfile command
to create an empty file of the required size. For example, to create two swap files with
4,097,072KB each, you would use the following commands:

mkfile 4097072k /u1/swap
mkfile 4097072k /u2/swap

Next, you must use the swap command to add the file into the pool of available disk
space. For example, if you create two swap files on different file systems for redundancy
(such as /u1/swap and /u2/swap), you can use the following commands to add them to the
swap space pool:

swap -a /u1/swap
swap -a /u2/swap

To verify that the swap file has been correctly added to the pool, use the following
command:

swap -l
swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 118,17 16 8194144 6240336
/dev/dsk/c3t4d0s1 118,1 16 8194144 6236384

In this example, you can see that the partitions c0t0d0s1 and c3t4d0s1 have 8,194,144 blocks
each allocated for swap, and have 6,240,336 and 6,236,384 free blocks, respectively.

A summary of the swap space can also be printed by using the swap –s command:

/usr/sbin/swap -s
total: 2360832k bytes allocated + 130312k reserved = 2491144k used,
7238792k available

In this example, you can see that 2,360,832KB has been allocated, while 130,312KB has
been reserved.

If you have a dedicated slice set aside for swap, then you can simply pass the block
device name on the command line:

swap -a /dev/dsk/c1t1d2s1

398 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 19

To ensure that this partition is added as swap during boot, enter the following into
the /etc/vfstab file:

#device device mount FS fsck mount mount
#to mount to fsck point type pass atboot ops
/dev/dsk/c1t1d2s1 - - swap - no -

To remove a file (or device) from the swap pool, you need to pass the –d option on
the command line. Thus, to remove /u1/swap and /dev/dsk/c1t1d2s1 from the swap pool,
you would use the following commands:

swap -d /u1/swap
swap -d /dev/dsk/c1t1d2s1

You could then safely delete the file /u1/swap and safely use the slice /dev/dsk/c1t1d2s1
for other purposes, as long as the /etc/vfstab entries have been deleted.

An issue that commonly arises when swap partitions are enabled on production
systems is whether or not swap space should be created on a mirrored partition (i.e.,
RAID level 1). Mirroring ensures that when data is written to a partition on one disk it
is also copied in full to a sister partition on another drive. This ensures that if data on
the first drive is destroyed, it can be recovered automatically from the mirrored volume.

Creating swap files on mirrored partitions ensures that virtual memory cannot be
corrupted by a disk failure. Thus, if a disk containing virtual memory for a production
system is corrupted while executing a critical application, such as a database server,
then the correct data will automatically be read from the mirrored volume if corruption
is detected. However, since RAID mirroring requires that all data written to the source
volume also be written immediately afterward to the mirrored volume, this can
significantly slow down effective write speeds for the entire system, since data must
be written twice.

Summary
In this chapter, you have examined some novel uses of file systems—for storing process
trees and simulating memory. Since file systems are generic persistence devices, they
can be used in many different ways and not just for storing user and system files.

C h a p t e r 1 9 : P s e u d o F i l e S y s t e m s a n d V i r t u a l M e m o r y 399

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 19

This page intentionally left blank.

20
System Logging,

Accounting, and Tuning

Awell-managed system needs to be continuously monitored for security, accounting,
and performance purposes. Solaris 10 provides several built-in mechanisms for
accounting for resource usage, which you can then further use with an automated

billing procedure. This is very useful for Internet service providers and shared-use
systems that must account for the resources utilized by users or groups. In addition,
you can easily detect inappropriate usage of resources by unauthorized individuals,
and you can limit utilization by enforcing quotas.

Key Concepts
The following sections examine how to enable system logging, monitoring, and
accounting.

System Logging
syslog is a centralized logging facility that provides different classes of events that are
logged to a logfile. syslog also provides an alerting service for certain events. Because
syslogd is configurable by root, it is very flexible in its operations. Multiple logfiles
can exist for each daemon whose activity is being logged, or a single logfile can be created.
The syslog service is controlled by the configuration file /etc/syslog.conf, which is read
at boot time, or whenever the syslog daemon receives a HUP signal. This file defines
the facility levels or system source of logged messages and conditions. Priority levels
are also assigned to system events recorded in the system log, while an action field defines
what action is taken when a particular class of event is encountered. These events can
range from normal system usage, such as FTP connections and remote shells, to system
crashes.

The source facilities defined by Solaris are for the kernel (kern), authentication (auth),
daemons (daemon), mail system (mail), print spooling (lp), user processes (user), and
many others. Priority levels are classified as system emergencies (emerg), errors requiring

4 0 1

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20
Blind Folio 401

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

402 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

immediate attention (attn), critical errors (crit), messages (info), debugging output (debug),
and other errors (err). These priority levels are defined for individual systems and
architectures in <sys/syslog.h>. It is easy to see how logging applications, such as TCP
wrappers, can take advantage of the different error levels and source facilities provided
by syslogd.

On the Solaris platform, the syslog daemon depends on the m4 macro processor
being present. m4 is typically installed with the software developer packages and
is usually located in /usr/ccs/bin/m4. This version has been installed by default since
Solaris 2.4. Note that the syslogd supplied by Sun has been error-prone in previous
releases. With early Solaris 2.x versions, the syslog daemon left behind zombie processes
when alerting logged-in users (e.g., notifying root of an emerg). If syslogd does not
work, check that m4 exists and is in the path for root, and/or run the syslogd program
interactively by invoking it with a –d parameter. m4 is discussed in detail in Chapter 27.

Quotas
Resource management is one of the key responsibilities of an administrator, particularly
where the availability of a service is the organization’s primary source of income (or
recognition). For example, if an application server requires 10MB of free disk space for
internal caching of objects retrieved from a database, performance on the client side
will suffer if this space is not available (for example, because a user decided to dump
his collection of MP3 music files onto the system hard drive). If external users cannot
access a service because of internal resource allocation problems, they are unlikely to
continue using your service. There is also a possibility that a rogue user (or competitor)
may attempt to disrupt your service by attempting any number of well-known exploits
to reduce your provision of service to clients. The “Implementing Quotas” section
examines resource management strategies that are flexible enough to meet the needs
of casual users yet restrictive enough to limit the potential for accidental or malicious
resource misuse.

System Accounting
Solaris provides a centralized auditing service known as system accounting. This service
is very useful for accounting for the various tasks that your system may be involved in—
you can use it to monitor resource usage, troubleshoot system failures, isolate bottlenecks
in the system, and assist in system security. In addition, system accounting acts as a real
accounting service, and you can use it for billing in the commercial world. The “Collecting
Accounting Data” section reviews the major components of system accounting, including
several applications and scripts that are responsible for preparing daily reports on
connections, process, and disk loads, and usage statements for users. Once you enable
the appropriate script in /etc/init.d, system accounting does not typically involve
administrator intervention.

Performance
Measuring performance is a necessary task to determine whether current utilization
levels require a system to be upgraded and whether user applications and system

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 403

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

services are executing as quickly and efficiently as possible. Solaris provides a wide
variety of tools to tune and monitor the operation of individual devices and core system
elements, and other tools that can be applied to improve performance. These tools work
with the kernel, disk, memory, network, compilers, applications, and system services. This
chapter examines how to use some of the standard Solaris tools to monitor performance,
identify performance issues and bottlenecks, and implement new settings.

NOTEOTE An alternative to using the tools provided with Solaris is to use the SymbEL tools
developed by Adrian Cockroft and Richard Pettit (http://www.sun.com/sun-on-net/
performance/se3), which are fully described in their book, Sun Performance and
Tuning, published by Sun Microsystems Press (1998).

Procedures
The following procedures are commonly used to manage logfiles, quotas, and accounting.

Examining Logfiles
Logfiles are fairly straightforward in their contents, and you can stipulate what events
are recorded by placing instructions in the syslog.conf file. Records of mail messages
can be useful for billing purposes and for detecting the bulk sending of unsolicited
commercial e-mail (spam). The system log records the details supplied by sendmail:
a message-id, when a message is sent or received, a destination, and a delivery result,
which is typically “delivered” or “deferred.” Connections are usually deferred when
a connection to a site is down. sendmail usually tries to redeliver failed deliveries in
four-hour intervals.

When using TCP wrappers, connections to supported Internet daemons are also
logged. For example, an FTP connection to a server will result in the connection time
and date being recorded, along with the hostname of the client. A similar result is
achieved for Telnet connections.

A delivered mail message is recorded as

Feb 20 14:07:05 server sendmail[238]: AA00238: message-id=
<bulk.11403.19990219175554@sun.com>

Feb 20 14:07:05 server sendmail[238]: AA00238: from=<sun-developers-l@sun.com>,
size=1551, class=0, received from gateway.site.com (172.16.1.1)
Feb 20 14:07:06 server sendmail[243]: AA00238: to=<pwatters@mail.site.com>,
delay=00:00:01, stat=Sent, mailer=local

whereas a deferred mail message is recorded differently:

Feb 21 07:11:10 server sendmail[855]: AA00855: message
-id=<Pine.SOL.3.96.990220200723.5291A-100000@oracle.com>
Feb 21 07:11:10 server sendmail[855]: AA00855: from=<support@oracle.com>,
size=1290, class=0, received from gateway.site.com (172.16.1.1)

Feb 21 07:12:25 server sendmail[857]: AA00855: to=pwatters@mail.site.com,

404 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

delay=00:01:16, stat=Deferred: Connection timed out during user open with
mail.site.com, mailer=TCP

An FTP connection is recorded in a single line,

Feb 20 14:35:00 server in.ftpd[277]: connect from workstation.site.com

in the same way that a Telnet connection is recorded:

Feb 20 14:35:31 server in.telnetd[279]: connect from workstation.site.com

Implementing Quotas
Solaris provides a number of tools to enforce policies on disk and resource usage, based
around the idea of quotas, or a prespecified allocation of disk space for each user and
file system. Thus, a single user can have disk space allocated on different slices, and file
systems can have quotas either enabled or disabled (they are disabled by default).
Although many organizations disable disk quotas for fear of reducing productivity by
placing unnecessary restrictions on the development staff, there are often some very
good reasons for implementing quotas on specific slices. For example, if an open file
area, like an anonymous FTP “incoming” directory, is located on the same partition as
normal user data, a denial of service (DoS) attack could be initiated by a rogue user
who decides to fill the incoming directory with large files, until all free space is consumed.
A CGI application that writes data to a user’s home directory (for example, a guestbook)
can also fall victim to a DoS attack: a malicious script could be written to enter a million
fake entries into the address book, thereby filling the partition to capacity. The result in
both of these cases is loss of service and loss of system control. It is therefore important
that networked systems have appropriate checks and balances in place to ensure that
such situations are avoided.

Quotas are also critical to ensure fair resource sharing among developers. Otherwise,
a developer who decides to back up her PC drive to her home directory on a server,
completely filling the partition, could thereby prevent other users from writing data.

In addition to security concerns, enforcing quotas is also optimal from an
administrative point of view: it forces users to rationalize their own storage
requirements, so that material that is not being used can be moved offline or deleted.
This saves administrators from having to make such decisions for users (who may
be dismayed at the results if the administrator has to move things in a hurry!).

One simple policy is to enforce disk quotas on all public file systems that have network
access. Increasing quotas for all users is easy, therefore the policy can be flexible. In
addition, quotas can be hard or soft: hard quotas strictly enforce incursions into unallocated
territory, whereas soft quotas provide a buffer for temporary violations of a quota, and
the users are given warning before enforcement begins. Depending on the security
level at which your organization operates (for example, C2 standards for military
organizations), a quota policy may already be available for you to implement.

A total limit on the amount of disk space available to users can be specified using
quotas for each user individually. Consider the user pwatters on server as an example.

You may allot this user, a Java developer, a quota of 10MB for development work on
the /staff file system. To set up this quota, you need to undertake the following steps:

1. Edit the /etc/vfstab file as root, and add the rq flag to the mount options field
for the /staff file system. This enables quotas for the file system.

2. Change the directory to /staff, and create a file called quotas.

3. Set permissions on /staff/quotas to be read and write for root only.

4. Edit user quotas for user pwatters on file system /staff by using the edquota
command, and entering the number of inodes and 1KB blocks that will be
available to user pwatters. For example, enter the following:
fs /staff blocks (soft = 10000, hard = 11000) inodes (soft = 0, hard = 0)

5. Check the settings that you have created by using the quota command.

6. Enable the quota for user pwatters by using the quotaon command.

You can implement these steps by entering the following:

vi /etc/vfstab
cd /staff
touch quotas
chmod u+rw quotas
edquota pwatters
quota –v pwatters
quotaon /staff

When you verify the quotas using quota -v,

quota -v pwatters

the output should look like the following:

Disk quotas for pwatters (uid 1001):
Filesystem usage quota limit timeleft files quota
/staff 0 10000 11000 0 0 0

Note that there may be a bug on the Intel version, since this command may hang
indefinitely, but no problems have been reported on SPARC. You can see that a soft
limit of 10MB and a hard limit of 11MB was entered for user pwatters. If halfway
through the development project this user requests more space, you could adjust the
quota by using the edquota command again. To check quotas for all users, use the
repquota command:

repquota /staff

Block limits

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 405

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

User used soft hard
jsmith -- 2048 4096 8192
pwatters -- 131 10000 20000
qjones -- 65536 90000 100000
llee -- 4096 8192 10000

Again, there may be a bug on the Intel version, but no problems have been reported
on SPARC. If a user attempts to exceed their quota during an interactive session, unless
you’ve set up a warning to be issued under those circumstances, the first indication
that the user will have often comes in the form of a “file system full” or “write failed”
message. After checking the amount of free space on the partition where their home
disk is located, many users are at a loss to explain why they can no longer edit files or
send e-mail.

Collecting Accounting Data
Collecting data for accounting is simple: create a startup script (/etc/rc2.d/S22acct) to begin
collecting data soon after the system enters multiuser mode and, optionally, create a kill
script (/etc/rc0.d/K22acct) to turn off data collection cleanly before the system shuts down.
When accounting is enabled, details of processes, storage, and user activity are recorded
in specially created logfiles, which are then processed daily by the /usr/lib/acct/runacct
program. The output from runacct is also processed by /usr/lib/acct/prdaily, which
generates the reports described in the next section. There is also a separate monthly
billing program called /usr/lib/acct/monacct, which is executed monthly and generates
accounts for individual users.

Collecting Performance Data
The following applications are commonly used to measure system performance:

iostat Collects data about input/output operations for CPUs, disks, terminals, and
tapes from the command line

vmstat Collects data on virtual memory performance from the command line and
prints a summary

mpstat Breaks down CPU usage per operation type

sar Runs through cron or the command line to collect statistics on disk, tape,
CPU, buffering, input/output, system calls, interprocess communication, and
many other variables

The following sections examine how each of these commands is used.

iostat
The kernel maintains low-level counters to measure various operations, which you can
access by using iostat. When you first execute it, iostat reports statistics gathered
since booting. Subsequently, the difference between the first report and the current

406 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

state is reported for all statistics. Thus, when you run it at regular intervals (such as
each minute), you can obtain high-resolution samples for establishing system performance
within a specific epoch by using iostat. This can be very useful for gaining an accurate
picture of how system resources are allocated.

To display disk usage statistics, the following command produces ten reports over
epochs of 60 seconds:

iostat -x 60 10
device r/s w/s kr/s kw/s wait actv svc_ t %w %b
sd0 0.2 0.4 12.2 9.0 1.0 2.0 38.6 0 1
...
device r/s w/s kr/s kw/s wait actv svc_t %w %b
sd0 0.3 0.3 12.5 8.0 2.0 1.0 33.2 0 1
...

The following describes what each column indicates for the disk device:

device Shows the device name (sd1 indicates a disk)

r/s Displays the number of disk reads per second

w/s Prints the number of disk writes per second

kr/s Shows the total amount of data read per second (in kilobytes)

kw/s Displays the total amount of data written per second (in kilobytes)

wait Prints the mean number of waiting transactions

actv Shows the mean number of transactions being processed

svc_t Displays the mean period for service in milliseconds

%w Prints the percentage of time spent waiting

%b Shows the percentage of time that the disk is working

To display statistics for the CPU at one-second intervals 20 times, you could use the
following command:

iostat –c 1 20

The output would display four columns, showing user time, system time, I/O wait,
and idle time, respectively, in percentage terms.

vmstat
One of the greatest performance issues in system tuning is virtual memory capacity
and performance. Obviously, if your server is using large amounts of swap, running off
a slow disk, the time required to perform various operations will increase. One application
that reports on the current state of virtual memory is the vmstat command, which
displays a large collection of statistics concerning virtual memory performance. As you
can see from the following display, the virtual memory report on the server is not

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 407

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

408 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

encouraging: 1,346,736,431 total address translation faults were recorded, as well as
38,736,546 major faults, 1,346,736,431 minor faults, and 332,163,181 copy-on-write
faults. This suggests that more virtual memory is required to support operations or
that, at least, the disk on which the swap partition is placed should be upgraded to
10,000 RPM.

vmstat -s
253 swap ins

237 swap outs
253 pages swapped in

705684 pages swapped out
1346736431 total address trans. faults taken
56389345 page ins
23909231 page outs

152308597 pages paged in
83982504 pages paged out
26682276 total reclaims
26199677 reclaims from free list

0 micro (hat) faults
1346736431 minor (as) faults
38736546 major faults

332163181 copy-on-write faults
316702360 zero fill page faults
99616426 pages examined by the clock daemon

782 revolutions of the clock hand
126834545 pages freed by the clock daemon
14771875 forks
3824010 vforks

29303326 execs
160142153 cpu context switches
2072002374 device interrupts
3735561061 traps
2081699655 system calls
1167634213 total name lookups (cache hits 70%)
46612294 toolong

964665958 user cpu
399229996 system cpu
1343911025 idle cpu
227505892 wait cpu

mpstat
Another factor influencing performance is the system load—obviously, a system that
runs a large number of processes and consistently has a load of greater than 1.0 cannot
be relied upon to give adequate performance in times of need. You can use the mpstat

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 409

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

command to examine a number of system parameters, including the system load, over
a number of regular intervals. Many administrators take several hundred samples using
mpstat and compute an average system load for specific times of the day when a peak
load is expected (e.g., at 9 A.M.). This can greatly assist in capacity planning of CPUs to
support expanding operations. Fortunately, SPARC hardware architectures support large
numbers of CPUs, so it’s not difficult to scale up to meet demand.

The output from mpstat contains several columns, which measure the following
parameters:

• Context switches

• Cross-calls between CPUs

• Idle percentage of CPU time

• Interrupts

• Minor and major faults

• Sys percentage of CPU time

• Thread migrations

• User percentage of CPU time

For the server output shown next, the proportion of system time consumed is well
below 100 percent—the peak value is 57 percent for only one of the CPUs in this dual-
processor system. Sustained values of sys at or near the 100-percent level indicate that
you should add more CPUs to the system:

mpstat 5
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
0 46 1 250 39 260 162 94 35 104 0 75 31 14 8 47
1 45 1 84 100 139 140 92 35 102 0 14 35 13 7 45

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
0 141 3 397 591 448 539 233 38 111 0 26914 64 35 1 0
1 119 0 1136 426 136 390 165 40 132 0 21371 67 33 0 0

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
0 0 0 317 303 183 367 163 28 63 0 1110 94 6 0 0
1 0 0 4 371 100 340 148 27 86 0 56271 43 57 0 0

sar
The sar command is the most versatile method for collecting system performance
data. From the command line, it produces a number of snapshots of current system
activity over a specified number of time intervals. If you don’t specify an interval, the
current day’s data extracted from sar’s regular execution by cron is used. For example,

410 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

to display a summary of disk activity for the current day, you can use the following
command:

sar –d
SunOS 5.10 sun4u 01/25/04
09:54:33 device %busy avque r+w/s blk/s avwait avserv

sd01 27 5.8 6 8 21.6 28.6
sd03 17 2.4 4 7 14.2 21.2
sd05 13 1.7 3 6 9.3 18.3
sd06 35 6.9 8 10 25.7 31.8

In this example, you can see that several disk devices are shown with varying
percentages of busy time, mean number of transaction requests in the queue, mean
number of disk reads and writes per second, mean number of disk blocks written per
second, mean time for waiting in the queue, and mean time for service in the queue.

When a new disk, new memory, or a new CPU is added to the system, you should
take a baseline sar report to determine the effect on performance. For example, after
adding 128MB RAM on the system, you should be able to quantify the effect on mean
system performance by comparing sar output before and after the event during a
typical day’s workload.

Examples
The following examples show how to manage logfiles, quotas, and accounting.

Logging Disk Usage
For auditing purposes, many sites generate a df report at midnight or during a change
of administrator shifts, to record a snapshot of the system. In addition, if disk space is
becoming an issue and extra volumes need to be justified in a system’s budget, it is
useful to be able to estimate how rapidly disk space is being consumed by users. Using
the cron utility, you can set up and schedule a script using crontab to check disk
space at different time periods and to mail this information to the administrator (or even
post it to a Web site, if system administration is centrally managed).

A simple script to monitor disk space usage and mail the results to the system
administrator (root@server) looks like this:

#!/bin/csh -f
df | mailx –s "Disk Space Usage" root@localhost

As an example, if this script were named /usr/local/bin/monitor_usage.csh and
executable permissions were set for the nobody user, you could create the following
crontab entry for the nobody user to run at midnight every night of the week:

0 0 * * * /usr/local/bin/monitor_usage.csh

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 411

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

or you could make the script more general, so that users could specify another user who
would be mailed:

#!/bin/csh -f
df | mailx –s "Disk Space Usage" $1

The crontab entry would then look like this:

0 0 * * * /usr/local/bin/monitor_usage.csh remote_user@client

The results of the disk usage report would now be sent to the user remote_user@client
instead of root@localhost.

Another way of obtaining disk space usage information with more directory-by-
directory detail is to use the /usr/bin/du command. This command prints the sum of the
sizes of every file in the current directory and performs the same task recursively for
any subdirectories. The size is calculated by adding together all of the file sizes in the
directory, where the size for each file is rounded up to the next 512-byte block. For example,
taking a du of the /etc directory looks like this:

du /etc

14 ./default
7 ./cron.d
6 ./dfs
8 ./dhcp
201 ./fs/hsfs
681 ./fs/nfs
1 ./fs/proc
209 ./fs/ufs
1093 ./fs

...
2429 .

Thus, /etc and all of its subdirectories contains a total of 2,429KB of data. Of course,
this kind of output is fairly verbose and probably not much use in its current form. If you
were only interested in recording the directory sizes, in order to collect data for auditing
and usage analysis, you could write a short Perl script to collect the data, as follows:

#!/usr/local/bin/perl
directorysize.pl: reads in directory size for current directory
and prints results to standard output
@du = `du`;
for (@du)
{
($sizes,$directories)=split /\s+/, $_;
print "$sizes\n";
}

If you saved this script as directorysize.pl in /usr/local/bin/directory and set the executable
permissions, it would produce a list of directory sizes as output, like the following:

cd /etc
/usr/local/bin/directorysize.pl

28
14
12
16
402
1362
2
418
2186
...

Because you are interested in usage management, you might want to modify the
script as follows to display the total amount of space occupied by a directory and its
subdirectories, as well as the average amount of space occupied. The latter number
is very important when evaluating caching or investigating load balancing issues.

#!/usr/local/bin/perl
directorysize.pl: reads in directory size for current directory
and prints the sum and average disk space used to standard output
$sum=0;
$count=0;
@ps = `du -o`;
for (@ps)
{
($sizes,$directories)=split /\s+/, $_;
$sum=$sum+$sizes;
$count=$count+1;

}
print "Total Space: $sum K\n";
print "Average Space: $count K\n";

Note that du -o was used as the command, so that the space occupied by
subdirectories is not added to the total for the top-level directory. The output from
the command for /etc now looks like this:

cd /etc
/usr/local/bin/directorysize.pl

Total Space: 4832 K
Average Space: 70 K

412 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 413

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

Again, you could set up a cron job to mail this information to an administrator
at midnight every night. To do this, first create a new shell script to call the Perl script,
which is made more flexible by passing as arguments the directory to be measured
and the user to which to send the mail:

#!/bin/csh -f
cd $1
/usr/local/bin/directorysize.pl | mailx –s "Directory Space Usage" $2

If you save this script to /usr/local/bin/checkdirectoryusage.csh and set the executable
permission, you could then schedule a disk space check of a cache file system. You
could include a second command that sends a report for the /disks/junior_developers file
system, which is remotely mounted from client, to the team leader on server:

0 0 * * * /usr/local/bin/checkdirectoryusage.csh /cache squid@server
1 0 * * * /usr/local/bin/checkdirectoryusage.csh /disks/junior_
developers
team_leader@server

Tools may already be available on Solaris to perform some of these tasks more
directly. For example, du –s will return the sum of directory sizes automatically.
However, the purpose of this section has been to demonstrate how to customize and
develop your own scripts for file system management.

Generating Accounting Reports
Once you have enabled data collection, generating reports is a simple matter of setting
up a cron job for a nonprivileged user (usually adm), typically at a time of low system
load. In the following example, accounting runs are performed at 6 A.M.:

0 6 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log

Accounting runs involve several discrete stages, which are executed in the
following order:

SETUP Prepares accounting files for running the report

WTMPFIX Checks the soundness of the wtmpx file and repairs it, if necessary

CONNECT Gathers data for user connect time

PROCESS Gathers data for process usage

MERGE Integrates the connection and process data

FEES Gathers fee information and applies to connection and process data

DISK Gathers data on disk usage and integrates with fee, connection, and process data

MERGETACCT Integrates accounting data for the past 24 hours (daytacct) with the total
accounting data (/var/adm/acct/sum/tacct)

414 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

CMS Generates command summaries

CLEANUP Removes transient data and cleans up before terminating

After each stage of runacct has been successfully completed, the statefile (/var/adm/
acct/nite/statefile) is overwritten with the name of that stage. Thus, if the accounting is
disrupted for any reason, it can be easily resumed by rereading the statefile. On January 23,
if the statefile contained FEES, but terminated during DISK, you could restart the
accounting run for the day by using the following command:

runacct 2301 DISK >> /var/adm/acct/nite/fd2log

Once the daily run has been completed, the lastdate file is updated with the current date
in ddmm format, where dd is the day and mm is the month of the last run. In addition, you
can review a number of files manually to obtain usage summaries. For example, the
daily report is stored in a file called rprtddmm, which contains the CMS and lastlogin
data, as well as a connection usage summary:

Jan 26 02:05 2002 DAILY REPORT FOR johnson Page 1
from Fri Jan 25 02:05:23 2002
to Sat Jan 26 02:05:54 2002

TOTAL DURATION IS 46 MINUTES
LINE MINUTES PERCENT # SESS # ON # OFF
/dev/pts/1 0 0 0 0 0
pts/1 46 0 8 8 8
TOTALS 46 -- 8 8 8

Here, you can see that the total connection time for the previous day was 46 minutes.

Login Logging
The /var/adm/acct/sum/loginlog file contains a list of the last login dates for all local users.
Some system accounts appear as never having logged in, which is expected:

00-00-00 adm
00-00-00 bin
00-00-00 daemon
00-00-00 listen
00-00-00 lp
00-00-00 noaccess
00-00-00 nobody
00-00-00 nuucp
00-00-00 smtp
00-00-00 sys
02-01-20 root
02–01–26 pwatters

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 415

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

You should check the /var/adm/acct/sum/loginlog file for access to system accounts,
which should never be accessed, and for unexpected usage of user accounts. The file is
created during the accounting run.

Command Summaries
A typical command summary (CMS) statement generated by the runacct program is
shown in Table 20-1. It is located in the /var/adm/acct/sum directory.

Once you know what each column in this report represents, it becomes obvious that
in this example, reading, sending, and receiving mail are the main uses of this server,
on a daily basis at least, while the runacct command, which actually performs the
accounting, is one of the least-used programs. Here is an explanation of the columns in
the preceding report:

• COMMAND NAME Shows the command as executed. This can lead to some
ambiguity, because different commands could have the same filename. In addition,
any shell or Perl scripts executed would be displayed under the shell and Perl
interpreter, respectively, rather than showing up as a process on their own.

• NUMBER CMDS Displays the number of times that the command named
under COMMAND NAME was executed during the accounting period.

• TOTAL KCOREMIN Shows the cumulative sum of memory segments (in
kilobytes) used by the process identified under COMMAND NAME per minute
of execution time.

• TOTAL CPU-MIN Prints the accumulated processing time for the program
named under COMMAND NAME.

• TOTAL REAL-MIN Shows the actual time in minutes that the program
named in COMMAND NAME consumed during the accounting period.

• MEAN SIZE-K Indicates the average of the cumulative sum of consumed
memory segments (TOTAL KCOREMIN) over the set of invocations denoted
by NUMBER CMDS.

• MEAN CPU-MIN The average CPU time computed from the quotient of
NUMBER CMDS divided by TOTAL CPU-MIN.

• HOG FACTOR The amount of CPU time divided by actual elapsed time.
This ratio indicates the degree to which a system is available compared to its
use. The hog factor is often used as a metric to determine overall load levels
for a system, and it is useful for planning upgrades and expansion.

• CHARS TRNSFRD Displays the sum of the characters transferred by
system calls.

• BLOCKS READ Shows the number of physical block reads and writes that
the program named under COMMAND NAME accounted for.

416 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

C
O

M
M

A
N

D
N

A
M

E
N

U
M

B
ER

C
M

D
S

TO
TA

L
K

C
O

R
EM

IN
TO

TA
L

C
P

U
M

IN
TO

TA
L

R
EA

LM
IN

M
EA

N
S
IZ

E-
K

M
EA

N
C

P
U

-M
IN

H
O

G
FA

C
TO

R
C

H
A

R
S

TR
N

S
FR

D
B

LO
C

K
S

R
EA

D
t
o
t
a
l
s

1
0
3
4

1
8
4
3
.
0
3

0
.
4
6

5
4
6
.
8
8

4
0
4
9
.
1
4

0
.
0
0

0
.
0
0

1
0
7
1
4
1
3
7
6

9
8
2

p
i
n
e

5
1
4
2
6
.
4
1

0
.
1
1

1
7
7
.
4
7

1
3
4
7
7
.
8
7

0
.
0
2

0
.
0
0

7
2
7
8
2
4
0
0

2
3
7

s
e
n
d
m
a
i
l

1
7
1

1
7
6
.
4
4

0
.
0
9

4
.
7
3

1
8
7
3
.
7
1

0
.
0
0

0
.
0
2

1
4
8
9
5
3
1
1

3
0
6

s
h

1
0
7

3
1
.
1
5

0
.
0
4

0
.
2
9

8
8
1
.
7
0

0
.
0
0

0
.
1
2

5
8
3
8
0

0

u
u
d
e
m
o
n

1
1
4

2
7
.
9
1

0
.
0
2

0
.
1
0

1
1
5
4
.
9
2

0
.
0
0

0
.
2
4

6
7
7
6
5

8

i
n
.
f
t
p
d

1
2
3
.
2
0

0
.
0
2

0
.
6
9

1
4
3
5
.
0
5

0
.
0
2

0
.
0
2

6
4
2
2
5
2
8

7

m
a
i
l
.
l
o
c

1
3

1
9
.
6
9

0
.
0
2

0
.
0
6

1
1
9
3
.
2
1

0
.
0
0

0
.
2
7

1
1
9
7
3
4
9
8

5
7

t
c
s
h

4
1
3
.
6
1

0
.
0
1

1
7
9
.
9
8

1
3
6
1
.
3
3

0
.
0
0

0
.
0
0

1
5
3
0
4
0

1

u
u
x
q
t

4
8

1
1
.
0
1

0
.
0
1

0
.
0
8

1
1
5
9
.
3
0

0
.
0
0

0
.
1
3

3
5
5
6
8

0

u
u
s
c
h
e
d

4
8

1
0
.
9
9

0
.
0
1

0
.
0
9

1
0
1
4
.
5
2

0
.
0
0

0
.
1
3

3
6
0
9
6

1
8
0

p
o
p
p
e
r

9
7
.
8
4

0
.
0
1

1
.
5
5

1
2
0
5
.
7
4

0
.
0
0

0
.
0
0

1
5
5
1
0
7

3
2

s
e
d

5
8

7
.
6
3

0
.
0
1

0
.
0
2

6
1
8
.
3
8

0
.
0
0

0
.
5
8

4
4
9
0
7

2

d
a
t
e

3
4

7
.
2
6

0
.
0
1

0
.
0
1

8
2
1
.
7
4

0
.
0
0

0
.
7
2

2
6
3
4
8

1

r
m

3
6

5
.
6
8

0
.
0
1

0
.
0
2

6
8
1
.
4
4

0
.
0
0

0
.
4
5

0
8

a
c
c
t
c
m
s

4
4
.
9
2

0
.
0
1

0
.
0
1

9
5
3
.
0
3

0
.
0
0

0
.
9
7

1
2
5
9
8
4

1

i
n
.
t
e
l
n
e

4
4
.
8
5

0
.
0
0

1
8
0
.
0
3

1
0
7
6
.
7
4

0
.
0
0

0
.
0
0

5
5
7
4
4

0

c
p

4
2

4
.
4
7

0
.
0
1

0
.
0
2

5
2
5
.
6
5

0
.
0
0

0
.
3
6

1
4
4
3
4

6
0

c
k
p
a
c
c
t

2
4

4
.
2
3

0
.
0
0

0
.
0
9

9
0
7
.
1
4

0
.
0
0

0
.
0
5

4
9
2
0
0

0

a
w
k

2
6

4
.
0
1

0
.
0
1

0
.
0
2

6
1
6
.
8
2

0
.
0
0

0
.
3
6

9
5
0

0

c
h
m
o
d

3
7

3
.
6
9

0
.
0
1

0
.
0
1

5
5
3
.
6
0

0
.
0
0

0
.
5
5

0
0

c
a
t

2
2

3
.
5
8

0
.
0
0

0
.
0
1

8
2
5
.
5
4

0
.
0
0

0
.
5
5

1
5
4
0

2

a
c
c
t
p
r
c

1
2
.
9
8

0
.
0
0

0
.
0
0

7
4
4
.
0
0

0
.
0
0

0
.
9
6

4
6
1
5
2

0

TA
B

LE
2

0
-1

A
Ty

pi
ca

lC
om

m
an

d
S

um
m

ar
y

(C
M

S
)
S

ta
te

m
en

t

Often, the values of these parameters are confusing. For example, let’s compare the
characteristics of pine, which is a mail client, and sendmail, which is a mail transport
agent. pine was executed only five times, but accounted for 1426.41 KCOREMIN, while
sendmail was executed 171 times with a KCOREMIN of 176.44. The explanation for
this apparent anomaly is that users probably log in once in the morning and leave their
pine mail client running all day. The users sent an average of 34.2 messages during this
day, many of which contained attachments, thus accounting for the high CPU overhead.

monacct
When examined over a number of days, accounting figures provide a useful means of
understanding how processes are making use of the system’s resources. When examined
in isolation, however, they can sometimes misrepresent the dominant processes that the
machine is used for. This is a well-known aspect of statistical sampling: before you can
make any valid generalizations about a phenomenon, your observations must be repeated
and sampled randomly. Thus, it is useful to compare the day-to-day variation of a
system’s resource use with the monthly figures that are generated by /usr/lib/acct/
monacct. Compare these daily values with the previous month’s values generated by
monacct in Table 20-2.

As you can see in Table 20-2, the individual day’s figures were misleading. In fact,
spread over a whole month, the netscape program tended to use more resources
than the pine mail client, being invoked 1,538 times, and using 163985.79 KCOREMIN,
compared to 165 invocations and 43839.27 KCOREMIN for pine. Clearly, it is very
useful to examine monthly averages for a more reliable, strategic overview of system
activity, while daily summaries are useful for making tactical decisions about active
processes.

Charging Fees Using Accounting
The previous section looked at the output for monacct, which is the monthly accounting
program. To enable monacct, you need to create a cron job for the adm account, which
is similar to the entry for the runacct command in the previous section:

0 5 1 * * /usr/lib/acct/monacct

In addition to computing per-process statistics, monacct also computes usage
information on a per-user basis, which you can use to bill customers according to the
number of CPU minutes they used. Examine the user reports in Table 20-3 for the same
month that was reviewed in the previous section.

Of the nonsystem users, obviously pwatters is going to have a large bill this month,
with 65 prime CPU minutes consumed. Billing could also proceed on the basis of
KCORE-MINS utilized; pwatters, in this case, used 104572 KCORE-MINS. How an
organization bills its users is probably already well established, but even if users are
not billed for cash payment, examining how the system is used is very valuable for
planning expansion and for identifying rogue processes that reduce the availability of
a system for legitimate processes.

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 417

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

418 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

C
O

M
M

A
N

D
N

A
M

E
N

U
M

B
ER

C
M

D
S

TO
TA

L
K

C
O

R
EM

IN
TO

TA
L

C
P

U
M

IN
TO

TA
L

R
EA

LM
IN

M
EA

N
S
IZ

E-
K

M
EA

N
C

P
U

-M
IN

H
O

G
FA

C
TO

R
C

H
A

R
S

TR
N

S
FR

D
B

LO
C

K
S

R
EA

D
t
o
t
a
l
s

5
1
3
8
3
3

5
2
9
1
1
9
.
9
4

2
6
2
.
8
3

6
3
2
6
1
2
.
9
4

2
0
1
3
.
1
7

0
.
0
0

0
.
0
0

8
9
5
9
6
1
4
2
0
8

1
3
8
2
9
9

n
s
c
p

1
5
3
8

1
6
3
9
8
5
.
7
9

6
.
7
7

5
9
8
6
5
.
5
8

2
4
2
3
3
.
1
8

0
.
0
0

0
.
0
0

4
7
4
4
8
5
4

7
2
0

i
n
s
t
a
l
l
p

1
1
0
5
0
8

5
8
6
7
6
.
6
2

3
3
.
6
5

1
9
7
.
7
7

1
7
4
3
.
5
7

0
.
0
0

0
.
1
7

2
7
3
0
3
0
2
4

1
3
9

s
e
d

1
2
2
7
2
6

4
5
7
0
4
.
4
5

4
0
.
8
7

9
8
.
0
7

1
1
1
8
.
1
6

0
.
0
0

0
.
4
2

2
0
0
4
4
1
8
8

1
7
1

p
i
n
e

1
6
5

4
3
8
3
9
.
2
7

3
.
8
8

1
5
9
4
.
9
7

1
1
3
0
4
.
1
2

0
.
0
2

0
.
0
0

1
5
7
8
3
1
6
1
6
0

4
6
7
5

p
r
o
j
e
c
t

1
3

3
7
6
5
4
.
9
2

2
2
.
7
6

2
2
.
7
9

1
6
5
4
.
4
1

1
.
7
5

1
.
0
0

6
1
8
7
3
3
2

1
0
6

l
l
-
a
r

4
2
4
3
4
7
.
4
4

2
6
.
4
9

5
0
.
3
7

9
1
9
.
2
4

6
.
6
2

0
.
5
3

2
0
1
6
4
2

5

n
a
w
k

7
5
5
4
4

2
1
6
7
8
.
9
6

2
4
.
4
6

4
0
.
2
1

8
8
6
.
4
0

0
.
0
0

0
.
6
1

6
1
3
5
1
6
8
4

1
3
5

p
r
e
d
i
c
t

2
8
9

1
6
8
0
8
.
7
0

1
3
.
5
9

1
3
.
7
4

1
2
3
6
.
6
6

0
.
0
5

0
.
9
9

3
8
9
9
6
3
0
6

2
9
3

s
q
p
e

1
7

1
5
0
7
8
.
8
6

4
.
1
5

1
0
.
3
0

3
6
3
6
.
6
7

0
.
2
4

0
.
4
0

9
0
5
4
7
7
1
2

8
8
9

g
r
e
p

7
1
9
6
3

1
3
0
4
2
.
1
5

1
8
.
6
9

2
6
.
4
7

6
9
7
.
6
9

0
.
0
0

0
.
7
1

3
7
7
8
2
5
7
1
4

3

p
k
g
p
a
r
a
m

2
4
5
7
8

1
1
3
6
0
.
7
1

9
.
1
1

9
.
6
8

1
2
4
6
.
3
8

0
.
0
0

0
.
9
4

1
0
2
3
2
5
6
4
8

0

f
a
l
s
e
_
n
e

7
1
0
3
9
9
.
8
5

2
.
1
2

2
.
1
3

4
8
9
9
.
8
1

0
.
3
0

1
.
0
0

2
1
2
5
3
0

5

p
k
g
r
e
m
o
v

8
9

1
0
0
7
3
.
6
7

8
.
9
5

2
2
.
7
0

1
1
2
5
.
8
8

0
.
1
0

0
.
3
9

1
1
2
9
7
8
7
3
9
2

1
8
8
4
5

p
k
g
i
n
s
t
a

1
2
5

7
1
6
3
.
6
7

4
.
7
5

3
8
.
2
1

1
5
0
8
.
4
6

0
.
0
4

0
.
1
2

1
9
1
2
9
8
3
5
5
2

4
0
7
7

t
e
e

8
6
2
2

3
2
3
7
.
3
8

2
.
0
3

2
.
3
0

1
5
9
2
.
2
4

0
.
0
0

0
.
8
8

2
1
3
4
6
9
2

0

l
s

8
8
2
5

3
1
3
3
.
3
1

2
.
5
9

3
.
3
1

1
2
0
9
.
0
6

0
.
0
0

0
.
7
8

2
0
3
8
1
3
6

2
1
5

TA
B

LE
2

0
-2

M
on

th
ly

Ac
co

un
t

S
um

m
ar

y

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 419

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

LO
G

IN
C

P
U

(M
IN

S
)

K
C

O
R

E-
M

IN
S

C
O

N
N

EC
T

(M
IN

S
)

D
IS

K
#

O
F

#
O

F
#

D
IS

K
FE

E
U
I
D

N
A
M
E

P
R
I
M
E

N
P
R
I
M
E

P
R
I
M
E

N
P
R
I
M
E

P
R
I
M
E

N
P
R
I
M
E

B
L
O
C
K
S

P
R
O
C
S

S
E
S
S

S
A
M
P
L
E
S

0

T
O
T
A
L

2
3
3

3
0

3
6
3
9
6
9

1
5
8
7
6
2

1
0
6
1

1
0
0
5

1
1
8
3
0
5
0
2

5
1
3
8
3
3

1
3
4

4
5

0

0
r
o
o
t

1
5
7

4
1
8
0
9
8
4

3
8
8
1

5
4
6

0
1
8
5
8
6
0
8

4
4
4
6
0
2

3
3

0

1
d
a
e
m
o
n

0
0

0
0

0
0

6
0

0
3

0

2
b
i
n

0
0

0
0

0
0

5
7
5
9
2
8
0

0
0

3
0

3
s
y
s

0
0

1
1
4

8
9

0
0

1
8

5
1

0
3

0

4
a
d
m

1
7

6
1
8

4
8
5
6

0
0

1
5
1
3
6

2
0
0
0
5

0
3

0

5
u
u
c
p

1
4

1
3
7
1

3
5
5
7

0
0

5
0
8
8

2
2
0
3
6

0
3

0

1
0

p
w
a
t
t
e
r
s

6
5

6
1
0
4
5
7
2

1
5
7
5
8

1
9
7

8
8

2
0
2
6
6
6
6

1
8
4
2

6
8

3
0

1
2

l
l
e
e

0
0

0
0

0
0

1
2

0
0

3
0

7
1

l
p

0
0

0
2
6

0
0

1
3
8
2
2

1
3
4

0
3

0

1
0
8

j
s
m
i
t
h

0
0

0
0

0
0

3
1
8

0
0

3
0

4
3
6

d
b
r
o
w
n

0
0

0
0

0
0

4
8

0
0

3
0

1
0
0
1

b
j
o
n
e
s

0
0

1
6

9
0

2
7
8

2
1

2
3

0

1
0
0
2

l
e
d
w
a
r
d
s

0
0

1
3
0

2
1

0
0

3
4

1
0
2

0
3

0

1
0
0
3

t
g
o
n
z
a
l
e

0
0

0
0

0
0

4
0
8
9
6

0
0

3
0

1
0
1
2

l
j
u
n
g

5
1
0

7
4
2
8
2

1
3
0
5
6
4

3
1
8

9
1
5

2
1
1
0
4
9
2

3
5
2
1

6
1

3
0

6
0
0
0
1

n
o
b
o
d
y

3
0

1
8
8
3

0
0

0
0

2
1
5
1
9

0
0

0

TA
B

LE
2

0
-3

C
ha

rg
in

g
Fe

es
U

si
ng

Ac
co

un
tin

g

420 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

Performance Tuning
Previous sections examined how to use tools such as sar, vmstat, and iostat to
measure system performance before and after key events such as adding new RAM or
CPUs or upgrading disks to faster speeds. In addition to these hardware changes, it is
possible to increase the performance of an existing system by tuning the kernel. This
could involve switching from a 32-bit to a 64-bit kernel, if supported by hardware, and
setting appropriate parameters for shared memory, semaphores, and message queues
in /etc/system. However, note that the Solaris 10 kernel is self-tuning to some extent for
normal operations. Once database servers with special requirements are installed, or
many users must be supported on a single system, it may be necessary to tweak some
parameters and reboot.

If a system is slow, the process list is the first place to look, as described in Chapter 8.
One of the reasons that so much space is devoted to process management in this book
is that it is often user processes, rather than system CPU time, that adversely impact
system performance. The only time that kernel tuning will really assist is where shared
memory and other parameters need to be adjusted for database applications, or where
system time for processes far exceeds the user time. This can generally be established
by using the time command. You can use some commonly modified parameters in the
/etc/system file, described shortly, to improve system performance. After you make changes
to /etc/system, you need to reboot the system, but you need to take caution: if a syntax
error is detected in /etc/system, the system may not be able to booted.

The first step in tuning the kernel is generally to set the maximum number of
processes permitted per user to a sensible value. This is a hard limit that prevents
individual users from circumventing limits imposed by quotas and nice values set by
the superuser. To insert a maximum of 100 processes per user, make the following entry
in /etc/system:

set maxuprc=100

If you are running a database server, your manual will no doubt supply minimum
requirements for shared memory for the server. Shared memory is memory that can be
locked but can be shared between processes, thereby reducing overhead for memory
allocation. You can set the following parameters to determine how shared memory is
allocated:

shmmax The peak shared memory amount

shmmin The smallest shared memory amount

shmmni The largest number of concurrent identifiers permitted

shmseg The quantity of segments permitted for each process

semmap The initial quantity of entries in the semaphore map

C h a p t e r 2 0 : S y s t e m L o g g i n g , A c c o u n t i n g , a n d T u n i n g 421

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

semmni The largest number of semaphore sets permitted

semmns The total number of semaphores permitted

semmsl The largest number of semaphores in each semaphore set

The following example entry for /etc/system allocates 128MB of shared memory and
sets other parameters appropriately:

set shmsys:shminfo_shmmax=134217728
set shmsys:shminfo_shmmin=100
set shmsys:shminfo_shmmni=100
set shmsys:shminfo_shmseg=100
set semsys:seminfo_semmap=125
set semsys:seminfo_semmni=250
set semsys:seminfo_semmns=250

Command Reference
The following command is commonly used to manage logfiles, quotas, and accounting.

syslog
The file /etc/syslog.conf contains information used by the system log daemon, syslogd, to
forward a system message to appropriate logfiles and/or users. syslogd preprocesses
this file through m4 to obtain the correct information for certain logfiles, defining
LOGHOST if the address of “loghost” is the same as one of the addresses of the host
that is running syslogd.

The default syslogd configuration is not optimal for all installations. Many
configuration decisions depend on whether the system administrator wants to be
alerted immediately if an alert or emergency occurs or instead wants all auth notices
to be logged, and a cron job run every night to filter the results for a review in the
morning. For noncommercial installations, the latter is probably a reasonable approach.
A crontab entry like this,

0 1 * * * cat /var/adm/messages | grep auth | mail root

will send the root user a mail message at 1 A.M. every morning with all authentication
messages.

A basic syslog.conf should contain provision for sending emergency notices to all
users, as well as alerts to the root user and other nonprivileged administrator accounts.
Errors, kernel notices, and authentication notices probably need to be displayed on the
system console. It is generally sufficient to log daemon notices, alerts, and all other

authentication information to the system logfile, unless the administrator is watching
for cracking attempts, as shown here:

*.alert root,pwatters
*.emerg *
*.err;kern.notice;auth.notice /dev/console
daemon.notice /var/adm/messages
auth.none;kern.err;daemon.err;mail.crit;*.alert /var/adm/messages
auth.info /var/adm/authlog

Summary
In this chapter, you have learned the basic procedures involved in system accounting
and logging. Since these form the basis for billing and other reporting activities, they
are a critical yet often ignored aspect of system administration.

422 P a r t I V : M a n a g i n g D e v i c e s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 20

V
Networking

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21
Blind Folio 423

CHAPTER 21
Basic Networking

CHAPTER 22
DHCP and NTP

CHAPTER 23
Routing and Firewalls

CHAPTER 24
Remote Access

CHAPTER 25
Internet Layer (IPv6)

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank.

21
Basic Networking

Sun’s view is that “The Network Is the Computer.” However, while users often
consider the “network” to be a single, heterogeneous medium, the process of
transferring a packet of data from one host to another is not a trivial task. This is

where conceptual protocol stacks such as the general Open Systems Interconnection
(OSI) networking model are useful in encapsulating and dividing the labor associated
with physical network transmission and its management by software. Solaris uses the
four-layer TCP/IP suite of network protocols to carry out network operations, including
the Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Internet
Protocol (IP). These protocols and the layer in which they reside will be covered in
depth in the following chapters. It’s important to note that the IP stack was rewritten
in Solaris 10 to enhance performance and security, so upgrading from Solaris 9 for this
reason alone is worthwhile.

In this chapter, we examine how TCP/IP is implemented on Solaris, including the
configuration of network interfaces, daemons, addresses, ports, and sockets. We also
examine how to configure the Internet daemon (inetd) to support a number of separate
network services that are centrally managed.

Key Concepts
A network is a combination of hardware and software that enables computers to
communicate with each other. At the hardware level, building a network involves
installing a network interface into each system (“host”) to be networked, and implementing
a specific network topology by using cables, such as Ethernet, or wireless. At the software
level, representations of network devices must be created, and protocols for exchanging
data between hosts must be established. Data is exchanged by dividing it into packets
that have a specific structure, enabling large data elements to be exchanged between
hosts by using a small amount of wrapping. This wrapping, based on various protocols,
contains information about the order in which packets should be assembled when
transmitted from one host to another, for example.

4 2 5

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21
Blind Folio 425

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

By supporting many different types of hardware devices and connection technologies,
and by implementing standards-based networking software, Solaris provides a flexible
platform for supporting high-level network services and applications. These will be
explored in detail in the following chapters.

Network Topologies
The two most common forms of network topology are the star network and the ring
network. The ring topology, shown in Figure 21-1, is a peer-to-peer topology, where
neighboring hosts are connected and data is exchanged between distant hosts by passing
data from the source host to the target host through all intermediate hosts. Ring networks
are most suitable for networks in which long distances separate individual hosts. However,
if only one of the links between hosts is broken, then data transmission between all hosts
can be interrupted.

In contrast, a star network has a centralized topology, where all hosts connect to a
central point and exchange data at that point, as shown in Figure 21-2. This topology
has the advantage of minimizing the number of hops that data must travel from a source
to a target host, compared to a ring network. In addition, if one link is broken, then only
data originating from or sent to the host on that link will be disrupted. However, if the
point at which hosts are connected breaks down, then all data transmission will cease.

In practice, most modern high-speed networks are based on star topologies. When
connecting local area networks (LANs) together to form intranets, a star topology has
the advantage of being able to interconnect networks by their central connection points.
This means that data sent from a host on one network must travel to its central point,
which then sends the data to the connection point on a remote network, which then
passes the data to the remote target host. Thus, only three hops are required to exchange
data between hosts on two networks when using a star topology. A sample data flow
is shown in Figure 21-3.

Let’s look at a specific example of how an internet can be laid out, before we examine
how OSI and the Solaris implementation of TCP/IP make this possible. Imagine that a
Web server runs on the host 203.54.68.21 while a Web client (such as Netscape Navigator)
runs on the host 203.54.67.122. Since these two hosts are located on two different local

426 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

FIGURE 21-1
Ring network
topology

area (Class C) networks, they must be interconnected by a router. In the star topology, a
connection point must allow a link to each host on the local network—in this example,
a hub is used to connect each host, as well as to forward all data bound for nonlocal
addresses to the router. Thus, when a high-level Hypertext Transfer Protocol (HTTP)
request is sent from the client 203.54.67.122 to the server 203.54.68.21, a packet is sent to
the hub, which detects that the destination is nonlocal and forwards the packet to the
router. The router then forwards the packet to the router for the remote network, which
detects that the destination is local and passes the packet to the hub, which in turn passes
it to the server. Since HTTP is a request/response protocol, the backward path is traced
when a response to the request is generated by the server. The configuration for this
example is shown in Figure 21-4.

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 427

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

FIGURE 21-2
Star network
topology

FIGURE 21-3
Interconnecting
networks

428 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

If this example seems complex, you’ll be pleased to know that the implementation
of many of these services is hidden from users, and most often from developers. This
makes implementing networking applications very simple when using high-level protocols
like HTTP. For example, consider the following Java code, which uses HTTP to make a
connection to a remote server running an application called StockServer. After passing
the name of a stock in the URL, the current price should be returned by the server. The
code fragment shows the definition for the URL, a declaration for an input stream, reading
a line from the stream and assigning the result to a variable (stockPrice), and closing the
stream. If this code were contained in an applet, for example, the stockPrice for SUNW
could then be displayed.

String stockURL="http://data.cassowary.net/servlet/StockServer?code=SUNW";
URL u = new URL(stockURL);
BufferedReader in = new BufferedReader(new
InputStreamReader(u.openStream()));
String stockPrice=in.readLine();
in.close();

FIGURE 21-4
Supporting
high-level services

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 429

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

A further level of abstraction is provided by Web Services and the Simple Object
Access Protocol (SOAP), which uses HTTP as a transport protocol for transmitting
requests to execute Remote Procedure Calls (RPCs) in a platform-independent way.
This approach has some similarities to working directly at the HTTP level, since a URL
can be used to execute the SOAP request, but the data is returned in a standard XML
format. The following URL, for example, is used to retrieve the stock price for Sun
Microsystems from XML Today:

http://www.xmltoday.com/examples/stockquote/getxmlquote.vep?s=SUNW

The data returned from this request can be parsed and its tags can be interpreted
by a client program:

<stock_quotes>
<stock_quote>

<symbol>SUNW</symbol>
<when>

<date>10/30/2002</date>
<time>3:06pm</time>

</when>
<price type="ask" value="2.50" />
<price type="open" value="2.60" />
<price type="dayhigh" value="2.60" />
<price type="daylow" value="2.49" />
<change>-0.10</change>
<volume>5768644</volume>

</stock_quote>
</stock_quotes>

As discussed in Chapter 33, Web Services will become more commonly used in
future versions of Solaris, and related enterprise applications, so it’s useful to understand
how they work and how they relate to underlying networking protocols.

OSI Networking
Building networks is complex, given the wide array of hardware and software that can
be used to implement them. The OSI networking model, shown in Figure 21-5, provides
a framework for defining the scope of different layers of networking technology, which
can be used to understand how different protocols and suites (such as TCP/IP) operate.
Each layer of the model, starting from the bottom, supports the functionality required by
the top levels. Moving from bottom to top, operations become more and more abstracted
from their physical implementation. It is this abstraction that allows HTTP and other
high-level protocols to operate without being concerned about low-level implementations.
The OSI networking model allows for different instantiations of lower levels, without
requiring higher-level code to be rewritten.

Starting from the bottom of the model, the following list describes the layers:

• Physical (Layer 1) Defines how data is exchanged at its very basic level
(bits and bytes), as well as cabling requirements.

• Data Link (Layer 2) Defines the apparatus for transferring data, including
error checking and synchronization.

• Network (Layer 3) Specifies operational issues, such as how networks can
exchange data, as shown in Figures 21-3 and 21-4.

• Transport (Layer 4) Specifies how individual computers are to interpret
data received from the network.

• Session (Layer 5) Determines how data from different sources can be
separated, and how associations between hosts can be maintained.

• Presentation (Layer 6) Specifies how different types of data are formatted
and how that data should be exposed.

• Application (Layer 7) Describes how high-level applications can communicate
with each other in a standard way.

430 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

FIGURE 21-5
OSI networking
model

TCP/IP Networking
The TCP/IP suite of protocols forms the basis of all Internet communications, and was
originally devised as part of the Defense Advanced Research Projects Agency (DARPA)
for the ARPANET. While TCP/IP is the default networking protocol supported by
Solaris, other operating systems also support TCP/IP, even if it is not their primary
protocol. For example, Microsoft Windows networks support NetBEUI and IPX/SPX,
while MacOS supports AppleTalk. The default networking protocol for Linux and
Solaris is TCP/IP.

TCP/IP presents a simpler interface than OSI, since only the Application, Transport,
Network, and Link layers need to be addressed. TCP/IP is layered, just like the OSI
reference model. Thus, when a client application needs to communicate with a server, a
process is initiated of passing data down each level on the client side, from the Application
layer to the Physical layer, and up each level on the server side, from the Physical layer
to the Application layer. Data is passed between layers in service data units. However,
it’s important to note that each client layer logically only ever communicates with the
corresponding server layer, as demonstrated by the Java code presented earlier in the
chapter: the Application layer is not concerned with logically communicating with the
Physical layer, for example. Abstraction is the core benefit of TCP/IP in development
and communication terms, since each level is logically isolated, while methods for
supporting service data are also well defined.

We’ll now review the key layers as they are implemented in the Solaris TCP/IP
stack and Ethernet.

Ethernet
Robert Metcalfe at Xerox PARC developed Ethernet during the 1970s, although the
major standards for Ethernet were not published until the 1980s. Ethernet is a type of
physical network that supports virtually any type of computer system, unlike previous
networks that supported only certain types of computers. The “ether” part of the name
comes from the material that was thought, in the 19th century, to surround the earth
and provide a medium for the transmission of radio waves. In the same way that radio
became a ubiquitous mode for transmitting data, Ethernet has become the most commonly
used medium for network transmission.

Ethernet is the most commonly used link technology supported by Solaris, and comes
in five different speeds:

• 10Base2 2 Mbps

• 10Base5 5 Mbps

• 10Base-T 10 Mbps

• 100Base-T 100 Mbps

• 1000Base-T/FX 1 Gbps

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 431

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

The 10, 100, and 1000 indicate the signaling frequency in MHz. There are different
types of media that are supported for each baseband, such as 10Base. For example, the
10Base family supports the following media types:

• Thick coaxial cable

• Thin coaxial cable

• Twisted-pair cable

• Fiber-optic cable

Coaxial cable is a shielded, single-strand copper cable that is generally surrounded
by an aluminum insulator. It is a highly insulated, reliable transmission medium. In
contrast, twisted-pair cable can either be shielded or unshielded. Fiber-optic cable uses
light as the transmission medium, and typically achieves the highest bandwidth. However,
your choice of transmission media may depend on the distances that need to be covered
for interconnection. The following restrictions are imposed on the most commonly
used transmission media:

• 10Base2 185 meters

• 10Base5 500 meters

• 10Base-T 150 meters

So, in a building where 500-meter cabling is required, only 10Base5 will be suitable,
unless a repeater is used, which is a device like a hub that can be used to link different
network branches together. Single-mode fiber may be used where long distances of 10
to 15 km are involved. Also, there are limitations on the number of hubs that can be
used to extend the logical length of a segment—a packet cannot be transmitted through
more than four hubs or three cable segments in total, to ensure successful transmission.
There are some other restrictions that you should keep in mind when using specific
media—for example, some types of cabling are more sensitive to electrical interference
than others.

Solaris systems are typically supplied with a single Ethernet card, supporting 10/
100 Mbps; however, server systems (such as the 420R) are supplied with quad Ethernet
cards, supporting four interfaces operating at 10/100 Mbps. Although Ethernet (specified
by the IEEE 802.3 standard)is the most common link type, other supported link types
on Solaris include Fiber Distributed Data Interface (FDDI) and Asynchronous Transfer
Mode (ATM). FDDI networks use a ring topology based on a transmitting and receiving
ring, using high-quality fiber-optic cable, to support high-speed, redundant connections.
However, FDDI is expensive compared to Ethernet, and gigabit FDDI is not available.
ATM is designed for high quality of service applications, like video and audio streaming,
that require a constant amount of bandwidth to operate. Data is transmitted in fixed-size
cells of 53 bytes, and a connection is maintained between client and server only as
required. Although ATM does not approach the speeds of Gigabit Ethernet, its quality
of service provisions benefit certain types of data transmission.

432 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

In terms of the OSI networking model, Ethernet comprises both the Physical layer
(Layer 1) and the Data Link layer (Layer 2), although a logical link control protocol is
not logically defined.

Ethernet has become the technology of choice for LANs. Originally designed to
transmit 3 Mbps, a base network interface using Ethernet can now transmit data at 10
Mbps. The latest Ethernet technology supports data transmission at 10 Gbps! Supported
media for Ethernet includes thick and thin coaxial, fiber-optic, and twisted-pair cables.

The major reason for the success of Ethernet in industry was the adoption of the
Ethernet standard (IEEE 802.3), allowing for interoperability between different vendors’
products. Ethernet specifies the Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) access method, as well as physical layer specifications. The Ethernet
specification allowed many different vendors to produce network interfaces and media
that supported Ethernet. Ethernet is a very flexible system, since interfaces operating at
different transmission rates can be connected to the same LAN.

There are three elements that comprise Ethernet:

• Physical media segments, which are used to interconnect systems

• The media access control (MAC) rules that implement access to Ethernet
channels

• A frame that organizes data to be transmitted in a standard way

Systems connected to the Ethernet are technically known as stations. Every station
on the network is independent—access is not centrally controlled, since the medium
allows signaling to be received and interpreted by all stations. Transmission across
Ethernet occurs in bitwise form. When transmitting data, a station must wait for the
channel to be free of data before sending a packet formatted as a frame.

If a station has to wait for the channel to be free before sending its own packets,
you can appreciate the potential for traffic congestion and a “broadcast storm” if one
station has a lot of data to send. However, after transmitting one packet, each station
then competes for the right to transmit each subsequent frame. The MAC access control
system prevents traffic congestion from occurring. It is quite normal, for example, for
collision rates of 50 percent to exist without any noticeable impact on performance.

A more insidious problem occurs with so-called late collisions. These are collisions
that occur between two hosts that are not detected because the latency for transmission
between the two hosts exceeds the maximum time allowed to detect a collision. If this
occurs at greater than 1 percent of the time, serious problems may emerge in terms of
data throughput and potential corruption.

CSMA/CD
The mechanism for preventing packet collision is the Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) method specified by the IEEE standard. Prior to data
being transmitted, a station must enter Carrier Sense (CS) mode. If no data is detected
on the channel, then all stations have an equal opportunity to transmit a frame, a condition
known as Multiple Access (MA). If two or more stations begin transmitting frames and

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 433

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

detect that they are transmitting at the same time, a state known as Collision Detection
(CD), then the stations halt transmission, enter the CS mode, and wait for the next MA
opportunity. Collisions can occur because there is a time difference between when two
stations might detect MA, depending on their “distance” in the network. When a collision
occurs, the frames must be re-sent by their respective parties. The process flow for
CSMA/CD is shown in Figure 21-6.

When systematic problems emerge in a LAN, demonstrated by much lower than
theoretical transmission rates, a design flaw in the network layout could be causing a
large number of collisions. You might be wondering how, if a CD event occurs, two
stations can prevent retransmitting at the same time in the future, thereby repeating
their previous collision—the answer is that the delay between retransmission is
randomized for each network interface. This prevents repetitive locking, and delivery
of a packet will always be attempted 16 times before a failure occurs. When more stations
are added to a single LAN, the number of collisions occurring will also increase. With
high-speed networks, the delay caused by retransmission of a packet is usually in the
order of microseconds rather than milliseconds. If the number of retransmissions escalates,
then there is a planned, exponential reduction in network traffic, affecting all stations,
until stable operation is restored.

434 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

FIGURE 21-6 Process flow for CSMA/CD

One of the important things to note about Ethernet, with respect to quality of service
issues, is that it is not a guaranteed delivery system, unlike some other networking
systems. This is because Ethernet operates on the principle of best effort, given the
available resources. Ethernet is susceptible to electrical artifacts, interference, and a
number of other problems that may interfere with data transmission. However, for
most practical purposes, Ethernet performs very well. If assured delivery is required,
then higher-level application protocols, based on message queuing for example, would
need to be implemented across Ethernet to have guaranteed delivery. Transport layer
protocols such as TCP label each packet with a sequence number to ensure that all packets
are received and reassembled in the correct order.

Ethernet has a logical topology, or tree-like structure, that is distinct from the set of
physical interfaces that are interconnected using networking cable. One of the implications
of this tree-like structure is that individual branches can be segmented in order to logically
isolate structural groups. This structure also allows a large number of unrelated networks
to be connected to each other, forming the basis of the Internet as we know it. Individual
network branches can be linked together by using a repeater of some kind such as a
hub. In contrast, a switch only takes traffic destined to one of its ports. The Ethernet
channel can be extended beyond the local boundaries imposed by a single branch.
A hub only connects interfaces on a single segment, while a switch can interconnect
multiple LANs. A LAN router is needed when connecting multiple logical LANs.

Ethernet Frames
The main data structure utilized by Ethernet is the frame. The frame has a number of
defined fields that specify elements like the MAC addresses for the destination and
originating hosts in a packet transmission. The advantage in this ordering is that only
the first 48 bits of a packet need to be read by a host to determine whether a packet
received has reached its ultimate destination. If the destination MAC address does not
match the local MAC address, then the contents of the packet do not need to be read.
However, the snoop command can be used to extract the content of packets that are
not destined for the local MAC address, assuming that you are using a hub and not a
switch. This is why it’s important to encrypt the contents of packets being transmitted
across the Internet—they can be trivially “sniffed” by using programs like snoop. In
addition to the destination and originating MAC addresses, the frame also contains a
data field, of 46 to 1,500 bytes, and a cyclic redundancy check of 4 bytes. The data field
contains all of the data encapsulated by higher-level protocols, such as IP.

Ethernet Addresses
One of the best features of Ethernet is that it enables a group of interfaces on a specific
network to listen for broadcasts being transmitted to a specific group address, known
as a multicast address. This allows a single host to originate a packet that is to be read
by a number of different hosts, without having to retransmit the packet multiple times.
In addition, each interface listens on its normal MAC address as well as on the multicast
address.

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 435

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

A MAC address is a hexadecimal number that is set in the factory by every network
interface manufacturer. It contains elements that allow an interface to be distinguished
from those manufactured by other companies, and also allows individual interfaces from
the same manufacturer to be distinguishable. It is possible, with SPARC systems, to
set the MAC address manually in the PROM. However, this is generally not advisable,
except in systems with multiple interfaces, where they might have the same MAC address
by default. The format of the MAC address is usually a set of hexadecimal numbers
delimited by colons. The MAC address 11:22:33:44:55:AA is one example. The initial
three bytes identify a specific manufacturer—the list of manufacturers and their codes
can be downloaded from ftp://ftp.lcs.mit.edu/pub/map/ethernet-codes.

In order to support IP and higher-level transport and application protocols, a mapping
must be made between the MAC address and the IP address. This is achieved by the
Address Resolution Protocol (ARP) and Reverse Address Resolution Protocol (RARP).
The hardware address, otherwise known as the MAC address, is used to distinguish
hosts at the link level. This is mapped to an IP address at the Network level, by using
ARP and RARP.

IPv4
The basic element of IP version 4 (IPv4) is the IP address, which is a 32-bit number (4 bytes)
that uniquely identifies network interfaces on the Internet. For single-homed hosts,
which have only one network interface, the IP address identifies the host. However,
for multihomed hosts, which have multiple network interfaces, the IP address does
not uniquely identify the host. Even the domain name assigned to a multihost can be
different, depending on which network the interface is connected to. For example, a
router is a host that contains at least two interfaces, since it supports the passing of data
between networks.

The IP address is usually specified in dotted decimal notation, where each of the bytes
is displayed as an integer separated by a dot. An example IP address is 192.205.76.123,
which is based on a Class C network. There are five classes of network defined by IP
(A, B, C, D, E), although only three of these (A, B, and C) are actually used for the
identification of hosts. Network classes can be identified by a discrete range of values;
thus, if an address lies within a specific range, it can be identified as belonging to a
network of a specific class. The following ranges are defined by IP:

• Class A 0.0.0.0–127.255.255.255

• Class B 128.0.0.0–191.255.255.255

• Class C 192.0.0.0–223.255.255.255

• Class D 224.0.0.0–239.255.255.255

• Class E 240.0.0.0–247.255.255.255

The different classes allow for ever decreasing numbers of hosts in each network,
starting from class A, where networks can support millions of hosts, to class C networks,
which can only support up to 254 hosts. Some address ranges have special purposes:

436 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

for example, the network 10.0.0.0 is reserved for private use, and is commonly used
to define IP addresses for internal networks. This is a security feature, since 10.0.0.0
addresses are not resolvable from the Internet. In addition, the 127.0.0.0 addresses are
used to refer to the localhost, with the most commonly used value being 127.0.0.1.

Subnets allow large networks to be divided into smaller, logical networks, by using
a subnet mask. For class A networks, the mask is 255.0.0.0; for class B networks, the
mask is 255.255.0.0; and for class C networks, the mask is 255.255.255.0.

Solaris 10 provides complete support for IPv6 and IPSec, discussed in Chapter 25.
These innovations are designed to increase the capacity of the Internet, and secure packets
transmitted by using transport protocols.

The IP layer sits between the Network (“Ethernet”) and Transport layers in the
stack. Thus, it provides the interface between the underlying physical transport and
the logical transport used by applications. It manages the mapping between hardware
(MAC) addresses and software addresses for network interfaces. To connect a LAN to
the Internet, it is necessary to obtain an IP network number from the InterNIC. However,
since most Solaris software uses TCP/IP for network operations, even when not connected
to the Internet, it is necessary to become familiar with IP, including its configuration
and its major operational issues.

IP carries out the following functions in the stack:

• Addressing Mapping hardware addresses to software addresses

• Routing Finding a path to transmit a packet from a source network interface
to a destination network interface

• Formatting Inserting specific types of data into a packet to ensure that it reaches
its destination

• Fragmentation Dividing packets into fragments in situations where a packet
is too large to be transmitted using the underlying medium

IP relies on three other protocols for its operation: ARP ensures that datagrams are
sent to the correct destination network interface from a source network interface by
mapping IP addresses to hardware addresses. RARP is responsible for mapping hardware
addresses to IP addresses. The Internet Control Message Protocol (ICMP) is involved
with the identification and management of network errors, which result from packets
being dropped, from physical disconnection of intermediate and destination routers, and
from a redirection directive issued by an intermediate or destination router. Note that the
ping command is typically used as the interface to check for errors on the network.

The key data structure used by IP is the datagram. Details about the datagram are
recorded in the packet’s header, including the addresses of the source and destination
hosts, the size of the datagram, and the order in which datagrams are to be transmitted
or received. The structure of the IP datagram is shown in Figure 21-7.

The Version is an integer that defines the current IP version (i.e., 4). The Header
Length specifies the size, in bytes, of the packet header—generally, the header is 20
bytes in length, since IPv4 options are not often used. The Type of Service specifies,
in 8 bits, what type of data is being handled. This allows packets to be designated as

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 437

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

requiring high-speed, high-reliability, or maximum bandwidth. Bits 0 through 2 are
responsible for determining the message priority, with the following values being
supported:

• 000 Normal traffic

• 001 Priority traffic

• 010 Immediate traffic

• 011 Flash traffic

• 100 Flash override traffic

• 101 Critical traffic

• 110 Internet control traffic

• 111 Network control traffic

Bits 3 through 5 specify whether low (0) or high (1) priority be given to speed,
bandwidth, or reliability, respectively, while the last two bits are reserved.

The Total Packet Length is specified by a 16-bit number, which has a maximum of
65,535 bytes. However, this value is largely theoretical since framing through hardware
layers (such as Ethernet and modems) sets this value to be much lower in practice. Large
packets need to be fragmented—that’s where the Identification, Fragmentation Flags,
and Fragmentation Offsets come into play. The Identification field is a 16-bit identifying
number for reassembly. The Fragmentation Flag is a 3-bit number that indicates whether
a packet may or may not be fragmented, and whether the current fragment is the last
fragment or other fragments are yet to be transmitted. The Fragmentation Offsets is a
13-bit number that indicates where a fragment lies in the sequence of fragments to be
reconstructed.

The Time to Live specifies the number of hops permitted before the packet expires
and is dropped. The Protocol number (defined in /etc/protocols) specifies which protocol
is to be used for data definition. The supported protocols are shown in Table 21-1.

438 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

FIGURE 21-7 Structure of IP datagrams

The Header Checksum determines whether the packet header has been corrupted, by
using a cyclic redundancy check. The Originating Address and Target Address are the IP
addresses of the source and destination hosts, respectively, for the packet.

A set of options up to 40 bytes can also be specified in the header, although these
options are not always used. The following options are available:

• End of Option list Marks the end of the list of options, since it can be a variable
length list

• No Operation Defines the boundary between options

• Security Used to specify security levels for the traffic

• Loose Source Routing The origin provides routing that may be followed

• Strict Source Routing The origin provides routing that must be followed

• Record Route Stores the route of a datagram

• Stream Identifier Used to support streaming

• Internet Timestamp Records the time in milliseconds since the start of UT

The following security levels are defined:

• 00000000 00000000 Unclassified

• 11110001 00110101 Confidential

• 01111000 10011010 EFTO

• 10111100 01001101 MMMM

• 01011110 00100110 PROG

• 10101111 00010011 Restricted

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 439

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

Name Number Acronym Description

ip 0 IP Internet Protocol

icmp 1 ICMP Internet Control Message Protocol

ggp 3 GGP Gateway-Gateway Protocol

tcp 6 TCP Transmission Control Protocol

egp 8 EGP Exterior Gateway Protocol

pup 12 PUP PARC Universal Packet Protocol

udp 17 UDP User Datagram Protocol

hmp 20 HMP Host Monitoring Protocol

xns-idp 22 XNS-IDP Xerox Network System IDP

rdp 27 RDP Reliable Datagram Protocol

TABLE 21-1 Supported Solaris Protocols

• 11010111 10001000 Secret

• 01101011 11000101 Top Secret

The correct interpretation of these levels can be determined from the Defense Intelligence
Agency Manual DIAM 65-19. A more accessible reference is MIL-STD-2411-1, the Registered
Data Values for Raster Product Format specification (http://www.nima.mil/publications/
specs/printed/2411/2411_1.pdf).

The packet can be padded to ensure that the length of the header is 32 bits where
necessary and that it separates the header from the packet data.

In order to check whether IP packets are being transmitted correctly between a
source and destination network interface, and all intermediate routers, you can use
the traceroute command. Note that traceroute does not display the contents
of packet headers and data as does the snoop command.

Transport Layer
The interface between the Application layer and the Internet layer in the TCP/IP stack is
the Transport layer. This layer implements protocols to transport packets in application-
specific ways, depending on the individual requirements of the application. The two
most commonly used transport protocols are TCP and UDP. TCP aims to provide reliable
transmission, but is more heavyweight, while UDP is lightweight, but does not guarantee
the delivery of packets. Thus, data-intensive applications that are error tolerant in terms
of data transmission, such as video and data, tend to use UDP, as long as they are on
reliable networks. On the Internet, applications that require the reliable transmission
of data generally use TCP.

TCP and UDP are the two main transport protocols that support higher-level
application protocols like the Simple Mail Transfer Protocol (SMTP) and HTTP. In turn,
TCP and UDP sit on top of IP. The main feature of TCP is that it guarantees reliable
delivery of packets, to the extent that dropped packets are retransmitted as required.
However, reliable delivery in transport terms is different from reliable delivery assured
by asynchronous messaging, as might be implemented by a message queue. It is up to
the application to provide for the storaging and forwarding of packets if the network
connection is broken.

However, it’s important to note that while TCP aims for guaranteed delivery, UDP
makes no such promises—indeed, the “User Datagram” Protocol may well be described
as the “Unreliable Delivery” Protocol! The trade-off here is between guaranteed delivery
and efficiency—UDP is more lightweight than TCP, and can significantly reduce bandwidth
requirements. In some applications where bandwidth is limited and connectivity is
transient, such as noisy wireless signals, UDP is much more appropriate for use at the
Transport level.

As broadband, highly reliable Ethernet is rolled out, bandwidth-intensive applications
such as audio/video, Voice over IP (VoIP), and video conferencing are all built on top
of UDP, due to the reduced overhead. TCP is best suited to situations where a reliable
network is always available, and where real-time interactions are necessary. For example,
the telnet daemon uses TCP transport because interactive commands are issued in

440 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

real time. In contrast, the biff daemon, which lets the user know that new mail has
arrived, doesn’t really require real-time access, since no interactive commands are
issued. In this case, UDP is more appropriate than TCP.

In technical terms, TCP is a connection-oriented protocol, while UDP is a connectionless
protocol. This means that where services use TCP to transmit data, a persistent connection
must be maintained between the client and the server. There are some important differences
in the way that data is packed using TCP and UDP. In TCP, sequence numbers are issued
to ensure that packet delivery is consistent. UDP has much less restrictive requirements,
which reduces the amount of bandwidth required to carry UDP traffic compared to
equivalent services that utilize TCP.

Sockets provide a way to uniquely bind protocols to ports and addresses on the client
and server. They consist of a five-tuple (host, address/host, port/client, address/client,
port/protocol). While many sockets on a server can have the same host and address/port
concurrently, they can be uniquely addressed because the client address is different for
each client; thus the server always knows which client to interact with. But you can never
create a socket with exactly the same tuple—otherwise, you’ll generate a binding error.

All TCP and UDP services operate through a specific port. Sometimes, a service is
offered over both TCP and UDP ports, such as the ldap daemon, which operates on
port 389 TCP and port 389 UDP. However, many services operate only on TCP or UDP.
One service may operate on a specific TCP port, while a separate service may operate
on the same numbered port for UDP. There are conventions for operating services on
specific ports, although these may be modified on a local system. For example, the default
port number for operating the Apache Web server is port 80 TCP, but any other TCP port
may be used, as long as it is not being used by another service. When a remote client
connects to a locally operated service, a port listener receives the connection for the
appropriate service, as defined by the port number. This prevents data destined for one
service from being diverted to another (inappropriate) service. A server socket is formed
by the service port and the local IP address for the server. A client socket is formed in
the same way, by the client’s IP address and the appropriate port. In this way, client-
server interactions can be described by the two sockets. The kernel has a port table that
it maintains to match up client and server ports and IP addresses, which can be viewed
by using the netstat command:

netstat

TCP: IPv4
Local Address Remote Address Swind Send-Q Rwind Recv-Q State

-------------------- -------------------- ----- ------ ----- ------ -------
ivana.telnet austin.1040 8550 1 24820 0 ESTABLISHED
ivana.32807 ivana.32782 32768 0 32768 0 TIME_WAIT

Active UNIX domain sockets
Address Type Vnode Conn Local Addr Remote Addr
30000b0dba8 stream-ord 300006cb810 00000000 /tmp/.X11-unix/X0
30000b0dd48 stream-ord 00000000 00000000

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 441

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

In this example, a socket comprised of the host ivana and the telnet port is servicing
a telnet session for the client austin with the remote port 1040. All of the standard
services are mapped in the services database (/etc/services). These ports are defined as
part of the work of the Internet Engineering Task Force (IETF), and the Request For
Comments (RFC) process for defining Internet standards (http://www.rfc-editor.org/
rfc.html). Generally, standard services are defined for ports 1 to 1,024, which correspond
to privileged ports on UNIX, since only the superuser may execute services that operate
in this range. Any user may execute services that operate on ports 1,025 and above.

The following is an example entry in /etc/services:

telnet 23/tcp

This entry defines the telnet service to run on port 23 TCP. A number of possible
tokens can be contained within each service definition:

• Name of service

• Service port number

• Service transport type

• Aliases for service

Another convention in UNIX systems is to operate Internet services through a single
super-daemon known as inetd. One advantage of running through inetd is that
daemons can be configured using a single file (/etc/inetd.conf). However, with complex
services like a Web server’s, it’s often preferable to configure daemons through their
own configuration file.

Procedures
The following procedures show how to configure Solaris networking.

Hostnames and Interfaces
A Solaris network consists of a number of different hosts that are interconnected using a
switch or a hub. Solaris networks connect through to each other by using routers, which
can be dedicated hardware systems or Solaris systems that have more than one network
interface. Each host on a Solaris network is identified by a unique hostname: these
hostnames often reflect the function of the host in question. For example, a set of four
Web servers may have the hostnames www1, www2, www3, and www4, respectively.

Every host and network that is connected to the Internet uses IP to support higher-
level protocols such as TCP and UDP. Every interface of every host on the Internet has a
unique IP address, which is based on the network IP address block assigned to the local
network. Networks are addressable by using an appropriate netmask, which corresponds
to a class A (255.0.0.0), class B (255.255.0.0), or class C (255.255.255.0) network, respectively.

442 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

Solaris supports multiple Ethernet interfaces, which can be installed on a single
machine. These are usually designated by files like this:

/etc/hostname.hmen

or this:

/etc/hostname.len

where n is the interface number, and le and hme are interface types.
The network interface device name can be determined by using the sysdef or

prtconf command. Interface files contain a single name, with the primary network
interface being designated with an interface number of zero. Thus, the primary interface
of a machine called helium would be defined by the file /etc/hostname.hme0, which would
contain the name helium. A secondary network interface, connected to a different subnet,
might be defined in the file /etc/hostname.hme1. In this case, the file might contain the
name helium1. This setup is commonly used in organizations that have a provision for a
failure of the primary network interface, or to enable load balancing of server requests
across multiple subnets (for example, for an intranet Web server processing HTTP
requests).

Subnets are visible to each other by means of a mask. Class A subnets use the mask
255.0.0.0. Class B networks use the mask 255.255.0.0. Class C networks use the mask
255.255.255.0. These masks are used when broadcasts are made to specific subnets. A
class C subnet 134.132.23.0, for example, can have 255 hosts associated with it, starting
with 134.132.23.1 and ending with 134.132.23.255. Class A and B subnets have their own
distinctive enumeration schemes.

Internet Daemon
The inetd daemon is the “super” Internet daemon that is responsible for centrally
managing many of the standard Internet services provided by Solaris through the
application layer. For example, telnet, ftp, finger, talk, and uucp are all run
from inetd. Even third-party Web servers can often be run through inetd. Both UDP
and TCP transport layers are supported with inetd. The main benefit of managing all
services centrally through inetd is reduced administrative overhead, since all services
use a standard configuration format from a single file.

There are also several drawbacks to using inetd to run all of your services: there is
now a single point of failure, meaning that if inetd crashes because of one service that
fails, all of the other inetd services may be affected. In addition, connection pooling for
services like the Apache Web server is not supported under inetd: high-performance
applications, for which there are many concurrent client requests, should use a stand-alone
daemon.

The Internet daemon (inetd) relies on two files for configuration. The /etc/inetd.conf
file is the primary configuration file, consisting of a list of all services currently supported,

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 443

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

and their run-time parameters, such as the file system path to the daemon that is executed.
The /etc/services file maintains a list of mappings between service names and port numbers,
which is used to ensure that services are activated on the correct port.

Network Configuration Files
Independent of DNS is the local hosts file (/etc/hosts), which is used to list local hostnames
and IP addresses. For a network with large numbers of hosts, using the /etc/hosts file is
problematic, since its values must be updated on every host on the network each time a
change is made. This is why using DNS or NIS/NIS+ is a better solution for managing
distributed host data. However, the /etc/hosts file contains entries for some key services,
such as logging, so it usually contains at least the following entries:

• The loopback address, 127.0.0.1, which is associated with the generic hostname
localhost. This allows applications to be tested locally using the IP address 127.0.0.1
or the hostname localhost.

• The IP address, hostname, and FQDN of the localhost, since it requires this data
before establishing a connection to a DNS server or NIS/NIS server when booting.

• An entry for a loghost, so that syslog data can be redirected to the appropriate
host on the local network.

A sample /etc/hosts file is shown here:

127.0.0.1 localhost
192.68.16.1 emu emu.cassowary.net
192.68.16.2 hawk hawk.cassowary.net loghost
192.68.16.3 eagle eagle.cassowary.net

In this configuration, the localhost entry is defined, followed by the name and IP address
of the localhost (hostname emu, with an IP address 192.68.16.1). In this case, emu redirects
all of its syslog logging data to the host hawk (192.68.16.2), while another host eagle
(192.68.16.3) is also defined.

Configuring Network Interfaces
The ifconfig command is responsible for configuring each network interface at boot
time. ifconfig can also be used to check the status of active network interfaces by
passing the –a parameter:

ifconfig -a
lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232

inet 127.0.0.1 netmask ff000000
hme0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 10.17.65.16 netmask ffffff00 broadcast 10.17.65.255
hme1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 204.17.65.16 netmask ffffff00 broadcast 204.17.65.255

444 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 445

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

In this case, the primary interface hme0 is running on the internal network, while
the secondary interface hme1 is visible to the external network. The netmask for a class
C network is used on both interfaces, while both have a distinct broadcast address. This
ensures that information broadcast on the internal network is not visible to the external
network. There are several parameters shown with ifconfig –a, including whether or
not the interface is UP or DOWN (that is, active or inactive). In the following example,
the interface has not been enabled at boot time:

ifconfig hme1
hme1: flags=863<DOWN,BROADCAST,NOTRAILERS,RUNNING,MULTICAST>

mtu 1500 inet 204.17.64.16 netmask ffffff00 broadcast
204.17.64.255

The physical address can also be useful in detecting problems with a routing network
interface to examine the ARP results for the LAN. This will determine whether or not the
interface is visible to its clients:

arp -a
Net to Media Table
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ---- -----------------
hme0 server1.cassowary.net 255.255.255.255 00:c0:ff:19:48:d8
hme0 server2.cassowary.net 255.255.255.255 c2:d4:78:00:15:56
hme0 server3.cassowary.net 255.255.255.255 87:b3:9a:c2:e9:ea

Modifying Interface Parameters
There are two methods for modifying network interface parameters. You can use the
ifconfig command to modify operational parameters, and to bring an interface
online (UP) or shut it down (DOWN). Secondly, you can use /usr/sbin/ndd to set
parameters for TCP/IP transmission, which will affect all network interfaces. In this
section, we examine both of these methods, and how they may be used to manage
interfaces and improve performance.

It is sometimes necessary to shut down and start up a network interface to upgrade
drivers or install patches affecting network service. To shut down a network interface,
for example, you can use the following command:

ifconfig hme1 down
ifconfig hme1

hme1: flags=863<DOWN,BROADCAST,NOTRAILERS,RUNNING,MULTICAST>
mtu 1500 inet 204.17.64.16 netmask ffffff00
broadcast 204.17.64.255

446 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

It also possible to bring this interface back “up” by using ifconfig:

ifconfig hme1 up
ifconfig hme1

hme1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST>
mtu 1500 inet 204.17.64.16 netmask ffffff00
broadcast 204.17.64.255

To ensure that this configuration is preserved from boot to boot, it is possible to
edit the networking startup file /etc/rc2.d/S69inet and add this line to any others that
configure the network interfaces.

It may be necessary to set several of these parameters in a production environment
to ensure optimal performance, especially when application servers and Web servers
are in use. For example, when a Web server makes a request to port 80 using TCP, a
connection is opened and closed. However, the connection is kept open for a default
time of two minutes to ensure that all packets are correctly received. For a system with
a large number of clients, this can lead to a bottleneck of stale TCP connections, which
can significantly impact the performance of the Web server. Fortunately, the parameter
that controls this behavior (tcp_close_wait_interval) can be set using ndd to something
more sensible (like 30 seconds):

ndd -set /dev/tcp tcp_close_wait_interval 30000

To ensure that this configuration is preserved from boot to boot, it is possible to edit the
networking startup file, /etc/rc2.d/S69inet, and add this line to any others that configure
the network interfaces.

You should be aware that altering ndd parameters will affect all TCP services, so while
a Web server might perform optimally with tcp_close_wait_interval equal to 30 seconds, a
database listener that handles large datasets may require a much wider time window.
The best way to determine optimal values is to perform experiments with low, moderate,
and peak levels of traffic for both the Web server and the database listener, to determine a
value that will provide reasonable performance for both applications. It is also important
to check SunSolve for the latest patches and updates for recently discovered kernel bugs.

Examples
The following examples show how to configure Solaris networking.

Configuring inetd
Services for inetd are defined in /etc/inetd.conf. Every time you make a change to
inetd.conf, you need to send a HUP signal to the inetd process. You can identify the
process ID (PID) of inetd by using the ps command and then sending a kill SIGHUP

P:\010Comp\CompRef8\998-5\ch21.vp
Friday, December 17, 2004 11:26:15 AM

Color profile: Disabled
Composite Default screen

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 447

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

signal to that PID from the shell. In addition, commenting an entry in the /etc/services
file will not necessarily prevent a service from running: strictly speaking, only services
that make the getprotobyname() call to retrieve their port number require the /etc/
services file. So, for applications like talk, removing their entry in /etc/services has no
effect. To prevent the talk daemon from running, you would need to comment out
its entry in /etc/inetd.conf and send a SIGHUP to the inetd process.

A service definition in /etc/inetd.conf has the following format:

service socket protocol flags user server_name arguments

where the service uses either datagrams or streams, and uses UDP or TCP on the transport
layer, with the server_name being executed by the user. An example entry is the UDP talk
service:

talk dgram udp wait root /usr/sbin/in.talkd in.talkd

The talk service uses datagrams over UDP and is executed by the root user, with
the talk daemon being physically located in /usr/sbin/in.talkd. Once the talk daemon
is running through inetd, it is used for interactive screen-based communication between
two users (with at least one user “talking” on the local system).

To prevent users from using (or abusing) the talk facility, you would need to comment
out the definition for the talk daemon in the /etc/inetd.conf file. Thus, the line shown earlier
would be changed to this:

#talk dgram udp wait root /usr/sbin/in.talkd in.talkd

In order for inetd to register the change, it needs to be restarted by using the kill
command. To identify the PID for inetd, the following command may be used:

ps -eaf | grep inetd
root 206 1 0 May 16 ? 30:19 /usr/sbin/inetd -s

To restart the process, the following command would be used:

kill -1 206

The daemon would then restart after reading in the modified inetd.conf file.

Configuring Services
TCP is a connection-oriented protocol that guarantees delivery of packets, where data
has been segmented into smaller units. The benefit of transmitting small units in a
guaranteed delivery scheme is that, if checksum errors are detected or some data is not
received, the amount of data that needs to be transmitted is very small. In addition, if
packet delivery times out, packets can then be retransmitted. By using sequence numbers,

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

448 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

TCP always manages to reassemble packets in their correct order. Port numbers for TCP
(and UDP) services are defined in the /etc/services database. A sample database is
shown here:

tcpmux 1/tcp
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
...

Reading from left to right are the service name, port number, transport type, and
service aliases. Other services defined in the preceding example include the echo service,
which simply sends back the segment transmitted to it, the daytime service, which
returns the current local time at the server, ftp, which supports the File Transfer Protocol
(FTP) service, and smtp, which supports SMTP. If services are not to be supported on
the localhost, then their entries should be commented in the service database. For example,
to disable the service definition for the finger service, which allows remote users to
check local user details, the finger entry would be modified as follows:

#finger 79/tcp

Port numbers 1 to 1024 are standard, as defined by RFC memos (http://www.rfc-
editor.org/rfc.html). Nonstandard services can be run on ports above 1024. Some
services have been standardized above this maximum by general convention, such as
the X11 server.

Application Protocols
Services are implemented by daemons that listen for connections, and generate responses
based on specific requests. Many of the TCP service definitions match up with an application
supported by a daemon (server) process. There are two types of daemons supported
by Solaris: standalone daemons and inetd daemons. Standalone daemons internally
manage their own activities, while inetd allows daemons to be run through a single
central server. This allows for centralization of administration and reduces the need
for processes running on a system, since inetd can listen for connections, and invoke
daemon processes as required. Definitions for services are contained in the /etc/inetd.conf
file. A sample /etc/inetd.conf file is shown here:

ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd -l
telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd
name dgram udp wait root /usr/sbin/in.tnamed in.tnamed
shell stream tcp nowait root /usr/sbin/in.rshd in.rshd

P:\010Comp\CompRef8\998-5\ch21.vp
Friday, December 17, 2004 11:26:16 AM

Color profile: Disabled
Composite Default screen

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 449

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

login stream tcp nowait root /usr/sbin/in.rlogind in.rlogind
exec stream tcp nowait root /usr/sbin/in.rexecd in.rexecd
comsat dgram udp wait root /usr/sbin/in.comsat in.comsat
talk dgram udp wait root /usr/sbin/in.talkd in.talkd
uucp stream tcp nowait root /usr/sbin/in.uucpd in.uucpd
tftp dgram udp wait root /usr/sbin/in.tftpd in.tftpd -s
/tftpboot
finger stream tcp nowait nobody /usr/sbin/in.fingerd in.fingerd
systat stream tcp nowait root /usr/bin/ps ps -ef
netstat stream tcp nowait root /usr/bin/netstat netstat -f inet
...

Reading from left to right are the service name, socket type, transport protocol, flags,
executing user, and daemon program to execute upon request. Socket types include
streams or datagrams, transports include TCP and UDP, and flags include wait (wait
after response) and nowait (exit after response).

A sample inetd application is the talk service. By examining its definition in /etc/
inetd.conf, you can see that it uses datagram sockets, runs on UDP, waits until timeout,
is run by root, is implemented by the command /usr/sbin/in.talkd, and has the name
in.talkd. The talk service supports instant communications between users on the local
system, or between any two systems on the Internet. To issue a talk request to a remote
user, a local user would issue the talk command followed by the user’s username and
FQDN. For example, to talk to the user shusaku at the host users.cassowary.net, the following
command would be used:

$ talk shusaku@users.cassowary.net

If the host users.cassowary.net is running inetd, and inetd supports in.talkd, then
the following talk request would appear on the user shusaku’s login shell:

Message from Talk_Daemon@db.cassowary.net at 10:50 ...
talk: connection requested by yasuanri@db.cassowary.net.
talk: respond with: talk yasunari@db.cassowary.net

If the user shusaku wished to “talk” with yasunari, the following command would be
used by shusaku:

$ talk yasunari@db.cassowary.net

If a service is to be disabled for security purposes, then its entry can simply be
commented out, just like for the services database. For example, to disable the finger
service, the finger entry would be commented as follows:

#finger stream tcp nowait nobody /usr/sbin/in.fingerd in.fingerd

Once changes have been made to inetd.conf, a SIGHUP signal should be sent to the
inetd process, causing it to reread the inetd.conf file. To restart inetd with a PID of
186, the following command would be used:

kill –1 186

Many of the services supported by inetd support remote access, and can possibly
be deemed security risks.

/etc/inetd.conf
A sample inetd.conf file is shown next. It contains entries for the most commonly used
Internet services.

ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd -l
telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd
name dgram udp wait root /usr/sbin/in.tnamed in.tnamed
shell stream tcp nowait root /usr/sbin/in.rshd in.rshd
login stream tcp nowait root /usr/sbin/in.rlogind in.rlogind
exec stream tcp nowait root /usr/sbin/in.rexecd in.rexecd
comsat dgram udp wait root /usr/sbin/in.comsat in.comsat
talk dgram udp wait root /usr/sbin/in.talkd in.talkd
uucp stream tcp nowait root /usr/sbin/in.uucpd in.uucpd

Some of these services are described here:

• fingerd Checks to see who is logged into a system

• rdisc Allows routes to be discovered on the network

• rexecd Permits commands to be executed remotely

• rlogind Allows a remote login to another server

• rshd Spawns a shell on a remote system

• rwhod Checks to see who is running processes

• telnetd Connects to a remote host

• tftpd Supports Trivial FTP for diskless clients

• uucpd Implements the UNIX-to-UNIX Copy Program

• pcmciad Manages PCMCIA operations

• rstatd Allows system resources to be monitored remotely

• rwalld Permits a message to be written to all logged-in users on a network

• statd Allows system resources to be monitored locally

• syslogd Configurable system log

• talkd Allows remote users to chat in real time

450 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

/etc/services
Many inetd services must be mapped to a specific port number: a sample /etc/services
file, shown next, defines port numbers for most of the commonly used services:

tcpmux 1/tcp
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp

Checking if a Host Is “Up”
The easiest way to check if a remote host is accessible is to use the ping command. The
following example checks whether the host emu is accessible from the host dingo:

$ ping emu

If emu is accessible, the following output will be generated:

emu is alive

However, if emu is not accessible, an error message similar to the following will be seen:

Request timed out

If you need to determine at what point in the network the connection is failing, you
can use the traceroute command to display the path taken by packets between the
two hosts as they travel across the network. For example, to observe the route of the path
taken by packets from AT&T to Sun’s Web server, I would use the following command:

$ traceroute www.sun.com
Tracing route to wwwwseast.usec.sun.com [192.9.49.30]
over a maximum of 30 hops:
1 184 ms 142 ms 138 ms 202.10.4.131
2 147 ms 144 ms 138 ms 202.10.4.129
3 150 ms 142 ms 144 ms 202.10.1.73
4 150 ms 144 ms 141 ms atm11-0-0-11.ia4.optus.net.au

[202.139.32.17]
5 148 ms 143 ms 139 ms 202.139.1.197
6 490 ms 489 ms 474 ms hssi9-0-0.sf1.optus.net.au

[192.65.89.246]

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 451

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

7 526 ms 480 ms 485 ms g-sfd-br-02-f12-0.gn.cwix.net
[207.124.109.57]

8 494 ms 482 ms 485 ms core7-hssi6-0-0.SanFrancisco.cw.net
[204.70.10.9]

9 483 ms 489 ms 484 ms corerouter2.SanFrancisco.cw.net
[204.70.9.132]

10 557 ms 552 ms 561 ms xcore3.Boston.cw.net [204.70.150.81]
11 566 ms 572 ms 554 ms sun-micro-system.Boston.cw.net

[204.70.179.102]
12 577 ms 574 ms 558 ms wwwwseast.usec.sun.com [192.9.49.30]

Trace complete.

If the connection was broken at any point, then * or ! would be displayed in place
of the average connection times displayed. An asterisk would also appear if the router
concerned was blocking connections for traceroute packets.

Command Reference
The following commands are useful for configuring Solaris networking.

arp
You can check the table of IP address–to–MAC address mappings by using the arp
command:

$ arp –a
Net to Media Table
Device IP Address Mask Flags Phys Addr
------ ---------------------- --------------- ----- ---------------
hme0 www.cassowary.net 255.255.255.255 00:19:cd:e3:05:a3
hme0 mail.cassowary.net 255.255.255.255 08:11:92:a4:12:ee
hme0 ftp.cassowary.net 255.255.255.255 SP 08:12:4e:4d:55:a2
hme0 BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:01:4e:00:00:00

Here, the network device is shown with the fully qualified hostname (or IP address),
the netmask, any flags, and the MAC address. The flags indicate the status of each
interface, including SP for the localhost, where an entry will be published on request, and
SM for the localhost, supporting multicast. Alternatively, a specific host can be queried by
passing its name on the command line:

$ arp mail
mail (204.67.34.12) at 08:11:92:a4:12:ee

ARP works by broadcasting to identify the appropriate channel on which to locate
the target host. Conversely, RARP is used to map MAC addresses to IP addresses. RARP
is typically used to supply IP addresses from boot servers to diskless clients. A database
of Ethernet addresses is maintained in the /etc/ethers table to support this activity.

452 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

snoop
Packet interception is performed by the snoop application, which reads raw packet
data from a network interface operating in promiscuous mode. The following example
shows ETHER (Link), IP (Network), TCP (Transport), and Telnet (Application) sections,
respectively:

snoop -v tcp port 23
Using device /dev/hme0 (promiscuous mode)
ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 14:13:22.14
ETHER: Packet size = 60 bytes
ETHER: Destination = 1:58:4:16:8a:34,
ETHER: Source = 2:60:5:12:6b:35, Sun
ETHER: Ethertype = 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version = 4
IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = normal delay
IP: 0... = normal throughput
IP: 0.. = normal reliability
IP: Total length = 40 bytes
IP: Identification = 46864
IP: Flags = 0x4
IP: .1.. = do not fragment
IP: ..0. = last fragment
IP: Fragment offset = 0 bytes
IP: Time to live = 255 seconds/hops
IP: Protocol = 6 (TCP)
IP: Header checksum = 11a9
IP: Source address = 64.23.168.76, moppet.paulwatters.com
IP: Destination address = 64.23.168.48, miki.paulwatters.com
IP: No options
IP:
TCP: ----- TCP Header -----
TCP:
TCP: Source port = 62421
TCP: Destination port = 23 (TELNET)
TCP: Sequence number = 796159562
TCP: Acknowledgement number = 105859685
TCP: Data offset = 20 bytes
TCP: Flags = 0x10
TCP: ..0. = No urgent pointer
TCP: ...1 = Acknowledgement

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 453

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

454 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

TCP: 0... = No push
TCP: 0.. = No reset
TCP: 0. = No Syn
TCP: 0 = No Fin
TCP: Window = 8760
TCP: Checksum = 0x8f8f
TCP: Urgent pointer = 0
TCP: No options
TCP:
TELNET: ----- TELNET: -----
TELNET:
TELNET: "a"
TELNET:

The ETHER header defines many of the characteristics of the packet. In the snoop
example, the packets arrival time, size (in bytes), and destination and source addresses
(Ethernet format) are all noted. In addition, the network type is also supplied. This leads
into the IP header, which shows the IP version (IPv4), the length of the header (in bytes),
destination and source addresses (IP format), and a checksum to ensure data integrity.
Also, the protocol for transport is defined as TCP. The TCP header shows the port on which
the data is being sent and on which it should be received, in addition to the application
type (Telnet). The sequence and acknowledgement numbers determine how packets
are ordered at the receiving end, since TCP is connection-oriented and guarantees data
delivery, unlike other transport protocols, such as UDP, which are connectionless and
do not guarantee the delivery of data. Finally, the data being transported is displayed:
“a”. In addition to Telnet, other application protocols include SMTP, FTP, and NFS.

ndd
ndd is used to set parameters for network protocols, including TCP, IP, UDP, and ARP.
It can be used to modify the parameters associated with IP forwarding and routing.
For example, take a look at the set of configurable parameters for TCP transmission:

server# ndd /dev/tcp \?
? (read only)
tcp_close_wait_interval (read and write)
tcp_conn_req_max_q (read and write)
tcp_conn_req_max_q0 (read and write)
tcp_conn_req_min (read and write)
tcp_conn_grace_period (read and write)
tcp_cwnd_max (read and write)
tcp_debug (read and write)
tcp_smallest_nonpriv_port (read and write)
tcp_ip_abort_cinterval (read and write)
tcp_ip_abort_linterval (read and write)
tcp_ip_abort_interval (read and write)
tcp_ip_notify_cinterval (read and write)
tcp_ip_notify_interval (read and write)

tcp_ip_ttl (read and write)
tcp_keepalive_interval (read and write)
tcp_maxpsz_multiplier (read and write)
tcp_mss_def (read and write)
tcp_mss_max (read and write)
tcp_mss_min (read and write)
tcp_naglim_def (read and write)
tcp_rexmit_interval_initial (read and write)
tcp_rexmit_interval_max (read and write)
tcp_rexmit_interval_min (read and write)
tcp_wroff_xtra (read and write)
tcp_deferred_ack_interval (read and write)
tcp_snd_lowat_fraction (read and write)
tcp_sth_rcv_hiwat (read and write)
tcp_sth_rcv_lowat (read and write)
tcp_dupack_fast_retransmit (read and write)
tcp_ignore_path_mtu (read and write)
tcp_rcv_push_wait (read and write)
tcp_smallest_anon_port (read and write)
tcp_largest_anon_port (read and write)
tcp_xmit_hiwat (read and write)
tcp_xmit_lowat (read and write)
tcp_recv_hiwat (read and write)
tcp_recv_hiwat_minmss (read and write)
tcp_fin_wait_2_flush_interval (read and write)
tcp_co_min (read and write)
tcp_max_buf (read and write)
tcp_zero_win_probesize (read and write)
tcp_strong_iss (read and write)
tcp_rtt_updates (read and write)
tcp_wscale_always (read and write)
tcp_tstamp_always (read and write)
tcp_tstamp_if_wscale (read and write)
tcp_rexmit_interval_extra (read and write)
tcp_deferred_acks_max (read and write)
tcp_slow_start_after_idle (read and write)
tcp_slow_start_initial (read and write)
tcp_co_timer_interval (read and write)
tcp_extra_priv_ports (read only)
tcp_extra_priv_ports_add (write only)
tcp_extra_priv_ports_del (write only)
tcp_status (read only)
tcp_bind_hash (read only)
tcp_listen_hash (read only)
tcp_conn_hash (read only)
tcp_queue_hash (read only)
tcp_host_param (read and write)
tcp_1948_phrase (write only)

C h a p t e r 2 1 : B a s i c N e t w o r k i n g 455

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

Parameters can also be set for IP. For example, if the parameter ip_forwarding has a
value of 2 (the default), it will perform routing only when two or more interfaces are
active. However, if this parameter is set to zero, ip_forwarding will never be performed
(that is, to ensure that multihoming is enabled rather than routing). This can be set by
using the command

ndd -set /dev/ip ip_forwarding 0

Summary
This chapter examined the basic principles and procedures of Solaris networking.
While we have covered a lot of ground, it’s worthwhile learning how to relate services
and applications from different TCP/IP layers to ensure end-to-end network connectivity.

456 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 21

22
DHCP and NTP

This chapter examines the Dynamic Host Configuration Protocol (DHCP), which is
an easy way to dynamically manage IP addresses in class A, class B, and class C
networks, using time-based leases for client addresses. Since at any one time only

a few IP addresses on a network may be in use, organizing their allocation dynamically
makes more sense than statically assigning them to individual hosts. This is particularly
important for popular class C networks, in which less than 300 addresses are available.
In this chapter, you will learn the background of DHCP and similar protocols (RARP
and BOOTP). In addition, this chapter walks you through how to install a Solaris DHCP
server and how to configure DHCP clients. It also investigates the Network Time
Protocol (NTP), which provides a framework for standardizing and synchronizing
accurate time and date settings on individual systems and on networks of systems.

This chapter covers practical issues associated with installing DHCP servers and
configuring DHCP clients on Windows, Linux, and Solaris systems. It is assumed that
you are familiar with DNS and with TCP/IP stacks implemented on Solaris, Linux, or
Windows systems. Starting with a description of the DHCP protocol and its historical
roots in the BOOTP protocol, the chapter aims to provide a reference of the DHCP
protocol and practical installation and configuration procedures for heterogeneous
environments.

Key Concepts
The following key concepts are required knowledge for configuring DHCP and NTP.

Dynamic Host Configuration Protocol
The Internet is a worldwide, networked environment through which information can be
exchanged by using a number of well-defined network protocols, such as the Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP). Each host on the Internet
can be identified by a single machine-friendly number (e.g., 128.43.22.1), which is mapped
to a human-friendly Fully Qualified Domain Name (e.g., www.paulwatters.com). This
mapping is provided by a globally distributed database, known as the Domain Name

4 5 7

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22
Blind Folio 457

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Service (DNS), which allows local networks to statically assign IP address ranges to all
their local hosts.

When DNS was first introduced, the exponential growth of networks and hosts
connected to the Internet was not anticipated. This means that IP address allocations
initially reserved for class A, B, and C networks were rather generous in hindsight—
many address ranges were not used to their full capacity. Nowadays, there is a critical
shortage of available IP address space using the current IPv4 standard. Although the
new IPv6 protocol (supported by Solaris 10) will provide many more potential addresses,
organizations worldwide are seeking solutions to use their existing resources more
efficiently. While IPv6 is currently being adopted by many organizations, widespread
deployment is not anticipated in the near future.

As an alternative to static IP address allocation, a practical alternative IP address
management strategy is to use DHCP. This protocol allows a server to dynamically
allocate IP addresses from a central DHCP server to all configured DHCP clients on the
local network. DHCP provides a mechanism by which computers using TCP/IP can
obtain protocol configuration parameters automatically, by using a lease mechanism,
without having to rely on static addresses, which could be incorrect or outdated. This
means that only hosts that are “up” will take an IP address from the pool of existing
addresses assigned to a particular network, by requesting and accepting an IP address
lease from the DHCP server. However, if a machine has been assigned an IP address,
then it is possible that the lease on that machine has still not expired. Thus the machine
is not up but still has an IP address. For a class C network, the pool of available addresses is
(at most) 254, excluding the broadcast address, which is insufficient for many growing
organizations. In addition, if an organization changes ISP, the organization ordinarily
needs to change the network configuration parameters for each client system, a manual
and inefficient process that consumes the valuable time of network administrators.

DHCP is not the only protocol to lease out IP addresses in this way. Previously,
Solaris clients used the Reverse Address Resolution Protocol (RARP) to obtain an IP
address dynamically from a RARP server. This protocol is particularly important for
diskless clients who cannot store their IP address locally. However, DHCP is better than
RARP because it supports clients from Solaris, Linux, and Microsoft Windows and can
serve more parameters than just an IP address. In addition, RARP servers can provide
addresses to only a single network, whereas DHCP is capable of serving multiple
networks from a single server, provided that routing is correctly set up. On the other
hand, Microsoft Windows administrators should be familiar with the Bootstrap Protocol
(BOOTP), which provided IP addresses dynamically in the same way that DHCP does.
In fact, DHCP can be considered a superset of BOOTP, and DHCP servers are generally
backward compatible with BOOTP. The relationship between DHCP and BOOTP is
historical: the BOOTP protocol is the foundation on which DHCP was built. Many
similarities remain: the packet formats for DHCP and BOOTP are the same, although
BOOTP packets are fixed length and DHCP packets are variable length. The DHCP
packet length is negotiated between the client and the server.

Another advantage of DHCP over proprietary protocols is that it is an open network
standard, developed through the Internet Engineering Task Force (IETF). It is based on

458 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

a client/server paradigm, in which the DHCP client (e.g., a PC running Microsoft
Windows) contacts a DHCP server (e.g., a server running Solaris) for its network
configuration parameters. The DHCP server is typically centrally located and is under
the control of the network administrator. Since the server is secure, DHCP clients can
obtain reliable information for dynamic configuration, with parameters that reflect
up-to-date changes in the current network architecture. For example, if a client is
moved to a new network, it must be assigned a new IP address for that new network.
DHCP can be used to manage these assignments automatically. If you are interested in
finding out more about how DHCP works, refer to RFC 2131. There is also a reference
implementation of a DHCP server, client, and relay agent available from Internet Systems
Consortium (ISC), a nonprofit corporation (http://www.isc.org/). The ISC implementation
uses a modular API, which is designed to work with both POSIX-compliant and non-
POSIX-compliant operating systems. It also includes source code, making it useful for
understanding how DHCP works behind the scenes.

In addition to dynamically allocating IP addresses, DHCP serves other key network
configuration parameters, such as the subnet mask, default router, and Domain Name
System (DNS) server. Again, this goes beyond the capabilities of competing protocols
like RARP. By deploying a DHCP server, network administrators can reduce repetitive
client-based configuration of individual computers, often requiring the use of confusing
OS-specific setup applications. Instead, clients can obtain all of their required network
configuration parameters automatically, without manual intervention, from a centrally
managed DHCP server.

Both commercial and freeware versions of DHCP clients and servers are available
for all platforms. For example, Check Point’s (http://www.checkpoint.com/) DHCP
server can be integrated with its firewall product, Firewall-1, to maximize the security
potential of centralized network configuration management. Advanced network
management protocols are supported by DHCP, like the Simple Network Management
Protocol (SNMP). In addition, configuration change-management issues, like IP
mobility and managing addresses for multiple subnets, can all be handled from a single
DHCP server.

Implementation of DHCP should always be evaluated in the context of other network
management protocols, like SNMP, and other directory services, like the Lightweight
Directory Access Protocol (LDAP). Both LDAP and SNMP are crucial to the management
of hosts and users in large and distributed networks. Since DHCP is responsible for the
allocation of network configuration parameters, it is essential that SNMP agents obtain the
correct information about hosts that they manage. In addition, LDAP server administrators
need to be aware that host IP addresses will change over time.

Network Time Protocol
Time may be relative to the observer, but keeping accurate and consistent time provides
a critical frame of reference for applications running on a local server and across the
network. For example, imagine a database application that records bank balances in a
temporary database for an Internet banking system. The most recent bank balance for
each account, when updated, would be always inserted into the Balance column of the

C h a p t e r 2 2 : D H C P a n d N T P 459

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

Accounts table, with two primary keys to identify the balances: account_name and
timestamp. Whenever the latest balance is to be entered, a new row is inserted into the
Accounts table with the account_name, balance, and timestamp. All other transactions,
such as withdrawals, require that the most recent balance be determined from the
timestamp (no updates of rows are permitted, for security reasons). If dates and times
are not maintained consistently on the system, the potential exists for the true bank
balance at the present time to be missed for selection based on the incorrect timestamp
it may have been assigned.

This disparity would clearly render the application useless. Figure 22-1 demonstrates
this scenario in action—two balances have been inserted into the Accounts table for
account_name 95639656: $18,475.90 is the balance on January 1, 2002, at 18:54:21, and
$17,475.90 is the balance on the same day at 18:54:22. This set of entries indicates that a
withdrawal of $1,000 occurred one second after the first transaction. What if the system
clock did not have accuracy to within one second? The incorrect balance of $18,475.90
might then be reported when future queries are run.

While most systems are capable of maintaining millisecond accuracy for time, a
more complex situation arises when high availability and clustering become involved
and different systems in the cluster have different times and dates. For example, imagine
that a single database server receives updates from six Java 2 Enterprise Edition (J2EE)
application servers on six different machines. These servers process requests from
clients in a round-robin fashion, and all update the same table on the database server.
This allows each application server to always retrieve the most up-to-date information
for each client. However, if each server has a different date and time, they would be
writing balances into the Accounts table with varying timestamps. Again, the fact that
the timestamps varied would prevent the application from being used seriously.

Figure 22-2 again demonstrates this scenario—two balances have been inserted
into the Accounts table for account_name 95639656: server1 inserted the balance
$18,475.90 on January 1, 2002 at 18:54:21, and server2 inserted the balance $17,475.90
on January 1, 2002 at 18:54:22. This set of entries indicates that a withdrawal of $1,000
occurred one second after the first transaction. If the two clocks of server1 and server2

460 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

FIGURE 22-1
Inserting database
records using
timestamps
requires accurate
timekeeping.

were not synchronized with millisecond accuracy, we would never know which
balance ($18,475.90 or $17,475.90) is actually correct. What if a leap second was
observed on one server and not another? Clearly, there is a need for systems to be able
to regularly synchronize their clocks to ensure consistency in enterprise applications.

One solution that solves the accuracy problem for single systems and for networks
is the Network Time Protocol (NTP). The current production version of NTP is v3,
specified in RFC 1305, which allows time to be synchronized between all systems on a
network by using multicast, and also permits high-precision external hardware clock
devices to be supported as authoritative time sources. These two approaches ensure
that potential data-consistency problems caused by timestamps do not hamper online
transaction processing and other real-time data-processing applications. By using a
master-slave approach, one server on the network can be delegated the authority for
timekeeping for all systems on that network. Using a master-slave approach ensures
that multiple, potentially conflicting sources of authoritative time do not interfere with
each other’s operation. Note that Simple NTP (SNTP) version 4 is described in RFC 2030;
however, it is still under development and is not a formal RFC yet.

NTPv3 provides a number of enhancements over previous versions—it supports
a method for servers to communicate with a set of peer servers to average offsets and
achieve a more accurate estimation of current time. This is a similar method used by
national measurement laboratories and similar timekeeping organizations. In addition,
network bandwidth can be preserved because the interval between client/server
synchronizations has been substantially increased. This improvement in efficiency has
been achieved because of the improvements to the local-clock algorithm’s accuracy. In
any case, NTP uses UDP to communicate synchronization data, minimizing any network
overhead. In order for clients to access server data, the IP address or hostname of the
server must be known—there is no mechanism for automatic discovery of a time server
defined by NTP.

C h a p t e r 2 2 : D H C P a n d N T P 461

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

FIGURE 22-2
Inserting database
records from
multiple servers
using timestamps
requires even
more accurate
timekeeping.

While NTP has a simple client/server interface, individual servers also have the
ability to act as secondary servers for external, authoritative time sources. For example,
a network might have a designated time server from which all clients retrieve the correct
time, which the server in turn authoritatively receives from a national measurement
laboratory. In addition, hardware clocks can be used as a backup in case of network
failure between the local network and the measurement laboratory. When a connection
is reestablished, the local server’s time can simply be recalibrated with the authoritative
time received from the laboratory.

This chapter examines how to configure NTP servers and clients to synchronize their
timekeeping and examines strategies for maintaining accurate time on the server side.

Procedures
The following procedures are used to run DHCP and NTP.

DHCP Operations
The basic DHCP process is a straightforward, two-phase process involving a single
DHCP client and at least one DHCP server. When the DHCP client (dhcpagent) is
started on a client, it broadcasts a DHCPDISCOVER request for an IP address on
the local network, which is received by all available servers running a DHCP server
(in.dhcpd). Next, all DHCP servers that have spare IP addresses answer the client’s
request through a DHCPOFFER message, which contains an IP address, subnet mask,
default router name, and DNS server IP address. If multiple DHCP servers have IP
addresses available, it is possible that multiple servers will respond to the client request.
The client simply accepts the first DHCPOFFER that it receives, upon which it broadcasts
a DHCPREQUEST message, indicating that a lease has been obtained. Once the server
whose IP is accepted has received this second request, it confirms the lease with a
DHCPACK message. After a client has finished using the IP address, a DHCPRELEASE
message is sent to the server.

In the situation where a server has proposed a lease in the first phase that it is
unable to fulfill in the second phase, it must respond with a DHCPNACK message.
This means that the client will then broadcast a DHCPDISCOVER message, and the
process will start again. A DHCPNACK message is usually sent if a timeout has
occurred between the original DHCPDISCOVER request and the subsequent reception
at the server side of a DHCPREQUEST message. This is often due to network outages
or congestion. The list of all possible DHCP messages is shown in Table 22-1.

The DHCPOFFER message specifies the lease period, after which the lease will be
deemed to have expired and will be made available to other clients. However, clients
also have the option of renewing an existing lease, so that their existing IP address can
be retained. DHCP defines fixed intervals prior to actual lease expiry at which time a
client should indicate whether or not it wishes to extend the lease. If these renewals are
not made in time, a DHCPRELEASE message will be broadcast, and then the lease will
be invalid.

462 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

DHCP has three ways to allocate leases to client. Automatic allocation grants an IP
address permanently to a client. This is useful for granting IP addresses to servers that
require a static IP address. A DNS server typically requires a static IP address, which
can be registered in host records lodged with InterNIC. The majority of clients will have
addresses assigned dynamically by the server, which allows the greatest reuse of addresses.
Alternatively, an administrator may manually assign an address to a specific client.

The process of allocating a DHCP lease is shown in Figure 22-3.

Configuring an NTP Server
The Solaris NTP daemon is xntpd. It operates by listening for requests from NTP clients
and sends responses appropriately. The server processes a request, modifies the
appropriate fields with the correct time, etc., and then returns the modified request
data as a response. The response allows the client to modify its clock settings appropriately.
In addition, the server is able to provide data from a number of different authoritative
sources.

C h a p t e r 2 2 : D H C P a n d N T P 463

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

Code Description

DHCPDISCOVER Broadcast from client to all reachable servers

DHCPOFFER Server responds to DHCPDISCOVER requests

DHCPREQUEST Client accepts lease proposal from only one server

DHCPACK Server acknowledges lease

DHCPNACK Server refuses to accept DHCPREQUEST

DHCPRELEASE Lease no longer required

TABLE 22-1
DHCP Codes and
Their Meanings

FIGURE 22-3
How DHCP leases
IP addresses

The accuracy of a client’s time can be improved by selecting the most accurate server.
Fortunately, there are measurements available to determine which clocks provide the
most accurate data. Reliability and accuracy data is returned in the response data when
a client makes a request to the server.

In a more complex network, where a time server must be highly available, it may
be more appropriate to create a hierarchical system of NTP servers, where dynamic
reconfiguration is possible. This is only necessary where hardware or software failures
can affect a single production system’s reliability. In this case, multiple servers can act
as peers to each other. A primary time server in this setup obtains its time from a reference,
such as an external clock device, and transmits it to other, secondary servers. Alternatively,
there may be multiple primary time servers, and secondary servers must determine
which server is most accurate. Clients then access secondary sources directly.

Of course, this creates a stratum of accuracy, with primary servers being the most
accurate, secondary servers being the next most accurate, and clients being the least
accurate. Millisecond accuracy should be possible with secondary servers. However,
errors can be estimated even at the client level and corrections made to improve the
overall accuracy of the time estimation.

The timestamp lies at the core of the NTP data model—it is the number of seconds
that have elapsed since 01/01/1900 00:00 and is represented by a 64-bit unsigned floating-
point number. The first 32 bits represent the integer portion of the number, while the last
32 bits represent the fractional portion of the number.

The number of seconds in one non-leap year is 31,536,000. Given that only 64 bits
are available to store time data in the NTP timestamp format, the maximum value will
be reached in the year 2036. Given the number of legacy applications even now that use
timestamping, a significant amount of planning will be required over the next 30 years
or so to develop a new, high-capacity timestamp format that is backward compatible
with existing formats.

A sample NTP server configuration file is located in /etc/inet/ntp.server. This file
provides a pro forma template for configuring an NTP server that utilizes an external
clock device, provides for local clock synchronization, and provides for broadcasting
times across the network. A sample file is shown here:

server 127.127.XType.0 prefer
fudge 127.127.XType.0 stratum 0
broadcast 224.0.1.1 ttl 4
enable auth monitor
driftfile /var/ntp/ntp.drift
statsdir /var/ntp/ntpstats/
filegen peerstats file peerstats type day enable
filegen loopstats file loopstats type day enable
filegen clockstats file clockstats type day enable
keys /etc/inet/ntp.keys
trustedkey 0
requestkey 0
controlkey 0

464 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

The server entry indicates the primary server that this system prefers. The
broadcast entry directs the server to broadcast messages to clients. The driftfile
entry relates to a local clock’s accuracy and its frequency offset.

In both cases where XType appears in the first two lines, a legal value for a clock device
must be inserted. The clock device could be one of the devices shown in Table 22-2.

Once the settings for the NTP server have been modified, they should be saved in
the file /etc/inet/ntp.conf. When started in debug mode, the NTP server produces the
following output:

/usr/lib/inet/xntpd -d
tick = 10000, tickadj = 5, hz = 100
kernel vars: tickadj = 5, tick = 10000
adj_precision = 1, tvu_maxslew = 495, tsf_maxslew = 0.002070b9
create_sockets(123)

C h a p t e r 2 2 : D H C P a n d N T P 465

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

XType Device RefID Description

1 local LCL Undisciplined Local Clock

2 trak GPS TRAK 8820 GPS Receiver

3 pst WWV PSTI/Traconex WWV/WWVH Receiver

4 wwvb WWVB Spectracom WWVB Receiver

5 true TRUE TrueTime GPS/GOES Receivers

6 irig IRIG IRIG Audio Decoder

7 chu CHU Scratchbuilt CHU Receiver

8 parse ---- Generic Reference Clock Driver

9 mx4200 GPS Magnavox MX4200 GPS Receiver

10 as2201 GPS Austron 2201A GPS Receiver

11 arbiter GPS Arbiter 1088A/B GPS Receiver

12 tpro IRIG KSI/Odetics TPRO/S IRIG Interface

13 leitch ATOM Leitch CSD 5300 Master Clock Controller

15 * * TrueTime GPS/TM-TMD Receiver

17 datum DATM Datum Precision Time System

18 acts ACTS NIST Automated Computer Time Service

19 heath WWV Heath WWV/WWVH Receiver

20 nmea GPS Generic NMEA GPS Receiver

22 atom PPS PPS Clock Discipline

23 Ptb TPTB PTB Automated Computer Time Service

24 Usno USNO USNO Modem Time Service

25 * * TrueTime generic receivers

26 Hpgps GPS Hewlett Packard 58503A GPS Receiver

27 Arc MSFa Arcron MSF Receiver

TABLE 22-2
XTypes Available
Through xntpd

466 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

bind() fd 19, family 2, port 123, addr 00000000, flags=1
bind() fd 20, family 2, port 123, addr 7f000001, flags=0
bind() fd 21, family 2, port 123, addr 0a401203, flags=1
init_io: maxactivefd 21
getconfig: Couldn't open </etc/inet/ntp.conf>
report_event: system event 'event_restart' (0x01) status 'sync_alarm,
sync_unspec, 1 event, event_unspec' (0xc010)

In this output, an error message is generated because the file /etc/inet/ntp.conf could
not be found—it’s a common mistake not to copy across the template /etc/inet/ntp.server
file to /etc/inet/ntp.conf! To observe the set of internal variables used by xntpd during its
operation, the ntpq command can be used.

NTP Security
One of the main problems in tying all production time-management operations to a
single primary server is the potential for crackers to either spoof a legitimate primary
server and pretend to be the primary server or undertake a denial of service attack.
Fortunately, NTP provides authentication procedures to ensure that only authorized
servers and clients can access their peers and/or the primary server. In addition, the
use of multiple authoritative sources, including a backup external hardware clock, can
remove some of the problems associated with denial of service attacks—after all, if an
external network port is being blocked by an attacker or group of attackers, then the
local standby can always be used.

NTP security is ultimately based on trust relationships that are developed as
part of an overall network design. In addition, a number of innovations in the NTP
authentication system make it very difficult for a cracker to spoof a primary server.
For example, the originate timestamp (the time at which the message was transmitted
from a client) is equivalent to a one-time pad, although if the cracker has knowledge
of previous timestamps, it may be possible, with sufficient CPU power, to successfully
spoof a server. However, given the error-estimation procedures and methods for clients
to select the most accurate server, it’s unlikely that an attack would succeed.

Examples
The following examples show how to set up DHCP and NTP clients and servers.

Configuring a Solaris DHCP Server
The Solaris client (dhcpagent) and server (in.dhcpd) solution features backward
compatibility with other methods already in use, particularly RARP and static
configurations. In addition, the address of any workstation’s network interfaces can be
changed after the system has been booted. The dhcpagent client for Solaris features
caching and automated lease renewal and is fully integrated with IP configuration
(ifconfig). The in.dhcpd server for Solaris can provide both primary and secondary

C h a p t e r 2 2 : D H C P a n d N T P 467

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

DHCP services and is fully integrated with NIS+. The Solaris DHCP server has the
ability to handle hundreds of concurrent requests and to boot diskless clients. Multiple
DHCP support is provided through the Network File System (NFS). Although this
chapter does not cover these advanced features, it’s worthwhile to consider them when
you are making a decision to use RARP or DHCP (or some other competing dynamic
IP allocation method).

The main program used to configure DHCP under Solaris is /usr/sbin/dhcpconfig,
which is a shell script that performs the entire configuration for you. Alternatively, you
can use the dhtadm or pntadm applications to manage the DHCP configuration table
(/var/dhcp/dhcptab). The dhcpconfig program is menu-based, making it easy to use.
The first menu displayed when you start the program looks like this:

*** DHCP Configuration ***
Would you like to:
1) Configure DHCP Service
2) Configure BOOTP Relay Agent
3) Unconfigure DHCP or Relay Service
4) Exit
Choice:

The first menu option configures the DHCP service for initial use. If your system
has never used DHCP, then you must start with this option. You will be asked to
confirm DHCP startup options, such as the timeout periods made on lease offers (i.e.,
between sending DHCPOFFER and receiving a DHCPREQUEST), and whether or not
to support legacy BOOTP clients. You will also be asked about the bootstrapping
configuration, including the following settings:

• Timezone

• DNS server

• NIS server

• NIS+ server

• Default router

• Subnet mask

• Broadcast address

These settings can all be offered to the client as part of the DHCPOFFER message.
The second menu option configures the DHCP server to act simply as a relay agent.

After you enter a list of BOOTP or DHCP servers to which requests can be forwarded,
the relay agent should be operational.

Finally, you may choose to unconfigure either the full DHCP service or the relay
service, which will revert all configuration files.

If you selected option 1, you will first be asked if you want to stop any current
DHCP services:

Would you like to stop the DHCP service? (recommended) ([Y]/N)

Obviously, if you are supporting live clients, then you should not shut down the service.
This is why DHCP configuration needs to take place outside normal business hours, so
that normal service is not disrupted. If you have ensured that no clients are depending
on the in.dhcpd service, you can answer yes to this question, and proceed.

Next, you are asked to identify the datastore for the DHCP database:

DHCP Service Configuration
Configure DHCP Database Type and Location
Enter datastore (files or nisplus) [nisplus]:

The default value is NIS+ (nisplus), covered in Chapter 29. However, if you are not
using NIS+ to manage network information, then you may choose the files option.
If you choose the files option, you need to identify the path to the DHCP datastore
directory:

Enter absolute path to datastore directory [/var/dhcp]:

The default path is the /var/dhcp directory. However, if your /var partition is small or
running low on space and you have a large network to manage, you may wish to locate
the datastore directory somewhere else.

You will then be asked if you wish to enter any nondefault DHCP options:

Would you like to specify nondefault daemon options (Y/[N]):

Most users will choose the standard options. However, if you wish to enable
additional facilities like BOOTP support, then you will need to answer yes to this
question. You will then be asked whether you want to have transaction logging
enabled:

Do you want to enable transaction logging? (Y/[N]):Y

Transaction logs are very useful for debugging, but grow rapidly in size over time,
especially on a busy network. The size of the file will depend on the syslog level that
you wish to enable as well:

Which syslog local facility [0-7] do you wish to log to? [0]:

Next, you will be asked to enter expiry times for leases that have been offered to
the client:

468 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

C h a p t e r 2 2 : D H C P a n d N T P 469

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

How long (in seconds) should the DHCP server keep outstanding OFFERs? [10]:

The default is ten seconds, which is satisfactory for a fast network. However, if you
are operating on a slow network, or expect to be servicing slow clients (like 486 PCs
and below), then you may wish to increase the timeout. In addition, you can also specify
that the dhcptab file be reread during a specified interval, which is useful only if you
have made manual changes using dhtadm:

How often (in minutes) should the DHCP server rescan the dhcptab? [Never]:

If you wish to support BOOTP clients, you should indicate this at the next prompt:

Do you want to enable BOOTP compatibility mode? (Y/[N]):

After configuring these nondefault options, you will be asked to configure the standard
DHCP options. The first option is the default lease time, which is specified in days:

Enter default DHCP lease policy (in days) [3]:

This value is largely subjective, although it can be estimated from the address
congestion of your network. If you are only using an average 50 percent of the addresses
on your network, then you can probably set this value to seven days without concern.
If you are at the 75 percent level, then you may wish to use the default value of three
days. If you are approaching saturation, then you should select daily lease renewal.
If the number of hosts exceeds the number of available IP addresses, you may need
to enter a fractional value, to ensure the most equitable distribution of addresses.

Most sites will wish to allow clients to renegotiate their existing leases:

Do you want to allow clients to renegotiate their leases? ([Y]/N):

However, just like a normal landlord, you may sometimes be compelled to reject requests
for lease renewal, especially if your network is saturated.

You must now enable DHCP support for at least one network for DHCP to operate:

Enable DHCP/BOOTP support of networks you select? ([Y]/N):

For an example local network of 192.65.34.0, you will be asked the following questions:

Configure BOOTP/DHCP on local LAN network: 192.65.34.0? ([Y]/N):

You should (of course!) answer yes, if this is the network that you wish to configure
DHCP for.

470 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

Next, you need to determine whether you wish DHCP to insert hostnames into the
hosts file for you, based on the DHCP data:

Do you want hostnames generated and inserted in the files hosts table? (Y/[N]):

Most sites will use DNS or similar for name resolution, rather than the hosts file, so this
option is not recommended. One situation in which you may wish to generate hostnames
is if you are using a terminal server or Web server pool, where the hostnames are arbitrary
and frequently change in number. In this case, you simply need to enter a sensible base
name for the hostnames to be generated from:

What rootname do you want to use for generated names? [yourserver-]:

For a Web server bank, you could use a descriptive name like www-.
Next, you will be asked to define the IP address range that you want the DHCP server

to manage, beginning with the starting address:

Enter starting IP address [192.65.34.0]:

Next, you must specify the number of clients. In the example class C network, this
will be 254:

Enter the number of clients you want to add (x < 65535):

Once you have defined the network that you wish to support, you’re ready to start
using DHCP. An alternative method for invoking dhcpconfig is to do so from the
command line, passing key parameters as arguments. For example, to set up a DHCP
server for the domain paulwatters.com, with the DNS server 204.56.54.22, with a lease
time of 14,400 seconds (4 hours), you would use the following command:

dhcpconfig -D -r SUNWbinfiles -p /var/dhcp -l 14400 \
-d paulwatters.com -a 204.56.54.22 -h dns -y paulwatters.com

To unconfigure a DHCP server, execute the following command:

dhcpconfig -U –f -x –h

This command removes host entries from the name service, the dhcptab file, and the
network tables.

An alternative to the dhcpconfig command is the dhcpmgr GUI, which performs
the following operations:

• Configures DHCP

• Configures BOOTP

• Administers DHCP

• Administers BOOTP

• Administers DHCP addresses and macros

• Administers DHCP options

• Migrates DHCP data stores

• Moves data from one DHCP server to another

Figure 22-4 shows the GUI for dhcpmgr.

Manual DHCP Server Configuration
Although most administrators use dhcpconfig or dhcpmgr to manage DHCP services,
it is also possible to manually edit the DHCP configuration database, dhcptab, by using
the dhtadm command. You can install macros and set server options by using dhtadm.

C h a p t e r 2 2 : D H C P a n d N T P 471

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

FIGURE 22-4
DHCP
Configuration
Wizard

In the first instance, dhtadm can be used to create a new dhcptab file:

dhtadm –C

The following options can be passed to dhtadm to perform various tasks:

• –A Define a macro or symbol.

• –B Perform batch processing.

• –C Create the service configuration database.

• –D Remove a macro or symbol.

• –M Update a macro or symbol.

Configuring a Solaris DHCP Client
Once the DHCP server has been configured, it is then very easy to configure a Solaris
client. When installing the client, you will be asked whether you wish to install DHCP
support. At this point, you should answer yes. Accordingly, you will not be asked to
enter a static IP address as per a normal installation, as this will be supplied by the DHCP
server with the DHCPOFFER message.

If you wish to enable support for DHCP on a client that has already been installed,
you need to use the sys-unconfig command, which can be used on all systems to
reconfigure network and system settings, without having to manually edit configuration
files. The sys-unconfig command reboots the system in order to perform this task,
so users should be given plenty of warning before reconfiguration commences. Again,
you will be asked during configuration to install DHCP support, to which you should
answer yes.

When configured, the DHCP client (dhcpagent) is managed by ifconfig—
although dhcpagent can be started manually, it is most often started by ifconfig
with respect to a specific interface. This process allows a lease to be initially obtained,
and subsequently renewed if the interface is still in use.

Configuring a Windows DHCP Client
Setting up support for a Microsoft Windows client is easy—you simply select the DHCP
support option in the TCP/IP section of the Network Control Panel, which can be found
in most versions of Windows. A DHCP client for Windows 95 is shown in Figure 22-5.
Once DHCP support is enabled, it is no longer necessary to enter any static IP address
information.

Configuring an NTP Client
If a system is going to act as an NTP client, then creating the configuration file is much
simpler. Instead of copying the template /etc/inet/ntp.server file to /etc/inet/ntp.conf, the

472 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

template /etc/inet/ntp.client file is copied to /etc/inet/ntp.conf. By default, this file contains
a list that listens for multicast broadcasts on the local subnet:

multicastclient 224.0.1.1

NTP clients send and receive NTP message data in a specific format. The main fields
transmitted include the following:

• Leap Indicator Flag that indicates a leap year at the end of the day.

• Version Number NTPv3.

• Mode Determines whether the message is symmetric active, symmetric
passive, client, server, broadcast, or an NTP control message.

• Stratum Level of accuracy for the message, with 1 being a primary server
and 2–255 indicating secondary servers of decreasing accuracy.

• Poll Interval Maximum time separating messages.

• Precision Local clock precision.

• Root Delay Delay anticipated between the primary and other sources.

• Root Dispersion Error estimate from the primary source.

• Reference Clock Identifier Allows the primary source clock to be identified.

• Reference Timestamp The last time the local clock was updated.

C h a p t e r 2 2 : D H C P a n d N T P 473

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

FIGURE 22-5
DHCP client for
Microsoft Windows

• Originate Timestamp The time at which the message was transmitted from
a client.

• Receive Timestamp The time at which the message was received.

• Transmit Timestamp The time at which the message was transmitted from
a server.

• Authenticator Specifies the authentication method used.

Summary
In this chapter, you have examined core issues in hosts as distributed systems by
allowing dynamic assignment of IP addresses through DHCP. You have also learned
how to obtain agreement about time. Since time is the basis for synchronized operations,
it is critical that a common reliable time source be used when building networked
systems that must interact with each other.

474 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 22

23
Routing and Firewalls

In this chapter, we examine how to connect multiple machines in subnets, and how
to connect subnets to form local area networks (LANs) through routers. Inter-router
connection allows the formation of wide area networks (WANs) and, ultimately, the

Internet. Communication between different machines, through the transmission of data
packets, can only take place through the process of routing. Routing involves finding a
route between two hosts, whether they exist on the same network or are separated by
thousands of miles and hundreds of intermediate hosts. Fortunately, the basic principles
are the same in both cases. However, for security reasons, many sites on the Internet
have installed packet filters, which deny certain packet transmissions on a host or port
basis. In this chapter, we examine static and dynamic methods for configuring routes
between hosts, and examine the mechanisms of IP filtering and firewalls.

Key Concepts
The key concepts for network routing are discussed in this section.

Network Interfaces
Solaris supports many different kinds of network interfaces, for local- and wide-area
transmission. Ethernet and FDDI are commonly used to create networks of two or
more systems at a single site through a LAN, while supporting high-speed, wide-area
connections through T1 and X.25 lines. A switch is a device that can interconnect many
devices so that they can be channeled directly to a router for wide-area connection. For
example, a building may have a switch for each of its physical floors, and each of these
switches may connect to a single switch for the whole building that is connected to a
data circuit, through a router (router.company.com). A general rule of thumb for connecting
routable networks is not to have more than three levels of connection between a server
and a router, because otherwise the number of errors increases dramatically. Figure 23-1
shows a possible class C network configuration for this building.

This configuration is fine if a single company (company.com) owns and occupies this
building, and both floors use the same data circuit. However, imagine that company.com

4 7 5

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23
Blind Folio 475

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

expands and leases the second floor to a subsidiary company called subsidiary.com. The
subsidiary company wants to use the existing data circuit arrangements and is happy
to share the cost of the Internet connection. However, the subsidiary company wants to
logically isolate its network from that of company.com, and needs to protect its data: it
intends to install on its own router a packet filter that explicitly denies or allows packets
to cross into its own network.

This logical separation can be easily achieved by separating the existing network
into two subnets, allowing the subsidiary company to install its own router, and then
connecting the two networks through that router. Traffic to the data circuit can still flow
through the existing connection, even though they are now separated from the router.
How the subsidiary’s traffic “finds” the data circuit is the kind of problem that routing
can solve. More generally, routing allows one host to find a path to any other host on
the Internet. Figure 23-2 shows the revised configuration for this building, incorporating

476 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

FIGURE 23-1 Class C network configuration (204.17.64.0)

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 477

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

the changes required by the subsidiary company, forming two class C networks whose
routers are connected to each other.

It should be clear from these examples that from a network perspective, a Solaris 10
system must be either a router or a host. A router may be a Solaris server that performs
other functions (e.g., DNS server, NIS server, and so on), or it may be a dedicated,
hardware-based system supplied by another manufacturer (e.g., Cisco, Ascend). In this
chapter, we examine ways of setting up and configuring a Solaris host to be a router,
although your organization may prefer to use a dedicated system for routing.

The basic function of a router, as displayed in Figures 23-1 and 23-2, is to pass
information from one network to another. In the examples, information is passed from
one class C network to another, but also to the router of the data circuit. The router on
the other end then connects with many other routers, eventually giving global coverage.
The information passed between networks is contained in discrete packets. Because the
router passes this information along, it can potentially make a copy of the data and save
it to a local disk. This is the basis of many security-related problems on the Internet, since
usernames and passwords are also transmitted as packets and can be intercepted by any
intermediate router between client and server.

To be a router, a system must have multiple physical network interfaces. This is
distinct from a system that has one or more virtual interfaces defined for a single physical
interface card. Thus, the router for company.com has the interfaces hme0 and le0. The
first interface accepts traffic from the internal network and passes it to the second interface,
while the second interface accepts traffic from the other routers and passes it to the

FIGURE 23-2 Connecting two class C networks (204.17.64.0 and 204.17.65.0)

internal network, or to other routers as appropriate. Having two network interfaces
allows data to be passed through the machine and exchanged across different networks.
In the preceding example, the company.com router was able to exchange information
between the subsidiary.com router and the external router. Thus, many routers can be
interconnected to form networks in which packets can be passed from a source to a
destination host transparently.

Since the subsidiary.com router serves as a packet-filtering firewall, it is likely that
the network has a nonroutable internal structure that is not directly accessible to the
external network but is visible from the router (the 10.17.65.0 network). Thus, a rogue
user from company.com will be able to “see” the external interface for the subsidiary.com
router but will not be able to see the internal interface, or any of the hosts beyond, unless
she manages to break into the router through the external interface. This adds a second
layer of protection against intrusion. A packet filter can then be used to explicitly deny
connections to machines in the internal network, except for very specific system or network
services. For example, a departmental mail server may reside on server1.subsidiary.com,
and external machines will ultimately need access to the sendmail ports on this server.
This can be achieved by port forwarding, the ability of the router to map a port on its
external interface to a port on a machine on the internal network. For example, a Web
server on server1.subsidiary.com:80 could be accessed from the external network by
connecting to router.subsidiary.com:8080 if the mapping was enabled. These techniques
can achieve the necessary logical isolation between external users and actual network
configuration, which can be useful for security planning. Packet filtering, port forwarding,
and nonroutable networks are discussed later in the chapter.

A machine with more than one network interface may not be configured to act as a
router, in which case it is referred to as a multihomed host. Multihoming can be useful
for performing such functions as load balancing, and directly serving different class C
networks without passing information between them.

IP Routing
Now that you have reviewed how to install, configure, and tune network interfaces,
this section describes how to set up routing, by explaining how packets are transferred
from hosts to routers and exchanged between routers. This section also examines how
to troubleshoot routing problems with traceroute, and introduces the different routing
protocols that are currently being used on the Internet.

There are two kinds of routing, static and dynamic. Static routing is common in
simple networks with only a few hosts and networks interconnected. Static routing is
much simpler to implement than dynamic routing, which is suitable for large networks,
where the routes between networks cannot be readily specified. For example, if your
organizational network has only 2 routers connecting three networks, then the number
of routes that need to be installed statically is 4 (i.e., the square of the number of routers).
In contrast, for a building with 5 routers, the number of routes that need to specified
statically is 25. However, by using the default route facility, the number of routes to be
specified drops significantly, as shown in the following example:

478 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

{data circuit}------R1---------R2------------R3-------{stub}
R1 routes = default route to data circuit route to R2 and R3 (3 routes)
R2 routes = default route to R1 & route to R3 (2 routes)
R3 routes = default route to R2 (1 routes)
Total routes = 3 + 2 + 1 = 6

If a router configuration changes, then all the static configuration files on all the
routers need to be changed (i.e., there is no mechanism for the “discovery” of routes).
Alternatively, if a router fails because of a hardware fault, then packets may not be able
to be correctly routed. Dynamic routing solves all of these problems, but requires more
processing overhead on each router. There are two related dynamic routing daemons—
in.rdisc, the router discovery daemon, and in.routed, the route daemon—whose
configuration will be discussed at length in this section.

Overview of Packet Delivery
Before we examine the differences between static and dynamic routing in detail, let’s take
a step back and consider how information is passed between two systems, whether the
exchange is host to host, host to router, or router to router. All information is exchanged
in the form of discrete packets. A packet is the smallest unit of information transmitted
between hosts using TCP/IP and contains both a header and a message component, as
shown in Figure 23-3. In order to deliver packets from one host to another host successfully,
each packet contains information in the header, which is similar to an envelope. Among
many other fields, the header contains the address of the destination machine and the
address of the source machine. The message section of the packet contains the actual
data to be transferred.

Packets are often transferred on the transport layer using the Transmission Control
Protocol (TCP), which guarantees the delivery of packets, although some applications
use the User Datagram Protocol (UDP), where the continuity of a connection cannot be

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 479

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

FIGURE 23-3
A packet has both
a message and a
header.

480 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

guaranteed. In normal TCP transmission mode, only 64KB of data can be transferred in
a single session, unless large window support is enabled, in which case up to 1GB of
data may be transmitted. The header may also have information inserted by the source
machine, which is referred to as data encapsulation. The action of passing a packet is
referred to as a hop, so routing involves enabling packets to hop from a source host to
any arbitrary host on the Internet.

In order for packets to be delivered correctly between two hosts, all intermediate
routers must be able to determine where the packets have come from and where they
must be delivered to. This can be achieved by referring to a host by using its IP address
(e.g., 204.16.42.58) or its Fully Qualified Domain Name (e.g., server.company.com). Although
it is also possible to refer to a machine by its Ethernet (hardware) address, a logical rather
than a physical representation of a machine’s network interface card is always used.

Sending a packet across a network makes full use of all network layers. For example,
if a telnet session is to be established between two machines, the application protocol
specifies how the message and header are to be constructed, information which is then
passed to the transport layer protocol. For a telnet session, the transport layer protocol is
TCP, which proceeds with encapsulation of the packet’s data, which is split into segments.
The data is divided depending on the size of the TCP window allowed by the system.
Each segment has a header and a checksum. The checksum is used by the destination
host to determine whether a received packet is likely to be free of corruption.

When a segment is due to be transmitted from the source host, a three-way handshake
occurs between the source and destination: a SYN segment is sent to the destination
host to request a connection, and an acknowledgement (ACK) is returned to the source
when the destination host is ready to receive. When the ACK is received by the source
host, its receipt is acknowledged back to the destination, and transmission proceeds with
data being passed to the IP layer, where segments are realized as IP datagrams. IP also
adds a header to the segment, and passes it to the physical networking layer for transport.

A common method of enacting a denial-of-service (DoS) attack on a remote host
involves sending many SYN requests to a remote host, without completing the three-
way handshake. Solaris now limits the maximum number of connections with incomplete
handshakes to reduce the impact of the problem. When a packet finally arrives at the
destination host, it travels through the TCP/IP protocol stack in the reverse order from
which it took on the sender: just like a deck of cards that has been dealt onto a playing
table and retrieved from the top of the pack.

The story becomes more complicated when packets need to be passed through
several hosts to reach their ultimate destination. Although the method of passing data
from source to destination is the same, the next hop along the route needs to be determined
somehow. The path that a packet takes across the network depends on the IP address
of the destination host, as specified in the packet header.

If the destination host is on the local network, the packet can be delivered immediately
without intervention of a separate router. For example, a source host 204.12.60.24 on the
class C network 204.12.60.0 can directly pass a packet to a destination 204.12.60.32.

However, once a packet needs to be delivered beyond the local network, the process
becomes more complicated. The packet is passed to the router on the local network
(which may be defined in /etc/defaultrouter), and a router table is consulted. The router

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 481

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

table contains a list of the hosts on the local network and other routers to which the router
has a connection. For example, the router for the 204.12.60.0 network might be 204.12.60.64.
Thus, a packet from 204.12.60.24 would be passed to 204.12.60.64, assuming a class C
subnet, if the destination host is not on the 204.12.60.0 network. The router 204.12.60.64
may have a second interface, 204.12.61.64, that connects the 204.12.60.0 and 204.12.59.0
networks. If the destination host is 204.12.59.28, the packet could now be delivered
directly to the host because the router bridges the two networks. However, if the packet
is not deliverable to a host on the 204.12.59.0 network, then it must be passed to another
router defined in the current router’s tables.

IP Filtering and Firewalls
After going to all the trouble of making routing easy to use and semi-automated with
the dynamic routing protocols, some situations require that the smooth transfer of
packets from one host to another via a router be prevented, usually because of security
concerns about data that is contained on hosts on a particular network. For example,
Microsoft Windows networks broadcast all kinds of information about workgroups and
domains that is visible to any computer that can connect through the network’s router.
However, if the network’s router prevents a computer from another network from
listening to this information, it can still be broadcast internally without being visible to
the outside world. Fortunately, this kind of “packet filtering” is selective: only specific
ports are blocked at the router level, and they can also be blocked in only direction. For
example, a database listener operating on a router could accept connections from
machines that are internal to the network, but external access would be blocked. For
large organizations that have direct connections to the Internet, setting up a corporate
firewall at the router level has become a priority to protect sensitive data while providing
employees with the access to the Internet that they require. This section examines the
basics of packet filtering. The “Configuring the IPFilter Firewall” section, later in the
chapter, reviews the installation and configuration of the popular ipfilter package
for Solaris 10.

IP filtering involves the selective restriction and permission of access to TCP and
UDP ports on a system. IP filtering is commonly used for two purposes: to secure a
network from attacks and intrusion from rogue users on outside hosts, and to prevent
the broadcast and transmission of unauthorized data from an internal network to the
rest of the Internet. In the former case, an attacker may attempt to gain entry to your
system by using an application like telnet, or may try to insert or retrieve data from
a database by connecting to a database listener and issuing SQL commands from a client
application. Both of these scenarios are common enough to motivate many sites to restrict
all incoming traffic to their networks, except on a very small number of specific ports.
Commonly allowed ports include

• Secure shell (ssh) on port 22

• Secure copy (scp) on port 24

• Mail server (sendmail) on port 25

• DNS server on port 53

• Web server (apache) on port 80

This may seem like a very minimal list to many administrators, but the fact is that
almost every UNIX daemon has been discovered to suffer from “buffer overflow”
problems in recent years, as discussed in Chapter 9, leaving systems open to exploitation.
A rule of thumb is to only allow services that users definitely need to be productive and
that have been approved by management. Some users might argue that allowing the
finger service is useful, but it also gives away a lot of information about home directories
and valid usernames that can be exploited by rogue users. In addition, some users may
set up Web and FTP servers without permission. Because Solaris only restricts ports
below 1024 for the superuser and system accounts, all ports above 1024 are available
for users to engage in unauthorized activities for which your company may be held
responsible. For example, a user might run a Web server on port 8080 that distributes
pirate software: if a software manufacturer discovers this operation, it will most likely
sue your company rather than the individual involved. Blocking access to all ports, unless
they are specifically required or sanctioned, limits these kinds of problems.

What is less intuitive than restricting incoming traffic is the notion of also restricting
outgoing traffic. Firewalls are able to manage both incoming and outgoing traffic because
a firewall may also act as a router, and routers always have at least two network interfaces.
One good reason to consider blocking outgoing network on some ports is that users may
engage in leisure activities, such as playing networked adventure games, when they
should be working. Since you don’t really want to be the police officer “patrolling” the
system for violators, it is best just to restrict any access in the first place to avoid any
problems down the track. It’s also possible to use a firewall to accept or deny connections
based on IP address: obviously, a machine making a connection from the external network,
but pretending to have an address from inside the network, should be identified and its
attempts rejected (this is known as IP spoofing). Figure 23-4 summarizes the functions
of a router that acts as a packet-filtering firewall. Permitted ports are labeled OK, while
denied ports are labeled NO. All connections for sendmail (25) are accepted, as are ssh
connections. However, external connections to a database listener are rejected (port 1521),
and a machine on the external network that is spoofing an internal network IP address
has all its connections rejected.

The Kernel Routing Table
The routing table maintains an index of routes to networks and routers that are available
to the local host. Routes can be determined dynamically, by using RDISC for example,
or can be added manually, by using route or ifconfig. These commands are normally
used at boot time to initialize network services. There are three kinds of routes:

• Host routes Map a path from the local host to another host on the local
network.

• Network routes Allow packets to be transferred from the local hosts to other
hosts on the local network.

482 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 483

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

• Default routes Pass the task of finding a route to a router. Both RIP and RDISC
daemons can use default routes.

Dynamic routing often causes changes in the routing table after booting, when a
minimal routing table is configured by ifconfig when initializing each network
interface, as the daemons manage changes in the network configuration and router
availability.

Procedures
The basic procedures for router configuration are provided in this section.

Configuring a Router
In order to configure routing, it is necessary to enable the appropriate network interfaces. In
this chapter, we will assume that an Ethernet network is being used, thus, each system
that acts as a router must have at least two Ethernet interfaces installed. In addition,
Solaris also supports multiple Ethernet interfaces to be installed on a single machine.
These are usually designated by files like /etc/hostname.hmen for dual-homed systems,
/etc/hostname.qen for quad-homed hosts, or /etc/hostname.len for older machines, where
n is the interface number. Interface files contain an FQDN, with the primary network
interface being designated with an interface number of 0. Thus, the primary interface
of a machine called server would be defined by the file /etc/hostname.hme0, which might
contain the FQDN external.server.com. A secondary network interface, connected to a
different subnet, might be defined in the file /etc/hostname.hme1. In this case, the file might
contain the address internal.server.com.

A system with a second network interface can act either as a router or as a multihomed
host. Hostnames and IP addresses are locally administered through a naming service,
which is usually the Domain Name Service (DNS) for companies connected to the Internet,
and the Network Information Service (NIS/NIS+) for companies with large internal

FIGURE 23-4 Basic firewall configuration blocking incoming and outgoing ports

networks that require administrative functions beyond what DNS provides, including
centralized authentication. It is also worth mentioning at this point that it is quite possible
to assign different IP addresses to the same network interface, which can be useful for
hosting “virtual” domains that require their own IP address, rather than relying on
application-level support for multihoming (e.g., when using the Apache Web server).
Simply create a new /etc/hostname.hmeX:Y file for each IP address required, where X
represents the physical device interface, and Y represents the virtual interface number.

In the examples presented in the introduction to this chapter, each of the routers had
two interfaces, one for the internal network and one for the external Internet. The subnet
mask used by each of these interfaces must also be defined in /etc/netmasks. This is
particularly important if the interfaces lie on different subnets or serve different network
classes. In addition, it might also be appropriate to assign an FQDN to each of the
interfaces, although this will depend on the purpose to which each interface is assigned.
For the system router.subsidiary.com, there will be two hostname files created in the /etc
directory.

When installing a system as a router, it is necessary to determine which network
interface to use as the external interface for passing information between networks.
This interface must be defined in the file /etc/defaultrouter, by including that interface’s
IP address. These addresses can be matched to hostnames if appropriate. For example,
the interfaces for router.subsidiary.com will be defined in /etc/hosts as

127.0.0.1 localhost loghost
10.17.65.16 internal
204.17.65.16 router router.subsidiary.com

If the server is to be multihomed instead of being a router, ensure that /etc/defaultrouter
does not exist, and create an /etc/notrouter file:

server# rm /etc/defaultrouter
server# touch /etc/notrouter

Note that the /etc/defaultrouter file lists a default route and does not make the system a
router, even if it is multihomed. To force a system to be a router, you must ensure that
the /etc/gateways file has been created empty:

server# touch /etc/gateways

Normally, only static routes for single-homed hosts are defined in the /etc/gateways file.

Viewing Router Configuration
The ifconfig command is responsible for configuring each network interface at boot
time. ifconfig can also be used to check the status of active network interfaces by
passing the –a parameter:

484 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 485

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

router# ifconfig -a
lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232

inet 127.0.0.1 netmask ff000000
hme0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 10.17.65.16 netmask ffffff00 broadcast 10.17.65.255
hme1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 204.17.65.16 netmask ffffff00 broadcast 204.17.65.255

In this case, the primary interface hme0 is running on the internal network, while the
secondary interface hme1 is visible to the external network. The netmask for a class C
network is used on both interfaces, while both have a distinct broadcast address. This
ensures that information broadcast on the internal network is not visible to the external
network. There are several parameters shown with ifconfig –a, including whether
or not the interface is UP or DOWN (i.e., active or inactive). In the following example,
the interface has not been enabled at boot time:

server# ifconfig hme1
hme1: flags=863<DOWN,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 204.17.64.16 netmask ffffff00 broadcast 204.17.64.255

Static Routes
On hosts, routing information can be extracted in two ways: by building a full routing
table, exactly as occurs on a router, or by creating a minimal kernel table, containing a
single default route for each available router (i.e., static routing). The most common
static route is from a host to a local router, as specified in the /etc/defaultrouter file. For
example, for the host 204.12.60.24, the entry in /etc/defaultrouter might be

204.12.60.64

This places a single route in the local routing table. Responsibility for determining the
next hop for the message is then passed to the router.

Static routes can also be added for servers using in.routed, by defining them in
the /etc/gateways file. When using static routing, routing tables in the kernel are defined
when the system boots, and do not normally change, unless modified by using the route
or ifconfig command. When a local network has a single gateway to the rest of the
Internet, static routing is the most appropriate choice.

Routing Protocols
The Routing Information Protocol (RIP) and the Router Discovery Protocol (RDISC) are
two of the standard routing protocols for TCP/IP networks, and Solaris supports both.
RIP is implemented by in.routed, the routing daemon, and is usually configured to
start during multiuser mode startup. The routing daemon always populates the routing

486 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

table with a route to every reachable network, but whether or not it advertises its routing
availability to other systems is optional.

Hosts use the RDISC daemon (in.rdisc) to collect information about routing
availability from routers and should run on both routers and hosts. in.rdisc typically
creates a default route for each router that responds to requests: this “discovery” is
central to the ability of RDISC-enabled hosts to dynamically adjust to network changes.
Routers that only run in.routed cannot be discovered by RDISC-enabled hosts. For
hosts running both in.rdisc and in.routed, the latter will operate until an RDISC-
enabled router is discovered on the network, in which case RDISC will take over routing.

Viewing the Routing Table (netstat –r)
The command netstat –r shows the current routing table. Routes are always specified
as a connection between the local server and a remote machine, via some kind of gateway.
The output from the netstat -r command contains several different flags: flag U
indicates that the route between the destination and gateway is up; flag G shows that the
route passes through a gateway; flag H indicates that the route connects to a host; and
flag D signifies that the route was dynamically created using a redirect. There are two
other columns shown in the routing table: Ref indicates the number of concurrent routes
occupying the same link layer, while Use indicates the number of packets transmitted
along the route (on a specific Interface).

The following example shows an example server (server.company.com) that has four
routes: the first is for the loopback address (lo0), which is Up and is connected through
a host. The second route is for the local class C network (204.16.64.0), through the gateway
gateway.company.com, which is also Up. The third route is the special multicast route,
which is also Up. The fourth route is the default route, pointing to the local network
router, which is also Up.

$ netstat -r

Routing Table:
Destination Gateway Flags Ref Use Interface

-------------------- -------------------- ----- ----- ------ ---------
127.0.0.1 localhost UH 0 877 lo0
204.17.64.0 gateway.company.com U 3 85 hme0
BASE-ADDRESS.MCAST.NET host.company.com U 3 0 hme0
default router.company.com UG 0 303

Manipulating the Routing Table (route)
The route command is used to manually manipulate the routing tables. If dynamic
routing is working correctly, manual manipulation should not normally be necessary.
However, if static routing is being used, or the RDISC daemon does not discover any
routes, it may be necessary to add routes manually. In addition, it may also be necessary

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 487

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

to delete routes explicitly for security purposes. You should be aware, though, that
except for interface changes, the routing daemon may not respond to any modifications
to the routing table that may have been enacted manually. It is best to shut down the
routing daemon first before making changes, and then restart it after all changes have
been initiated.

Adding Host Routes
To add a direct route to another host, you use the route command with the following
syntax:

route add -host destination_ip local_ip -interface interface

Thus, if you wanted to add a route between the local host (e.g., 204.12.17.1) and a host
on a neighboring class C network (204.12.16.100), for the primary interface hme0, you
would use the following command:

add -host 204.12.16.100 204.12.17.1 -interface hme0

Adding Network Routes
To add a direct route to another network, you use the route command with the following
syntax:

route add -net destination_network_ip local_ip" –netmask mask

If you wanted to add a route between the local host (e.g., 204.12.17.1) and the same
network as for the host in the preceding section (204.12.16.0), for the class C netmask
(255.255.255.0), you would use this command:

route add -net 204.12.16.0 204.12.17.1 -netmask 255.255.255.0

Adding a Default Route
To add a default route, you can use the route command with the following syntax:

route add default hostname –interface interface

For example, to add a default route to a local router (204.54.56.1) for a secondary
interface hme1, you can use the following command:

route add default 204.54.56.1 -interface hme1

488 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

Dynamic Routing
In this section, we will look more closely at the RIP and RDISC dynamic routing protocols.
A prerequisite for dynamic routing to operate is that the /etc/defaultrouter file must be
empty.

routed
in.routed is the network routing daemon and is responsible for dynamically managing
entries in the kernel routing tables. It is usually started from a line during multiuser
boot (/etc/rc2.d/S69inet) using the following command:

/usr/sbin/in.routed -q

The routing daemon uses UDP port 520 to route packets and to establish which
interfaces are currently Up and which are Down. in.routed listens for requests for
packets and for known routes from remote hosts. This supplies hosts on a network
with the information they need to determine how many hops to a host. When it is
initialized, the routing daemon checks both gateways specified in /etc/gateways. It is also
possible to run the routing daemon in a special memory-saving mode that retains only
the default routes in the routing table. While this may leave a system at the mercy of a
faulty router, it does save memory and reduces the resources that in.routed requires
to maintain lists of active routes that are periodically updated. This can be enabled by
initializing in.routed with the –S parameter.

RDISC
The RDISC daemon uses the ICMP router discovery protocol and is usually executed on
both hosts and routers at boot time, at which time routers broadcast their availability
and hosts start listening for available routers. Routers broadcast their availability using
the 224.0.0.1 multicast address. Routers that share a network with a host are selected
first as the default route, if one is found. Another approach is for the host to send out
a broadcast on the 224.0.0.2 multicast address, to solicit any available routers. In either
case, if a router is available, it will accept packet forwarding requests from the host
concerned.

Configuring the IPFilter Firewall
IPFilter is a popular freeware packet-filtering package for Solaris. It is a kernel-loadable
module that is attached at boot time. This makes IPFilter very secure, because it cannot
be tampered with by user applications. However, as you will read in this section, this
approach also has problems, because loading unstable modules into the kernel can
cause a Solaris system to crash. Solaris 10 now ships with the packages SUNWipfr and
SUNWipfu, with updates available from http://coombs.anu.edu.au/~avalon/.

The first step in creating an IPFilter configuration file is to consult with users and
managers to determine a list of acceptable services. Many companies already have an
acceptable-use policy that governs which ports should be available and what permissions
should be given for user-initiated services. After you determine a list of ingoing and

outgoing port requirements, it is best to write a rule that denies all packets, and then to
write rules following that which explicitly allow the services you have identified. It is
also important to enable allowed services in both directions: for example, it is usually
necessary for users to both receive and send e-mail, so an inbound and outbound rule
needs to be included for sendmail (port 25).

IPFilter rules are processed in the order in which they are specified in the
configuration file. Every rule is processed, which means that more general rules (like
blocking all connections) should precede specific rules (like allowing bidirectional
sendmail connections) in the configuration file. If you have a very complicated
configuration, it is also possible to specify that processing terminate at any point in
the file, if a condition is met, by using the “quick” keyword. Other important keywords
include “block”, “to”, and “from” to construct rules for limiting packet transmission. The
“block” command blocks packets from a particular source to a particular destination.
The “from” command specifies the source of these packets, while the “to” command
specifies the destination of these packets. The following example prevents any packets
from the class B network 178.222.0.0:

block in quick from 178.222.0.0/16 to any

The pass command allows packets to pass the firewall. For example, the rule

pass in all

allows all packets to pass. Since routers by definition have more than two interfaces, it
is also possible to specify a network interface to which a specific rule applies. For example,
the following rule

block in quick on hme2 all

prevents all transmissions on the hme2 interface.
An interface specification can be mixed with a normal rule, so that one interface

accepts traffic from one class C network (178.222.1.0), but another interface may accept
traffic only from a different class C network (178.221.2.0):

block in quick on hme2 from 178.222.1.0/24 to any
block in quick on hme1 from 178.222.2.0/24 to any

All of the examples so far have focused on inbound traffic using the “in” command.
As mentioned earlier, it is also possible to restrict outbound traffic in the same way, by
using the “out” command. The following example prevents traffic from the internal,
nonroutable network (10.222.1.0) to pass through:

block out quick on hme0 from 10.222.1.0/24 to any

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 489

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

The rule shown in this example would be applied only to organizations that didn’t
want their employees using the Internet. Perhaps it could be combined with a cron job,
which would reconfigure the firewall to allow access during lunch time and after work.
It is also possible to limit particular protocols, so that TCP applications (like SSH) would
be allowed, but UDP applications (like some streamed audio applications) would be
banned, by specifying proto udp in the rule:

block in quick on hme0 proto udp from 10.222.1.0/24 to any

The most complicated rule comes in the form of a port-by-port specification of what
is allowed and disallowed on a protocol-by-protocol basis. For example, the following
rule blocks all Web server requests from the internal network from reaching their
destination:

block in quick on hme0 proto tcp from any to 10.222.1.0/24 port = 80

This would allow Telnet and FTP connections to proceed freely, as TCP is only restricted
on port 80.

Although firewall technology is very comprehensive and is very useful in placing
specific restrictions on network transmission, there are some drawbacks with configuring
firewalls in general, and IPFilter in particular. Since firewall configuration involves
writing rules, and the syntax of the commonly used rule languages is often difficult to
understand, packet filters can be difficult to configure correctly. Once you’ve created a
configuration, there is also no test bed provided that determines that your configuration
is satisfactory. There may be contention between one or more rules that is incorrectly
resolved. There is a very active discussion group on IPFilter, with searchable archives,
available at http://false.net/ipfilter/. The firewall mailing list is also good for more
general discussion of firewall-related issues, and the contents are available at http://
www.greatcircle.com/firewalls/. If you are more interested in commercial firewall
products, check out the comparisons with freeware at http://www.fortified.com
/fwcklist.html/.

Configuring the SunScreen Firewall
The best system for users who are new to Solaris is Sun’s own SunScreen firewall
(http://www.sun.com/software/securenet/lite/download.html). It comes in both a free
and commercial edition, with the former being more than adequate for protecting small
networks. It is available for both Solaris Intel and Solaris SPARC. The current release
version is 3.1, which supports Gigabit Ethernet, SNMP management, and direct editing
of security policy tables. However, it does not currently support IPv6. The firewall may
be administered locally or remotely, by using a secure session.

There are several important limitations that are placed on the Lite version
of SunScreen:

490 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

• It is designed to work with a system that is already acting as a router (if it wasn’t,
why would you want SunScreen anyway?).

• It does not operate in the special “stealth” mode employed by the commercial
edition.

• It does not support any of the High Availability features of the commercial
version.

• It does not support more than two network interfaces. However, as most routers
have only two interfaces, this should not be an issue for small networks.

• It does not provide support for proxying.

SunScreen can be operated in either GUI mode, through a standard Web browser
such as Netscape Navigator, or by directly editing the system’s configuration files. It is
easy to install using the Web Start Wizard, which is provided with the installation
package.

To install the software, you need to run the /opt/SUNWicg/SunScreen/bin/ss_install
script, which is extracted from the SunScreen distribution. There are several options
that you need to configure for SunScreen to operate as desired:

• Routing or stealth mode operation

• Local or remote administration

• Restrictive, secure, or permissive security level

• Support for DNS resolution

After choosing the appropriate option for your system, the following message will
be displayed:

--Adding interfaces & interface addresses
--Initialize 'vars' databases
--Initialize 'authuser' & 'proxyuser' databases
--Initialize 'logmacro' database
--Applying edits
--Activating configuration
loading skip keystore.
Successfully initialized certificate database in /etc/skip/certdb
starting skip key manager daemon.
Configuration activated successfully on cassowary.
Reboot the machine now for changes to take effect.

After rebooting the system, the firewall software will be loaded into the kernel, after
which you will need to add rules to the firewall, by using your browser to set the
appropriate administration options. Figure 23-5 shows the browser starting on port 3852
on the localhost.

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 491

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

492 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

When first installed, the SunScreen username and password will be “admin” and
“admin”, respectively. These should be entered into the Admin User and Password
fields. After you click the Login button, the SunScreen Information page is displayed,
as shown in Figure 23-6. At this point, you may view firewall logs, view connection
statistics, and so on. However, most users will want to create a set of security policies
immediately upon starting the firewall service.

Security policies are based on rules that either ALLOW or DENY a packet to be
transmitted from a source to a destination address. Alternatively, an address class may
be specified by using wildcards. The main actions associated with ALLOW rules are

• LOG_NONE

FIGURE 23-5 Starting the SunScreen administrative interface

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 493

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

• LOG_SUMMARY

• LOG_DETAIL

• SNMP_NONE

• SNMP

The main actions associated with DENY rules are

• LOG_NONE

• LOG_SUMMARY

• LOG_DETAIL

FIGURE 23-6 SunScreen Information interface

494 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

• SNMP_NONE

• SNMP

• ICMP_NONE

• ICMP_NET_UNREACHABLE

• ICMP_HOST_UNREACHABLE

• ICMP_PORT_UNREACHABLE

• ICMP_NET_FORBIDDEN

• ICMP_HOST_FORBIDDEN

Figure 23-7 shows how to define a rule with actions for the SMTP service, which is
operated by sendmail. This allows mail to be transferred from local users to remote

FIGURE 23-7 Rule definition

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 495

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

hosts. However, it you wanted to block all mail being sent to and from your network,
you could create a DENY action within the rule for the SMTP service. The rule could
be applied selectively to specific local subnets or remote destinations. Another useful
feature is the ability to apply rules only for specific time periods. For example, if you
worked in a bank, you could prevent all e-mail from being sent externally after 5 P.M.
and before 9 A.M.

Once you have entered a new rule, you can view it on the Policy Rules page, along
with any other rules, as shown in Figure 23-8. The Policy Rules page enables you to add
new rules and edit, move, or delete existing rules. For each packet-filtering rule, the
service, source address, destination address, action timeframe, and name are shown.

FIGURE 23-8 Policy Rules interface

SunScreen performs more than just packet filtering—it can be used to set up a virtual
private network (VPN), and can perform advanced network address translation (NAT)
functions. Further discussion of these concepts is beyond the scope of this book.

Examples
The following examples show how to work with a router.

Viewing Router Status
For both routing and multihomed hosts, the status of all network interfaces can be
checked by using the netstat -i command:

router# netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 loopback localhost 199875 0 199875 0 0 0
hme0 1500 204.17.65.0 subsidiary.com 16970779 623190 19543549 0 0 0
hme1 1500 10.17.65.0 internal.gov 68674644 54543 65673376 0 0 0

In this example, mtu is the maximum transfer rate, which is much higher for the
loopback address than for the network interface (as would be expected), and the number
of Ipkts (inbound packets) and Opkts (outbound packets) is equivalent for lo0 (as
one would hope). The loopback interface significantly increases the efficiency of a host
that transmits packets to itself: in this example, there is an almost sixfold increase in the
mtu for the lo0 interface over either of the standard network interfaces. The primary
network interface hme0 is connected to the 204.17.65.0 network, and has transmitted a
large number of packets in and out since booting (16970779 and 19543549, respectively).
There have been a number of inbound errors (623190), but no outbound errors or collisions.
Examining how the number of inbound and outbound errors change over time may
indicate potential problems in network topology that need to be addressed. For example,
if you are testing a Web server and it doesn’t appear to be working, the Ipkts count
can reveal whether or not the connections are actually being made: if the counter does
not increase as expected, an intermediate hardware failure may be indicated (e.g., a
dead switch).

Another example of a situation in which you might identify intermittent hardware
failure is if you discover a large number of inbound packets, representing requests, but
only a small number of outbound packets. In the following example, there are 1000847
inbound packets but only 30159 outbound packets since boot. Since it is unlikely in most
situations that a 33:1 imbalance exists in the ratio of inbound to outbound packets, you
would check the hme0 network interface. There are also many collisions being experienced
by the hme0 interface: collisions between packets render them useless, and the figure
reported here indicates a significant loss of bandwidth. If the interface is working as
expected, it can also be worthwhile to investigate other causes arising from software
(e.g., incorrect configuration of a packet filter).

496 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 497

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

server# netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 loopback localhost 7513 0 7513 0 0 0
hme0 1500 204.17.64.0 1000847 5 30159 0 3979 0

netstat -s also allows these per-interface statistics to be viewed on a per-protocol
basis, which can be very useful in determining potential problems with routing, especially
if the router is packet filtering. The following example shows output from the netstat
-s command, which displays the per-protocol statistics for the UDP, TCP, and ICMP
protocols:

router# netstat -s
UDP

udpInDatagrams =502856 udpInErrors = 0
udpOutDatagrams =459357

The following output from netstat –s begins with the UDP statistics, including the
number of datagrams received and the number transmitted. The In/Out ratio is fairly
even at 1.09, and the networking appears to be working well: there were no detected
UDP errors (i.e., udpInErrors=0).

TCP tcpRtoAlgorithm = 4 tcpRtoMin = 200
tcpRtoMax =240000 tcpMaxConn = -1
tcpActiveOpens = 33786 tcpPassiveOpens = 12296
tcpAttemptFails = 324 tcpEstabResets = 909
tcpCurrEstab = 384 tcpOutSegs =19158723
tcpOutDataSegs =13666668 tcpOutDataBytes =981537148
tcpRetransSegs = 33038 tcpRetransBytes =41629885
tcpOutAck =5490764 tcpOutAckDelayed =462511
tcpOutUrg = 51 tcpOutWinUpdate = 456
tcpOutWinProbe = 290 tcpOutControl = 92218
tcpOutRsts = 1455 tcpOutFastRetrans = 18954
tcpInSegs =15617893
tcpInAckSegs =9161810 tcpInAckBytes =981315052
tcpInDupAck =4559921 tcpInAckUnsent = 0
tcpInInorderSegs =5741788 tcpInInorderBytes =1120389303
tcpInUnorderSegs = 25045 tcpInUnorderBytes =16972517
tcpInDupSegs =4390218 tcpInDupBytes =4889714
tcpInPartDupSegs = 375 tcpInPartDupBytes =130424
tcpInPastWinSegs = 17 tcpInPastWinBytes =1808990872
tcpInWinProbe = 162 tcpInWinUpdate = 270
tcpInClosed = 313 tcpRttNoUpdate = 28077
tcpRttUpdate =9096791 tcpTimRetrans = 18098
tcpTimRetransDrop = 26 tcpTimKeepalive = 509
tcpTimKeepaliveProbe= 76 tcpTimKeepaliveDrop = 1
tcpListenDrop = 0 tcpListenDropQ0 = 0
tcpHalfOpenDrop = 0

498 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

The TCP statistics are more mixed: there were 324 tcpAttemptFails, but given
that there were 33,786 tcpActiveOpens at the time netstat was run, this is quite
reasonable. The ratio of tcpInInorderSegs to tcpInUnorderSegs (i.e., received in
order vs. not received in order) was 229:1, which is not uncommon.

IP ipForwarding = 2 ipDefaultTTL = 255
ipInReceives =16081438 ipInHdrErrors = 8
ipInAddrErrors = 0 ipInCksumErrs = 1
ipForwDatagrams = 0 ipForwProhibits = 2
ipInUnknownProtos = 274 ipInDiscards = 0
ipInDelivers =16146712 ipOutRequests =19560145
ipOutDiscards = 0 ipOutNoRoutes = 0
ipReasmTimeout = 60 ipReasmReqds = 0
ipReasmOKs = 0 ipReasmFails = 0
ipReasmDuplicates = 0 ipReasmPartDups = 0
ipFragOKs = 7780 ipFragFails = 0
ipFragCreates = 40837 ipRoutingDiscards = 0
tcpInErrs = 291 udpNoPorts =144065
udpInCksumErrs = 2 udpInOverflows = 0
rawipInOverflows = 0

There are some IP errors but they were quite minor: there were eight ipInHdrErrors
but only one ipInCksumErrs, and two udpInCksumErrs.

ICMP icmpInMsgs = 17469 icmpInErrors = 0
icmpInCksumErrs = 0 icmpInUnknowns = 0
icmpInDestUnreachs = 2343 icmpInTimeExcds = 26
icmpInParmProbs = 0 icmpInSrcQuenchs = 0
icmpInRedirects = 19 icmpInBadRedirects = 19
icmpInEchos = 9580 icmpInEchoReps = 5226
icmpInTimestamps = 0 icmpInTimestampReps = 0
icmpInAddrMasks = 0 icmpInAddrMaskReps = 0
icmpInFragNeeded = 0 icmpOutMsgs = 11693
icmpOutDrops =140883 icmpOutErrors = 0
icmpOutDestUnreachs = 2113 icmpOutTimeExcds = 0
icmpOutParmProbs = 0 icmpOutSrcQuenchs = 0
icmpOutRedirects = 0 icmpOutEchos = 0
icmpOutEchoReps = 9580 icmpOutTimestamps = 0
icmpOutTimestampReps= 0 icmpOutAddrMasks = 0
icmpOutAddrMaskReps = 0 icmpOutFragNeeded = 0
icmpInOverflows = 0

On the ICMP front, icmpOutErrors and icmpInErrors are both 0, although there
were 2,113 icmpOutDestUnreachs, indicating that at some point a network connection
was not able to made when requested. This can be checked with the traceroute utility.
Running a cron job to extract these figures to a file and then writing a PERL script
to compare the values of concern is also often useful, because it is possible that errors
could be masked by integers being “wrapped around” and starting at zero, after they
reach values that are greater than the maximum available for a machine’s architecture.
However, this should not be a problem for the 64-bit Solaris kernel.

Summary
In this chapter, you have learned about static and dynamic routing systems and how to
configure two basic firewall systems. These systems are complex, and before implementing
either one you should review each product’s documentation.

C h a p t e r 2 3 : R o u t i n g a n d F i r e w a l l s 499

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 23

This page intentionally left blank.

24
Remote Access

The service access facility (SAF) is a port management system that manages requests
and responses for access to system ports. In this case, a port is defined as the
physical connection between a peripheral device and the system. For example,

most systems have one or more serial ports that allow for sequential data transmission
effectively down a single line. In contrast, a parallel port allows for several lines of data
to be transmitted bidirectionally. The SAF system is designed to allow requests to be
made to the system from peripheral devices through ports, and to ensure that these
requests are appropriately serviced by the relevant port monitor.

Modems, which allow Solaris 10 systems to connect to the Internet over a phone
line, require SAF to operate through system serial ports. Thus, it’s important to understand
how to configure ports, port monitors, and listeners in preparation for making an Internet
connection using a modem. Note that most Solaris systems are never accessed through a
modem; however, if a system’s only network card has died, and the console is physically
inaccessible, a modem can be a lifesaver.

The Point-to-Point Protocol (PPP) daemon (pppd) is commonly used to set up modem
access to an Internet service provider (ISP). PPP supports TCP/IP, and provides the
Challenge Handshake Authentication Protocol (CHAP), which provides a higher level
of security than is usually found on modem links. The PPP daemon relies on the chat
program to perform dial-up and handle connections. In this chapter, we examine how
to set up PPP for Internet connections.

Key Concepts
The following key concepts are required to understand how Solaris supports modems
and Internet access.

Internet Access
Remote access is the hallmark of modern multiple-user operating systems such as Solaris
and its antecedents, such as VAX/VMS. Unlike the single-user Windows NT system,
users can concurrently log into and interactively execute commands on Solaris server

5 0 1

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24
Blind Folio 501

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

502 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

systems from any client that supports Transmission Control Protocol/Internet Protocol
(TCP/IP), such as Solaris, Windows NT, and Macintosh. Solaris can support hundreds
to thousands of interactive user shells at any one time, constrained only by memory
and CPU availability.

In this section, we examine several historically popular methods of remote access,
such as telnet. We also outline the much-publicized security holes and bugs that
have led to the innovation of secure remote access systems, such as secure shell (SSH).
These “safer” systems facilitate the encryption of the contents of user sessions and/or
authentication sequences and provide an important level of protection for sensitive data.
Although remote access is useful, the administrative overhead in securing a Solaris system
can be significant, reflecting the increased functionality that remote access services provide.

telnet
telnet is the standard remote access tool for logging into a Solaris machine from
a client using the original DARPA Telnet protocol. A client can be executed on most
operating systems that support TCP/IP. telnet is a terminal-like program that gives
users interactive access to a login shell of their choice (for example, the C shell, or csh).
Most telnet clients support VT100 or VT220 terminal emulations. The login shell can
be used to execute scripts, develop applications, and read e-mail and news—in short,
everything a Solaris environment should provide to its users, with the exception of X11
graphics and OpenWindows, or more recently the common desktop environment (CDE).
A common arrangement in many organizations is for a Solaris server to be located in a
secure area of a building, with telnet-only access allowed.

The sequence of events that occur during a telnet session begins with a request
for a connection from the client to the server. The server responds (or times out) with
a connection being explicitly accepted or rejected. A rejection may occur because the
port that normally accepts telnet client connections on the server has been blocked
by a packet filter or firewall. If the connection is accepted, the client is asked to enter a
username followed by a password. If the username and password combination is valid,
a shell is spawned and the user is logged in. The standard port for telnet connections
is 23. Thus, a command like this,

$ telnet server

is expanded to give the effective command

$ telnet server 23

This means that telnet can be used as a tool to access a service on virtually any
port. telnet is controlled by the super Internet daemon (inetd), which invokes the
in.telnetd server. An entry is made in /etc/services that defines the port number for the
telnet service, which looks like this:

telnet 23/tcp

C h a p t e r 2 4 : R e m o t e A c c e s s 503

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

The configuration file /etc/inetd.conf also contains important details of the services
provided by inetd. The telnet daemon’s location and properties are identified here:

telnet stream tcp nowait root /pkgs/tcpwrapper/bin/tcpd in.telnetd

In this case, you can see that in.telnetd is protected by the use of TCP wrappers, which
facilitate the logging of telnet accesses through the Solaris syslog facility. In addition,
inetd has some significant historical security holes and performance issues that, although
mostly fixed in recent years, have caused administrators to shy away from servers invoked
by inetd. The Apache Web server (http://www.apache.org), for example, runs as a stand-
alone daemon process and does not use inetd.

Port Monitors
Central to the idea of providing services through serial ports is the port monitor, which
continuously monitors the serial ports for requests to log in. The port monitor doesn’t
process the communication parameters directly, but accepts requests and passes them
to the operating system. Solaris 10 uses the ttymon port monitor, which allows multiple
concurrent getty requests from serial devices.

To configure the port for a terminal, start up admintool and enter the user mode,
which can be either Basic, More, or Expert. In most cases, Basic setup will be sufficient.
admintool allows the configuration of most parameters for the port, including the baud
rate for communications, default terminal type, flow control, and carrier detection; but
note that it is being deprecated. The values entered here should match those on the
matching VT-100 terminal. Once you have saved the settings, it is possible to check the
validity of the settings by using the pmadm command:

pmadm -l -s ttyb

The Service Access Facility
The process that initiates the SAF is known as the service access controller (/usr/lib/saf/sac).
It is started when the system enters run level 2, 3, or 4, as shown in this /etc/inittab entry:

sc:234:respawn:/usr/lib/saf/sac -t 300

Here, the respawn entry indicates that if a process is not running when it should be, it
should be respawned. For example, if a system changes from run level 2 to run level 3,
sac should be running. If it is not present, it will be restarted.

When sac is started, it reads the script /etc/saf/_sysconfig, which contains any local
configurations tailored for the system. Next, the standard configuration file /etc/saf/_
sactab is read and sac spawns a separate child process for each of the port monitors it
supports (ttymon and listen). A sample _sactab file is shown here:

VERSION=1
zsmon:ttymon::0:/usr/lib/saf/ttymon #

Port monitors also read a configuration file (/etc/saf/zsmon/_pmtab) that is used to
configure the ttymon and listen port monitors. The following is a sample _pmtab file:

VERSION=1
ttya:u:root:reserved:reserved:reserved:/dev/term/a:I::
/usr/bin/login::9600:ldterm,ttcompat:ttya login\: ::tvi925:y:#
ttyb:u:root:reserved:reserved:reserved:/dev/term/b:I::
/usr/bin/login::9600:ldterm,ttcompat:ttyb login\: ::tvi925:y:#

The point of this hierarchical configuration file structure is that values read from
/etc/saf/_sysconfig and /etc/saf/_sactab by sac are inherited by the spawned port monitor
processes, which then have the ability to configure their own operations.

The SAF has two types of port monitors: the terminal port monitor (ttymon) and
the network port monitor (listen). For example, the ttymon port monitor for the
console is started in run levels 2, 3, and 4, through an /etc/inittab entry like the following:

co:234:respawn:/usr/lib/saf/ttymon -g -h -p
"`uname -n` console login: " -T vt100 -d
/dev/console -l console -m ldterm,ttcompat

The ttymon process is active when a monitor is connected to a server, such as a
dumb terminal, rather than a graphics monitor.

Point-to-Point Protocol
PPP is the most commonly used protocol for connecting modems over a phone line (or,
uncommonly, over a normal serial line) to support TCP/IP. It replaces the earlier Serial
Line Interface Protocol (SLIP), which did not provide any level of security or authentication
for serial line services. The Solaris 10 implementation of PPP is based on the ANU version
(ftp://cs.anu.edu.au/pub/software/ppp). PPP provides reliable access to the Internet
because it includes error correction and the ability to autodetect some network parameters.

All of the parameters for the PPP daemon are stored in /etc/ppp/options. Alternatively,
for options that are specific to each serial port, a new configuration file can be created
(such as /etc/ppp/options.cua.a for the serial port /dev/cua/a). This is useful where two
modems are connected to the two standard serial interfaces on a SPARC system that
are connected to two separate modems, which in turn dial completely different ISPs—
the lesson for high availability is to “be prepared” for the worst-case scenario. Supporting
network operations through a 56 Kbps modem is going to be challenging, but not
impossible, in an emergency.

Procedures
The following procedures are commonly used to set up remote access.

504 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

C h a p t e r 2 4 : R e m o t e A c c e s s 505

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

Using telnet
The Solaris telnet client has an extensive help facility available, which can be viewed
by pressing the escape sequence (usually ^-]), and typing the command help. The main
telnet commands are shown in Table 24-1.

As an example of how these commands work, the display command will print all
of the current settings being used by your terminal:

telnet> display
will flush output when sending interrupt characters.
won't send interrupt characters in urgent mode.
won't skip reading of ~/.telnetrc file.
won't map carriage return on output.
will recognize certain control characters.
won't turn on socket level debugging.
won't print hexadecimal representation of network traffic.
won't print user readable output for "netdata".
won't show option processing.
won't print hexadecimal representation of terminal traffic.

Command Description

close Quit telnet session

logout Close connection

display Print connection characteristics

mode Change mode

open Open connection

quit Quit telnet session

send Send special characters

set Set connection characteristics

unset Unset connection characteristics

status Display connection status

toggle Change connection characteristics

slc Toggle special character mode

z Suspend connection

! Spawn shell

environ Update environment variables

? Display help

ENTER key Return to session

TABLE 24-1 Telnet Client Commands

echo [^E]
escape [^]]
rlogin [off]
tracefile "(standard output)"
flushoutput [^O]
interrupt [^C]
quit [^\]
eof [^D]
erase [^?]
kill [^U]
lnext [^V]
susp [^Z]
reprint [^R]
worderase [^W]
start [^Q]
stop [^S]
forw1 [off]
forw2 [off]
ayt [^T]

Alternatively, the status command reveals the characteristics of the current telnet
connection:

telnet> status
Connected to currawong.cassowary.net.
Operating in single character mode
Catching signals locally
Remote character echo
Escape character is '^]'.

To resume the telnet session, simply press the ENTER key at the telnet> prompt.

Remote Logins
inetd controls the standard remote access clients, including the so-called r-commands,
including the remote login (rlogin) and remote shell (rsh) applications. The rlogin
application is similar to telnet in that it establishes a remote connection through TCP/
IP to a server, spawning an interactive login shell. For example, the command

$ rlogin server

by default produces the response

password:

506 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

C h a p t e r 2 4 : R e m o t e A c c e s s 507

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

after which the user enters a password, which the server then authenticates and either
denies or grants access. If the target user account has a different name than your current
user account, you can try this:

$ rlogin server –l user

However, there are two main differences between telnet and rlogin that are
significant. The first is that rlogin attempts to use the username on your current
system as the account name to connect to the remote service, whereas telnet always
prompts for a separate username. This makes remotely logging into machines on a single
logical network with rlogin much faster than with telnet. Second, on a trusted,
secure network, it is possible to set up a remote authentication mechanism by which
the remote host allows a direct, no-username/no-password login from authorized
clients. This automated authentication can be performed on a system-wide level by
defining an “equivalent” host for authentication purposes on the server in /etc/hosts
.equiv, or on a user-by-user basis with the file .rhosts. If the file /etc/hosts.equiv contains the
client machine name and your username, you will be permitted to automatically execute
a remote login. For example, if the /etc/hosts.equiv file on the server contains the line

client

any user from the machine client may log into a corresponding account on the server
without entering a username and password. Similarly, if your username and client
machine name appear in the .rhosts file in the home directory of the user with the same
name on the server, you will also be permitted to remotely log in without an identification/
authentication challenge. This means that a user on the remote system may log in with
all the privileges of the user on the local system, without being asked to enter a username
or password—clearly a dangerous security risk.

Remote-shell (rsh) connects to a specified hostname and executes a command. rsh
is equivalent to rlogin when no command arguments are specified. rsh copies its
standard input to the remote command, the standard output of the remote command
to its standard output, and the standard error of the remote command to its standard
error. Interrupt, quit, and terminate signals are propagated to the remote command. In
contrast to commands issued interactively through rlogin, rsh normally terminates
when the remote command does.

As an example, the following executes the command df –k on the server, returning
information about disk slices and creating the local file server.df.txt that contains the
output of the command:

$ rsh server df -k > server.df.txt

Clearly, rsh has the potential to be useful in scripts and automated command
processing.

508 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

Testing Service Connectivity
Because a port number can be specified on the command line, telnet clients can be
used to connect to arbitrary ports on Solaris servers. This makes a telnet client a useful
tool for testing whether services that should have been disconnected are actually active.
For example, you can interactively issue commands to an FTP server on port 21:

$ telnet server 21
Trying 172.16.1.1...
Connected to server.
Escape character is '^]'.
220 server FTP server (UNIX(r) System V Release 4.0) ready.

and on a sendmail server on port 25:

$ telnet server 25
Trying 172.16.1.1...
Connected to server.
Escape character is '^]'.
220 server ESMTP Sendmail 8.9.1a/8.9.1; Mon, 22 Nov 1999

14:31:36 +1100 (EST)

Interactive testing of this kind has many uses. For example, if you telnet to port 80
on a server, you are usually connected to a Web server, where you can issue interactive
commands using the Hypertext Transfer Protocol (HTTP). For example, to GET the
default index page on a server, you could type get index.html:

Trying 172.16.1.1...
Connected to server.
Escape character is '^]'.
GET index.html
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>Server</TITLE></HEAD>
<h1>Welcome to server!</h1>

This technique is useful when testing proxy server configurations for new kinds of
HTTP clients (for example, a HotJava browser) or the technique can be executed during
a script to check whether the Web server is active and serving expected content.

Using Remote Access Tools
With the increased use of the Internet for business-to-business and consumer-to-business
transactions, securing remote access has become a major issue in the provision of Solaris
services. Fortunately, solutions based around the encryption of sessions and authentication
of clients has improved the reliability of remote access facilities in a security-conscious
operating environment.

Secure Shell (SSH)
Open Secure Shell, OpenSSH, or just plain SSH is a secure client and server solution that
facilitates the symmetric and asymmetric encryption of identification and authentication
sequences for remote access. It is designed to replace the telnet and rlogin applications
on the client side with clients available for Solaris, Windows, and many other operating
systems. On the server side, it improves upon the nonsecure services supported by inetd,
such as the r-commands.

SSH uses a generic transport layer encryption mechanism over TCP/IP, which uses
the popular Blowfish or U.S. government–endorsed triple-DES (Data Encryption Standard)
algorithms for the encryption engine. This is used to transmit encrypted packets whose
contents can still be sniffed like all traffic on the network by using public-key cryptography,
implementing the Diffie-Hellman algorithm for key exchange. Thus, the contents of
encrypted packets appear to be random without the appropriate “key” to decrypt them.

The use of encryption technology makes it extremely unlikely that the contents of
the interactive session will ever be known to anyone except the client and the server. In
addition to the encryption of session data, identification and authentication sequences
are also encrypted using RSA encryption technology. This means that username and
password combinations also cannot be sniffed by a third party. SSH also provides
automatic forwarding for graphics applications, based around the X11 windowing
system, which is a substantial improvement over the text-only telnet client.

It is sensible in a commercial context to enforce a policy of SSH-only remote access
for interactive logins. This can easily be enforced by enabling the SSH daemon on the
server side and removing entries for the telnet and rlogin services in /etc/services
and /etc/inetd.conf. Now that OpenSSH is supplied with Solaris, there is no excuse for
not deploying SSH across all hosts in your local network.

Setting Up Port Listeners
The listen port monitor is managed by the listen and nlsadmin commands. In
contrast to ttymon, the listen port monitor manages network ports and connections
by listening for requests to access services and daemons. The listen monitor uses the
Transport Layer Interface (TLI) and STREAMS to implement OSI-compliant network
service layers. STREAMS provides a framework for writing network-enabled applications,
giving access to the kernel, system calls, and a set of standard network libraries. STREAMS
applications have many advantages over non-STREAMS applications, including the ability
to collect performance data and analyze it in a standard way.

Specific network ports are assigned to the listen monitor, and child processes are
spawned to handle each client request. One of the key features of listen is that it can
provide services that are not managed by inetd—since all daemons can be accessed
through a listen service. This is an important feature for the different users accessing
services on a Solaris system. For example, a network connection could serve Web traffic,
while a dial-in connection could cater to telnet or SSH access.

C h a p t e r 2 4 : R e m o t e A c c e s s 509

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

510 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

The nlsadmin command is used to set up transport providers for STREAMS-
compatible network services. In order to configure a TLI listener database, you can use
the nlsadmin command to configure the listener. First, you create the TCP/IP database:

nlsadmin -i tcp

Next, you set the local hexadecimal address:

nlsadmin -l \x11331223a11a58310000000000000000 tcp

All services that need to be run will then need to be entered into the TLI listener
database.

Adding a Serial Port
Like any modern server system, Solaris 10 supports the connection of simple external
devices through both a serial (RS-232-C or RS-423) and a parallel port. The two most
common uses for serial devices on a SPARC system are connecting a VT-100 terminal
or equivalent, to operate as the system console if no graphics device is installed, and as
a modem, enabling dial-up Internet access using PPP. The former is a common practice
in many server rooms, where the expense of a monitor and video card can be eliminated
by using a VT-100 terminal as the console, because many SPARC machines require a
display device to boot at all. On x86 systems, there are many more devices available
that often have drivers available only for other operating systems. Sun and other third-
party hardware vendors are slowly making releases available for these devices through
the Solaris Developer Connection. If you need to obtain an updated copy of the Solaris
Device Configuration Assistant, and any updated device drivers for supported external
devices, these are currently available for download at http://soldc.sun.com/support/
drivers/boot.html.

Adding a Modem
Solaris 10 works best with external Hayes-compatible modems, which are also supported
by other operating systems such as Microsoft Windows. However, modems that require
specific operating system support (such as so-called “WinModems”), will not work
with Solaris 10. In addition, internal modem cards are generally not supported by
Solaris 10. While older modems tend to use external (but sometimes internal!) DIP
switches, modern modems can be configured using software to set most of their key
operational parameters.

Modem access can be configured to allow inbound-only, outbound-only, and
bidirectional access, which allows traffic in both directions, using a similar scheme. The
following example considers the scenario of dial-out-only access. The modem should
be connected to one of the system’s serial ports (A or B) and switched on. The A and B
serial ports map to the devices /dev/cua/a and /dev/cua/b, respectively.

To test the modem, use the tip command:

tip hardwire

where hardwire should be defined in /etc/remote, similar to

hardwire:\
:dv=/dev/cua/a:br#19200:el=^C^S^Q^U^D:ie=%$:oe=^D:

where 19,200 bps is the connection speed between the modem and the serial port.
In addition, /etc/remote should have a connection string associated with each modem
that’s connected to the system. For example, the string

cua1:dv=/dev/cua/a:p8:br#19200

specifies that 19,200 bps is the connection speed between the modem and the serial
port, with 8-bit transmission and with no parity enabled. To use this entry specifically,
you would use the command

tip cua1

If the message

connected

appears on your terminal, the system is able to communicate successfully with the
modem. For Hayes-compatible modems, command strings can be entered directly
like this:

ATE1V1

If you see “ok”, the modem is communicating as expected and can be configured to
run PPP.

Setting Up PPP
The first step in configuring PPP is to insert appropriate configuration information in
/etc/ppp/options. The following options are the most commonly used:

• <tty_name> Name of the terminal device to use for communication.

• <speed> Speed at which to transmit data.

• auth Specifies that authentication is required (noauth specifies that no
authentication is required).

C h a p t e r 2 4 : R e m o t e A c c e s s 511

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

• callback Requests a callback from the remote server. Useful for saving on
long-distance charges!

• connect or init Specifies the chat script to configure line communications.

• mru Sets a maximum receive unit (MRU) value that specifies a limit on the
packet size transmitted by the server.

• mtu Sets a maximum transmission unit (MTU) value that specifies a limit
on the packet size transmitted by the client.

Other options may be required, especially for authentication, but using these options
is generally sufficient to make a connection. For further information, you should consult
Celeste Stokely’s PPP guide: http://www.stokely.com/unix.serial.port.resources/ppp
.slip.html.

Examples
The following examples demonstrate how to set up modems and Internet access.

Using ttymon
The ttymon port monitor is managed by the ttyadm command. ttymon is designed
to monitor requests from ports to allow remote access to the system. ttymon operates
continually, spawning child processes when appropriate in order to service requests,
which are sequentially numbered (for example, ttymon1, ttymon2, and so forth). The
most common request for terminals is probably for an interactive login; thus, /usr/bin/
login is requested. The sacadm command can be used to list all current ttymon processes:

sacadm -l
PMTAG PMTYPE FLGS RCNT STATUS COMMAND
ttymon1 ttymon - 2 ENABLED /usr/lib/saf/ttymon #ttymon1
ttymon2 ttymon - 2 ENABLED /usr/lib/saf/ttymon #ttymon2
ttymon3 ttymon - 2 ENABLED /usr/lib/saf/ttymon #ttymon3

To view the services currently being provided through a particular monitor, you
can use the pmadm command for each monitor process:

pmadm -l -p ttymon2
PMTAG PMTYPE SVCTAG FLGS ID <PMSPECIFIC>
ttymon2 ttymon 11 u root /dev/term/11

- - /usr/bin/login - 9600 - login: -tvi925
ttymon2 ttymon 12 u root /dev/term/12

- - /usr/bin/login - 9600 - login: -tvi925
ttymon2 ttymon 13 u root /dev/term/13

- - /usr/bin/login - 9600 - login: -tvi925
ttymon2 ttymon 14 u root /dev/term/14

- - /usr/bin/login - 9600 - login: -tvi925

512 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

Here, you can see that ports /dev/term/11 through /dev/term/14 are being serviced using
the login service.

Connecting to an ISP
Once you have set up the /etc/ppp/options file, you can make a connection from the
command line. For example, to connect using a 56 Kbps modem using the chat script
emergency1.chat, the following command will establish a connection without authentication:

pppd connect ‘chat –f emergency1.chat’ /dev/cua/a 57600 noauth

Command Reference
The following commands can be used to support modem services and Internet access.

pmadm
The port monitors are managed by the pmadm command. Port services can be managed
by using the following commands:

pmadm -a Adds a port monitor service

pmadm -d Disarms a port monitor service

pmadm -e Enables a port monitor service

pmadm -r Removes a port monitor service

sacadm
The sacadm command is used to manage port monitors. The following functions are
available:

sacadm -a Attaches a new port monitor

sacadm -e Arms a port monitor

sacadm -d Disarms a port monitor

sacadm -s Initializes a port monitor

sacadm -k Kills a port monitor

sacadm -l Lists port monitor details

sacadm -r Deletes a port monitor

tip
tip is a command that acts like a terminal. It can be used, for example, to access remote
systems directly through a serial port, where one system acts as the console for the other.

C h a p t e r 2 4 : R e m o t e A c c e s s 513

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

tip uses the /etc/remote file to enable it to make connections through the serial port.
For example, if you have a profile set up in /etc/remote, it’s possible to fire up a terminal
session immediately by using the command

tip profile

where profile is the name of the profile that you’ve set up with all the settings that the
port requires to operate. tip also uses initialization settings in the .tiprc file to specify
its operational parameters.

The following table shows the most commonly used tip commands:

Command Description

~. Exits the session

~c Changes directory

~! Spawns a shell

~> Sends a local file

~< Receives a remote file

~p Sends a local file

~t Receives a remote file

~C Allows a local application to connect to a remote system

~# Issues a break command

~s Defines a variable

~^z Suspends tip

Summary
In this chapter, you have learned how to configure and perform remote logins to other
networked systems, using both secure and nonsecure (traditional) methods. Although
you will almost certainly use an Ethernet card to connect your systems to the Internet,
a modem may well be required for backup purposes, so it’s useful to understand how
these can be configured.

514 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 24

25
Internet Layer (IPv6)

The TCP/IP protocol suite relies on the Internet Protocol to provide the lower-
level services required to support the Transport and Application layers in the
stack. However, the current version of IP (IPv4) is now approximately 20 years

old, and much has changed in the network world since it was introduced—the Internet
has become globally distributed, commercial transactions are conducted on the Internet,
and the sheer number of connected hosts has given rise to routing, configuration, and
address allocation problems. If these problems are not fixed, then the Internet in its
present form may cease to function at some future time, as it reaches capacity. The
Internet Engineering Task Force (IETF) predicts that this may occur in 2008.

IPv6 Motivation
The maximum number of IP addresses that can be created using IPv4 is 4.3 billion.
While this number must have seemed very large when IPv4 was developed, it now
represents a fraction of the potential human users of the Internet. While the Dynamic
Host Configuration Protocol (DHCP) has alleviated the address availability problem,
by leasing out addresses dynamically instead of assigning them statically, the “always
connected, always available” broadband world will monopolize these leases. In addition,
with the introduction of “smart spaces” filled with embedded devices with their own
IP address, one human may potentially be associated with dozens if not hundreds of
different devices. So, one key requirement for an improved IP is the ability to massively
increase the pool of available IP addresses.

A related requirement has arisen by the effective breaking of end-to-end
communication by the introduction of network address translation (NAT). Like DHCP,
NAT was introduced to alleviate the IP address availability problem, by assigning
a router a public, routable IP address, while assigning all hosts behind the router a
private, nonroutable IP address. This reduced the number of public IP addresses
required by organizations to connect their hosts to the Internet. NAT also shielded
private computers from attacks originating from the Internet, because their IP
addresses were nonroutable. However, NAT also made it impossible to perform
peer-to-peer authentication, because the router running NAT software essentially

5 1 5

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 25
Blind Folio 515

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

acts as a proxy for the client system. Thus, using NAT can break security initiatives
like the IP Security Protocol (IPSec) that require source and destination IP addresses
for integrity checking, because there is no end-to-end connectivity. However, some
implementations, such as Cisco’s VPN solution and Nortel’s VPN solution, work fine
with IPSec and NAT. Another requirement for an improved IP is to remove the reliance
on NAT for building secure networks.

A more practical problem also exists at the hardware level for IPv4 routers—since
routing tables are growing exponentially, as new networks are added to the Internet,
the physical memory capacity of many routers to hold and process this information is
limited. If the routing structure is not simplified, then many routers may simply fail to
route any packets correctly. However, as memory becomes cheaper, then routers may
be able to handle future capacities.

IPv6 attempts to address the core issues of the small IP address space, end-to-end
communication, and the unwelcome mass of routing data. IPv6 is based on a 128-bit
address space, rather than a 32-bit address space, providing a large pool of addresses
for future computer systems and embedded devices to utilize. The 128 bits are divided
into 8 × 16-byte integers expressed using hexadecimal (e.g., 1072:3B:BED3:1:0:2:220:B6EB).
In addition, end-to-end communications can be preserved by the use of flow labels
that can be used to identify the true end parties to a specific real-time communication.
Routing has been dramatically overhauled to ensure that addresses and routes can be
more efficiently stored and utilized.

IPv6 has been supported by Sun since Solaris 8, in the form of a dual stack, whereby
IPv4 and IPv6 traffic can be supported on a single network. This ensures that new
applications requiring the use of IPv6 can coexist alongside legacy IPv4 applications.
The following sections examine each of the key areas of IPv6 and discuss their
implementation in Solaris.

Addressing
IPv6 increases the IP address size for each network interface from 32 bits to 128 bits,
giving a total address space of 2^32 and 2^128, respectively. To give you an idea of
the difference between these two spaces, 2^32 = 4,294,967,296 (about 1 billion less than
the world’s population), while 2^128 = 3.402 × e^38, which is billions of times greater!
This expansion not only will support the massive expansion of the Internet through
the connection of billions of embedded devices, it will also ensure that many stop-gap
measures such as DHCP and NAT can be disbanded, if they serve no other purpose in
a specific environment. Although some competing proposals argued for only a 64-bit
IPv6 address space, this would not have enabled some of the useful features of IPv6,
including the ability to do away with subnet masks. This allows autoconfiguration of
network interfaces without the user having to know what class of subnet (A, B, or C)
their local area network belongs to.

Using 128-bit addressing makes autoconfiguration much easier in IPv6 compared
to IPv4: the lower 64 bits are composed of the hardware (MAC) address for the network
interface, while the upper 64 bits comprise a router message. Since every subnet now

516 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 25

has an equivalent-sized subnet prefix, it is no longer used to distinguish different
subnet classes.

IPv6 has three different interface types that addresses can be identifiers for:

• Unicast An identifier for a single, specific interface

• Multicast A broadcast-like identifier for all interfaces belonging to a set

• Anycast An identifier for only one interface that belongs to a set, usually
the member that is closest to the source

While unicast and multicast addressing are readily identifiable from IPv4, the inclusion
of anycast addressing provides the foundation for significant advances in the area of high
availability, redundancy, and network storage, since any member of a set of interfaces
designed by their addresses can be selected based on some distance metric, or availability
at run time. For example, a storage area network (SAN) may support distributed backup
services for a multinational organization. When a client has a backup scheduled, it
is directed to the nearest server node based on geographical distance. If that node is
unavailable, the next available server node in the set of server nodes is selected, and so
on. While this sort of decision logic can be programmed in at the Application layer, its
inclusion in the Internet layer makes it ubiquitous across all applications and services
operating on a network.

Like IPv4, IPv6 has a number of special addresses that have specific purposes and
that administrators should be aware of:

• Loopback address 0:0:0:0:0:0:0:1

• IPv4 address 96 bits zero-padded to the 32-bit original address

• Local site address 1111 1110 11

• Local link address 1111 1110 10

• Multicast address 1111 1111

• Unspecific address 0:0:0:0:0:0:0:0

IPv6 addresses are being allocated by using a simple formula:

Field Name Provider-Based Registry Provider Subscriber Subnet Interface

Number of Bits 3 (e.g., 010) a b c d 128-b-a-c-d-3

In this scheme, the registry is one of the following organizations that cater to a
specific region:

• 10000 Multiregional (IANA)

• 01000 RIPE NCC (Europe)

• 11000 InterNIC (North America)

• 10100 APNIC (Asia/Pacific)

C h a p t e r 2 5 : I n t e r n e t L a y e r (I P v 6) 517

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 25

518 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 25

The provider is some network service provider within a specific region, and the
subscriber is the end-user organization. Within the organization, subnets can still exist,
within which individual network interfaces will belong. At present, provider-based
prefixes are being used to utilize a subset of all available address sets for the current
range of networks connected to the Internet.

Because IPv6 addresses are much longer than IPv4 addresses, they are difficult for
humans to learn and use. The IPv6 address space is so large that large portions of the
address are presently zero padded. Thus, a notation has been introduced to simplify the
representation of repeated sections of zeros. To eliminate any ambiguity in the resolution
of zero-padded sections, only one set of zeros may be represented by the dual-colon
token :: in each address. For example, the address 1080:0:0:0:0:711:100D:306B could also
be represented as 1080::711:100D:306B, or the address 1080:0:0:0:0:0:100D:306B could be
represented as 1080::100D:306B. However, it would not be possible to represent the address
1080:0:208:0:711:0:0:306B as 1080::208::711::306B, since the position of each non-zero bit is
ambiguous.

For further information, read the “IP Version 6 Addressing Architecture” RFC at
ftp://ftp.isi.edu/in-notes/rfc2373.txt.

IPv6 Routing
Internet routing is based on the idea that optimal paths can be dynamically calculated
because routers carry information about all network paths in memory. With the massive
number of possible paths and new networks being introduced daily, it’s impractical to
dynamically calculate optimal paths, so most routers fall back on a set of default routes
to handle most of their traffic. While a system to optimize routing is theoretically possible,
the very flat organization of networks and domains means that it’s not practically
possible with IPv4. The exception here is the set of backbone Internet servers who must
carry the load and determine all network paths that cannot be computed by individual
nodes, placing an onerous burden on some service providers.

IPv6 aims to change this situation by implementing a hierarchical model for
addressing, providing an explicit set of domains in the address to ensure that destinations
can be resolved at a more local level. Thus, a router does not need to have knowledge
of a large set of possible network destinations—the appropriate destination router can
be determined from the address. The provider field in the address takes on the role of
providing a first glance indication of a packet’s ultimate destination. At the same time,
changes in the structure of the Internet cannot be reliably predicted, so any routing
system must be flexible enough to support structural changes down the line.

A number of different routing algorithms are supported by IPv6, including the
following that are compatible with IPv4:

• Open Shortest Path First (OSPF)

• Routing Information Protocol (RIP)

• Inter-Domain Routing Protocol (IDRP)

• Intermediate System to Intermediate System Protocol (ISIS)

Routing extensions are also available through a header in the IPv6 Extended Header
segment. These extensions include the ability to specify intermediate hosts or specific
packet paths, which can then be reversed to ensure that a reply packet is delivered back
to the sender using the same path. This approach has great benefits to users of mobile
telecommunications technologies such as mobile phones, since the highly dynamic path
back to its source does not need to be recomputed by intermediate routers.

Headers
IPv6 introduces a number of changes to the format of headers contained in a standard IPv4
packet. The following fields are common to IPv4 and IPv6:

• Version

• Length

• Service Type

• Packet Length

• Identification

• Fragment Offset

• TTL

• Transport

• Header Checksum

• Source Address

• Destination Address

• Options

• Padding

However, there are several brand new headers that contain important information
in standard format:

• Version Number A “6” identifies IPv6

• Priority Sets a priority value depending on whether a packet is
non–congestion (priority) controlled or congestion-controlled

• Flow Label Sets a QualityOfService parameter for the packet

• Payload Length Size of the packet’s data

• Next Header Determines whether an Extension Header follows

• Hop Limit Sets a limit on the number of nodes that can handle the packet
(graceful degradation)

C h a p t e r 2 5 : I n t e r n e t L a y e r (I P v 6) 519

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 25

A number of extensions to the standard headers are available in the Extended Header
if flagged in the Next Header field of the standard header. The following extensions are
currently being developed:

• Authentication and security

• Confidentiality

• Destination data

• Extended routing

• Hop-by-hop processing

• Reassembly

Quality of Service
Quality of service (QoS) is very much a missing component of IPv4. When IPv4 was
developed, there was no such thing as “mission critical e-commerce data” being
exchanged between organizations on the Internet. However, with the rise of B2B
e-commerce and the development of digital virtual enterprises, ensuring QoS is critical
to the operation of certain classes of applications and services (such as Web Services).

IPv6 provides QoS through a priority and flow label system of packet prioritization
defined within the packet header. There are several different priority values that have
been suggested for congestion-controlled traffic, which has a lower priority than non-
congestion-controlled traffic:

• 0 Unclassified

• 1 Bulk traffic

• 2 Noninteractive bulk data transfer

• 3 Undefined

• 4 Interactive bulk data transfer

• 5 Undefined

• 6 Interactive non-bulk data transfer

• 7 Control traffic

Security
All IPv6 stacks must implement IPSec. IPSec provides security at the Internet layer
rather than at the Transport layer (like the Secure Sockets Layer currently provides
for secure e-commerce). IPSec provides facilities for encryption, authentication,
implementation of security policies, and data compression. The two main components
of IPv6 security are packet encryption through the Encapsulated Security Payload (ESP)
and source authentication through the Authentication Header (AH).

520 P a r t V : N e t w o r k i n g

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 25

The ESP provides confidentiality, authentication, and integrity checks, while the
AH only supports authentication and integrity, and works at the packet level—it uses
strong cryptography to ensure that a packet can be authentically exchanged between
two interfaces by sharing a secret key. This allows the two parties to be assured that the
packet has not been tampered with in transit, and that the packet originated from the
source interface as described in the packet’s header.

The ESP provides a different level of security than the AH, by ensuring that the data
contained within a packet has not been intercepted and decrypted by a third party, as
long as the secret key protecting the data has not been given to a third party.

Key management is clearly a central issue in the provision of a secure platform for
IPv6. That’s why the Internet key exchange (IKE) system is important to the success of
IPSec. IKE makes it possible for two systems to share secret keys in a secure environment.
However, if a cracker discovers a secret key, then all of the traffic previously protected
by the key will be open for reading by that hacker. This is why secret keys cannot be
used indefinitely, and should be regularly modified. One of the benefits of using Solaris
IPSec is that it incorporates IKE—Solaris 8 IPSec did not support IKE, since it was not
part of the IPSec standard at the time, leading to cross-platform incompatibilities.

Summary
This chapter examined the future of the Internet Protocol as embodied by IPv6, which
is the next-generation IP. The areas in which IPv6 introduces the greatest changes are
security, addressing, routing, and quality of service. Much of the detail in IPv6 differs
from IPv4, and these changes were covered in detail in this chapter.

C h a p t e r 2 5 : I n t e r n e t L a y e r (I P v 6) 521

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 25

This page intentionally left blank.

VI
Services, Directories,
and Applications

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26
Blind Folio 523

CHAPTER 26
Network File System
and Caching File System

CHAPTER 27
Sendmail

CHAPTER 28
Domain Name Service

CHAPTER 29
Network Information
Service (NIS/NIS+)

CHAPTER 30
Lightweight Directory
Access Protocol (LDAP)

CHAPTER 31
Samba

CHAPTER 32
Application Development
and Debugging

CHAPTER 33
Web Applications
and Services

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

P:\010Comp\CompRef8\998-5\ch26.vp
Monday, December 20, 2004 9:33:09 AM

Color profile: Disabled
Composite Default screen

This page intentionally left blank.

26
Network File System and

Caching File System

This chapter examines Sun’s Network File System (NFS), which is a distributed file
system architecture based on the Remote Procedure Call (RPC) protocol. RPC is
a standard method of allocating and managing shared resources between Solaris

systems. Although NFS is similar to Samba in concept, supporting transparent file system
sharing between systems, NFS features high data throughput because of dedicated support
in the Solaris kernel, and support for both NFS 2 and 3 clients.

NFS was one of the first distributed network applications to ever be successfully
deployed on local area networks. It allows users to mount volumes of other systems
connected to the network, with the same ability as any other locally mounted file
system to change permissions, delete and create files, and apply security measures.
One of the great advantages of NFS is its efficient use of network bandwidth, by using
RPC calls. In Solaris 10, the NFS concept has been extended to the Internet, with the
new WebNFS providing file system access through a URL similar to that used for web
pages. This chapter examines the theory behind distributed file systems and examines
how they can best be established in practice.

Prior to Solaris 2.5, NFS 2 was deployed, which used the unreliable User Datagram
Protocol (UDP) for data transfer, hence NFS 2’s poor reputation for data integrity. However,
the more modern NFS 3 protocol, based around TCP, has been implemented in all new
Solaris releases since Solaris 2.5.1. NFS 3 allowed an NFS server to cache NFS client
requests in RAM, thus speeding up disk writing operations and the overall speed of
NFS transactions. In addition, Solaris 2.6 and above provides support for WebNFS. The
WebNFS protocol allows file systems to be shared across the Internet, as an alternative
to traditional Internet file-sharing techniques, like FTP.

Solaris 10 is supplied the new NFS 4. NFS 4 has many improved features compared
to NFS 3, which will be examined in this chapter.

In this chapter, you learn how to set up and install an NFS server and an NFS client,
and how to export file systems. In addition, this chapter examines how to set up the
automounter, so that a user’s home directory across all machines on an intranet is
automatically shared and available, irrespective of the user’s login host.

5 2 5

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26
Blind Folio 525

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Key Concepts
The following concepts are required knowledge for installing and managing NFS.

NFS Architectures
A Solaris 10 system can share any of its locally mounted file systems with other systems,
making them available for remote mounting. NFS considers the system that shares the
file system to be a server, and the system that remotely mounts the file system as a client.
When an NFS client mounts a remote file system, it is connected to a mount point on
the local file system, which means it appears to local users as just another file system.
For example, a system called carolina may make its mail directory /var/mail available
for remote mounting by NFS clients. This would allow users on machines like georgia,
virginia, and fairfax to read their mail, actually stored on carolina, locally from their own
machines without having to explicitly log in to carolina. This means that a single mail
server that acts as an NFS server can serve all NFS clients on a LAN with mail. Figure 26-1
shows this configuration.

However, one important aspect of NFS is that it enables you to export file systems
and mount them on a remote mount point that is different from the original shared
directory. For example, the NFS server carolina may also export its Sun Answerbook
files (from the directory /opt/answerbook) to the clients virginia, georgia, and fairfax. However,
virginia mounts these files in the /usr/local/www/htdocs directory, as it publishes them via
the Web, whereas georgia mounts them in /opt/doc/answerbook. The client fairfax mounts
them in /opt/answerbook using the same mount point name as carolina. The point is that
the remote mount point can be completely different from the actual directory exported
by an NFS server. This configuration is shown in Figure 26-2.

Remote Procedure Calls
NFS uses RPC technology, which makes it easy for systems to make requests for remote
execution of procedures on server systems. RPC is currently supported across a number
of different operating systems, including Solaris, Linux, and Microsoft Windows. The
purpose of RPC is to abstract the connection details and methods required to access

526 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

FIGURE 26-1
NFS server
carolina exports
its mail directory
to NFS clients
georgia, fair fax,
and virginia, using
the same mount
point as the
exported file
system.

procedures across networks—that is, the client and server programs do not need to
implement separate networking code, as a simple API is provided for finding services
through a service called the portmapper (or rpcbind). The portmapper should be
running on both the client and server for NFS to operate correctly. The portmapper is
registered with both UDP and TCP 111, since requests may be generated for or received
using NFS 2 or NFS 3, respectively.

automounter
The automounter is a program that automatically mounts NFS file systems when
they are accessed and then unmounts them when they are no longer needed. It allows
you to use special files, known as automounter maps, that contain information about the
servers, the pathname to the NFS file system on the server, the local pathname, and the
mount options. By using the automounter, you don’t have to manually update the
entries in /etc/vfstab on every client every time you make a change to the NFS servers.

Normally, only root can mount file systems, so when users need to mount an NFS
file system, they need to find the system administrator. The main problem is that once
users are finished with a file system, they rarely tell the system administrator—even
if they were to do so, manually mounting and unmounting resources at the request of
users would create an administrative burden that is not scalable. In addition, if the NFS
server containing that file system ever crashed, you may be left with one or more hanging
processes. This can easily increase your workload if you are responsible for maintaining an
NFS server. The automounter can solve both of these problems, because it automatically
mounts an NFS file system when a user references a file in that file system, and it will
automatically unmount the NFS file system if it is not referenced for more than five
minutes.

The automounter is an RPC daemon that services requests from clients to mount
and unmount remote volumes using NFS. During installation, a set of server-side maps
are created that list the file systems to be automatically mounted. Typically, these file
systems include shared user home directories (under /home) and network-wide mail
directories (/var/mail).

C h a p t e r 2 6 : N e t w o r k F i l e S y s t e m a n d C a c h i n g F i l e S y s t e m 527

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

FIGURE 26-2
NFS server
carolina exports
its mail directory
to NFS clients
georgia, fair fax,
and virginia, using
their own mount
points.

528 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

Procedures
The following procedures are commonly used for installing and managing NFS.

Configuring an NFS Server
If you installed the NFS server during installation of the operating system, a startup script
called nfs.server has been created in /etc/init.d. Normally, NFS is started at run-level 3.
However, the NFS server can be started manually by typing the command

/etc/init.d/nfs.server start

This command will start at least two daemons: the NFS server nfsd daemon (/usr/lib/
nfs/nfsd) and the mount daemon (/usr/lib/nfs/mountd). The nfsd daemon is responsible
for answering access requests from clients for shared volumes on the server, while the
mountd daemon is responsible for providing information about mounted file systems.

To check whether or not the NFS server has started correctly, it is possible to
examine the process list for nfsd and mountd by using the following commands:

ps -eaf | grep nfsd
root 19961 1 0 Aug 31 ? 0:09 /usr/lib/nfs/nfsd -a 16

ps -eaf | grep mountd
root 370 1 0 May 16 ? 2:49 /usr/lib/nfs/mountd

In this case, both nfsd and mountd are operating correctly. To stop the NFS server,
you use the following command:

/etc/init.d/nfs.server stop

There are some optional services started by the NFS server startup script, including
daemons that support diskless booting (the Reverse Address Resolution Protocol daemon, /
usr/sbin/in.rarpd, and the boot parameter server, /usr/sbin/rpc.bootparamd). In addition, a
separate daemon for x86 boot support (/usr/sbin/rpld), using the Network Booting RPL
(Remote Program Load) protocol, may also be started. You need to configure these services
only if you wish to provide diskless booting for local clients; otherwise, they can be safely
commented from the /etc/init.d/nfs.server script.

Sharing File Systems
To actually share file systems and directories, you can use the share command. For
example, if you want to share the /var/mail directory from carolina to georgia, you could
use the command

share -F nfs -o rw=georgia /var/mail

In this example, -F nfs stands for “a file system of type NFS.”

Of course, you really want to share the volume to virginia and fairfax as well, so you
would probably use the command

share -F nfs -o rw=georgia,virginia,fairfax /var/mail

The /var/mail volume is shared to these clients because users on these systems need to
read and write their e-mail. However, if you need to share a CD-ROM volume, you
obviously need to share it read-only:

share -F nfs -o ro /cdrom

Normally, the volumes to be shared are identified in the /etc/dfs/dfstab file. Note that
if this file contains no entries, then the NFS server will not start, with the message:

NFS service was not started because /etc/dfs/dfstab has no entries.

One of the really innovative features of NFS is that a system that shares volumes
to other systems can actually remotely mount shared volumes from its own clients.
For example, carolina might share the volume /cdrom to georgia, fairfax, and virginia.

In contrast, virginia might share the /staff directory, which contains home directories,
to carolina, georgia, and fairfax, using the command

share -F nfs -o rw=georgia,carolina,fairfax /staff

File systems can be unshared using the unshare command. For example, if you are
going to change a CD-ROM on carolina that is shared to clients using NFS, it might be
wise to unmount it first:

unshare -F nfs /cdrom

To unshare all volumes that are currently being shared from an NFS server, you can
use the following command:

unshareall

The command dfmounts shows the local resources shared through the networked
file system that are currently mounted by specific clients:

dfmounts
RESOURCE SERVER PATHNAME CLIENTS
- carolina /cdrom virginia,georgia
- carolina /var/mail fairfax,virginia,georgia
- carolina /opt/answerbook fairfax

C h a p t e r 2 6 : N e t w o r k F i l e S y s t e m a n d C a c h i n g F i l e S y s t e m 529

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

530 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

However, dfmounts does not provide information about the permissions with
which directories and file systems are shared, nor does it show those shared resources
that have no clients currently using them. To display this information, you need to use
the share command with no arguments. On virginia, this looks like

share
/staff rw=georgia,fairfax,carolina "staff"

while on carolina, the volumes are different:

share
- /cdrom ro=georgia,fairfax,carolina "cdrom"
- /var/mail rw=georgia,fairfax,carolina "mail"

Conversely, as a client, you want to determine which volumes are available for you
to mount from NFS servers. This can be achieved by using the dfshares command.
For example, to view the mounts available from the server virginia, executed on carolina,
the following output would be displayed:

dfshares –F nfs virginia
RESOURCE SERVER ACCESS TRANSPORT
virginia:/staff virginia - -

Installing an NFS Client
In order to access file systems that are being shared from an NFS server, a separate NFS
client must be operating on the client system. There are two main daemon processes
that must be running in order to use the mount command to access shared volumes:
the NFS lock daemon (/usr/lib/nfs/lockd), and the NFS stat daemon (/usr/lib/nfs/statd).
The lockd daemon manages file sharing and locking at the user level, while the statd
daemon is used for file recovery after connection outage.

If NFS was installed during the initial system setup, then a file called nfs.client should
have been created in /etc/init.d. Normally, NFS clients are started at run-level 2. However,
to manually run the NFS client, you need to execute the following command:

/etc/init.d/nfs.client start

Just like the NFS server, you can verify that the NFS daemons have started correctly
by using the following commands:

ps -eaf | grep statd
daemon 211 1 0 May 16 ? 0:04 /usr/lib/nfs/statd

ps -eaf | grep lockd
root 213 1 0 May 16 ? 0:03 /usr/lib/nfs/lockd

If these two daemons are not active, then the NFS client will not run.

The next step is for the client to consult the /etc/vfstab file, which lists both the UFS
and NFS file systems that need to be mounted and attempts to mount the latter if they
are available by using the mountall command.

To stop the NFS client once it is operating, you may use the following command:

/etc/init.d/nfs.client stop

The NFS server is usually started automatically during run-level 3.

Configuring a CacheFS File System
In general terms, a cache is a place where important material can be placed so that
it can be quickly retrieved. The location of the cache may be quite different from the
normal storage location for the specified material. For example, field commanders in
the army may store ammunition in local caches, so that their forces can obtain their
required materiel quickly in case of war. This ammunition would normally be stored
securely well away from the battlefield, but must be “highly available” when required.
The state of the battlefield may make it difficult to access outside sources of ammunition
during live fire, so a sizable cache of arms is always wise.

This analogy can be easily extended to client/server scenarios in which an unreliable
or slow data link may give rise to performance issues. A cache, in this case, can be created
to locally store commonly used files, rather than retrieving them each time they are
requested from a server. The cache approach has the advantage of speeding up client
access to data. However, it has the disadvantage of data asynchronization, in which a
file is modified on the server after it has been stored in the cache. Thus, if a local file
retrieved from the cache is modified before being sent back to the server, any modifications
performed on the server’s copy of the file would be overwritten. Conversely, cached
data may be out of date by the time it is retrieved by the local client, meaning that
important decisions could be made based on inaccurate information.

Many Internet client/server systems, involved in the exchange of data across an HTTP
link, use a cache to store data. This data is never modified and sent back to the server,
so overwriting server-side data is never an issue. Small ISPs with limited bandwidth
often use caches to store files that are commonly retrieved from a server. For example,
if the ISP has 1,000 customers who routinely download the front page of the Sydney
Morning Herald each morning, it makes sense to download the file once from the Sydney
Morning Herald Web site and store it locally for the other 999 users to retrieve. Since the
front page may only change from day to day, the page will always be current, as long
as the cache purges the front page file at the end of each day. The daily amount of data
to be downloaded from the Sydney Morning Herald Web site has been reduced by 99.9
percent, which can significantly boost the ISP’s performance in downloading other
noncached files from the Internet, as well as reduce the overall cost of data throughput.

Solaris provides a cache file system (CacheFS) that is designed to improve NFS client/
server performance across slow or unreliable networks. The principles underlying
CacheFS are exactly the same as the principles underlying the preceding two cache
examples: locally stored files that are frequently requested can be retrieved by users

C h a p t e r 2 6 : N e t w o r k F i l e S y s t e m a n d C a c h i n g F i l e S y s t e m 531

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

532 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

on the client system without having to download them again from the server. This
approach minimizes the number of connections required between an NFS client and
server to retrieve the same amount of data, in a manner that is invisible to users on the
client system. In fact, if anything, users will notice that their files are retrieved more
quickly than before the cache was introduced.

CacheFS seamlessly integrates with existing NFS installations, with only simple
modifications to mount command parameters and /etc/vfstab entries required to use the
facility. The first task in configuring a cache is to create a mount point and a cache on a
client system. If a number of NFS servers are to be used with the cache, it makes sense
to create individual caches underneath the same top-level mount point. Many sites
use the mount point /cache to store individual caches. This example assumes that a file
system from the NFS server yorktown will be cached on the local client system midway,
so the commands to create a cache on midway are

midway# mkdir /cache
midway# cfsadmin -c /cache/yorktown

Here, the cfsadmin command is used to create the cache once the mount point /cache
has been created.

Now, take a look at how you would force the cache to be used for all accesses from
midway to yorktown for the remote file system /staff, which is also mounted locally on /staff:

mount -F cachefs -o backfstype=nfs,cachedir=/cache/yorktown yorktown:/
staff /staff

Once the yorktown:/staff file system has been mounted in this way, users on midway
will not notice any difference in operation, except that file access to /staff will be much
quicker.

It is possible to check the status of the cache by using the cachefsstat command.
To verify that /cache/yorktown is operating correctly, you would use the following command:

cachefsstat /cache/yorktown

Alternatively, you can use the cfsadmin command:

cfsadmin -l /cache/yorktown
cfsadmin: list cache FS information
maxblocks 80%
minblocks 0%
threshblocks 75%
maxfiles 80%
minfiles 0%
threshfiles 75%
maxfilesize 12MB
yorktown:_staff:_staff

C h a p t e r 2 6 : N e t w o r k F i l e S y s t e m a n d C a c h i n g F i l e S y s t e m 533

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

Note the last line, which is the current cache ID. You need to use the cache ID if you
ever need to delete the cache. If you do need to delete a cache, you can use the cfsadmin
command with the –d option:

umount /staff
cfsadmin -d yorktown:_staff:_staff /cache/yorktown

This example unmounts the /staff volume on merlin locally, before attempting to remove
the cache by providing its ID along with its mount point.

Enabling the automounter
The automount command installs autofs mount points and associates an automounter
map with each mount point. This requires that the automount daemon be running
(automountd). When the automount daemon is initialized on the server, no exported
directories are mounted by the clients: these are mounted only when a remote user
attempts to access a file on the directory from a client. The connection eventually times
out, in which case the exported directory is unmounted by the client. The automounter
maps usually work with a network information service, like NIS+, to manage shared
volumes, meaning that a single home directory for individual users can be provided on
request from a single server, no matter which client machine they log into. Connection
and reconnection is handled by the automount daemon. If automount starts up and
has nothing to mount or unmount, this is reported, and is quite normal:

automount
automount: no mounts
automount: no unmounts

Automounter Maps
The behavior of the automounter is determined by a set of files called automounter
maps. There are two main types of maps—indirect and direct:

• Indirect map Useful when you are mounting several file systems that will
share a common pathname prefix. As you will see shortly, an indirect map can
be used to manage the directory tree in /home.

• Direct map Used to mount file systems where each mount point does not
share a common prefix with other mount points in the map.

This section looks at examples of each of these types of maps. An additional map,
called the master map, is used by the automounter to determine the names of the files
corresponding to the direct and indirect maps.

Indirect Maps
The most common type of automounter maps are indirect maps, which correspond to
“regularly” named file systems like /home, or /usr directory trees. Regularly named file
systems share the same directory prefix. For example, the directories /home/jdoe and
/home/sdoe are regularly named directories in the /home directory tree.

534 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

Normally, indirect maps are stored in the /etc directory, and are named with the
convention auto_directory, where directory is the name of the directory prefix (without
slashes) that the indirect map is responsible for. As an example, the indirect map
responsible for the /home directory is usually named auto_home. An indirect map is
made up of a series of entries in the following format:

directory options host:filesystem

Here, directory is the relative pathname of a directory that will be appended to the
name of the directory that corresponds to this indirect map, as specified in the master
map file. (The master map is covered later in this section.) For options, you can use any
of the mount options covered earlier in this chapter. To specify options, you need to
prefix the first option with a dash (–). If you do not need any extra options, you can
omit the options entirely. The final entry in the map contains the location of the NFS
file system.

Here is an example of the indirect map that is responsible for the directories in /home:

/etc/auto_home - home directory map for automounter
jdoe orem:/store/home/jdoe
sdoe orem:/store/home/sdoe
kdoe -bg srv-ss10:/home/kdoe

Here, the entries for jdoe, sdoe, and kdoe correspond to the directories /home/jdoe, /home/
sdoe, and /home/kdoe, respectively. The first two entries indicate that the automounter
should mount the directories /home/jdoe and /home/sdoe from the NFS server orem, while
the last one specifies that the directory /home/kdoe should be mounted from the NFS
server srv-ss10. The last entry also demonstrates the use of options.

Now that you have taken a look at an indirect map, you are ready to walk through
what happens when you access a file on an NFS file system that is handled by the
automounter. For example, consider the following command that accesses the file /
home/jdoe/docs/book/ch17.doc:

$ more /home/jdoe/docs/book/ch17.doc

Because the directory /home/jdoe is automounted, the following steps are used by
the automounter to allow you to access the file:

1. The automounter looks at the pathname and determines that the directory /
home is controlled by the indirect map auto_home.

2. The automounter looks at the rest of the pathname for a corresponding entry
in the auto_home map. In this case it finds the matching entry, jdoe.

3. Once a matching entry has been found, the automounter checks to see if the
directory /home/jdoe is already mounted. If the directory is already mounted,
you can directly access the file; otherwise, the automounter mounts this
directory and then allows you to access the file.

C h a p t e r 2 6 : N e t w o r k F i l e S y s t e m a n d C a c h i n g F i l e S y s t e m 535

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

Direct Maps
When you use an indirect map, the automounter takes complete control of the directory
corresponding to the indirect map. This means that no user, not even root, can create
entries in a directory corresponding to an indirect map. For this reason, directories
specified in an indirect map cannot be automounted on top of an existing directory. In
this case you need a special type of map known as a direct map. A direct map allows
you to mix automounter mount points and normal directories in the same directory
tree. The directories specified in a direct map have “nonregular” mount points, which
simply means that they do not share a common prefix. A common use for direct maps
is to allow for directories in the /usr directory tree to be automounted.

The direct map is normally stored in the file /etc/auto_direct. The format of this file is
similar to the format of the indirect maps:

directory options host:filesystem

Here, directory is the absolute pathname of a directory. For options, you can use any of the
mount options covered earlier in this chapter. To specify options, you need to prefix the
first option with a dash (–). If you do not need any extra options, you can omit the options
entirely. The final entry in the map contains the location of the NFS file system. Here is an
example of the direct map that is responsible for some of the directories in /usr:

/etc/auto_direct - Direct Automount map
/usr/pubsw/man orem:/internal/opt/man
/usr/doc orem:/internal/httpd/htdocs

When any files in the directories /usr/pubsw/man or /usr/doc are accessed, the automounter
automatically handles the mounting of these directories.

Master Maps
When the automounter first starts, it reads the file /etc/auto_master to determine where
to find the direct and indirect map files. The auto_master file is known as the master map.
It consists of lines whose format is as follows:

directory map

Here, directory is the name of the directory that corresponds to the indirect map. For
a direct map, this entry is /–. The map is the name of the map file in the /etc directory
corresponding to the directory given in the first column.

The following example shows a master map file for the direct and indirect maps
given earlier in this section:

Master map for automounter
/home auto_home
/- auto_direct

Other entries can also be made in the master map. For example, to share a common
directory for mail between a number of clients and a mail server, you would enter the
following definition:

/- /etc/auto_mail

This creates a share called auto_mail that makes mail on a single server accessible to all
client machines upon request. The automounter permits two kinds of shares that can
be defined by direct and indirect maps: a direct map is a set of arbitrary mount points
that are listed together, while an indirect map mounts everything under a specific
directory. For example, auto_home mounts user directories and all subdirectories
underneath them. If an automounted share is available on the server, then you should
see its details being displayed in the /etc/mnttab file:

burbank:/var/mail /var/mail nfs nosuid,dev=2bc0012 951071258

Continuing with the example of auto_mail, as defined in the master map, a file named
/etc/auto_mail would have to contain the following entry:

cat /etc/auto_mail
/var/mail burbank:/var/mail

This ensures that the burbank server knows where to find the /var/mail directory physically,
and that automount can mount the shared volume at will.

Sometimes, the network load caused by mounting and unmounting home directories
can lead to an increase in I/O load, and reduce the effective bandwidth of a network. For
this reason, only volumes that need to be shared should be shared. Alternatively, the
timeout parameter for automount can be modified to extend its latency for mounting
and unmounting directories.

automount and NIS+
A common problem with auto_home is that systems in an NIS+ environment may create
user accounts on a file system mounted as /home. This means that if auto_home is active,
as defined by /etc/auto_master, then after rebooting, the shared home directories are
mounted on /home, and when the local /home attempts to mount the same point, it fails.
This is one of the most frequently asked questions about Solaris 10, as the convention was
different for earlier Solaris systems, which used local /home directories. The recommended
practice is now to create home directories under /export/home, on the local file system if
required, or to use auto_home in an NIS+ environment. However, if you wish to disable
this feature altogether and stick with a local /home, then simply remove “+auto_master”
from the master map (/etc/auto_master).

536 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

Starting and Stopping the automounter
Starting and stopping the automounter is normally handled by your system at boot
and shutdown time, but you will have to start and stop the automounter manually
if you make changes to any of its map files.

The automount daemon is typically started from /etc/init.d/autofs during the multiuser
startup, with a command like

/etc/init.d/autofs start

You can confirm that it started correctly by using the following command:

/bin/ps -ef | grep automountd

The output should look like the following:

root 21642 1 0 11:27:29 ? 0:00 /usr/lib/autofs/automountd

If you receive no output, then the automounter has not started correctly. In that
case you should run the startup script again.

Stopping the autofs client is similar to starting it:

/etc/init.d/autofs stop

The stop script usually stops the automounter, but you can confirm this by using
the command

/bin/ps -ef | grep automountd

This is the same command that is used to check whether the automounter is running,
except that once you stop it, this command should not produce any output. If you do
see some output and it contains a grep command, you can ignore those lines. Any other
output indicates that the automounter has not stopped, in which case you should
execute the NFS client stop command again.

If you receive a message similar to the following:

/home: busy

then you need to determine if anyone is logged onto the system and is using files from
/home. If you cannot determine this, you can use the following command to get a list of
all the mounted directories in the directory that caused the error message (in this case
/home):

$ df -k -F nfs
/home/jdoe

C h a p t e r 2 6 : N e t w o r k F i l e S y s t e m a n d C a c h i n g F i l e S y s t e m 537

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

Just replace /home with the name of the directory that produced the error message. In
this case only one directory, /home/jdoe, was automounted. Once you have a list of these
directories, try unmounting each one with the umount command. When you receive an
error message, you will know which directory contains the files that are in use. You can
ask the user to finish with those files, and then proceed to stop the automounter.

Examples
The following examples provide some real-world cases for installing and managing NFS.

Checking portmapper Status
If you’re having trouble starting the NFS daemon, it’s often a Remote Procedure Call (RPC)
problem. In order to determine whether an RPC portmapper is running, you may use the
rpcinfo command:

rpcinfo -p
program vers proto port service
100000 4 tcp 111 rpcbind
100000 3 tcp 111 rpcbind
100000 2 tcp 111 rpcbind
100000 4 udp 111 rpcbind
100000 3 udp 111 rpcbind
100000 2 udp 111 rpcbind
100007 3 udp 32774 ypbind
100007 2 udp 32774 ypbind
100007 1 udp 32774 ypbind
100007 3 tcp 32771 ypbind
100007 2 tcp 32771 ypbind
100007 1 tcp 32771 ypbind
100011 1 udp 32785 rquotad
100024 1 udp 32789 status
100024 1 tcp 32775 status
100021 1 udp 4045 nlockmgr
100021 2 udp 4045 nlockmgr
100021 3 udp 4045 nlockmgr
100021 4 udp 4045 nlockmgr
100068 2 udp 32809
100068 3 udp 32809
100068 4 udp 32809
100068 5 udp 32809
100083 1 tcp 32795
100021 1 tcp 4045 nlockmgr
100021 2 tcp 4045 nlockmgr
100021 3 tcp 4045 nlockmgr
100021 4 tcp 4045 nlockmgr
100005 1 udp 32859 mountd

538 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

C h a p t e r 2 6 : N e t w o r k F i l e S y s t e m a n d C a c h i n g F i l e S y s t e m 539

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

100005 2 udp 32859 mountd
100005 3 udp 32859 mountd
100005 1 tcp 32813 mountd
100005 2 tcp 32813 mountd
100005 3 tcp 32813 mountd
100026 1 udp 32866 bootparam
100026 1 tcp 32815 bootparam

In this example, both mountd and nfsd are running, along with several other services,
so the NFS daemon should have no problems executing. However, the RPL service is
not active, since it is not displayed in the rpcinfo list, so x86 clients would not be able
to use the local server as a boot server.

Mounting Remote File Systems
On the client side, if you want to mount a volume that has been shared from an NFS
server, you use the mount command. For example, if you want to mount the exported
CD-ROM from carolina on the NFS client virginia, you would use the command

mount -F nfs -o ro carolina:/cdrom /cdrom

Like the /etc/dfs/dfstab file, which records a list of volumes to be exported, the /etc/
vfstab file can contain entries for NFS volumes to be mounted from remote servers. For
example, on the machine fairfax, if you wanted the /var/mail volume on carolina to be
mounted locally as /var/mail, you would enter the following line in /etc/vfstab:

carolina:/var/mail - /var/mail nfs - yes rw

This line can be interpreted as a request to mount /var/mail from carolina read/write
on the local mount point /var/mail as an NFS volume that should be mounted at boot
time. If you make changes to the /etc/vfstab file on virginia, and you want to mount the
/var/mail partition, you can use the command

mount /var/mail

which will attempt to mount the remote /var/mail directory from the server carolina.
Alternatively, you can use the command

mountall

which will mount all partitions that are listed in /etc/vfstab but have not yet been mounted.
This should identify and mount all available partitions.

File systems can be unmounted by using the umount command. For example, if
the /cdrom file system on carolina is mounted on virginia as /cdrom, then the command

umount /cdrom

540 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

will unmount the mounted NFS volume. Alternatively, the unmountall command can
be used, which unmounts all currently mounted NFS volumes. For example, the command

umountall -F nfs

unmounts all volumes that are currently mounted through NFS.
When a remote volume is mounted on a local client, it should be visible to the system

just like a normal disk, as shown by df:

df -k
carolina:/cdrom 412456 341700 70756 83% /cdrom
carolina:/var/mail 4194304 343234 3851070 8% /var/mail
carolina:/opt/answerbook 2097152 1345634 750618 64% /opt/
answerbook

Enhancing Security
So far, NFS has been examined without consideration of the security implications of
sharing a file system to clients. In a local intranet environment, with protection from a
firewall, some administrators implement open NFS sharing, where client lists are not
supplied to share commands to limit access to server volumes. The problem with this
approach is spoofing: an external system may be able to “pretend” to be part of your
local network, thereby gaining access to globally shared NFS volumes. Given that NFS
authentication is usually based on mappings of usernames on the client to the server, if
a spoofed system contains equivalent user accounts to those found on the server, then
unauthorized clients will be able to read and write data at will. This is why it’s critical
to only share volumes to specific client systems, using the appropriate read-write or
read-only designation.

The other key parameter for the share command is sec, which specifies the type
of authentication required to access server volumes. By default, the sys level is used,
whereby usernames and groups are mapped between client and the server. Thus, the
user lynda on the client will have the same access permissions as lynda on the server.
However, other alternatives are available, depending on the relative risks involved in
data loss. If sensitive data is being shared by an NFS server, it may be wise to implement
a more sophisticated authentication method, including one based on DES public key
cryptography (the dh level, standing for Diffie-Hellman) or the Kerberos 4 authentication
method (the krb4 level). If a volume is exported with the dh or krb4 authentication levels,
then all clients must use the method specified to access data on the volume specified.
To support the dh or krb4 authentication levels, secure RPC must be running. User keys
can be updated by using the chkey command. For more information on security, see
Chapter 9.

C h a p t e r 2 6 : N e t w o r k F i l e S y s t e m a n d C a c h i n g F i l e S y s t e m 541

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

Performance
NFS performance is determined by a number of factors, including

• Server CPU speed, and number of server CPUs

• Server physical RAM and virtual RAM

• Server disk speed

• Server system load

• Server CacheFS capacity

• Server network interfaces

• Number of clients

• Speed of local network

• Domain Name Lookup Cache (DNLC) speed

Many sites develop NFS services incrementally—as the number of users grows, so
does the number of CPUs, the amount of memory, the number of network interfaces,
and the number of faster disks allocated to improving NFS performance. In addition, a
number of software methods, including the CacheFS and DNLC settings, can be modified
to improve data throughput.

One of the best methods for determining how NFS is performing, from both a client
and server perspective, is to use the nfsstat command to gather performance statistics
over a period of weeks or months. In particular, counting the number of calls and bad
calls can show the proportion of successful to unsuccessful requests, respectively, to the
server. To run nfsstat on the server, use the following command:

nfsstat -s
...
Server nfs:
calls badcalls
575637455 3433
...

Here, you can see that the proportion of bad calls to the total number of calls is 3433 ÷
575637455, which is much less than 1 percent. After gathering statistics for each interval,
the counters can be reset to zero by using the following command:

nfsstat -z

nfsstat now provides output showing separate statistics for NFS versions 2, 3, and 4.

542 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

Command Reference
The following commands are commonly used to install and manage NFS.

share
Table 26-1 shows the most common options for the share command.

mount
The main options available for mounting NFS file systems are shown in Table 26-2.

Parameter Description

anon=username Sets the username of unknown users to username

log Starts NFS logging

nosuid Prevents applications from executing as setuid

nosub Prevents client access to subdirectories of exported server volumes

ro Prevents writing to an exported file system

root Allows remote access by remote root users as the local root user

rw Permits reading and writing to an exported file system

sec Specifies the authentication level (sys, dh, or krb4)

TABLE 26-1 NFS Server Options

Option Description

ro Mounts a file system with read-only permissions.

rw Mounts a file system with read/write permissions.

hard No timeouts permitted—the client will repeatedly attempt to make a connection.

soft Timeouts permitted—the client will attempt a connection, and give an error message
if the connection fails.

bg Attempts to mount a remote file system in the background if the connection fails.

TABLE 26-2 NFS Client Options

Summary
In this chapter, you have examined how to share file systems with other servers by
using NFS. New initiatives like WebNFS will ensure that NFS will not disappear, even
though CIFS is now being used widely.

C h a p t e r 2 6 : N e t w o r k F i l e S y s t e m a n d C a c h i n g F i l e S y s t e m 543

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 26

This page intentionally left blank.

27
Sendmail

Electronic mail was one of the first applications to be widely adopted across the
Internet, and despite changes in technology and a shift toward information
delivery via the Web, e-mail has managed to hold its ground. E-mail has undergone

many changes in recent years: instead of plain-text messages being sent from command-
line clients (or mail user agents, MUAs), there are many different mail protocols that
enable remote clients to retrieve their e-mail from a centralized server (e.g., POP, IMAP),
and multimedia content is now supported through Multipurpose Internet Mail
Extensions (MIME).

Although desktop clients are technically capable of running mail servers, most
organizations still prefer to run a single main mail server, running a mail-transport
agent (MTA), such as the traditional sendmail daemon, or a newer replacement (e.g.,
qmail). The reason for this preference is that server systems, such as Solaris, have high
uptime and better security features than the average desktop client, and because the
security of mail services can be managed centrally. For example, if a security vulnerability
is revealed in sendmail, then a patch can be freely downloaded from SunSolve and
applied to the server, with minimal disruption to users. If everyone ran their own mail
server, new security problems could take weeks if not months per incident to rectify,
in a large organization.

This chapter examines the background to how e-mail is addressed and delivered,
and the configuration of the popular sendmail MTA. It then shifts focus to the client
side, examining local and remote MUAs that use the Post Office Protocol (POP) and
Internet Message Access Protocol (IMAP) to retrieve their mail from a dedicated mail
server.

Key Concepts
The following concepts are required knowledge for configuring and managing e-mail
services.

5 4 5

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27
Blind Folio 545

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

546 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

Understanding E-Mail Protocols
Transferring e-mail between servers on the Internet is largely conducted using the Simple
Mail Transfer Protocol (SMTP). The advantage of using SMTP is that mail transfer can be
initiated by a local third-party MUA, such as elm or pine, or it can be performed manually
by a user using telnet.

If your users are not logged in through a shell on the local mail server, you need to
provide a means by which they can send and retrieve mail through the server by using
a remote mail client. Two protocols support this: POP, which is the oldest client/server
mail-transfer protocol and supports only offline mail reading, and IMAP, which supports
both offline and online mail reading. The choice between the two often comes down to
which MUAs your users are comfortable with, and which protocol their favorite client
supports. However, other considerations, such as authentication, authorization, and
security, may sway an administrator to stipulate that IMAP be used over POP, even for
offline mail reading. Note that POP is generally easier to install and configure than IMAP.

Simple Mail Transfer Protocol
SMTP allows servers to exchange mail with each other, on a message-by-message basis.
Standardized since the publication of RFC 821, SMTP has become the dominant Internet
mail-transfer protocol, at the expense of earlier transfer methods, such as the ancient
UNIX-to-UNIX Copy (UUCP) program and the X.400 protocol, the latter of which is
still popular with intranet-and LAN-based e-mail. SMTP allows sendmail and other
MTAs, such as qmail, to accept connections on port 25 and “speak” to each other in
a language that is interpretable by humans. In fact, as you will see later, it is actually
possible for an administrator to manually test sendmail by telnetting to port 25 and
issuing SMTP commands directly. This is very useful for troubleshooting and testing
existing configurations. Unfortunately, SMTP has been used frequently by malicious
users to forge e-mail headers to make their e-mail messages appear to come from
other users.

SMTP supports a sender/receiver model of host-to-host e-mail transactions. For
example, a host, such as the server mail.companyA.com, may wish to transfer a message
to mail.companyB.com. This transaction takes place as follows (see Figure 27-1):

1. mail.companyA.com makes a connection to port 25.

2. mail.companyB.com acknowledges.

3. mail.companyA.com identifies the sender of the message.

4. mail.companyB.com acknowledges.

5. mail.companyA.com states the recipient of the message.

6. mail.companyB.com acknowledges. If the local user exists or is listed in the /etc/
aliases database, the acknowledgement is in the affirmative. However, if no local
user can be matched to the intended recipient, the acknowledgement is in the
negative.

7. If a user is found, the message is transmitted from mail.companyA.com to
mail.companyB.com.

8. mail.companyB.com acknowledges receipt (with a receipt number).

9. mail.companyA.com requests a disconnection.

10. mail.companyB.com complies.

11. Mail is held on the MTA until the RECV command to retrieve the message
is sent by the MUA.

This kind of transaction is conducted millions of times every day on mail servers
around the world, and is very fast. In the example, each of the acknowledgements from
mail.companyB.com is associated with a three-digit numeric code: for example, a successful
command from mail.companyA.com is always acknowledged with a code of 250 from
mail.companyB.com. Alternatively, if a user is not local, the code 551 is returned.

There are a number of standard SMTP commands, which are summarized here:

• HELO Identifies the mail-sending host to the mail-receiving host

• MAIL Identifies the remote user who is sending the mail to the mail-receiving
host

• RCPT Indicates the local user to whom the mail is to be delivered

• DATA Precedes the body of the mail message

• VRFY Checks that a particular local user is known to the mail system

• EXPN Expands local mailing lists

• QUIT Terminates a session

C h a p t e r 2 7 : S e n d m a i l 547

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

FIGURE 27-1
Mail exchange
transaction between
mail.companyA.com
and
mail.companyB.com

In addition to the standard SMTP commands presented here, RFC 1869 proposed
extensions to SMTP called ESMTP. ESMTP allows developers to extend the services
currently provided by SMTP. MTAs that support ESMTP commands will attempt to
greet each other with the EHLO command. If ESMTP is supported, a list of implemented
commands on the remote server is returned. For example,

server% telnet server.companyB.com 25
Trying 192.68.232.45...
Connected to server.companyB.com.
Escape character is '^]'.
220 server.companyB.com ESMTP Sendmail 8.9.1a/8.9.1; Fri, 18 Feb 2000 13:05:14
+1100 (EST)
EHLO server.companyA.com
250-server.companyB.com Hello pwatters@server.companyA.com [192.68.231.64],
pleased to meet you
250-EXPN
250-VERB
250-8BITMIME
250-SIZE
250-DSN
250-ONEX
250-ETRN
250-XUSR
250 HELP

One example of an ESMTP command is Delivery Status Notification (DSN), which
was proposed in RFC 1891, and which reports on the status of remote mail deliveries
to local users.

Post Office Protocol
Many users today do not log in directly to an interactive shell on a mail server and run
a local mail client like mailx or elm—instead, they are able to use a GUI-based mail-
reading client that runs locally on their PC, contacting the mail server directly to retrieve
and send their mail. One of the most commonly used client/server protocols that
facilitates this kind of mail delivery is POP, as proposed in RFC 1725. POP supports
offline mail delivery to remote clients when mail addressed to a user account is delivered
via a centralized mail server. POP supports many useful features, including the ability
to retain copies of e-mail on the server and to transmit a copy to the client. This can
be very useful for auditing and backup purposes, as a client machine may have to be
reinstalled, or it may crash, in which case, all the user’s mail (including unread mail)
might be lost. Reliability of service is still one of the main arguments for using a centralized
mail server.

To retrieve mail from a POP server, a client machine makes a TCP connection to
port 110. The client then greets the server, receives an acknowledgement, and the session
continues until it is terminated. During this time, a user may be authenticated. If a user
is successfully authenticated, they may begin conducting transactions in the form of

548 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

retrieving messages, until the QUIT command is received by the server, in which case
the session is terminated. Errors are indicated by status codes like –ERR for negative
responses and +OK for positive responses. POP is deliberately SMTP-like in its command
set and operation, making it easier for administrators to apply their skills to configuring
both kinds of systems.

One of the drawbacks of POP is its lack of security: although users are authenticated
using their username and password on the mail server, this exchange is not encrypted,
and so anyone “snooping” the network might be able to retrieve this username and
password. This would allow a rogue user to log into the mail server as the mail user—
perhaps without the mail user realizing this for a long time, because they themselves
never log in directly to the mail server. Since telnet and ftp use exactly the same
method of authentication, it’s certainly no worse than many standard network applications.

To obtain a free POP server for Solaris, download the freeware Qpopper server from
QUALCOMM at http://www.eudora.com/qpopper/index.html. Alternatively, Netra
systems are supplied with the SUNWipop package, which provides a POP service for
that platform. QUALCOMM also has a free POP MUA called Eudora, which is very
popular in educational institutions and is available for both Macintosh and Windows
platforms. Figure 27-2 shows the main user screen for Eudora: users can retrieve their
mail from a remote server and display it ordered by date, sender, and subject. In addition,
files from the local Macintosh or Windows file system can be sent as attachments by
using the MIME extensions. Software like Eudora makes it easy for Macintosh and
Windows users to have the convenience of local file access and GUI-based interfaces
while retaining the security and reliability of the Solaris server platform. However, note
that browsers such as Netscape and other command-line MUAs (such as elm or pine)
may be more appropriate than Eudora for some environments.

Internet Message Access Protocol
IMAP, proposed in RFC 2060, is intended to replace POP. While IMAP can perform
offline processing, it is primarily intended for remote clients to retain some of the
features of online processing enjoyed by MUAs like mailx and elm. A remote MUA
using IMAP has the ability to perform more sophisticated transactions than those
performed by a POP-based client: while POP caters to requests like retrieving all new
messages on the server and passing them to the client, IMAP supports requests of just
headers, just message bodies, or both. In addition, a search can be made for messages
that match a particular criterion: for example, a request could be made to find all
messages received by a particular user, or all messages received on a particular day.
Although a POP-based MUA can perform these operations on its local copy of mail
messages, IMAP can perform these operations remotely on the server. In addition,
server-side messages can be marked with different flags to indicate, for example, whether
they have been replied to. Again, this is the kind of functionality often supplied by
server-side MUAs like mailx or elm, but IMAP allows these operations to be performed
by remote, easy-to-use GUIs. IMAP users can also store their files locally, as with a
POP-based service—but, significantly, IMAP has a synchronization feature whereby
the local mailbox contents can be regularly matched with the mailbox on the server,
to ensure that no data corruption occurs due to errors on the client machine.

C h a p t e r 2 7 : S e n d m a i l 549

In summary, POP and IMAP offer significantly different functions, and the use of
either protocol depends on the MUAs that are supported and the needs of the users.
Many mail clients only support POP, and your organization may stay with the POP
platform for this reason alone, even though IMAP offers many more features.

Mail Headers
When a mail message is delivered into a user’s mailbox, it contains a history of its
delivery process in the headers that precede the message body. These headers include

• From Records the mail-sending user and the date and time at which the mail
was received.

• Received Provides details of how the mail was received by the MTA on the
mail server, including the remote computer’s name, MTA name, and identification.

• Date Indicates the time and date at which the message was received.

550 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

FIGURE 27-2 The POP-based Eudora client for Microsoft Windows, which receives mail from a
centralized and secure Solaris mail server

• Message-Id A unique number generated by the sending host that identifies
the message.

• To Indicates the user to whom the message was addressed—usually a user
on the local machine.

• Content-Type Indicates the MIME type in which the message was encoded.
This is usually text, but could contain multimedia types as well.

• Content-Length The number of lines making up the body of the message.

• Subject Subject of the mail message as entered by the sender.

sendmail
Now that you have reviewed how mail is transferred between the client and the server,
the focus now shifts to server-to-server mail communications. Mail exchange between
servers is performed by using MTAs, such as sendmail, which implement the SMTP
protocol. sendmail is the most popular MTA for Solaris and many other UNIX systems,
even though newer systems, such as qmail, make it easier to configure an MTA. This
section cannot cover all material relating to sendmail, because it is one of the most
complex Solaris programs to master. However, this section provides sufficient detail so
that most administrators working in a standard environment will be able to configure
and test their mail-transfer environment.

sendmail is the default MTA supported by Solaris, although it is certainly possible
to install an alternative third-party MTA like qmail (see http://www.qmail.org/ for
details). Solaris 10 supports sendmail version 8.

In most Solaris installations, the sendmail MTA relies on a single configuration file
(sendmail.cf) that contains sets of rules to determine how e-mail is to be sent from the
local host to any arbitrary remote host, and which mailer is to be used (e.g., for local
versus remote delivery). The rules are used to choose the mechanism by which each
message is delivered, while mail addresses are often rewritten to ensure correct delivery.
For example, a mail message sent from a server command line may not include the
Fully Qualified Domain Name in the Reply To field, in which case a remote user would
not be able to reply to a message sent to them. The sendmail MTA ensures that the
“virtual envelopes” that contain e-mail messages are addressed correctly, by inserting
headers where appropriate to identify senders and recipients.

Although sendmail is highly customizable, it is also difficult to configure and test,
because a single error in the rules can produce unexpected results. sendmail reads
and processes every rule in sendmail.cf, so in order to speed up the process, the rules are
written in a “computer friendly” format. Unfortunately, like assembly language, computer-
friendly rules are rarely human-friendly! The next section reviews the configuration
of sendmail and highlights some of the security issues that continue to surround its
deployment. Fortunately, the public version of sendmail allows you to use simple
configuration rules to create a sendmail.cf file, which is easier than working directly on
the sendmail.cf file.

C h a p t e r 2 7 : S e n d m a i l 551

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

552 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

m4 Configuration
The m4 macro language can be used to create a sendmail.cf file, by using a set of predefined
macros that has been developed for use with sendmail. In order to create a sendmail.cf
file using m4 macros, a text file containing a list of macros to run, and the appropriate
parameter values for your site, needs to be created (typically called sendmail.mc). Once
you have installed this file into the cf/cf subdirectory underneath the main sendmail
directory, then you can use the following command from that directory to build a new
sendmail.cf file:

cp /etc/sendmail.cf /etc/sendmail.orig
m4 ../m4/cf.m4 sendmail.mc > /etc/sendmail.cf

The first command backs up the current production sendmail.cf file, while the next
command builds a new production sendmail.cf file. After you start sendmail, by using
the command defined in the previous section, sendmail will be running with the new
configuration.

Before you examine a sample sendmail.mc file, take a closer look at the macros and
parameters that can be used to configure sendmail.

Macros
The following macros are defined for use with sendmail.mc:

• DOMAIN Used to define common elements for mail servers with the same
domain name

• EXPOSED_USER Prevents domain masquerading for specific users

• FEATURE Enables a specific sendmail feature

• MAILER Specifies the mail-delivery program to use on the server (local,
smtp, or procmail)

• MASQUERADE_AS Inserts an effective domain on all outgoing e-mail
rather than the real domain

• OSTYPE Defines the host operating system type

Features
Once the basic domain and operating system parameters have been generated, the next
step is to enable specific sendmail features by using the FEATURE macro. One instance
of FEATURE is required for every feature that is to be enabled. Commonly used features
include

• accept_unqualified_senders Accepts messages for delivery from users with
e-mail addresses that do not have an FQDN.

• accept_unresolvable_domains Accepts messages for delivery from users with
e-mail addresses whose FQDN is not resolvable.

• access_db Enables a database of senders and domains to be maintained from
whom mail is automatically bounced or rejected.

• always_add_domain Inserts FQDN onto all e-mails sent through sendmail,
even those that are being delivered to local users.

• blacklist_recipients Defines a list of recipients who are not allowed to receive
e-mail.

• domaintable Substitutes a new domain name for a previous domain name.

• mailertable Allows a different mail server to be associated with each virtual
domain supported.

• nullclient Allows local sendmail instances to forward all messages to a single
outbound sendmail server for delivery.

• promiscuous_relay Allows relay of mail from any site through the local server.
This should never be used, because of the risk that spam merchants will find your
server and use it to relay spam to obscure its true origin.

• redirect Redirects messages destined for users who no longer exist on the system.
Requires a corresponding entry in /etc/aliases with the name of the former user and
his/her new e-mail address.

• relay_based_on_mx Uses the MX record defined in DNS to determine if the
local sendmail server is the correct server to relay messages from other servers.

• relay_entire_domain Permits all hosts within the local domain to route e-mail
through the local sendmail server.

• smrsh A functionally limited shell that can be used to restrict system access
by the sendmail daemon.

• use_ct_file Prevents users from changing the username part of their e-mail
addresses on outbound e-mails.

• use_cw_file Contains a list of all DNS aliases for the mail server.

• virtusertable Supports routing of e-mail for user accounts with the
same username that actually belongs to different virtual domains. Thus,
joe@domainone.com is not confused with joe@domaintwo.com, even though
both domains use the same sendmail instance.

Parameters
Specific parameters can be set for sendmail’s operation with the m4 define command.
Although most of the values set by default within sendmail will be satisfactory for
normal use, you may occasionally need to change a value. sendmail defines a very
large number of parameters, but only some of the most commonly modified parameters
are examined here:

• confDOMAIN_NAME If your DNS server is unreliable, then you might want
to set the default domain name here.

• confLOG_LEVEL Specifies the logging level for sendmail from 0 (minimal)
to 13 (everything).

C h a p t e r 2 7 : S e n d m a i l 553

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

• confMAILER_NAME The alias used for returning messages and other
automatically generated mail sent by the system. This is generally set to
MAILER-DAEMON, which is typically aliased to root. So, it’s possible to just
set the value to root.

• confMAX_MESSAGE_SIZE The maximum size, in bytes, of any message that
is accepted for delivery. Although large attachments are common these days,
an upper limit of a few megabytes should be set, to prevent a denial of service
attack.

• confSMTP_LOGIN_MSG Replaces the standard sendmail version banner
with a local (usually nondescript) message. Can be useful in preventing
would-be crackers from attempting an exploit that is specific to your version
of sendmail.

Sample sendmail.mc File
The following is a sample sendmail.mc file that contains some of the parameters,
features, and macros discussed in the previous sections:

OSTYPE(‘solaris2’)
define(‘confDOMAIN_NAME’, ’cassowary.net’)
define(‘confLOG_LEVEL’, ’13’)
define(‘confMAILER_NAME’, ’root’)
define(‘confMAX_MESSAGE_SIZE’, ’1048576’)
define(‘confSMTP_LOGIN_MSG’, ’No Name Mail Server’)
FEATURE(‘smrsh’,’/usr/sbin/smrsh’)
FEATURE(redirect)
FEATURE(always_add_domain)
FEATURE(blacklist_recipients)
FEATURE(‘access_db’)

There are more extensive examples for many different configuration files supplied
with the sendmail source. In particular, Eric Allman’s excellent readme file should be
read by anyone who is seriously contemplating extensive sendmail configuration.

Procedures
The following procedures are commonly used for configuring and managing e-mail
services.

Configuring sendmail (sendmail.cf)
The sendmail.cf file consists of single-line commands, which can range from rules and
macros to options and headers. Some of these commands must appear only once if they
specify a directive that affects the interpretation of rules (there can, however, be many
rules in a sendmail.cf file). The main kinds of commands in a sendmail.cf file are

554 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

• C Specifies a class that can contain more than one item. For instance,
C{MAILCLIENTS} mars venus pluto specifies an array that contains
a list of mail clients (mars, venus, and pluto).

• D Specifies a macro. For example, DR mail.companyA.com specifies a
macro named R whose contents is mail.companyA.com.

• E Specifies an environment variable. As a security measure, sendmail
does not use environment information passed to it, preferring to use values
specified in the sendmail.cf file. To set the location of a Java Virtual Machine
(JVM), which may be used to support some mail-related applications, use
the variable specification EJVM=/usr/local/java/bin/java.

• H Specifies a header, such as the Received: header. These definitions now
can be very complex because of the inclusion of multipart MIME messages.

• M Specifies the mail-delivery agent. For instance, Mlocal, P=/bin/mail
specifies that /bin/mail is the mail-delivery agent, which is usually the case
under Solaris.

• O Specifies an option. For example, setting O SendMimeErrors=True
enables the sending of MIME-encapsulated error messages.

• P Sets message precedence. For example, first-class mail is set with a precedence
of zero (Pfirst-class=0), while junk mail is set with a precedence of –100
(Pjunk=-100).

• R Specifies a rule. For example, the rule R$- $@ $1 @ ${Mydomain}
Rewrite address appends the FQDN defined by the macro ${Mydomain}

to a username.

• S Indicates the start of a rule set, which can be specified either as a number
(e.g., S2 for ruleset 2) or with a label (e.g., SDomainRules for the DomainRules
rule set).

Six kinds of system-defined rule sets are contained in the sendmail.cf file:

• S0 Handles basic address parsing. For example, if a user address is not
specified, the error message User Address Required is returned.

• S1 Processes the e-mail sender’s address.

• S2 Processes the e-mail recipient’s address.

• S3 Performs name canonicalization and initiates the rewriting rules. For
example, invalid addresses are checked (e.g., those with colons), and any angle
brackets (<>) are stripped from the address.

• S4 Performs the final output post-rewriting, including conversion of expanded
addresses like pwatters%mail@companyA.com to pwatters@mail.companyA.com.

• S5 The final rewriting rule set that occurs after all aliases, defined in /etc/
aliases, have been expanded.

C h a p t e r 2 7 : S e n d m a i l 555

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

556 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

User-defined rule sets can occupy S6 and above. For example, ruleset 33 is defined
in Solaris to support Sun’s RemoteMode. A typical sendmail rule takes the form

Rlhs rhs description

where R indicates that the line is a rule, lhs is the left-hand side of the rule, rhs is the
right-hand side of the rule, and description is a comment that is useful for humans
to interpret what action the rule performs. The left-hand side is a specification for
matching a particular mail header, while the right-hand side specifies the action to
be taken if a match is found for the rule.

Just as lex, yacc, and JavaCC can be used to specify actions based on matched
tokens, so does the sendmail parser. When the sendmail.cf file is parsed by sendmail,
it recognizes several specifiers on the left-hand side:

• $– Matches a single token.

• $* Matches any number of tokens, including zero tokens.

• $+ Matches any number of tokens greater than zero.

• $=character Matches any token equal to character.

If any rule stated using these specifiers finds a match, then one or more actions
may be performed by one or more right-hand side specifiers:

• $@ Rewrite-and-return.

• $>integer Rewrite using the rule set specified by integer.

• $# Deliver through the specified mailer.

• $character and $integer Actions can be performed on variables defined on
the left-hand side.

As an example, consider a rule that adds an FQDN onto a mail servermail, where
a message is destined for external delivery. In this case, $h (host) is set to mail and $d
(domain) is set to companyA.com. Thus, a rule to match a username with no FQDN
specified would be

R$+ $@$1<@$h.$d> Add a FQDN to username

Thus, any valid Solaris username like pwatters will have mail, a dot (“.”), and companyA.com
appended to it for external delivery, giving:

paul<@mail.companyA.com>

A more complex rule for a more complex organization that has multiple internal
networks might have a second level in the FQDN above the company name (for

example, the mail server for the sales department of companyA.com would have the
FQDN mail.sales.companyA.com). In this case, you define $o (organization level), set $o
to sales, and change the rule to

R$+ $@$1<@$h.$o.$d> Add a FQDN to username, including organization level

Hence, any valid Solaris username like neil will have mail, a dot (.), sales, another dot,
and companyA.com appended to it for external delivery:

neil<@mail.sales.companyA.com>

Thus, the combination of rules, macros, and options can successfully create and
resolve most e-mail addresses. If all of the rule writing and option setting seems
daunting to a first-time sendmail administrator, it is possible to use GUI-based
configuration tools to ease the burden. One of the easiest ways to run and configure
sendmail is to use webmin, which is freely available at http://www.webmin.com/
webmin/. webmin is a web-based interface for system administration for Solaris,
including sendmail. Using any browser that supports tables and forms, you can
use the sendmail configuration module, which allows administrators to manage
sendmail aliases, masquerading, address rewriting, and other features. webmin can
also use SSL to secure connections between your Web browser and the webmin server,
which is especially useful for remote administration. Figure 27-3 shows the webmin
interface and the options it supports for configuring sendmail.

C h a p t e r 2 7 : S e n d m a i l 557

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

FIGURE 27-3 webmin GUI for configuring sendmail

558 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

Running sendmail
sendmail is started as a daemon process from scripts that are usually activated during
multiuser startup (/etc/rc2). To stop sendmail manually, use the following command:

/etc/init.d/sendmail stop

To start sendmail, use this command:

/etc/init.d/sendmail start

Troubleshooting
Since sendmail can be a difficult program to configure, sendmail also includes some
provision for troubleshooting. For example, the command

server# sendmail –bt

causes sendmail to execute in address-testing mode, which is very useful for testing
rule sets interactively before including them in a production system. Keep in mind that
ruleset 3 is no longer invoked automatically in address-testing mode: thus, to test the
address

Paul.Watters.1996@pem.cam.ac.uk

you should use the test string

“3,0 Paul.Watters.1996@pem.cam.ac.uk”

instead of just using

“0 Paul.Watters.1996@pem.cam.ac.uk”!

As a complete example:

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
> 0 Paul.Watters.1996@pem.cam.ac.uk
rewrite: ruleset 0 input: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 199 input: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 199 returns: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 98 input: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 98 returns: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 198 input: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 198 returns: $# local $: Paul . Watters . 1996 @ pem . cam .
ac . uk

C h a p t e r 2 7 : S e n d m a i l 559

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

rewrite: ruleset 0 returns: $# local $: Paul . Watters . 1996 @ pem . cam .
ac . uk
> 0,3 Paul.Watters.1996@pem.cam.ac.uk
rewrite: ruleset 0 input: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 199 input: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 199 returns: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 98 input: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 98 returns: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 198 input: Paul . Watters . 1996 @ pem . cam . ac . uk
rewrite: ruleset 198 returns: $# local $: Paul . Watters . 1996 @ pem . cam .
ac . uk
rewrite: ruleset 0 returns: $# local $: Paul . Watters . 1996 @ pem . cam .
ac . uk
rewrite: ruleset 3 input: $# local $: Paul . Watters . 1996 @ pem . cam .
ac . uk
rewrite: ruleset 3 returns: $# local $: Paul . Watters . 1996 @ pem . cam .
ac . uk

In addition to sendmail-based troubleshooting, the mailx MUA has a –v (verbose)
switch, which tracks the process of mail delivery directly after mail has been sent. For
example, if a message is sent from user@companyA.com to user@companyB.com, from the
machine client.companyA.com, the process of delivery is displayed to the sender:

client% mailx -v user@companyB.com
Subject: Hello
Hi user@companyB.com. This is a test.
^D
EOT
client% user@companyB.com... Connecting to mailhost (mail)...
220 mail.serverB.com ESMTP Sendmail 8.12.10; Sat, 19 Feb 2004 12:13:22 +1100 (EST)
>>> HELO mail.companyA.com
250 mail.serverB.com Hello mail.companyA.com (moppet.companyA.com), pleased
to meet you
>>> MAIL From:<user@companyA.com>
250 <user@companyA.com>... Sender ok
>>> RCPT To:<user@companyB.com>
250 <user@companyA.com>... Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> Hi user@companyB.com. This is a test.
>>>.
250 Ok
>>> QUIT
221 mail.companyB.com closing connection
user@companyB.com... Sent (Ok)

In the preceding example, the local mail server (mail.companyA.com) contacts the
remote mail server (mail.companyB.com) and delivers the mail correctly to the user. Used
in this way, mailx can provide immediately useful hints for users and administrators
to identify delivery problems with particular user addresses or remote network problems.

560 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

Since e-mail is a key Internet service, and since sendmail is the most widely deployed
MTA, sendmail is often associated with security warnings and issues. This has led some
developers to develop alternative MTA systems like qmail, while many organizations
worldwide devote the appropriate resources to tracking down and solving bugs in
sendmail. If you are a sendmail administrator, it pays to watch the headlines at sites
like the Sendmail Consortium (http://www.sendmail.org/).

For example, sendmail has been shown to suffer from the “buffer overflow” problem
that allows remote users to execute arbitrary commands on a server running sendmail.
This is a common problem for UNIX applications written in the C language, but only if
proper bounds checking on array sizes is not correctly implemented. In the case of
sendmail, very long MIME headers could be used to launch an attack—a patch is
available that allows sendmail to detect and deny messages that might be associated
with such an attack.

Examples
The following examples provide some real-world cases for configuring and managing
e-mail services.

An Example SMTP Transaction
This section walks you through an actual SMTP session so that you can see how
straightforward the procedure is. For example, it is possible to initiate message transfer
from a client machine to a user on mail.companyB.com, by using the following commands:

client% telnet mail.serverB.com 25
Trying 192.68.232.41...
Connected to mail.serverB.com.
Escape character is '^]'.
220 mail.serverB.com ESMTP Sendmail 8.9.1a/8.9.1; Fri, 18 Feb 2000 10:25:59 +1100
(EST)

If you now type help, you will receive a list of SMTP commands that can be used to
transfer mail interactively:

214-This is Sendmail version 8.9.1a
214-Topics:
214- HELO EHLO MAIL RCPT DATA
214- RSET NOOP QUIT HELP VRFY
214- EXPN VERB ETRN DSN
214-For more info use "HELP <topic>".
214-To report bugs in the implementation send email to
214- sendmail-bugs@sendmail.org.
214-For local information send email to Postmaster at your site.
214 End of HELP info

Note that HELP is turned off by default, so you may not always see this response.

C h a p t e r 2 7 : S e n d m a i l 561

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

To actually send a message, you can use a combination of the HELO, MAIL, RCPT,
and QUIT commands. HELO introduces the hostname that you are connecting from:

HELO client.companyB.com
250 server.companyB.com Hello client.companyB.com [192.68.232.45], pleased to
meet you

Next, you need to specify a sender by using the MAIL command:

MAIL FROM: <pwatters@companyB.com>
250 <pwatters@companyB.com>... Sender ok

You should then specify a recipient for the mail by using the RCPT command:

RCPT TO: <postmaster@server.companyB.com>
250 <postmaster@server.companyB.com>... Recipient ok

After you transmit the sender and recipient information, it’s time to actually send
the body of the message by using the DATA command:

DATA
354 Enter mail, end with "." on a line by itself
Hello,
My mail client is not working so I had to send this message manually – can you
help?
Thanks.
.
250 KAA11543 Message accepted for delivery

After the message has been accepted for delivery, you can then terminate the session
by using the QUIT command:

QUIT
221 server.company.com closing connection
Connection closed by foreign host.

The message has now been successfully transmitted.

Mail Headers
Mail headers are useful in understanding how mail is transferred. For example, if a
message is sent from a mail client on the local server to another user on the local server,
the headers are easy to interpret:

From pwatters@companyA.com Fri Feb 18 13:31 EST 2000
Received: (from pwatters@localhost)

by mail.companyA.com (8.9.1a/8.9.1) id NAA17837
for pwatters; Fri, 18 Feb 2000 13:31:34 +1100 (EST)

Date: Fri, 18 Feb 2000 13:31:34 +1100 (EST)

562 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

From: WATTERS Paul Andrew <pwatters@companyA.com>
Message-Id: <200002180231.NAA17837@mail.companyA.com>
To: pwatters@companyA.com
Subject: Testing Local Delivery
Content-Type: text
Content-Length: 5
This is a test of local delivery.

These headers can be interpreted thus: the local user pwatters@localhost sent the remote
user pwatters@companyA.com a five-line message, encoded as text, on the subject of
Testing Local Delivery. The message was serviced by the sendmail MTA version 8.12.10,
and had an ID of 200002180231.NAA17837@mail.CompanyA.com. If mail is forwarded
from another host, then the headers become more complicated, but follow the same
general principles.

Using Multipurpose Internet Mail Extensions
As you saw in the previous example concerning mail headers, there was a header that
specified the content type (Content-Type), which was text in the example but could
have conceivably been any kind of digital medium, thanks to MIME, as proposed in
RFC 2045. MIME is very useful for sending multimedia files through e-mail; it eliminates
the worry about the specifics of encoding. Since many multimedia files are binary, and
e-mail message bodies are transmitted as text, MIME encodes the files as text and sends
them as normal messages. In addition, MIME supports the notion of multipart messages—
that is, a single e-mail message may contain more than one encoded file. This is very
useful for sending a number of documents to another user: it is not necessary to
overburden sendmail by sending a new message for each document (recall that
sendmail processes e-mail messages one at a time). MIME also provides support for
languages that are encoded in ASCII but that need to be displayed in another script
(e.g., Japanese kanji).

MIME defines how a Content-Type header can be used to specify a particular
character set or other nontextual data type for an e-mail message. For example, the
e-mail header

Content-Type: text/plain; charset=us-ascii

indicates that the message consists of plain text in the US-ASCII character set. MIME
also specifies how to encode data when necessary. MIME also stipulates that the
receiving user is responsible for interpreting the encoded information so that it
correctly displays the encoded message in a form that is understood by the user.
Here is an example MIME-encoded message:

This is a multi-part message in MIME format.
------=_NextPart_000_01A6_01BF7314.FF804600
Content-Type: text/plain;

charset="iso-8859-1"
Content-Transfer-Encoding: 7bit

Joe,
Just confirmed the latest sales figures.
See the attached report.
Jane
------=_NextPart_000_01A6_01BF7314.FF804600
Content-Type: application/msword;

name="report.doc"
Content-Disposition: attachment;

filename="report.doc"
Content-Transfer-Encoding: base64
0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAACAAAAmQAAAAAAAAAA
EAAAmwAAAAEAAAD+////AAAAAJcAAACYAAAA//
//
//
//
//
//
//

After the headers are printed, indicating the number and type of attachments, the
actual encoded data is printed (which is what all the forward slashes represent, in case
you were wondering!). When you run metamail on this file, since it contains MIME-
encoded data, the user is prompted to save any detected attachments:

This message contains data in an unrecognized format, application/msword,
which can either be viewed as text or written to a file.
What do you want to do with the application/msword data?
1 -- See it as text
2 -- Write it to a file
3 -- Just skip it

At this point, the user enters 2, and they are then prompted to save the file:

Please enter the name of a file to which the data should be written
(Default: report.doc) >

The data is then saved to the file specified. MIME is thus very useful for encoding
data from several binary files into a portable format that can be transmitted as an e-mail
message.

Using Mail Clients
Mail clients can be local or remote. Local clients have online access to many Solaris
commands, including .forward and vacation, while remote clients are GUI-based
and are often easier to use. Remote clients can use either the IMAP or POP protocol
to communicate with the server-based MTA, as reviewed earlier in the chapter. This
section introduces a popular local client, elm, and an equally popular remote client,
Netscape mail, and examines how each client is configured.

C h a p t e r 2 7 : S e n d m a i l 563

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

564 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

Local Clients (elm)
Although Solaris is supplied with the mailx program, a local user agent developed
by the University of California at Berkeley, many sites choose to install the elm MUA,
which was originally developed by Hewlett-Packard. elm is now freeware and supports
many advanced features such as MIME and DSN. elm is highly configurable and can
operate in beginner’s, intermediate, and advanced user modes. elm can be started with
the following command:

client% elm

The user interface for elm is shown in Figure 27-4. Using elm, users can issue most
commands by typing a single letter from the main menu:

• | Pipes the displayed message through a user-defined command

• ! Executes a shell process

• ? Obtains help for elm commands

• <n> Sets the current message number to n

• /pattern Searches for pattern pattern in message

• a Creates alias for sender of the current message in the address book

• b Bounces the current message to a user to make it appear as if it hasn’t been
delivered

• c Changes to a folder other than the inbox

• d Deletes the current message from the inbox

• f Forwards the current message to another user

• m Creates a new mail message

• o Sets options for skill level and general elm options (saved in elmrc)

• p Prints current message

• q Exits elm and saves changes to inbox

• s Saves current message to a specific folder

• u Undeletes a message marked for deletion

• x Exits without saving changes to inbox

By default, elm uses the vi editor to edit messages, but if this is too daunting for
you, you can set the editor to emacs or pico by editing the defaults in the elmrc
configuration file. By convention, it is normal to include a signature at the bottom of
every message, containing contact details. This is usually kept in ~/.signature. A typical
signature file might contain the following:

--
Paul A. Watters

C h a p t e r 2 7 : S e n d m a i l 565

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

Principal Consultant, Cassowary Computing Pty Ltd
Sydney NSW Australia
Paul.Watters.1996@pem.cam.ac.uk

This allows readers of your messages to quickly identify you and your role in the
organization that you may represent. Since you may already be known to local users,
elm actually has the ability to automatically attach a different signature to messages
addressed to either local or remote users. This is but one of the many features that has
ensured elm’s continued success in the age of GUI-based remote clients.

Remote Clients (Netscape Mail)
GUI-based mail clients, operating on a remote PC, have become commonplace in offices
in which mail is centralized on a Solaris server but a desktop system is used to read mail.
Popular choices for reading e-mail remotely include the Netscape mail client and the
Eudora mail client, both of which are freely available from http://www.netscape.com/
and http://www.eudora.com/, respectively. Both Eudora and Netscape use POP to
retrieve their mail from a remote POP server. This section reviews the configuration of
the POP-based Netscape mail client, as this is more complicated than a local client like
elm that reads mail directly from the spooler.

The first step after installing the Netscape Mail software is to set the user preferences.
In the Preferences dialog box, shown in Figure 27-5, the user needs to set up in the Mail &
Newsgroups section basic information about their contact details: full name, e-mail
address, Reply-To address (if it is different from their e-mail address), organization, and
the location of their signature file on the local file system. This enables e-mails that are
sent from the client to be identified easily.

FIGURE 27-4 The elm mail user agent

566 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

The next step is to configure the POP settings. The POP server name is recorded on
the General Preferences tab, shown in Figure 27-6, along with the server type (in this
case, POP-3). The remote username is also recorded, along with an instruction to remember

FIGURE 27-5 Configuring user preferences in Netscape Mail

FIGURE 27-6 Configuring POP settings in the Netscape mail client

the remote password and to automatically check for and retrieve mail every ten minutes.
The POP tab contains an option to leave the mail on the server or to store it on the local
file system.

The Netscape mail client main GUI is shown in Figure 27-7. The left pane displays
the different supported mailboxes: inbox, unsent mail, draft e-mails, templates, sent
mail, and a trash folder. In addition, messages can be ordered by subject, sender, date,
or priority level.

Command Reference
The following command is commonly used to configure e-mail on Solaris.

alias
E-mail addresses typically correspond to a local Solaris user: for example, for the user
account pwatters on host mail.companyA.com, the e-mail address would naturally be
pwatters@mail.companyA.com. However, in many situations, mail needs to be addressed
to a user who may not have a user account as such. In addition, there are often aliases
required by application programs and daemons as administrative contacts, which

C h a p t e r 2 7 : S e n d m a i l 567

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

FIGURE 27-7 Sending mail in the Netscape mail client

should not go a specific individual, but rather should be forwarded to the user account
of an individual who has that responsibility at a particular point in time. To cover both
of these cases, Solaris maintains an administrative database of e-mail aliases, which
allows a user for the purposes of sendmail to be logically different from actual Solaris
users (as defined by the users listed in /etc/passwd). The /etc/aliases database contains
rules of the form

alias: user

where alias is the user alias, and user is the actual user account. For example, all mail for
the logical user MAILER-DAEMON could be forwarded to physical user root by using
the alias

MAILER-DAEMON: root

Aliases are also useful for creating mailing lists, and many mailing list packages
like majordomo actually use the aliases database to record mailing list details. The only
tip to remember with the aliases database is that you must run the newaliases command
after making any changes to /etc/aliases if you want the new aliases to be available;
otherwise, the aliases database (/etc/aliases.dir and /etc/aliases/pag) won’t be up to date.
A sample /etc/aliases file looks like

Following alias is required by the mail protocol, RFC 822
Set it to the address of a HUMAN who deals with this system's mail problems.
Postmaster: root
Alias for mailer daemon; returned messages from our MAILER-DAEMON
should be routed to our local Postmaster.
MAILER-DAEMON: postmaster
Aliases to handle mail to programs or files, eg news or vacation
nobody: /dev/null
To be specified in as sender in USENET postings (anti-UCE trap)
spam: /dev/null
Alias for staff distribution list, members specified here:
staff: pwatters,neil@indiana,maya@sydney,greg@sydney,lori@sydney
Alias for a person, so they can receive mail by several names:
paul: pwatters
root: maya@sydney
help: greg@sydney
helpdesk: help
support: neil@indiana
abuse: spam

Summary
In this chapter, you have learned how to configure sendmail and some of the popular
client systems reading e-mail. While sendmail is very complicated to learn, it is the
industry standard, and using macros is much easier than modifying sendmail.cf manually.

568 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 27

28
Domain Name Service

Although Solaris 10 has its own naming service, known as the Network Information
Service (NIS), support is also provided for DNS, which maps IP addresses to
hostnames. Every computer that is connected to the Internet must have an IP

address, which identifies it uniquely within the network. For example, 192.18.97.241 is
the IP address of the Web server at Sun. IP addresses are hard for humans to remember,
and they don’t adequately describe the network on which a host resides. Thus, by
examining the Fully Qualified Domain Name (FQDN) of 192.18.97.241—www.sun.com—
it’s immediately obvious that the host, www, lies within the sun.com domain. The mapping
between human-friendly domain names and machine-friendly IP addresses is performed
by a distributed naming service known as the Domain Name Service (DNS). This chapter
examines how DNS servers manage records of network addresses, and how this
information can be accessed by Solaris applications. In addition, this chapter examines
how to build and configure the latest version of the Berkeley Internet Daemon (BIND)
from source, if security issues leave your existing BIND service vulnerable to attack.

Key Concepts
The following key concepts are central to understanding the role of DNS as a naming
service.

Overview of DNS
The Domain Name Service is a distributed database that maps human-friendly fully
qualified hostnames, like paulwatters.com, to a numeric IP address, like 209.67.50.203.
In the early days of the Internet, a single file was distributed to various hosts (called
the HOSTS.TXT file), which contained an address-to-hostname mapping for known
hosts. Administrators would periodically upload a list of any new hosts added to their
networks, after which they would download the latest version of the file. However, as
the Internet grew, maintaining this text database became impossible.

A new system for mapping addresses to names was proposed in RFCs 882 and 883,
based around information about local networks being sourced from designated servers

5 6 9

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28
Blind Folio 569

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

for each network. It should be noted that Solaris retains a variant of the HOSTS.TXT file
in the form of the /etc/hosts file, which is typically used to map IP addresses to domain
names for the localhost, as well as key network servers such as the local domain name
server. This is very useful in situations where the DNS server is not responding while
the system is being booted. The /etc/hosts file is consulted by some applications, such
as the syslog daemon (syslogd), to determine which host (the “loghost”) should be
used for system logging. A typical /etc/hosts file looks like this:

127.0.0.1 localhost
204.168.14.23 bryce bryce.paulwatters.com loghost
204.168.14.24 wasatch wasatch.paulwatters.com

Of course, only key servers and the localhost should be defined in the /etc/hosts
file—otherwise, any change in IP address for that server will not be reflected in the
value resolved from /etc/hosts.

DNS works on a simple client/server principle: if you know the name of a DNS
server for a particular network, you will be able to retrieve the IP address of any host
within that network. For example, if you know that the name server for the domain
paulwatters.com is dns20.register.com, you can contact dns20.register.com to retrieve the
address for any host within the paulwatters.com domain (including www.paulwatters.com,
or 209.67.50.203). Of course, this leads you to a classic “chicken and egg” problem—how
do you know, in the first instance, that the DNS server dns20.register.com is authoritative
for paulwatters.com? The answer is that, in the same way that the addresses of all hosts
under paulwatters.com are managed by its DNS server, the address of the DNS server is
managed by the next server along the chain—in this case, the DNS server for the .com
domain.

There are many such top-level domains now in existence, including the traditional
.edu (educational organizations), .com (commercial organizations), and .net (network)
top-level domains. Most countries now have their own top-level domains, including
.au (Australia), .ck (Cook Islands), and .ph (Philippines). Underneath each top-level
domain are several second-level domains: for example, Australia has .com.au (Australian
commercial organizations), .edu.au (Australian educational organizations), and .asn.au
(Australian nonprofit associations). The organizations that manage each top-level and
second-level domain can also be quite different: while Network Solutions (http://www
.nsi.com/) is responsible for the wholesale allocation of domain names for the .com top-
level domain, the .com.au second-level domain is managed by Melbourne IT (http://www
.melbourneit.com.au/).

As an example, take a look at how the hostname www.finance.saltlake.com is resolved:
the client resolver needs to determine which DNS server is authoritative for .com
domains, followed by the DNS server that is authoritative for saltlake.com domains,
potentially followed by the DNS server that is authoritative for the finance.saltlake.com
domain, if all mappings for saltlake.com are not stored on a single server. The .com
resolution is taken care of by the list of root servers provided by the whois database
(ftp://ftp.rs.internic.net/domain/named.root):

570 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

>>> Last update of whois database: Mon, 9 Oct 2000 09:43:11 EDT <<<
The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and
Registrars.
ftp://ftp.rs.internic.net/domain/named.root
; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC registration services
; under anonymous FTP as
; file /domain/named.root
; on server FTP.RS.INTERNIC.NET
; -OR- under Gopher at RS.INTERNIC.NET
; under menu InterNIC Registration Services (NSI)
; submenu InterNIC Registration Archives
; file named.root
;
; last update: Aug 22, 1997
; related version of root zone: 1997082200
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
. 3600000 NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 3600000 A 128.8.10.90
. 3600000 NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 3600000 A 192.203.230.10
. 3600000 NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 3600000 A 192.5.5.241
. 3600000 NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 3600000 A 192.112.36.4
. 3600000 NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 3600000 A 128.63.2.53
. 3600000 NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 3600000 A 192.36.148.17
. 3600000 NS J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET. 3600000 A 198.41.0.10
. 3600000 NS K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET. 3600000 A 193.0.14.129
. 3600000 NS L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET. 3600000 A 198.32.64.12
. 3600000 NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 A 202.12.27.33

The preceding named.root file can be used by servers to resolve IP addresses for root
DNS servers, if they do not run a local DNS server. After obtaining an IP address for a
root server for the .com domain, a query is then made to the DNS server that is authoritative
for saltlake.com for the address www.finance.saltlake.com. Either of two possible scenarios
may occur at this point: the DNS server that is authoritative for the entire saltlake.com

C h a p t e r 2 8 : D o m a i n N a m e S e r v i c e 571

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

domain can resolve the address, or the query is passed to a DNS server for the finance
.saltlake.com domain, if the root server has delegated authority to another server. In the
latter situation, the saltlake.com DNS server does not know the IP address for any hosts
within the finance.saltlake.com domain, except for the address of the DNS server. DNS
is therefore a very flexible system for managing the mapping of domain names to IP
addresses.

The software that carries out the client request for, and server resolution of, IP addresses
is BIND. Although most vendors, including Sun, ship their own customized version of
BIND, it is possible to download, compile, configure, and install your own version of BIND
(available for download from Internet Systems Consortium at http://www.isc.org/).

Examples
The following examples demonstrate how to install and configure DNS client tools
and the DNS server.

DNS Client Tools
Configuring a DNS client in Solaris is very easy, and can be accomplished in a few easy
steps. First, you must have installed the BIND package during system installation to
use the DNS client tools. Second, you must configure the name service switch (/etc/
nsswitch.conf) to consult DNS for domain name resolution, in addition to checking the
/etc/hosts file and/or NIS/NIS+ maps or tables for hostnames. The following line must
appear in /etc/nsswitch.conf for DNS to work correctly:

/etc/nsswitch.conf hosts: dns [NOTFOUND=return] files

If you have NIS+ running, the line would look like this:

/etc/nsswitch.conf hosts: dns nisplus nis [NOTFOUND=return] files

Next, enter the name of the local domain into the file /etc/defaultdomain. For example,
the /etc/defaultdomain file for the host www.paulwatters.com should have the following entry:

paulwatters.com

Finally, add to the /etc/resolv.conf file the name of the local domain, the IP addresses
of the local primary DNS server, and the IP address of a secondary (offsite) DNS server.
This means that even if your local DNS server goes down, you can rely on the secondary
DNS server to provide up-to-date information about external hosts, relying on data
within the /etc/hosts file to resolve local addresses. The following example demonstrates
how the /etc/resolv.conf file might look for the host www.finance.saltlake.com:

572 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

C h a p t e r 2 8 : D o m a i n N a m e S e r v i c e 573

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

domain finance.saltlake.com
domain saltlake.com
nameserver 204.168.12.1
nameserver 204.168.12.16
nameserver 64.58.24.1

The domain belongs to two domains: the subdomain finance.saltlake.com, as well as the
domain saltlake.com. Thus, two primary DNS servers are listed within the local domain
(204.168.12.1 and 204.168.12.16). In addition, an external secondary is also listed,
corresponding to ns.utahisp.com, or 64.58.24.1.

Once the client resolver is configured in this way, you can use a number of tools to
test whether DNS is working, and also to further examine how IP addresses are resolved.

nslookup
The most important tool for performing DNS resolutions is nslookup, which can be
used in a simple command-line mode to look up FQDNs from IP addresses, and vice
versa. However, nslookup also features an interactive mode that is very useful for
retrieving name server characteristics for a particular domain, and to determine which
DNS servers are authoritative for a specific host or network.

The following is a simple example—if you wanted to determine the IP address of
the host www.paulwatters.com, using a client on the host provo.cassowary.net, you would
use the following command:

$ nslookup www.paulwatters.com

The following response would be returned:

Server: provo.cassowary.net
Address: 206.68.216.16

Name: paulwatters.com
Address: 209.67.50.203
Aliases: www.paulwatters.com

This means that the primary DNS server for the local (cassowary.net) domain is
provo.cassowary.net (206.68.216.16). This server then makes a connection through to
the DNS server, which is authoritative for the domain paulwatters.com (dns19.hostsave.com).
This server then returns the canonical (actual) name for the host (paulwatters.com), the
alias name (www.paulwatters.com), and the desired IP address. If you reversed the process
and instead supplied the IP address 209.67.50.203 on the command line, you would be
able to perform a reverse lookup on that address, which would resolve to the domain
name paulwatters.com.

574 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

If you want to verify that your DNS server is returning the correct IP address, or if
you want to verify an address directly yourself, then running nslookup in interactive
mode allows you to set the name of the DNS server to use for all lookups. For example,
if you wanted to resolve the domain name for the Web server of the University of Sydney,
you could use the following command:

$ nslookup www.usyd.edu.au

The following response would then be returned:

Server: provo.cassowary.net
Address: 206.68.216.16

Name: solo.ucc.usyd.edu.au
Address: 129.78.64.2
Aliases: www.usyd.edu.au

However, you could verify that this IP address is indeed correct by setting your
DNS server to be the DNS server that is authoritative for the ucc.usyd.edu.au domain:

$ nslookup
Default Server: provo.cassowary.net
Address: 206.68.216.16

Next, enter the name of the DNS server that is authoritative for the target domain:

> server metro.ucc.su.oz.au
Default Server: metro.ucc.su.oz.au
Address: 129.78.64.2

Next, enter the name of the host to resolve:

> www.usyd.edu.au
Server: metro.ucc.su.oz.au
Address: 129.78.64.2

And the IP address is returned correctly:

Name: solo.ucc.usyd.edu.au
Address: 129.78.64.24
Aliases: www.usyd.edu.au

C h a p t e r 2 8 : D o m a i n N a m e S e r v i c e 575

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

If you want to determine some of the key characteristics of the DNS entry for
www.usyd.edu.au, such as the DNS server that is authoritative for the host, and the mail
address of the administrator who is responsible for the host, it is possible to retrieve the
Start of Authority (SOA) record through nslookup:

$ nslookup
Default Server: provo.cassowary.net
Address: 206.68.216.16

> server metro.ucc.su.oz.au
Default Server: metro.ucc.su.oz.au
Address: 129.78.64.2
> set q=soa
> www.usyd.edu.au
Server: metro.ucc.su.oz.au
Address: 129.78.64.2

www.usyd.edu.au canonical name = solo.ucc.usyd.edu.au
ucc.usyd.edu.au

origin = metro.ucc.usyd.edu.au
mail addr = root.metro.ucc.usyd.edu.au
serial = 316
refresh = 3600 (1 hour)
retry = 1800 (30 mins)
expire = 36000 (10 hours)
minimum ttl = 43200 (12 hours)

This SOA record indicates the following:

• The canonical name of www.usyd.edu.au is solo.ucc.usyd.edu.au.

• The origin of the DNS record is metro.ucc.usyd.edu.au (and this server is
authoritative for the host solo.ucc.usyd.edu.au).

• The serial number for the current record is 316. Next time a change is made to
the record, the serial number should be incremented.

• The refresh rate is 1 hour.

• The retry rate in 30 minutes.

• The expiry rate is 10 hours.

• The TTL is 12 hours.

The meaning of each field is examined later in the chapter, in the “Configuring a
DNS Server” section, which discusses how to create DNS records for the server. The
use of nslookup to determine which servers are authoritative for a particular query is

not limited to individual hosts—in fact, the authoritative servers for entire networks can
be determined by using nslookup. For example, if you wanted to determine which
servers were authoritative for the Cook Islands top-level domain (.ck), you would use
the following command:

$ nslookup
> set type=ns
> ck.
Server: provo.cassowary.net
Address: 206.68.216.16

Non-authoritative answer:
ck nameserver = DOWNSTAGE.MCS.VUW.AC.NZ
ck nameserver = NS1.WAIKATO.AC.NZ
ck nameserver = PARAU.OYSTER.NET.ck
ck nameserver = POIPARAU.OYSTER.NET.ck
ck nameserver = CIRCA.MCS.VUW.AC.NZ

Authoritative answers can be found from:
DOWNSTAGE.MCS.VUW.AC.NZ internet address = 130.195.6.10
NS1.WAIKATO.AC.NZ internet address = 140.200.128.13
PARAU.OYSTER.NET.ck internet address = 202.65.32.128
POIPARAU.OYSTER.NET.ck internet address = 202.65.32.127
CIRCA.MCS.VUW.AC.NZ internet address = 130.195.5.12

Some servers that are authoritative for the top-level domain of the Cook Islands are
located in New Zealand. This geographic separation may seem strange, and may not be
the norm, but it makes sense if you’ve ever lived through a tropical storm in Rarotonga—
if the power to the OYSTER.NET.ck network is disrupted, hostnames can still be resolved
through the backup servers at WAIKATO.AC.NZ.

It’s sometimes possible to obtain a list of all the networks and hosts within a particular
top-level domain by using the ls command—but be warned, the output can be verbose,
and security settings may prohibit you from doing this:

$ nslookup
> set type=ns
> ls ck.
[DOWNSTAGE.MCS.VUW.AC.NZ]
ck. server = parau.oyster.net.ck
parau.oyster.net 202.65.32.128
ck. server = poiparau.oyster.net.ck
poiparau.oyster.net 202.65.32.127
ck. server = downstage.mcs.vuw.ac.nz
ck. server = circa.mcs.vuw.ac.nz
sda.org server = parau.oyster.net.ck
parau.oyster.net 202.65.32.128
sda.org server = poiparau.oyster.net.ck

576 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

whois
The next tool that is often useful for resolving hostnames is the whois command. This
command uses InterNIC servers to perform all of the resolutions for you, and includes
useful information, like the registrar of the domain name (useful when making complaints
about spam or harassment on the Internet!). Here’s the whois entry for paulwatters.com:

$ whois paulwatters

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be
registered with many different competing registrars. Go to
http://www.internic.net for detailed information.

Domain Name: PAULWATTERS.COM
Registrar: REGISTER.COM, INC.
Whois Server: whois.register.com
Referral URL: www.register.com
Name Server: DNS19.REGISTER.COM
Name Server: DNS20.REGISTER.COM
Updated Date: 30-may-2000

dig
Finally, dig (domain information groper) is an application that ships with Solaris 10
that returns IP addresses from domain name queries. It returns details of many hosts
on a network, as shown in the following example:

$ dig mq.edu.au
; <<>> DiG 9.1.3 <<>> mq.edu.au ANY
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30758
;; flags: qr rd ra; QUERY: 1, ANSWER: 6, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:
;mq.edu.au. IN ANY

;; ANSWER SECTION:
mq.edu.au. 82400 IN A 137.111.1.11
mq.edu.au. 82400 IN MX 10 sunb.ocs.mq.edu.au.
mq.edu.au. 82400 IN MX 10 baldrick.ocs.mq.edu.au.
mq.edu.au. 82400 IN SOA sunb.ocs.mq.edu.au.

hostmaster.mq.edu.au. 2004110800 7200 1800 3600000 82400
mq.edu.au. 82400 IN NS baldrick.ocs.mq.edu.au.
mq.edu.au. 82400 IN NS sunb.ocs.mq.edu.au.

;; AUTHORITY SECTION:
mq.edu.au. 82400 IN NS sunb.ocs.mq.edu.au.

C h a p t e r 2 8 : D o m a i n N a m e S e r v i c e 577

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

578 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

mq.edu.au. 82400 IN NS baldrick.ocs.mq.edu.au.

;; ADDITIONAL SECTION:
sunb.ocs.mq.edu.au. 82383 IN A 137.111.1.11
baldrick.ocs.mq.edu.au. 82383 IN A 137.111.1.12

;; Query time: 319 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Wed Nov 10 03:48:28 2004
;; MSG SIZE rcvd: 228

Procedures
The following procedures show how to configure a DNS server.

Configuring a DNS Server
Now that you’ve examined DNS from a client viewpoint and explored concepts like
SOAs, IP-to-address mapping, and address-to-IP mapping, it should be obvious what
kind of services a DNS server needs to provide to clients. In addition, DNS servers need
to be able to support both primary and secondary services as described earlier.

BIND is the most commonly used DNS server for Solaris. It is supplied in a package
that is generally installed during initial system configuration. Its main configuration
file is /etc/named.conf, for BIND 8 supplied with Solaris 8. BIND 4 and earlier used a
configuration file called /etc/named.boot; however, these versions are no longer supported
by the ISC, and administrators running BIND 4 should upgrade to BIND 9.

The /etc/named.conf file is responsible for controlling the behavior of the DNS servers
and provides the following keywords, which are used to define operational statements:

acl Defines an access control list that determines which clients can use the server.

include Reads an external file that contains statements in the same format as /etc/
named.conf. This is very useful when your configuration file becomes very large,
as different sections can be divided into logically related files.

logging Determines which activities of the server are logged in the logfile specified by the
statement.

options Defines local server operational characteristics.

server Defines operational characteristics of other servers.

zone Creates local DNS zones.

Each of the following sections examines a sample statement involving one of these
keywords.

C h a p t e r 2 8 : D o m a i n N a m e S e r v i c e 579

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

acl
If you want to define an access control list for all hosts on the local network (10.24.58.*),
you would insert this statement:

acl local_network {
10.24.58/24
};

Here, 24 indicates the netmask 255.255.255.0 in prefix notation. If your router is the host
10.24.58.32 and you want to prevent any access to the DNS server from that address, you
would amend the preceding statement to the following:

acl local_network {
!10.24.58.32; 10.24.58/24
};

Note that the negation of a specific address from a subnet that is also permitted must
precede the definition of that subnet in the statement.

include
Since the definitions for configuring DNS zones (discussed a bit later in the “zone”
section) can be very long for large networks, administrators often place them in a separate
file so that they can be managed separately from ACL definitions and system options.
Thus, to include all of the zone definitions from the file /var/named/zones.conf, you would
insert the following statement into the /etc/named.conf file:

include "/var/named/zones.conf"

options
The options section sets key parameters that affect the run-time behavior of the BIND
server. Typically, these are the directories in which the zone databases are stored, and
the file in which the process ID of the named process is stored. The following example
gives the standard options for BIND 8:

options {
directory "/var/named";
pid-file "/var/named/pid";
}

580 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

server
The server statement defines characteristics of remote name servers. There are two main
options that can be set with a server statement: whether or not a remote server is known
to transmit incorrect information, and whether or not the remote server can answer
multiple queries during a single request. A sample server statement would look like this:

server 10.24.58.32
{

bogus yes;
transfer-format many-answers;

}

zone
A zone must be created for each network or subdomain that your DNS server manages.
Zones can be created either as primary or secondary, depending on which server is
authoritative for a particular domain. Entries for IP-to-name and name-to-IP mappings
must also be included to correctly resolve both IP address and domain names. For the
domain cassowary.net, the following zone entries would need to be created:

zone "cassowary.net"
{

type master;
file "cassowary.net.db";

}
zone "58.24.10.in-addr.arpa"
{

type master;
file "cassowary.net.rev";

}

In this case, the two zone files /var/named/cassowary.net.db and /var/named/cassowary
.net.rev need to be populated with host information. A sample /var/named/cassowary.net.db
file would contain SOA entries like this:

@ IN SOA cassowary.net. root.cassowary.net. (
2000011103 ;serial number
10800 ;refresh every three hours
1800 ;retry every 30 mins
1209600 ;Two week expiry
604800) ;Minimum one week expiry
IN NS ns.cassowary.net.
IN MX 10 firewall.cassowary.net.

C h a p t e r 2 8 : D o m a i n N a m e S e r v i c e 581

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 28

firewall IN A 10.24.58.1 ;firewall
emu IN A 10.24.58.2 ;webserver
quoll IN A 10.24.58.3 ;webserver
tazdevil IN A 10.24.58.4 ;kerberos
security IN CNAME tazdevil

A sample /var/named/cassowary.net.rev file would contain SOA entries like this:

@ IN SOA 58.24.10.in-addr.arpa. root.cassowary.net. (
2000011103 ;serial number
10800 ;refresh every three hours
1800 ;retry every 30 mins
1209600 ;Two week expiry
604800) ;Minimum one week expiry
IN NS ns.cassowary.net.

1 IN PTR firewall.cassowary.net.
2 IN PTR emu.cassowary.net.
3 IN PTR quoll.cassowary.net.
4 IN PTR tazdevil.cassowary.net.

Each host within the domain must have an IP-to-domain mapping as well as a
domain-to-IP mapping. Once a change is made to the zone file, you should increment
the serial number as appropriate. Note that in addition to address (A) and pointer (PTR)
records for IP address and domain names, respectively, it is also possible to identify
hosts as mail exchangers (MX) and by canonical names (CNAME). The former is required
to define which host is responsible for handling mail within a domain, while the latter
is used to create aliases for specific machines (thus, the tazdevil Kerberos server is also
known as security.cassowary.net).

DNS provides a number of security features, such as options for disabling zone
transfers and implementing transaction signatures. Disabling zone transfers ensures
that a hacker cannot retrieve a detailed zone list and thereby identify targets to attack.
Requesting many zone transfers concurrently is also a popular denial of service attack.
Using transaction signatures, on the other hand, ensures that both parties in a DNS
exchange (client and server) can be mutually authenticated by using digital signatures.
This prevents spoofing of DNS entries from a non-authentic DNS server to clients.

Summary
In this chapter, you have learned how to configure a DNS server and how to retrieve
DNS information manually using various client tools. Since DNS is the naming service
for the entire Internet, you need to master the skills presented in this chapter before
configuring workstations or DNS services.

This page intentionally left blank.

29
Network Information
Service (NIS/NIS+)

Chapter 28 examined the Domain Name Service (DNS), which allows hosts around
the Internet to be easily and consistently identified by user-friendly “names”
rather than computer-friendly IP addresses. However, while DNS is a very common

network information service, it is not the only kind of service available. Solaris 10 supports
NIS+, which is an improved version of the Network Information Service (which was
popular with Solaris 1). However, NIS/NIS+ will eventually be deprecated in favor of
the Lightweight Directory Access Protocol (LDAP), which is an industry standard, and
may be deprecated in future Solaris releases in favor of LDAP.

NIS+ is composed of a centralized repository of information about hosts, networks,
services, and protocols on a local area network. This information is physically stored in
a set of maps that are intended to replace the network configuration files usually stored
in a server’s /etc directory. The set of all maps on a NIS+ network is known as a namespace,
supporting large networks of up to 10,000 hosts where responsibilities can be delegated
to local servers. NIS+ improves upon the standard NIS by allowing enhancements to
authentication processes, combined with sophisticated resource authorization. This
allows NIS+ namespaces to exist over public networks like the Internet without risk of
data loss or interception, with the caveat that NIS+ relies on the relatively weak DES
encryption algorithm.

This chapter examines the process of setting up a NIS+ server and highlights the
differences between NIS+ and NIS, and between NIS+ and other naming services like
DNS. In fact, many sites choose to run DNS alongside NIS+, which is also possible. In
addition, this chapter reviews the role and configuration of primary and slave servers,
and walks through the installation of NIS+ using the script method.

Key Concepts
The following concepts are required knowledge for installing and running NIS/NIS+.

5 8 3

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29
Blind Folio 583

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Managing Resources
NIS+ is a Solaris network information service whose primary focus is the management
of users, hosts, networks, services, and protocols. NIS+ does not replace DNS, which is
still required for host addressing and identification. However, NIS+ namespaces can be
constructed to parallel the host designations assigned through DNS, to simplify operations
and to make the integration of both services more seamless. NIS+ gives networks more
than just DNS: namespaces are used as centralized repositories of shared network
information that can be used to more effectively manage large networks. However,
many organizations choose not to use NIS+ because it has some overlap with DNS, and
because of the extra administrative burden involved in installing and configuring NIS+
primary and slave servers. However, if you use the NIS+ scripts to install and configure
namespaces, instead of using NIS+ commands directly, NIS+ can be much easier to
configure.

NIS revolves around the idea of maps: a map is generally a database with two columns,
of which one is a primary key that is used to retrieve an associated value. This associative
nature makes the storage and retrieval of group, mail, passwords, and Ethernet information
fast for small networks, but can rapidly become difficult to manage (not to mention slow)
for large networks. NIS+, in contrast, uses tables, of which 16 are defined by the system.
Tables store information such as server addresses, time zones, and networks services.
This section reviews the most commonly used types of NIS maps and NIS+ tables.

First, however, consider this conceptual overview of how NIS+ could be used to
better manage an organization’s network data. Suppose that you’re setting up a Solaris
network for an imaginary college called Panther College, which has a DNS domain of
panther.edu. Panther has two teaching divisions: an undergraduate school (undergrad
.panther.edu) and a graduate school (graduate.panther.edu). The panther.edu domain has a
class C network (192.12.1.0), as do each of the undergraduate (192.12.2.0) and graduate
schools (192.12.3.0). Each of these networks can have up to 255 hosts, which more than
adequately covers the staff members in both teaching divisions. To support DNS, there
may be a campus-wide DNS server ns.panther.edu at 192.12.1.16, while the undergrad.panther
.edu network has its own DNS servers at ns.undergrad.panther.edu (192.12.1.16), and
ns.graduate.panther.edu (192.12.2.16). This is a fairly standard setup for a medium-sized
network like a college campus, and is demonstrated in Figure 29-1.

584 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

FIGURE 29-1 DNS configuration for a fictional college with two divisions—graduate and
undergraduate—both of which have their own name server

The NIS+ domains for Panther College can exactly mirror the DNS configuration, as
shown in Figure 29-2. However, some differences in naming are immediately apparent:
whereas DNS names are all lowercase and do not end in a period, NIS+ names use initial
capitalization for each part of the name and end in a period.

In addition, the second-level domain identified in DNS as panther.edu would be the
“root domain” in an NIS+ network, and the third-level domains undergrad.panther.edu
and graduate.panther.edu would be described as “nonroot domains.” Each of these domains
would be associated with a server, in which case the existing DNS servers would double
up as NIS+ servers. In fact, in normal NIS+ usage, each of the three domains at Panther
College would require two servers: a master server and at least one replica, or slave,
server. This ensures that if the master server is disrupted or experiences hardware failure,
the replica server holds copies of network service information and service continues.
The expanded NIS+ domains for Panther College, with a master and slave server each
(called Master and Replica), are shown in Figure 29-3.

C h a p t e r 2 9 : N e t w o r k I n f o r m a t i o n S e r v i c e (N I S / N I S +) 585

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

FIGURE 29-2 NIS+ domains for Panther College

FIGURE 29-3 NIS+ domains with a master and a slave server each

In addition to domains and servers, NIS+ also caters to clients. Each client is associated
with a specific server and domain. For example, a client in the chemistry lab in the graduate
school (Curie.Graduate.Panther.Edu.) would be served by Master.Graduate.Panther.Edu., and
would be part of the Graduate.Panther.Edu. domain. Alternatively, a history professor in
the undergraduate school with a computer named FDR.Undergrad.Panther.Edu. would
be served by Master.Undergrad.Panther.Edu., and would be part of the Undergrad.Panther.Edu.
domain. Figure 29-4 shows the hierarchy of control for the FDR.Undergrad.Panther.Edu. client.
When each client is installed, a directory cache is created, which enables the client to
locate other hosts and services via the appropriate server.

So far, only one of the many kinds of namespace components has been mentioned:
the domain. However, there are many other components that exist in the namespace,
including group objects, directory objects, and table objects. The following sections
examine these important features of the namespace, as well as the specific configuration
of NIS maps and NIS+ tables.

It is worth mentioning at this point that one of the main reasons that organizations
choose to implement NIS+ is the improved security that accompanies the system. For
example, NIS+ tables are not directly editable, unlike their normal Solaris counterparts
in the /etc directory. Requests to change or even access information in the namespace
can only take place once a user has been authenticated. In addition to authentication,
each user must be authorized to access a particular resource. This doubly protects
sensitive and organizational data in a networked environment. The main authentication
exchange takes place when either a user presents their credentials or a host presents its
credentials, in the form of an unencrypted LOCAL form or a more secure DES-encrypted

586 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

FIGURE 29-4 Hierarchy of control for a specific domain client (FDR.Undergrad.Panther.Edu.)

C h a p t e r 2 9 : N e t w o r k I n f o r m a t i o n S e r v i c e (N I S / N I S +) 587

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

exchange. The former is used for testing, while the latter is always used for deployment.
After authentication, authorization for the requested resource is checked. Access rights
can always be examined by using the niscat command, which is discussed later in
this chapter.

NIS Maps
As previously mentioned, NIS uses a series of maps to encode data about the network
structure. Many of these maps are in a form that can be accessed through an address
key (having a byaddr suffix) or through a name (with a byname suffix). Whenever a
client needs to find information about a particular host, service, group, network, or
netgroup, it can retrieve it by consulting the appropriate map as defined in the namespace.
The main system maps are listed in this table:

bootparams Contains a list of diskless clients for a domain

ethers.byaddr Contains a list of the Ethernet addresses of all hosts in the domain, and
their hostnames

ethers.byname Contains a list of the hostnames of all hosts in the domain, and their
Ethernet addresses

group.bygid Contains a list of groups, indexed by group ID (GID)

group.byname Contains a list of groups, indexed by group name

hosts.byaddr Contains a list of the addresses of all hosts in the domain, and their
hostnames

hosts.byname Contains a list of the hostnames of all hosts in the domain, and their
addresses

mail.aliases Contains a list of mail aliases within the namespace, indexed by name

mail.byaddr Contains a list of mail aliases within the namespace, indexed by address

netgroup Contains netgroup information, indexed by group name

netgroup.byhost Contains netgroup information, indexed by hostname

netgroup.byuser Contains netgroup information, indexed by username

netid.byname Contains the netname of hosts and users

netmasks.byaddr Defines the netmasks defined in the domain namespace

networks.byaddr Defines the networks in the domain namespace, sorted by address

networks.byname Defines the networks in the domain namespace, sorted by name

passwd.byname Defines the password database, sorted by username

passwd.byuid Defines the password database, sorted by user ID

protocols.byname Defines the network protocols used in the domain, sorted by name

protocols.bynumber Defines the network protocols used in the domain, sorted by number

publickey.byname Contains public keys for RPC

rpc.bynumber Contains RPC details, indexed by number

services.byname Defines all available Internet services, sorted by name

ypservers Contains a list of all NIS servers available

As you can see, there are many similarities in name and function between the NIS
maps and the /etc system files they are intended to replace. However, both the /etc files
and NIS maps perform poorly under heavy loads, when the number of hosts defined in
a specific namespace exceeds several hundred. In this case, it is much more appropriate
to bypass NIS and /etc, and move directly to a NIS+ installation where a single table (such
as Ethers) replaces the dual lookup system used by NIS (such as ethers.byname and
ethers.byaddr).

NIS+ Tables
Namespace information in NIS+ is stored in tables, which are based around a centralized
administration model (even though particular functions can be delegated to specific
servers). NIS+ is similar to DNS because it arranges hosts and resources hierarchically
into domains, has inbuilt redundancy with master and slave servers, and can store
much more information about a network than just its hosts. However, since each host
in a domain has many different characteristics and user details that must be recorded
and stored centrally, updating these details can be time consuming, and issues like
contention in the recording of user and host data often arise. However, NIS+ namespaces
can be updated incrementally, as changes occur, so that the entire database does not
need to be updated immediately. Changes are entered into a master domain server and
are then propagated through time to the rest of the domain. This process is governed
by a time-to-live setting similar to that used for DNS. These are the key NIS tables:

• Auto_Home Comprises an automounter map that facilitates the mounting of a
home directory for any user in the local domain. It is commonly used to share a
common home directory for a user who has accounts on multiple machines. It is
also the cause of some consternation among administrators who attempt to create
their users’ home directories under /home but don’t use the automounter! The
Auto_Home table has two columns: a common username that is consistent across
all machines in a domain, and a physical location for the user’s shared home
directory. For example, the home directory of user pwatters might be located
physically on the server winston, in the directory /u1/export/pwatters. In this case,
the entry in Auto_Home would be

pwatters winston:/u1/export/pwatters

• Auto_Master Maps the physical mount points of all the NFS automounter
maps in a particular domain to a name. For example, it can be used to map user
home directories to /home or /staff using Auto_Home, with either of the following
mount points, respectively:

/home auto_home
/staff auto_home

• Bootparams Contains the necessary information to boot and configure any
diskless clients in the domain. It contains entries for server-based dump and
swap, as well as a root directory, for each client. For example, if there is a diskless

588 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

C h a p t e r 2 9 : N e t w o r k I n f o r m a t i o n S e r v i c e (N I S / N I S +) 589

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

client called pembroke and it is configured by the server downing, the Bootparams
table would contain the following entry:

pembroke root=downing:/export/root/pembroke \
swap=downing:/export/swap/pembroke \
dump=downing:/export/dump/pembroke

Thus, each diskless client will have its own Bootparams table entry and resources
available on the server.

• Ethers Contains entries that associate a hostname with a specific hardware
address. For example, if the host freycinet has an Ethernet address of
00:ff:a1:b3:c4:6c, the Ethers table entry would look like this:

00:ff:a1:b3:c4:6c freycinet

For this to be useful, a corresponding entry for freycinet must exist in /etc/hosts.

• Group Consists of a group name, group password, group ID number, and
member list, and stores information about the three kinds of groups accessible
by NIS+ clients: Solaris groups (such as staff), NIS+ groups, and netgroups.

• Hosts Lists all the hosts in a particular domain, matching their IP address
with a hostname and an optional nickname. For example, if the host maria has
an alias called bruny and has the IP address 192.34.54.3, then the entry in the
Hosts table would look like this:

192.34.54.3 maria bruny

• Mail Aliases Replicates the functionality of the old /etc/aliases file for the local
mail transport agent (MTA), which is typically sendmail. An Aliases table can
store an alias for a specific user, or it can be used to construct a mailing list. For
example, if the user bounty wants to receive mail as endeavour, the Mail Aliases
table entry would look like this:

endeavour:bounty

However, if an advertising company has a local mailing list for newclients, these
messages could be distributed nationally to local offices by using an alias like
this:

newclients:layton,miami,oakton,sanfran

• Netgroups Defines a group of hosts and users that is authorized to perform
specific operations on one or more other hosts within a group. The table format
contains entries that identify the name of the group, as well as its members. For
small organizations, everyone belongs to a single group, perhaps called everyone:

everyone paulwatters.com

• Netmasks Specifies the netmasks for all local class A, class B, and class C
networks. For example, if the network 192.12.34.0 has a netmask of 255.255.255.0,
the entry would look like this:

192.12.34.0 255.255.255.0

• Networks Contains details of the local networks and their IP addresses. For
example, if a class B network 192.12.0.0 is known on the Internet as brunswick,
but has an alias of essendon, it would be entered into the Networks table as

brunswick 192.12.0.0 essendon

• Passwd Stores all the standard user information expected on Solaris hosts,
including username, encrypted password, user ID, group ID, and user’s real
name, home directory, and login shell. A typical entry may look like this:

pwatters:8dfjh4h.rj:101:10:Paul A. Watters:/home/pwatters:/bin/
tcsh:10905:-1:-1:-1:-1::0

In addition to the standard details, there is extra information that specifies how
often a password must be changed, or how many days until it must next be
changed. This significantly increases the functionality of NIS+ over standard
Solaris password authorization.

• Protocols Defines the protocols available to the network. A necessary entry
for Internet use would be the Internet Protocol (IP),

ip 0 IP

which identifies ip as protocol number 0, which also has the alias IP.

• RPC Defines the RPC programs available to the network. An entry consists of
a name, a program number, and an alias. For example, rpcbind is also known
as portmap, sunrpc, and the portmapper. The entry for rpcbind looks like
this:

rpcbind 100000 portmap sunrpc portmapper

• Services Contains a list of the IP services that are available through both TCP
and UDP. For example, the HTTP service provided by many Web servers, such
as Apache, is usually available through TCP port 80. This would be defined in
the Services table as

http 80/tcp

• Timezone Defines the local time zone, which affects all system settings and
applications, such as sendmail. For example, the entry

hartog Australia/NSW

allows the host hartog to be identified as belonging to the New South Wales time
zone in Australia. In addition, time zones can be specified on a host-by-host basis.
This allows systems that exist in different time zones to belong to the same domain.
For example, a SPARCstation in Sydney can belong to the same domain as an
UltraSPARC in San Francisco. The Timezone table consists of entries that relate a
time zone to a specific host.

590 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

Procedures
The following procedures are commonly used to install and run NIS/NIS+. This section
walks through a configuration session with NIS+, focusing on using a script-based
installation, which makes using NIS+ much easier. The main tasks involved in setting
up NIS+ are to configure the domains, master servers, slave servers, and users. These
tasks can be performed only after a network has been designed along the lines discussed
in previous sections.

Whether or not you are setting up a root or a nonroot domain, the basic process is
the same: after initializing a master server and creating the appropriate administrative
groups, you populate the NIS+ tables and then install the clients and servers. In the
case of a root domain, these servers can then act as master servers for lower-level domains.
This section reviews the process of setting up a master server, populating the NIS+ tables,
configuring clients and servers, and setting up other domains.

Setting Up a Root Domain
The first step in creating a NIS+ namespace is to create the root master server for the
new domain. Continuing with the example for the Panther.Edu. domain, you create the
root master server for Panther.Edu. by using the nisserver command. The server will
be known in DNS as ns.panther.edu. This command is used for most server configuration
operations. In this case, you use the command

ns.panther.edu# nisserver –r –d Panther.Edu.

This creates a root domain master server without backward compatibility with NIS.
To enable NIS support, you need to use the command

ns.panther.edu# nisserver –Y –r –d Panther.Edu.

Populating Tables
After you create the master root server for the Panther.Edu. domain on ns.panther.edu, the
next step is to populate the NIS+ tables. To achieve this, you need to use the nispopulate
command:

ns.panther.edu# nispopulate –F –p /nis+files –d Panther.Edu.

This populates all the tables for the Panther.Edu. domain and stores the information
on the master server. Again, if you need to support NIS, you need to include the –Y
option:

ns.panther.edu# nispopulate –Y –F –p /nis+files –d Panther.Edu.

C h a p t e r 2 9 : N e t w o r k I n f o r m a t i o n S e r v i c e (N I S / N I S +) 591

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

To administer the NIS+ namespace, you need to add administrators to the admin
group. You can achieve this by using the nisgrpadmin command. In the Panther.Edu.
example, imagine that you have two administrators, michael and adonis. To add these
administrators, use this command:

ns.panther.edu# nisgrpadm –a admin.Panther.Edu. michael.Panther.Edu.
adonis.Panther.Edu.

If you are satisfied with the configuration, then it is best to checkpoint the configuration
by transferring the domain configuration information to disk copies of the tables. This can
be achieved by using the nisping command:

ns.panther.edu# nisping –C Panther.Edu.

Now that you have successfully created the root domain, you can create clients that
will act as master and slave servers for the two subdomains in the Panther.Edu. root
domain: Graduate.Panther.Edu. and Undergrad.Panther.Edu.

Setting Up Clients
To create master servers for the nonroot domain Undergrad.Panther.Edu., you first need
to set up the client within a domain by using the nisclient command. For the host
client1.panther.edu, which will become the master server for the nonroot domain, the
command is

client1.panther.edu# nisclient –i –d Panther.Edu. –h Ns.Panther.Edu

To actually set up the client’s user within the domain, you can also use the nisclient
command, when executed from a nonprivileged user’s shell:

client1.panther.edu% nisclient –u

If this was for the user maya, then maya would now be able to access the namespace.
Next, you need to turn the client host you have initialized into a nonroot domain master
server.

Setting Up Servers
After the root server is created, most organizations will want to create new master servers
for each of the subdomains that form the domain. For example, in the Panther.Edu. domain,
there are two subdomains: Undergrad.Panther.Edu. and Graduate.Panther.Edu. In this
case, two clients must be created from the root master server and then converted to be
servers. Initially, these are root server replicas, but their designation then changes to a
nonroot master server for each of the subdomains. Replica servers for the subdomain
master servers can also be enabled.

592 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

C h a p t e r 2 9 : N e t w o r k I n f o r m a t i o n S e r v i c e (N I S / N I S +) 593

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

The following example designates two client machines, whose DNS names are
client1.panther.edu and client2.panther.edu (recall that the master server for the root
domain is ns.panther.edu). These two clients will actually become the master and slave
servers for the subdomain Undergrad.Panther.Edu. To begin the server creation process,
a similar approach is followed as for the creation of the master server for the root
domain:

1. Start the rpc daemon on the client machine, which will become the master
server for the nonroot domain:

client1.panther.edu# rpc.nisd

2. Convert the client1 server to a root replica server in the first instance, which
ensures that the subdomain inherits the appropriate settings from the top-level
domain:

ns.panther.edu# nisserver –R –d Panther.Edu. –h client1.panther.edu

3. After replicating the settings from the root master server, the new nonroot
master server is ready to begin serving the new subdomain. In this case, the
root master server (ns.panther.edu) must delegate this authority explicitly to
the master of Undergrad.Panther.Edu., which is client1.panther.edu:

ns.panther.edu# nisserver –M –d Undergrad.Panther.Edu. \
–h client1.panther.edu

4. Following the same routine previously outlined for the root master server,
populate the tables of the new subdomain server client1.panther.edu:

client1.panther.edu# nispopulate –F –p /nis+files \
–d Undergrad.Panther.Edu.

5. Having created a new master server for the new subdomain, create a replica
server to ensure service reliability in the event of failure:

client1.panther.edu# nisclient –R –d Undergrad.Panther.Edu. \
–h client2.panther.edu

You would need to adapt the process of installing a server for the Undergrad.Panther
.Edu. subdomain to create the other subdomain (Graduate.Panther.Edu.), but the general
process of setting up a client, converting it to a replica server, and populating the tables
would be very similar to this domain. Now that you have investigated how to create
subdomains, the next section covers the day-to-day usage of NIS+, and the most
commonly used commands that access tables, groups, and objects in the namespace.

Examples
The following examples provide some real-world cases for installing and running NIS/
NIS+, using the name service switch. You might be wondering—in a mixed network

information service environment comprising NIS maps, NIS+ tables, and DNS servers—
how name services are selected to resolve particular requests. The answer provided in
Solaris 2.x is the name service switch, whose configuration is specified in the file /etc/
nsswitch.conf. The name service switch is very useful because it enables you to configure
which name service handles specific kinds of requests. It is also possible to specify
more than one kind of service for every kind of request: thus, if a request fails on the
default service, it can be applied to a different service. For example, to resolve hostnames,
many sites have at least some local hostnames statically hardwired into the /etc/hosts
database. In addition, many sites connected to the Internet use DNS to resolve hostnames.

Where does this leave the relative sophistication of NIS+ namespaces, or the legacy
of NIS maps? The answer is that files, DNS, NIS, and NIS+ can be configured to be
selected as the first, second, third, and fourth choices as the default name service for
resolving hosts in /etc/nsswitch.conf. For example, the line

hosts: files dns nisplus nis

indicates that the /etc/hosts file should be consulted first, and if a match cannot be found
for a hostname, try DNS second. If DNS fails to resolve, then NIS+ should be tried. As a
last resort, NIS map resolution can be attempted. This is a useful setup for a network
that makes great use of the Internet and relies less on NIS+ and NIS. Of course, many
NIS+ advocates would suggest using the line

hosts: nisplus nis files dns

since this ensures that NIS+ is always selected over the /etc/hosts database or DNS.
In addition to host resolution, nsswitch.conf also allows the configuration of 14 other

options, which roughly correspond to the contents of the NIS+ tables and/or the NIS
maps. A NIS+ oriented nsswitch.conf file would look like this:

passwd: files nisplus
group: files nisplus
hosts: nisplus dns [NOTFOUND=return] files
services: nisplus [NOTFOUND=return] files
networks: nisplus [NOTFOUND=return] files
protocols: nisplus [NOTFOUND=return] files
rpc: nisplus [NOTFOUND=return] files
ethers: nisplus [NOTFOUND=return] files
netmasks: nisplus [NOTFOUND=return] files
bootparams: nisplus [NOTFOUND=return] files
publickey: nisplus
netgroup: nisplus
automount: nisplus files
aliases: nisplus files
sendmailvars: nisplus files

594 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

In most of the resolution scenarios shown in this listing, NIS+ is consulted before
the files, except for the password and group information. In addition, DNS is listed as a
host resolution method after NIS+. However, it would also be possible to implement a
bare-bones system that relies only on files for most resource information and DNS for
name resolution:

passwd: files
group: files
hosts: dns [NOTFOUND=return] files
networks: files
protocols: files
rpc: files
ethers: files
netmasks: files
bootparams: files
publickey: files
netgroup: files
automount: files
aliases: files
services: files
sendmailvars: files

The [NOT FOUND=return] entry ensures that if the first source fails (dns in this
case), the second source is consulted (in this case, files). Before any other services may
be installed, NIS+ requires that the master server for the root domain be created. The
master server will primarily be responsible for the management of the NIS+ namespace.
For example, for the Panther.Edu. domain, the DNS server (ns.panther.edu) will also be
used for NIS+. This means that the nisserver script can be executed on the DNS
server system (ns.panther.edu) in order to initialize the master server for the root domain:

ns.panther.edu# nisserver –r –d Panther.Edu.
This script sets up this machine "ns" as an NIS+
root master server for domain Panther.Edu..

Domain name : Panther.Edu.
NIS+ group : admin.Panther.Edu.
NIS (YP) compatibility : OFF
Security level : 2=DES

Is this information correct? (type 'y' to accept, 'n' to change) y
This script will set up your machine as a root master server for
domain Panther.Edu. without NIS compatibility at security level 2.

Use "nisclient -r" to restore your current network service environment.

Do you want to continue? (type 'y' to continue, 'n' to exit this script)

C h a p t e r 2 9 : N e t w o r k I n f o r m a t i o n S e r v i c e (N I S / N I S +) 595

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

596 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

setting up domain information "Panther.Edu." ...

setting up switch information ...

running nisinit ...
This machine is in the "Panther.Edu." NIS+ domain.
Setting up root server .

starting root server at security level 0 to create credentials...

running nissetup to create standard directories and tables ...

running nissetup to create standard directories and tables ...
org_dir.Panther.Edu. created
groups_dir.Panther.Edu. created
passwd.org_dir.Panther.Edu. created
group.org_dir.Panther.Edu. created
auto_master.org_dir.Panther.Edu. created
auto_home.org_dir.Panther.Edu. created
bootparams.org_dir.Panther.Edu. created
cred.org_dir.Panther.Edu. created
ethers.org_dir.Panther.Edu. created
hosts.org_dir.Panther.Edu. created
ipnodes.org_dir.Panther.Edu. created
mail_aliases.org_dir.Panther.Edu. created
sendmailvars.org_dir.Panther.Edu. created
netmasks.org_dir.Panther.Edu. created
netgroup.org_dir.Panther.Edu. created
networks.org_dir.Panther.Edu. created
protocols.org_dir.Panther.Edu. created
rpc.org_dir.Panther.Edu. created
services.org_dir.Panther.Edu. created
timezone.org_dir.Panther.Edu. created
client_info.org_dir.Panther.Edu. created
auth_attr.org_dir.Panther.Edu. created
exec_attr.org_dir.Panther.Edu. created
prof_attr.org_dir.Panther.Edu. created
user_attr.org_dir.Panther.Edu. created
audit_user.org_dir.Panther.Edu. created

adding credential for ns.Panther.Edu...
Enter login password:
creating NIS+ administration group: admin.Panther.Edu. ...
adding principal ns.Panther.Edu. to admin.Panther.Edu. ...

restarting NIS+ root master server at security level 2 ...
starting NIS+ password daemon ...
starting NIS+ cache manager ...

C h a p t e r 2 9 : N e t w o r k I n f o r m a t i o n S e r v i c e (N I S / N I S +) 597

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

This system is now configured as a root server for domain Panther.Edu.

You can now populate the standard NIS+ tables by using the
nispopulate script or /usr/lib/nis/nisaddent command.

That’s all that is required for NIS+ support. However, to enable support for NIS
clients within the domain, you would need to use the following command instead:

ns.panther.edu# nisserver –Y –r –d Panther.Edu.

Command Reference
Now that you have reviewed the configuration of NIS+, and the main tables that are
used to define a NIS+ domain, you are ready to examine how to use NIS+ effectively to
manage hosts and resources within a domain. As you have seen, many different objects
can be managed and identified within a NIS+ domain, and there are several commands
that are used to access them:

• nisdefaults Displays the NIS+ settings for the local client system

• nischmod Used to set access rights on NIS+ objects

• nisls Used to perform object lookups and queries

• niscat Displays the contents of table entries and can be used to examine
NIS+ objects in detail

nisdefaults
The current settings for a local client system and the active user can be displayed by
using the nisdefaults command. The nisdefaults command is commonly used
when attempting to troubleshoot an error, such as a user’s credentials not being correctly
authenticated from the Passwd table. As an example, take a look at the nisdefaults
command for the host comorin when executed by the user walter:

comorin$ nisdefaults
Principal Name : walter.develop.panther.edu.
Domain Name : develop.panther.edu.
Host Name : comorin.develop.panther.edu.
Group Name : develop
Access Rights : ----rmcdr---r---
Time to live : 11:00:00
Search Path : develop.panther.edu. panther.edu.

The output of the nisdefaults command can be interpreted in the following way:

• The principal user is walter, who belongs to the NIS+ domain develop.panther.edu.

• The primary domain name is develop.panther.edu.

• The hostname of the local system is comorin.develop.panther.edu.

• The user walter’s primary group is develop.

• The time-to-live setting is 11 hours.

• The client’s access rights within the domain are stated.

• The search path starts with the current nonroot domain (develop.panther.edu),
followed by the root domain (panther.edu).

The access rights stated for the user in this example are outlined in more detail in
the next section.

nischmod
Every user has a set of access rights for accessing objects within the network. The
notation for setting and accessing object permissions is very similar to that used for
Solaris file systems. The following permissions may be set on any object, or may be
defined as the default settings for a particular client:

c Sets create permission

d Sets delete permission

m Sets modify permission

r Sets read permission

The nischmod command is used to set permissions on objects within the domain.
The following operands are used to specify access rights for specific classes of users:

a All (all authenticated and unauthenticated users)

g Group

n Nobody (all unauthenticated users)

o Object owner

w World (all authenticated users)

There are two operators that can be used to set and remove permissions:

+ Sets a permission

– Removes a permission

Some examples of how permission strings are constructed will clarify how these
operators and operands are combined for use with the nischmod command. The
following command removes all modify (m) and create (c) access rights on the Passwd
table for all unauthenticated (n) users:

moorea# nischmod n-cm passwd.org_dir

598 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

Even unauthenticated users require read (r) access to the Passwd table for
authentication, which can be granted with the following command:

moorea# nischmod n+r passwd.org_dir

To grant modify (m) and create (c) access rights to the current user (in this case,
root) and their primary group on the same table, you would use the command

moorea# nischmod og+cm passwd.org_dir

Although NIS+ permission strings are easy to remember, they are hard to combine
into single commands in which some permissions are granted while others are removed,
unlike the octal codes used to specify absolute permissions on Solaris file systems.
However, it is possible to combine permission strings by using a comma to separate
individual strings. The following complex-string example shows how to set permissions
within a single string but equally shows how challenging it is to interpret:

moorea# nischmod o=rmcd,g=rmc,w=rm,n=r hosts.org_dir

This command grants the following permissions to four different categories of users:

owner Read, modify, create, and delete

group Read, modify, and create

world Read and modify

nobody Read only

nisls
The nisls command is used as a lookup and query command that can provide views
on NIS+ directories and tables. For example, to view all the NIS+ directories that have
been populated within the local namespace, you can use the nisls command:

moorea# nisls
develop.panther.edu.:
org_dir
groups_dir

There are two directory object types listed here: org_dir, which lists all the tables
that have been set up within the namespace, and groups_dir, which stores details of all
NIS+ groups. You can view a list of tables by using the nisls command once again on
the org_dir directory:

moorea# nisls org_dir
org_dir.sales.panther.edu.:

C h a p t e r 2 9 : N e t w o r k I n f o r m a t i o n S e r v i c e (N I S / N I S +) 599

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

600 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

auto_home
auto_master
bootparams
client_info
cred
ethers
group
hosts
mail_aliases
netgroup
netmasks
networks
passwd
protocols
rpc
sendmailvars
services
timezone

A large number of tables have been populated for this domain. The groups directory
contains the admin group created earlier, which lists all the administrators, as well as
several other groups that are based on distinct organizational units within the current
domain:

moorea# nisls groups_dir
groups_dir.sales.panther.edu.:
admin
adverts
legal
media

niscat
The niscat command is used to retrieve the contents of objects within the domain—
primarily the data contained within NIS+ tables. For example, all hosts listed within
the domain can be listed by using the following command:

moorea$ niscat -h hosts.org_dir
moorea.panther.edu moorea 10.58.64.16
borabora.panther.edu borabora 10.58.64.17
tahiti.panther.edu tahiti 10.58.64.18
orana.panther.edu orana 10.58.64.19

Alternatively, you can use the niscat command to examine the contents of the
Passwd table:

moorea$ niscat passwd.org_dir
moppet:*LK*:1001:1:moppet:/staff/moppet:/bin/tcsh:10910:-1:-1:-1:-1::0

miki:*LK*:1002:1:miki:/staff/miki:/bin/bash:10920:-1:-1:-1:-1::0
maya:*LK*:1003:1:maya:/staff/maya:/bin/sh:10930:-1:-1:-1:-1::0
paul:*LK*:1004:1:paul:/staff/paul:/bin/csh:10940:-1:-1:-1:-1::0

Next, you can examine which groups these users belong to by using the niscat
command once again:

moorea$ niscat group.org_dir
root::0:root
staff::1:moppet,miki,maya,paul
bin::2:root,bin,daemon
sys:*:3:root,bin,sys,adm
adm::4:root,adm,daemon
uucp::5:root,uucp
mail::6:root

All of the hosts that form part of the local domain can be examined based on their
Ethernet address, which is extracted from the Ethers table, as shown in the following
example:

moorea$ niscat ethers.org_dir
1:4a:16:2f:13:b2 moorea.panther.edu.
1:02:1e:f4:61:2e borabora.panther.edu.
f4:61:2e:1:4a:16 tahiti.panther.edu.
2f:13:b2:1:02:1e orana.panther.edu.

To get an idea of the services that are offered to these hosts, you can examine the
Services table:

moorea$ niscat services.org_dir
tcpmux tcpmux tcp 1
echo echo tcp 7
echo echo udp 7
discard discard tcp 9
discard sink tcp 9
discard null tcp 9
discard discard udp 9
discard sink udp 9
discard null udp 9
systat systat tcp 11
systat users tcp 11
daytime daytime tcp 13
daytime daytime udp 13

Every other table that is defined within the domain may be viewed by using the
niscat command in this way.

C h a p t e r 2 9 : N e t w o r k I n f o r m a t i o n S e r v i c e (N I S / N I S +) 601

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

Summary
In this chapter, you have examined how to configure the NIS and NIS+ naming
services. While these are presently widely deployed in the enterprise, they will likely
be replaced by LDAP or some other standard naming service in the future.

602 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 29

30
Lightweight Directory

Access Protocol (LDAP)

LDAP is a “white pages” type of service, similar to the older X.500 standard for
managing organization-wide directory information, for which it originally acted
as a front end. X.500 was based on the “heavyweight” Directory Access Protocol

(DAP), whereas LDAP, as a “lightweight” protocol, sits directly on top of TCP/IP.
Operations on LDAP servers such as iPlanet Directory Server (iDS) are of two kinds:
data management operations, which insert, update, or delete records, and queries,
which retrieve authentication and identification tokens from the organization’s database.
In theory, the LDAP protocol allows for a lot of different types of data about individuals
and groups to be stored, including sounds, images, and text.

In Solaris 8, only an LDAP client was supplied with the operating environment
release, making it less attractive to use than NIS/NIS+, since a separate LDAP server
had to be purchased and installed. However, Solaris 10 has integrated iDS into the core
architecture, meaning that LDAP servers and clients can be installed and configured
directly after and during installation, respectively. iDS is a key component of the iPlanet
software suite, which provides centralized authentication and authorization services
for other iPlanet applications, and for third-party applications. For example, access to
the Internet mediated through the iPlanet Proxy Server can be gained only by being an
attribute of a group defined within the local iDS database, demonstrating the key role
that iDS plays in supporting enterprise applications. Similarly, access to scheduling and
event notification facilities through the iPlanet Calendar Server can be provided only to
users who are authenticated through the iDS database. Many Solaris applications can
use LDAP for authentication and authorization.

iDS does not use a proprietary protocol to store user and group data or to communicate
with clients: instead, iDS uses the LDAP standard to authenticate users. This is an open
standard, meaning that a Solaris-based LDAP server can authenticate some Microsoft
Windows clients. In addition, it means that iDS can act as a drop-in replacement for
any other LDAP-compliant server, enabling you to standardize directory services across
a single platform. Alternatively, multiple server types from different vendors can be

6 0 3

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30
Blind Folio 603

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

604 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

combined to form an integrated solution. For example, you might choose to use iDS
in mission-critical applications, because of its clustering and high-availability features,
which might be overkill in other situations. It is also possible to use the LDAP client
software supplied with Solaris to connect to an LDAP server running on a different
platform.

Two key benefits to switching from NIS/NIS+ to LDAP are the ease of replication
and the assurance of high availability. While NIS/NIS+ architecture is based on the
idea of a primary server, backed up by some slaves, LDAP servers can be replicated
across subnets and domains, to servers known as replicas, increasing the number of
servers available for authoritative lookups and reducing the burden on any one server.
In addition, updates occur rapidly between LDAP servers compared to an NIS/NIS+
architecture, which relies on uploads of all data between primary and slave servers.

Although LDAP has many features, the most important of which iDS implements,
LDAP also has a number of limitations. It does not have an interface defined to store
data in a relational database, nor does it store data internally in a relational way. Although
queries can be performed on the directory, these are not performed by using a query
language (like SQL). LDAP is better designed for a reference data environment, where
the types of lookups are well defined and data updates are infrequent.

However, LDAP’s power lies in its capability to store and manage names and data
in a flexible way. While there are predefined schema elements, such as users and
organizations, other elements can be added where necessary. In addition, developers
can write client programs that can easily access the directory and retrieve authoritative
data. Since most networked applications perform some kind of authentication, a single,
centralized source of authentication data can be accessed, reducing administrative
overhead.

This chapter examines how to configure LDAP servers and a wide range of client
services.

Key Concepts
Since LDAP is a directory service, its basic data element is known as an entry. Like a
phone book entry, there are a number of attributes that are associated with the entry,
when regarded as an object. For example, a phone directory object has a surname,
first name, address, and phone number, which together comprise a single entry when
instantiated. The overall organization of entries in an LDAP directory is defined by a
schema, which consists of a rule set that determines what attributes can be associated
with different object types. Although it is possible to define your own schemas and
data models, all LDAP servers support a standard schema that promotes interoperability
and is the basis for the LDAP standard, as proposed in RFC 2307. Alternatively, your
application can extend the standard schema with some additional object attributes,
although these may not be accessible by other servers.

LDAP is used in Solaris 10 as a naming service that is compatible with existing NIS
and NIS+ services. This allows integration at the present time, but also suggests future
deprecation of the NIS and NIS+ services in Solaris. iDS contains a set of objects and

their attributes that is able to store all of the data contained within NIS/NIS+ maps and
tables. Additional schema data must also be stored within the LDAP directory to support
client operations.

The directory structure for LDAP is arranged hierarchically, from a single top node
within the Directory Information Tree (DIT), to as many levels of abstraction as are
required to support an organization’s directory requirements. The tree structure
might, for example, be based on purely geographical information, with the top node
representing a country, or it might be based on organizational lines, with the top node
corresponding to a company name. All entries within the tree can be identified by
their Distinguished Name (DN), and each attribute of the entry can be described as
a Relative Distinguished Name (RDN). Figure 30-1 shows an example DIT, with all
of the common elements found therein.

At the first level, the country, c, is defined as US, so the DN would simply be c=US.
At the second level, the organization, o, is defined as cassowary.net, so the DN is defined
as dc=cassowary, dc=net, c=US, where dc represents the Domain Component (DC). On the
third level, the Organizational Unit, ou, is defined as Engineering, so the DN is defined as
ou=Engineering, dc=cassowary, dc=net, c=US. On the fourth level, an individual user is
identified by a Common Name (CN) of Paul Watters, and a corresponding UID of paul.
Thus, the DN is uid=paul, ou=Engineering, dc=cassowary, dc=net, c=US. As you can see, it
is possible to clearly distinguish individuals belonging to organizations and departments
in specific countries from each other, by simply using a DN, if the DIT is defined at a
fine-grained level, and assuming that no two users in the same department have exactly
the same name.

iDS stores all data in LDIF (LDAP Data Interchange Format) files. This standard
is used by all LDAP directory servers and many messaging systems to store user and
group data. Thus, it is possible to export an LDIF file with an organization’s data from
a previous version of iDS and import it here. Alternatively, third-party products may
be able to export LDIF files that can also be read into iDS, to initialize the directory

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 605

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

FIGURE 30-1
Example Directory
Information Tree
(DIT)

606 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

structure. The following is an example entry in an LDIF file for the directory entry
previously defined:

dn: cn=Paul Watters, o=cassowary.net, c=US
cn: Paul Watters
sn: Watters
mail: paul@cassowary.net
objectClass: people

As you can see, the LDIF file structure simply reflects the attributes that are defined
within the directory, written sequentially to the file immediately following the DN.

Procedures
The following procedures are required to configure directory services.

Configuring iDS
Configuring iDS is a two-stage process: the first stage involves installing and configuring
the server to run iDS, and the second stage involves setting up iDS to support LDAP
clients (as described in the next section). To begin the process of configuring the server
to run iDS, you must execute the directoryserver program:

/usr/sbin/directoryserver setup

You can install either iDS or the standalone iPlanet Console. After selecting iDS, you
are presented with three different installation options: Express, which presents few
opportunities for customization but is very fast; Typical, which offers some configuration
before installation; and Custom, which offers maximum flexibility but is the slowest
installation method.

Three packages comprise the iDS installation:

• Server Core Components Comprises all the common objects used by iDS

• iPlanet Directory Suite Contains the management console and the iDS
software

• Administration Server Contains packages for system administration and
directory management

After selecting the appropriate packages to install, you need to indicate whether
the current installation will store configuration information, or whether this will be
stored in another server. If data will be stored in another server, then you must enter
the hostname, port number, directory manager/administrator username, and password
so that the correct target iDS installation for configuration can be identified.

Following the selection of the configuration iDS target, you need to indicate whether
the current installation will store user and group information, or whether this will be

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 607

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

stored in another server. Again, if data will be stored in another server, then you must
enter the hostname, port number, DN, password, and suffix so that the correct target
iDS installation for user and group data can be identified.

Next, you need to set up the new iDS server with a unique server identifier, a port
number that is not used by any other application, and the appropriate suffix for the local
installation. The default port number for LDAP is 389, while LDAP over SSL typically
runs on port 636.

Next, you must select and enter the administrator ID and password for the local
iDS installation. This ID and password are also used to manage the local LDAP server
via the management console. Since the administrator ID and password can be used to
gain access to the iDS server, and modify user and group data without restriction, it’s
important that you choose these credentials carefully, to avoid easy guessing by rogue
users.

The Administration Domain must be entered next. Since iDS can manage multiple
domains simultaneously from a single server, you must keep their data functionally
and physically separate. Typically, the Administration Domain matches the Internet
domain name. However, each server needs to have a separate Administration Domain
if it is located underneath a top-level domain. For example, if there are two separate
iDS servers running in the cassowary.net domain, one for Engineering and one for Sales,
then the Administration Domains could be named engineering.cassowary.net and sales
.cassowary.net, respectively.

Next, you must select and enter the directory manager’s password for the local iDS
installation. Since the Directory Manager ID and password can be used to gain access
to the iDS server, and modify user and group data with few restrictions, you must choose
these credentials carefully, to avoid dictionary-based cracking.

The iDS Administration Server is used to manage all aspects of the LDAP service.
The Administration Server runs as a Web server, meaning that you can use any HTML
browser to view and configure all current settings for the iDS Administration Server.
You must choose a port to access the iDS Administration Server. The URL for the
Administration Server is then given by appending the port number with a colon to the
hostname. For example, the URL http://ldap.cassowary.net:38575/ suggests an LDAP
server running on port 38575 of the host ldap.cassowary.net.

Supporting LDAP Clients
In order to configure iDS to provide services to clients, you use the idsconfig command.
You can either manually enter the service configuration on the command line or supply
it from an external file by passing the –i option. Alternatively, a configuration file from
one system (generated by passing the –o option) can also be read in from an external
file. If multiple iDS instances are installed, then configuration information from the first
installation can be used by subsequent installations. You can start idsconfig with the
following command:

/usr/lib/ldap/idsconfig

608 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

The following output shows a sample idsconfig session for sales.cassowary.net.
In the first section, you are required to review the basic configuration of the directory
service, including the port number, directory manager DN, and its password:

Enter the port number for iDS (h=help): [389]
Enter the directory manager DN: [cn=Directory Manager]
Enter passwd for cn=Directory Manager :
Enter the domainname to be served (h=help): [sales.cassowary.net]

Next, you need to review the directory and server details, including the base DN,
profile name, and list of servers:

Enter LDAP BaseDN (h=help): [dc=sales,dc=cassowary,dc=net]
Enter the profile name (h=help): [default]
Are you sure you want to overwrite profile cn=default? y
Default server list (h=help): [192.64.18.1]
Preferred server list (h=help):
Choose desired search scope (one, sub, h=help): [one]

You must make security choices next, including the credential level and authentication
method:

The following are the supported credential levels:
1 anonymous
2 proxy
3 proxy anonymous
Choose Credential level [h=help]: [1] 1
The following are the supported Authentication Methods:
1 none
2 simple
3 sasl/DIGEST-MD5
4 tls:simple
5 tls:sals/DIGEST-MD5
Choose Authentication Method (h=help): [1] 2
Current authenticationMethod: simple
Do you want to add another Authentication Method? N

Note that setting credential levels and authentication methods is a major decision,
and these settings are difficult to roll back after installation. After reviewing the server
configuration, you now need to configure client access. This includes setting timeouts
for profile and directory access, password formats, and time and size limits:

Do you want the clients to follow referrals (y/n/h)? [n] n
Do you want to modify the server timelimit value (y/n/h)? [n] n
Do you want to modify the server sizelimit value (y/n/h)? [n] n
Do you want to store passwd's in "crypt" format (y/n/h)? [n] y
Do you want to setup a Service Authentication Method (y/n/h)? [n] n
Search time limit in seconds (h=help): [60]

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 609

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

Profile Time To Live in seconds (h=help): [3600]
Bind time limit in seconds (h=help): [10] 2
Do you wish to setup Service Search Descriptors (y/n/h)? [n] n

Finally, you are presented with a configuration summary, before any actions are
performed by idsconfig:

Summary of Configuration
1 Domain to serve : sales.cassowary.net
2 BaseDN to setup : dc=sales,dc=cassowary,dc=net
3 Profile name to create : default
4 Default Server List : 192.64.18.1
5 Preferred Server List :
6 Default Search Scope : one
7 Credential Level : anonymous
8 Authentication Method : simple
9 Enable Follow Referrals : FALSE
10 iDS Time Limit :
11 iDS Size Limit :
12 Enable crypt passwd storage : 1
13 Service Auth Method pam_ldap :
14 Service Auth Method keyserv :
15 Service Auth Method passwd-cmd:
16 Search Time Limit : 30
17 Profile Time to Live : 43200
18 Bind Limit : 2
19 Service Search Descriptors Menu

Creating LDAP Entries
The ldapaddent command is used to create entries in the LDAP container for all of
the standard system databases stored in files underneath the /etc directory. All of the
following Solaris databases (with the corresponding ou) can be transferred into LDAP
by this method:

• aliases (ou=Aliases)

• bootparams (ou=Ethers)

• ethers (requires bootparams database to be installed first) (ou=Ethers)

• group (ou=Group)

• hosts (ou=Hosts)

• netgroup (ou=Netgroup)

• netmasks (requires networks database to be installed first) (ou=Networks)

• networks (ou=Networks)

• passwd (ou=People)

• shadow (requires passwd database to be installed first) (ou=People)

610 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

• protocols (ou=Protocols)

• publickey (ou=Hosts)

• rpc (ou=Rpc)

• services (ou=Services)

A simple script can be created to automate the process of adding each of these
databases to LDAP, when the bindDN password is supplied on the command line:

#!/bin/sh
ldapaddent -D "cn=directory manager" -w $1 -f /etc/aliases aliases
ldapaddent -D "cn=directory manager" -w $1 -f /etc/bootparams bootparams
ldapaddent -D "cn=directory manager" -w $1 -f /etc/ethers ethers
ldapaddent -D "cn=directory manager" -w $1 -f /etc/group group
ldapaddent -D "cn=directory manager" -w $1 -f /etc/hosts hosts
ldapaddent -D "cn=directory manager" -w $1 -f /etc/netgroup netgroup
ldapaddent -D "cn=directory manager" -w $1 -f /etc/networks networks
ldapaddent -D "cn=directory manager" -w $1 -f /etc/netmasks netmasks
ldapaddent -D "cn=directory manager" -w $1 -f /etc/passwd passwd
ldapaddent -D "cn=directory manager" -w $1 -f /etc/shadow shadow
ldapaddent -D "cn=directory manager" -w $1 -f /etc/protocols protocols
ldapaddent -D "cn=directory manager" -w $1 -f /etc/publickey publickey
ldapaddent -D "cn=directory manager" -w $1 -f /etc/rpc rpc
ldapaddent -D "cn=directory manager" -w $1 -f /etc/services services

This script can be used on all client systems that will use LDAP.

Starting a Client
The ldapclient program can be used for several purposes, including to start LDAP
client services on client systems and to review the LDAP cache. In order to initialize
a client, you must enter on the command line the address of the LDAP server, where
its profile is stored. The LDAP cache manager (ldap_cachemgr) is responsible for
ensuring that the correct configuration data is returned to a client upon initialization,
especially if changes have been made to the profile. One of the following subcommands
must be supplied on the command line to specify the behavior of ldapclient:

• genprofile Creates an LDIF format configuration file that can be exported
to another system, or imported at some future time

• init Initializes an LDAP client from an LDAP server using a profile

• list Prints a list of entries stored in the client cache to standard output

• manual Initializes an LDAP client from an LDAP server using parameters
specified on the command line

• mod Permits the modification of parameter values after initialization has
been completed

• uninit Uninitializes an LDAP client from an LDAP server

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 611

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

The following parameters can be modified by using the ldapclient mod command,
or passed directly for manual initialization using the ldapclient manual command:

• attributeMap Used to modify the default schema for a specific service.

• authenticationMethod Stipulates the authentication method to be used (none,
simple, sasl/CRAM-MD5, sasl/DIGEST-MD5, tls:simple, tls:sasl/CRAM-MD5,
or tls:sasl/DIGEST-MD5). None means no security at all, while simple means
that a password is sent in the clear and thus is vulnerable to interception. The
other methods use a message digest algorithm to enhance security.

• bindTimeLimit Specifies the maximum number of seconds allowed for a bind
operation to be performed.

• certificatePath Specifies the full path to the certificate database.

• credentialLevel Specifies the type of credential required for authentication
(either anonymous or proxy).

• defaultSearchBase Specifies the baseDN for searching.

• defaultSearchScope Determines the scope for searching on the client side.

• domainName Specifies the Fully Qualified Domain Name.

• followReferrals Determines whether the referral setting is used for DIT
partitioning.

• objectclassMap Designates a different schema.

• preferredServerList Lists a set of alternative LDAP servers to be contacted
prior to the default.

• profileName Determines the name of the client profile.

• profileTTL Specifies the refresh epoch for the client cache to obtain new
information from the server.

• proxyDN Specifies the DN for the proxy server.

• proxyPassword States the password for the proxy server.

• searchTimeLimit Restricts the amount of time for each LDAP search.

• serviceAuthenticationMethod Determines the authentication method for
the passwd-cmd, keyserv, and pam_ldap services.

• serviceCredentialLevel Specifies the type of credential required for service
authentication (either anonymous or proxy). Proxy access for clients can occur
only if a proxy account has previously been created in the directory and the
proxyDN and proxyPassword attributes have been defined. Anonymous is not
recommended, since it provides no security at all.

• serviceSearchDescriptor Allows a different baseDN to be specified on a per-
service basis.

Some examples follow of how LDAP clients can be initialized by using ldapclient.
In the first example, the LDAP server 192.64.18.1 will be used to initialize the local client
by using the init subcommand:

ldapclient init 192.64.18.1

No additional parameters are necessary. However, a manual installation is much
more complex, as all nondefault parameters must be specified. Sometimes, only a single
parameter will differ from the default: for example, if simple authentication was required,
instead of no authentication (the default), the following command would be used:

ldapclient manual –a authenticationMethod=simple \
–a defaultServerList=192.64.18.1

Alternatively, if you need to specify a higher-level search base, you could use the
following command:

ldapclient manual –a authenticationMethod=simple \
-a defaultSearchBase=dc=cassowary,dc=net \
–a defaultServerList=192.64.18.1

To generate an LDIF format configuration file, you would use the genprofile
subcommand and redirect the output to a file (/tmp/default.ldif):

ldapclient genprofile -a profileName=default \
-a defaultSearchBase=dc=cassowary,dc=net \
-a defaultServerList=192.64.18.1 \
> /tmp/default.ldif

Using the LDAP-NIS+ Interface
The nisldapmaptest command is used to operate on data stored within LDAP by
using an NIS+ interface. This is particularly important when testing to see that NIS+
and LDAP services are correctly integrated. It can also be useful for experienced NIS+
administrators who want to add, delete, or modify LDAP records by using a familiar
NIS+ interface. There are several options that can be passed to the nisldapmaptest
command, including

• –d Enables deletion of data

• –r Updates data or adds new data

• –s Searches for existing data

• –t Contains the name of the target NIS+ object

Some examples of using nisldapmaptest follow. First, to determine whether a
user entry (pwatters) exists in the password table, use the following:

612 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 613

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

nisldapmaptest -t passwd.org_dir name=pwatters

Any of the following tables can be queried in this way:

• auto_home

• auto_master

• bootparams

• client_info

• cred

• ethers

• group

• hosts

• mail_aliases

• netgroup

• netmasks

• networks

• passwd

• protocols

• rpc

• sendmailvars

• services

• timezone

For example, to obtain a list of hosts stored in the hosts table, you would use the
following command:

nisldapmaptest -t hosts.org_dir

If an invalid host was found in the table, you could delete it by using the following
command:

nisldapmaptest -d -t hosts.org_dir name=oldhost

Example
This example demonstrates how to manage iDS by using the console. Once the iDS
server has been installed, you should be able to start the console by using the following
command:

directoryserver startconsole

614 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

The appropriate admin port number and hostname will be displayed on the login
window, as shown in the following illustration. In this case, 14462 is the admin port for
the LDAP server that was specified during install. You must enter the administration
user ID and corresponding password to open the main administration server window.

The main iDS console is then displayed, as shown in Figure 30-2. The two main
functions of the console are organized into two tabs: Servers and Applications, and
Users and Groups.

FIGURE 30-2 Main console window

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 615

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

The Servers and Applications tab has two separate panes. The first pane is a
hierarchical object list of all servers and their respective databases that have been
configured for the network. The local server group is displayed, along with entries
for the local administration server and the actual directory server. By clicking the icon
associated with the localhost, the hostname, description, physical location, platform,
and operating system are displayed. Clicking the server group icon displays the group
name, description, and installation path.

The second pane shows the domain name, description, port number, and user
directory structure for the iDS server. In addition, the DN and password are displayed,
as well as an option to encrypt connections to the server. You can edit these details by
clicking the Edit button.

By clicking the Directory Server icon in the Servers and Applications tab, a list of
configured items for the local server is displayed, as shown in Figure 30-3. For example,
the server name, description, installation date, product name, vendor name, version
number, build number, revision level, security level, server status, and port are all
displayed. Again, you can edit all of these entries by clicking the Edit button.

FIGURE 30-3 Main directory server window

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

By double-clicking the Directory Server icon, a new window is displayed, as shown
in Figure 30-4, which is used to configure the directory server’s operation. There are
four tabs available, each with a number of different operations, but only Tasks and
Configuration are relevant. The Tasks tab defines nine different operations:

• Start Directory Server Initializes the local iDS server and launches it.

• Stop Directory Server Shuts down all local services and stops the iDS
processes.

• Restart Directory Server Shuts down all local services, stops the iDS
processes, initializes the local iDS server, and relaunches it.

• Back Up Directory Server Backs up the local iDS database.

• Restore Directory Server Restores the local iDS database from a backup.

616 P a r t V I : S e r v i c e s , D i r e c t o r i e s a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

FIGURE 30-4 Directory server configuration window

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 617

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

• Manage Certificates Manages certificates for security.

• Log In to Directory Server as a New User Logs in to iDS as a different user.

• Import Databases Imports a new iDS database from a different system.

• Export Databases Exports an existing local iDS database to a different system.

The Configuration tab contains a hierarchical list of objects associated with the iDS
database, including tables, replication features, the database schema, logs, and optional
plug-ins. In addition, a set of tabs allows you to configure various options. The Settings
subtab allows you to set the unencrypted port, encrypted port, and referrals, as shown in
Figure 30-5. In addition, you can set up the server as read-only and track entry modification
times and various schema checks.

FIGURE 30-5 Settings configuration window

618 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

The Performance subtab sets limits on the size of the directory, a time limit for access,
and an idle timeout, as shown in Figure 30-6. These settings need to be modified for local
use, but are set at 2000 entries, one hour, and zero, respectively.

The Encryption subtab has two main tasks: setting options for server security and
setting options for client authentication, as shown in Figure 30-7. On the server side,
access can be granted using SSL, thereby protecting authentication tokens from interception
by a third party. In this case, you need to set RSA options, including the name of the

FIGURE 30-6 Performance configuration window

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

security device (by default, internal/software-based), the certificate location, and
the cipher. On the client side, authentication can be disallowed, allowed, or required,
depending on the application’s requirements. In addition, using SSL can be made
mandatory within the iPlanet console.

The SNMP subtab, as shown in Figure 30-8, provides an interface to the Simple
Network Management Protocol, allowing you to monitor service status remotely
by using a third-party SNMP monitoring product. When alarm events are triggered

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 619

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

FIGURE 30-7 Encryption configuration window

620 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

because of run-time errors, you and other administration staff can be notified by pager,
phone, or e-mail, enabling you to quickly take appropriate action to rectify the problem.
The SNMP tab also enables you to enter descriptive properties, including the organization,
location, and support contact, and start, stop, or restart the service by clicking the
corresponding three buttons.

The Manager subtab, as shown in Figure 30-9, sets several options for the Directory
Manager role. This includes the DN of the Directory Manager, the algorithm used to
encrypt the Directory Manager’s password (by default, the Salted Secure Hashing

FIGURE 30-8 SNMP configuration window

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 621

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

Algorithm, SSHA), and the Directory Manager’s password. You can also choose and
confirm a new password by entering it into the New Password field Confirm Password
field.

You can configure the administration server by double-clicking the Administration
Server icon in the Servers and Applications tab, which produces the window shown here:

This window is used to configure the administration server’s operation. Two tabs are
available, each with a number of different operations. The Tasks tab defines five different
operations:

• Start Server Initializes the local iDS server and launches it.

• Restart Server Shuts down all local services, stops the iDS processes,
initializes the local iDS server, and relaunches it.

• Configure Admin Server Configures the local administration server.

• Logging Options Sets up local logging options.

• Manage Certificates Manages certificates for security.

622 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

The console provides an interface for querying the directory and for adding new
entries at the user, group, and OU levels. The search facility allows you to enter a search
string that consists of a full or partial username, group name, or OU. For example, to
find the user Paul Watters in the directory, you could search on “Paul” or “Watters”.
Figure 30-10 shows the searching interface and the result of a search on “watters” (no

FIGURE 30-9 Manager configuration window

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 623

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

matches were found in the directory). If a match had been found, the name, user ID,
e-mail address, and phone number would have been displayed. In addition, you can
modify each entry found as the result of a search by clicking the Edit button.

If an entry is not found, it can be searched for by clicking the Create button, as shown
in Figure 30-11. A drop-down list of all possible entry types is shown, including users,
groups, and OUs.

FIGURE 30-10 Searching the directory

624 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

After choosing to create a new user, group, or OU, you need to indicate the directory
subtree under which the entry will appear, as shown in the following illustration. There
are four options: Base DN (i.e., the top level of the directory), Groups, People (users), or
Special Users.

FIGURE 30-11 Adding a directory entry

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 625

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

You can create a new user by using the Create User screen, as shown in Figure 30-12.
You may enter the user’s first name, last name, common name, user ID, password, e-mail
address, phone number, and fax number into their respective fields. In addition, a target
language can be entered for the user, and Windows NT or POSIX-specific user data can
be stored. Since this iDS installation is based on Solaris, POSIX should be selected.

Once you have entered the user’s details, return to the user search screen, enter in
the name of the user whose details have been stored, and you should be able to retrieve
their complete record, as shown in Figure 30-13. Once retrieved, you can modify the
user’s details or delete their record.

FIGURE 30-12 Creating a new user

626 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

A key user characteristic is group membership. Thus, after you have created several
users in a directory, it makes sense to create a group to store them in, rather than entering
them at the top level of the directory. Defining a new group requires a group name and
a group description. These can be entered into the Create Group window, as shown in
Figure 30-14. The languages required to be used by group members can also be entered
by clicking Languages in the left pane.

FIGURE 30-13 Finding an existing user

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 627

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

Once a group has been defined, you can add members individually by clicking
Members in the left pane and clicking the Add button, as shown in Figure 30-15.
Alternatively, group members, once created using this screen, can be easily removed
by clicking the Remove button.

FIGURE 30-14 Creating a group

628 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

After members have been added to groups, it’s then possible to search on a user
and group basis, rather than just on a user basis, as shown in Figure 30-16. The search
string can either be a group name or a username. Once group members have been
selected on the basis of the search term, their details are displayed sorted by name,
with user ID, e-mail address, and phone number also appearing.

At the top level, you can define a new OU. The OU’s entry can contain its name, a
description, phone number, fax number, alias, and full address, as shown in Figure 30-17.
In addition, you can define the language support required for the OU by clicking
Languages in the left pane.

FIGURE 30-15 Adding group members

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 629

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

FIGURE 30-16 Searching users and groups

FIGURE 30-17 Creating an OU

Command Reference
The following commands are used to work with the LDAP server.

ldapsearch
The ldapsearch command is used to query the directory for a specific entry and to
display the attributes of an entry once located. A query string composed of a logical
condition is passed on the command line, along with a set of attributes that is to be
displayed. For example, to search for the common name “Paul Watters” and display
the results, you would use the following command:

$ ldapsearch –u "cn=Paul Watters" cn
cn=Paul A Watters, ou=Engineering, o=cassowary.net, c=US
cn=Paul Watters

Alternatively, if you know the UID of the user you are searching for and you want
to look up the common name, you could use the following command:

$ ldapsearch -u -t "uid=paul" cn
cn=Paul A Watters, ou=Engineering, o=cassowary.net, c=US
cn=Paul Watters

It’s possible to perform a wider area search than just looking for a single individual.
For example, to print a description of all organizations below the country “US” in the
DIT, you would use the following command:

$ ldapsearch -L -b "c=US" description
dn: o=cassowary.net, c=US
description: Cassowary Computing Pty Ltd

ldapmodify
The ldapmodify command is used to create, read, update, or delete entries in the
directory. There is also an ldapadd command, which is used to create new directory
entries. However, this command is equivalent to invoking ldapmodify with the –a
(add) option. In addition, while it is possible to enter data using standard input, most
users will perform actions based on data stored in a file (after all, if you make a mistake
when typing and have to cancel the data entry, all of the input will be lost).

If you want to create a new entry for Moppet Watters in the directory, then you should
insert the following data into a file called newdata.txt:

dn: cn=Moppet Watters, o=cassowary.net, c=US
objectClass: person
cn: Mopster Watters
sn: Watters

630 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

title: Mascot
mail: moppet@cassowary.net
uid: moppet

To insert this data into the directory, you would use the following command:

ldapmodify –a –f newdata.txt

To delete this entry from the directory, you would first insert the following data into
delentry.txt:

dn: cn=Moppet Watters, o=cassowary.net, c=US
changetype=delete

Then, you could delete the entry from the directory by using the following command:

ldapmodify –f delentry.txt

Summary
In this chapter, you have learned how to configure the Solaris LDAP server. LDAP will
almost certainly replace NIS/NIS+ in the future, so it’s worthwhile planning to transition
existing directory services to the new platform.

C h a p t e r 3 0 : L i g h t w e i g h t D i r e c t o r y A c c e s s P r o t o c o l (L D A P) 631

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 30

This page intentionally left blank.

31
Samba

One of the most commonly used file- and print-sharing protocols is the Server
Message Block (SMB) protocol, developed by Microsoft, and used extensively
in Windows systems. SMB allows file systems and printers to be shared with a

number of remote clients, with full access rights. For example, in a Windows NT domain,
printing access rights to networked printers may be granted, but read-only access rights
may be provided to a shared CD-ROM on the server. It is also possible to mount remotely
exported file systems as virtual local drives, making it easy to integrate centralized data
storage with local data management systems (such as databases). Fortunately, Solaris
supports SMB networking through the Samba suite of programs, which even includes
a NetBIOS name service.

This chapter examines how you can use Samba to share Solaris 10 file systems and
printers with any client that supports SMB networking, including Windows, Linux,
and MacOS clients. This means that you can use Solaris 10 as a reliable, centralized file
server, replacing unreliable servers running other operating systems. Although Samba
had to be installed as a third-party package in previous versions of Solaris, Solaris 10
includes Samba 3. In this chapter, you will learn how to export file systems, share printers,
and share file systems between Samba servers.

Key Concepts
The key concepts of installing, configuring, and tuning Samba are discussed in this
section.

Samba Server
Samba is a package that makes it easy to bring the Windows and Solaris networking
environments closer together. Although both Windows and Solaris support standard
TCP/IP networking, both Microsoft and Sun have tended to develop their own versions
of file system and printer sharing. Windows Explorer, shown in Figure 31-1, is used to
create combined views of all local and remote file systems within a domain. The example
given shows two local drives (C and D), a local CD-ROM drive, as well as the computer

6 3 3

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31
Blind Folio 633

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

634 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

Tiger, as shown in the Network Neighborhood. If the entry for Tiger were expanded,
several shared disks could potentially be mounted, if access rights were granted to the
local user for the remote volumes, through Security Access Manager (SAM). In addition,
printers attached to Tiger could be accessed, and print jobs could be managed using the
Printers control panel.

Figure 31-2 shows how easy it is to share file systems using Windows 2000: you
simply right-click the drive you want to share in the Explorer window, select the Sharing
tab, and define the authentication procedures and access rights for the shared volume.
Consumer versions of Windows, such as XP, have a slightly different perspective, but
the underlying operations are similar.

FIGURE 31-1 Viewing the Network Neighborhood in Microsoft Windows Explorer

C h a p t e r 3 1 : S a m b a 635

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

In contrast, Sun developed the Network File System (NFS) protocol, which also allows
file systems and printers to be shared with other clients. There are even Windows-based
NFS clients that allow Windows clients to access Solaris NFS shares. However, the choice
between using NFS and Samba in a heterogeneous network may be one of cost (PC-NFS
costs money, Samba is free), but is more likely a question of numbers: Would you rather
install NFS client software on hundreds of Windows systems that already have SMB
support or install a single SMB-compliant server (like Samba)? Using Samba as a
centralized Windows server reduces the need to buy extra server licenses for file and
print servers, because these functions could be provided by a Solaris Intel or Solaris
SPARC system running Samba. Samba also runs on Linux systems.

The following illustration shows a concrete example of how Samba can be useful on
the (Microsoft Windows) client side: a remote file system (\\elp\servlets) being exported
using Samba running on Solaris allows a Microsoft Windows user to map a local drive

FIGURE 31-2
Sharing a drive
in Microsoft
Windows 2000

636 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

letter (K) to that file system. As far as the Windows client is concerned, the Solaris Samba
volume is equivalent to a file system being shared from Windows NT Server or equivalent.

There are two main services that you must run in order to use Samba: the nmbd
NetBIOS name lookup service and the smbd Samba daemon. The NetBIOS service is
necessary to “find” local Windows clients and all SMB servers within the local domain.
The smbd daemon takes care of the actual file- and print-sharing operations. A new
process is created for every client that connects to the smbd, although only one nmbd is
ever created.

NetBIOS Naming
Before file systems may be exported using the Samba daemon, you need to locate the
client and server systems by using the NetBIOS name lookup protocol. The nmbd service
runs on port 137 on Solaris, and it carries out the same functions as NetBIOS naming
under Microsoft Windows. nmbd is a server that understands and can reply to NetBIOS
over IP name service requests. nmbd also participates in the browsing protocols that make
up the Windows Network Neighborhood view. In addition, you can use nmbd as a WINS
(Windows Internet Name Server) server for resolution of hostnames. You can best gain
an insight into how this operates by looking at some of the Windows NT commands that
you can use to browse SMB shares and compare these commands with the equivalent
Linux commands that perform the same tasks.

In order to view a list of client systems that are currently accessing a Windows NT
Server system, you would use this command:

C:\WINNT\SYSTEM32>nbtstat –s

The following output would then be displayed:

NetBIOS Connection Table

Local Name State In/Out Remote Host Input Output
--
SYDNEY <00> Connected Out HUNTER <20> 101KB 15KB
SYDNEY <00> Connected Out MELBOURNE <20> 1MB 100MB
SYDNEY <00> Connected Out WGONG <20> 203KB 205KB

C h a p t e r 3 1 : S a m b a 637

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

This output states that the server called SYDNEY is serving the remote systems HUNTER,
MELBOURNE, and WGONG. You can examine how much data has been uploaded and
downloaded to and from the server by looking at the Input/Output column. In the case
of HUNTER, the input is greater than the output, whereas for MELBOURNE, the output
greatly exceeds the input, which would be expected of a file-serving system. In contrast,
WGONG has approximately similar levels of input and output.

In order to “view” all of the hosts available for connections within a specific
Windows NT domain, you can use the net view command:

C:\WINNT\SYSTEM32>net view

This produces output similar to the following:

Server Name Remark

--
\\HUNTER Regional Server
\\SYDNEY Capital Server
\\WGONG Regional Server
\\BRISBANE Capital Server
\\BATHURST Web Server
\\ORANGE Web Server
\\DINGO Kerberos Server
\\DINGBAT Anonymous FTP Server
The command completed successfully.

Here, you can see that a number of systems are available within the local EASTAUS
domain. There are several file servers for capital cities and regional cities, as well as two
Web servers, a Kerberos server, and an anonymous FTP server. These kinds of systems
would typically be found in a modern network, and all would potentially require remote
file access to other systems. For example, the two Web servers might require access to
some files on the anonymous FTP server; this access could be provided by Samba.

Solaris systems don’t have the net view command. However, Samba does provide a
number of tools, such as nmblookup, that you can use to list all of the systems within
a specific domain. For example, to display all of the systems within the EASTAUS domain,
you would use the following command:

$ nmblookup EASTAUS
Added interface ip=62.12.48.43 bcast=62.12.48.255 nmask=255.255.255.0
Sending queries to 62.12.48.255
Got a positive name query response from 62.12.48.39 (62.12.48.39)
Got a positive name query response from 62.12.48.41 (62.12.48.41)
Got a positive name query response from 62.12.48.42 (62.12.48.42)
Got a positive name query response from 62.12.48.43 (62.12.48.43)
Got a positive name query response from 62.12.48.50 (62.12.48.50)
Got a positive name query response from 62.12.48.57 (62.12.48.57)
Got a positive name query response from 62.12.48.58 (62.12.48.58)

C h a p t e r 3 1 : S a m b a 637

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

This output states that the server called SYDNEY is serving the remote systems HUNTER,
MELBOURNE, and WGONG. You can examine how much data has been uploaded and
downloaded to and from the server by looking at the Input/Output column. In the case
of HUNTER, the input is greater than the output, whereas for MELBOURNE, the output
greatly exceeds the input, which would be expected of a file-serving system. In contrast,
WGONG has approximately similar levels of input and output.

In order to “view” all of the hosts available for connections within a specific
Windows NT domain, you can use the net view command:

C:\WINNT\SYSTEM32>net view

This produces output similar to the following:

Server Name Remark

--
\\HUNTER Regional Server
\\SYDNEY Capital Server
\\WGONG Regional Server
\\BRISBANE Capital Server
\\BATHURST Web Server
\\ORANGE Web Server
\\DINGO Kerberos Server
\\DINGBAT Anonymous FTP Server
The command completed successfully.

Here, you can see that a number of systems are available within the local EASTAUS
domain. There are several file servers for capital cities and regional cities, as well as two
Web servers, a Kerberos server, and an anonymous FTP server. These kinds of systems
would typically be found in a modern network, and all would potentially require remote
file access to other systems. For example, the two Web servers might require access to
some files on the anonymous FTP server; this access could be provided by Samba.

Solaris systems don’t have the net view command. However, Samba does provide a
number of tools, such as nmblookup, that you can use to list all of the systems within
a specific domain. For example, to display all of the systems within the EASTAUS domain,
you would use the following command:

$ nmblookup EASTAUS
Added interface ip=62.12.48.43 bcast=62.12.48.255 nmask=255.255.255.0
Sending queries to 62.12.48.255
Got a positive name query response from 62.12.48.39 (62.12.48.39)
Got a positive name query response from 62.12.48.41 (62.12.48.41)
Got a positive name query response from 62.12.48.42 (62.12.48.42)
Got a positive name query response from 62.12.48.43 (62.12.48.43)
Got a positive name query response from 62.12.48.50 (62.12.48.50)
Got a positive name query response from 62.12.48.57 (62.12.48.57)
Got a positive name query response from 62.12.48.58 (62.12.48.58)

Remember that any of these hosts could be Samba servers running on Linux or
Solaris, as well as Microsoft Windows servers and clients using native SMB networking.
You can start the nmbd daemon with the following command:

/usr/local/samba/bin/nmbd –D

The –D option specifies that the NetBIOS name service daemon should run as a
standalone daemon rather than as a service through the Internet super daemon inetd.

Samba Clients
There are a number of ways to make a client connection to a Samba server. If you are using
an NT Workstation system or similar, the Solaris Samba server should simply appear as
a normal NT Server, with individual file systems listed as shares (as determined by the
smb.conf file). In addition, Solaris file systems may be mapped as local NT drives. This
makes Solaris Samba an ideal solution for servicing multiple NT Workstation systems
as a reliable file server.

Linux users can use the smbmount command to mount shared Solaris file systems,
to maintain a single protocol for file sharing rather than, say, use NFS and Samba. To
mount the answerbook share on the Solaris Samba server SYDNEY, for example, you
would issue the following command from a Linux system:

smbmount //SYDNEY/answerbook /usr/local/answerbook

This would mount the remote answerbook share onto the local file system on the
mount point /usr/local/answerbook. Of course, the mount point would need to be created
prior to mounting by using this command:

mkdir –p /usr/local/answerbook

To unmount the share once it is no longer required, you would use the following
command:

smbumount /usr/local/answerbook

Solaris users who wish to access remote Samba shares (from Solaris, NT, or Linux
servers) typically use the smbclient program, which runs from the command line and
has a simple command set that is similar to that used by FTP. smbclient provides a
very useful and compact way to upload, download, and delete files on a remote server.
To make an initial connection, you would use a command of the form

smbclient –L system

638 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

where system is the name of the remote Samba server. To determine which shares were
available on the server SYDNEY, you would use this command:

smbclient –L SYDNEY
Added interface ip=62.12.48.43 bcast=62.12.48.43 nmask=255.255.255.0
Domain=[EASTAUS] OS=[Unix] Server=[Samba 3.0.6]

Sharename Type Comment
--------- ---- -------
answerbook Disk Sun Answerbooks
homes Disk User Home Directories
IPC$ IPC IPC Service (Samba 3.0.6)

Server Comment
--------- -------
SYDNEY Samba 3.0.6

Workgroup Master
--------- -------
EASTAUS WGONG

To make a connection to the share //SYDNEY/answerbook, use this command:

smbclient //SYDNEY/answerbook

smbclient provides its own shell, so you would then be able to use one of the
commands listed in Table 31-1 to list directory contents, change working directories,
and upload and download files.

Accessing a remote printer using Samba is slightly different: you must supply the
–P option to the smbclient command to identify that target share as a printer. For
example, to mount the printer called hp on the Samba server SYDNEY, you would use
the command

$ smbclient –P //SYDNEY/hp

C h a p t e r 3 1 : S a m b a 639

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

Command Action

cd <dir> Changes working directory

dir <dir> Displays directory contents

get <file> Retrieves a single file from the server

ls <dir> Displays directory contents

mget <files> Retrieves multiple files from the server

mput <files> Stores multiple files on the server

put <file> Stores a single file on the server

TABLE 31-1
Basic smbclient
Commands

You may then print a local file (such as address_book.txt) by using a command such
as the following:

smb:\> print address_book.txt

You can then use the standard printing tools to examine print queues to determine
whether the print job was successfully completed.

Procedures
The following procedures are required to configure the Samba daemon.

Configuring the Samba Daemon
You can start the smbd daemon with this command:

/usr/local/samba/bin/smbd –D

Again, the –D option specifies that the NetBIOS name service daemon should run as a
standalone daemon rather than as a service through the Internet super daemon inetd.
Note that you should create a startup file for smbd and nmbd at the appropriate run level,
if you want Samba to start at boot time.

The Samba daemon has a special configuration file, called smb.conf. It is usually
stored in the /usr/local/samba/lib directory. The smb.conf file can either be very short or
very long, depending on the extent to which your local system requires customization
and how many file systems need to be exported. A sample smb.conf file is shown here:

[global]
workgroup = EASTAUS
netbios name = SYDNEY
server string = Solaris Samba Server V3.0.6
interfaces = 62.12.48.43
security = SHARE
log file = /usr/local/samba/log/log.%m
max log size = 500
socket options = TCP_NODELAY SO_RCVBUF=4096 SO_SNDBUF=4096
dns proxy = Yes
guest account = guest
hosts allow = localhost, 62.12.48.43/255.255.255.0

[printers]
comment = SYDNEY HP Printer
path = /var/spool/hp
print ok = Yes
browseable = Yes

640 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

C h a p t e r 3 1 : S a m b a 641

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

[homes]
comment = User Home Directories
read only = No
browseable = Yes

[answerbook]
comment = Sun Answerbook Docs
path = /usr/answerbook/
guest ok = Yes

The global section defines several key parameters that affect the operation of smbd,
including the name of the workgroup (EASTAUS), the name of the local server (SYDNEY),
the server string that identifies the system (Solaris Samba Server V3.0.6), the primary
network interface IP address (62.12.48.43), the security level (standard share level), the
path to the Samba log file (/usr/local/samba/log), TCP transmission parameters (such as
send and receive buffer sizes in bytes), and the name of the guest account (guest). Next,
the local hp printer is specified as a share in the printers section. In addition, two different
file systems are shared: the homes file system shares the local home directory for each user
on the system, while the answerbook file system shares the local copy of Sun’s Answerbooks.
Although NFS provides the automounter service, which makes it easy for users to
retrieve files from a single home directory on a server, the homes facility on Samba can be
just as versatile. Although most of the settings in smb.conf are easy to interpret, you can
find the complete Samba manual online at the Samba site (http://www.samba.org/).

One of the nice features of Samba is the configuration script–checking program
testparm. The testparm program will alert you to any configuration errors prior to
starting a Samba service. In addition, testparm prints out all of the Samba parameters
associated with the system in general, and for each share, not just those that were
explicitly declared in the smb.conf file:

$ testparm
Load smb config files from /usr/local/samba/lib/smb.conf
Processing section "[printers]"
Processing section "[homes]"
Processing section "[answerbook]"
Loaded services file OK.
WARNING: You have some share names that are longer than 8 chars
These may give errors while browsing or may not be accessible
to some older clients
Press enter to see a dump of your service definitions
Global parameters
[global]

workgroup = EASTAUS
netbios name =
netbios aliases =
server string = Samba 3.0.6
interfaces =
bind interfaces only = No

security = USER
encrypt passwords = Yes
update encrypted = No
allow trusted domains = Yes
hosts equiv =
min passwd length = 5
map to guest = Never
null passwords = No
password server =

[printers]
comment = SYDNEY HP Printer
path = /var/spool/hp
print ok = Yes
browseable = Yes

[homes]
comment = User Home Directories
read only = No
browseable = Yes

[answerbook]
comment = Sun Answerbook Docs
path = /usr/answerbook/
guest ok = Yes

Samba Daemon Status
After the Samba server has been started on port 139, it is easy to keep track of the server
status by using the smbstatus command:

$ smbstatus

This will return a list of all current clients accessing data through the local Samba system:

Samba version 3.0.6
Service uid gid pid machine
--
answerbook root root 344 MELBOURNE Wed Nov 1 10:45:00 2000
homes root root 345 MELBOURNE Wed Nov 1 10:45:30 2000
homes julian staff 1023 HUNTER Thu Nov 2 00:15:34 2000
answerbook steve staff 2333 WGONG Wed Nov 1 10:45:30 2000

In addition to the share name being accessed, the UID, GID, and PID of the smbd
process associated with the client are shown along with the client system name and
the date the connection was established. For example, the root user from the system
MELBOURNE opened the answerbook and the root home directory on Wednesday,
November 1, 2000, at 10:45 A.M.

642 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

The smbstatus command also displays details of actual files being opened by the
users who have established a connection to the local Samba server. This can be very useful
when trying to determine why a file on the local server file system can’t be modified—
a remote user may have placed a lock on it, which will not be released until the user has
closed the file:

Locked files:
Pid DenyMode R/W Oplock Name

345 DENY_NONE RDWR NONE /root/data.txt Wed Nov 1 10:51:34 2000
345 DENY_NONE RDONLY NONE /root/db.txt Wed Nov 1 10:56:21 2000
1023 DENY_NONE RDWR NONE /home/julian/address_book.txt
Thu Nov 2 00:20:34 2000

The details of all currently locked files are displayed, along with the PID of the Samba
daemon spawned for each client process, the read/write status and full path to the locked
file, and the time and date that the file was first opened.

Finally, smbstatus displays some useful statistics regarding shared memory usage,
which can be useful when trying to size the amount of RAM required by a departmental
server or similar system that services a large number of Samba clients:

Share mode memory usage (bytes):
2096928(99%) free + 112(0%) used + 112(0%) overhead = 2097152(100%) total

In this situation, almost all of the allocated memory is free, meaning that many more
Samba clients may be serviced.

Troubleshooting
Samba problems can be difficult to isolate, because you have to deal with both Microsoft
Windows and Solaris issues and their integration. For example, Windows and Solaris
use completely different authentication systems, particularly with respect to encrypted
passwords. Thus, you need to choose whether to enable Windows-style authentication in
smb.conf for password encryption or modify the Windows Registry to transmit passwords
in the clear. If you suspect a password-related problem, you can disable the use of passwords
for authentication by entering the string “NOPASSWORDXXXXXXXXXXXXXXXXXXXX”.
By temporarily removing the password on the Solaris side, you can determine whether
an authentication issue is password-related. However, allowing logins to Solaris without
passwords is a very bad idea on production systems or those connected to the Internet,
so it would be wise to create a special account with /bin/false as the shell, which you must
remove after testing.

In the first instance, the Samba daemons can be restarted. This can assist you if
the daemon has “hung,” because of a name conflict, timeout, or some other reason. In
addition, the daemons must be restarted every time a change is made to the smb.conf file.

C h a p t e r 3 1 : S a m b a 643

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

Examples
The following examples show how Samba works in action.

Samba GUIs
If manually configuring Samba by using the smb.conf file is a bit daunting, you can use
one of several third-party GUIs to automate the process of creating an smb.conf through
a browser. One of the most popular tools is the Samba Web Administration Tool (SWAT),
which runs as a service through the Internet super daemon (inetd) on port 901. It can
be administered locally, through a browser running on Solaris, or remotely, through a
browser running on Microsoft Windows. The current Samba source distribution will build
SWAT by default; however, you need to make a number of configuration changes to
enable the SWAT service:

1. Map the SWAT service name to the required TCP port (901), by adding the
following line to the /etc/services files:

swat 901/tcp

2. Add the following line to the /etc/inetd.conf file:

swat stream tcp nowait root /usr/local/samba-3.0.5/bin/swat
swat

3. For the changes to take effect, restart the inetd service:

ps -eaf | grep inetd
root 200 1 0 Nov 1 ? 01:25 /usr/sbin/inetd -s

4. The PID of inetd is 200, so use the following command to restart the service
with the modified inetd.conf file:

kill -1 200

5. After opening a browser, you can then access the SWAT interface by using the
URL http://SYDNEY:901/, as shown in Figure 31-3.

NT Authentication
In order to allow users to be authenticated from an NT domain and access Samba shares,
insert the following lines into smb.conf:

encrypt passwords = yes
security = server
password server = "pdc"

In this example, the server name pdc corresponds to the NetBIOS name of the PDC.

644 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

Summary
In this chapter, you have examined the basic elements of Samba configuration for Solaris.
While Solaris provides NFS as its native distributed file system protocol, SMB makes
Solaris more compatible with the Microsoft Windows environment.

C h a p t e r 3 1 : S a m b a 645

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 31

FIGURE 31-3 SWAT GUI for Samba

This page intentionally left blank.

32
Application Development

and Debugging

Although most system administrators are not application developers, in many
situations they can make administration tasks much simpler by using a Perl
script or small C program that includes system calls. A key challenge of system

management involves the automation of as many mundane, repetitive tasks as possible.
Although shell or Perl scripting can be useful in this context, as described in Chapter 6,
sometimes complete programs are required. This chapter examines how to develop,
compile, and execute C applications.

Programming Languages
There are many ways to develop software for Solaris, all of which depend on the internal
representation of data and executable code. At the most basic level, all data and instructions
are encoded as binary data—quite literally, sets of 1’s and 0’s that represent data words.
For example, a processor with an 8-bit word length means that integers between 0 and 255
can be directly addressed by the CPU, without any kind of intermediate translation.
Most Intel CPUs today have a word length of 32 bits, while UltraSPARC processors
have a 64-bit word length, making it easier (and faster) to directly process large numbers.
This ability is very important in scientific applications, like processing data from human
genomes, or in database applications, where transactions of financial data associated
with many billions of dollars are performed constantly.

In the early days of computing, a new, “higher level” programming interface was
developed, called assembly language. By using assembly language to write programs,
instead of directly writing binary code, developers were able to use an interface that was
one level of abstraction away from the hardware. They could use English-like statements
and identifiers to move and address blocks of memory, for example. This increased
productivity and decreased production time. However, anyone who has ever written
an assembly language program knows that it is still far from easy. In addition, a different
assembly language existed for every processor in existence, meaning that skills developed

6 4 7

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32
Blind Folio 647

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

for a Z80 processor were completely different from those for a 2650 CPU. This made it
difficult for programmers to transfer their skills to other systems.

A third level of abstraction was realized by early application development languages
like C, in which the original UNIX kernel and, later, the Solaris kernels were written.
Although C can contain inline assembly language, it was designed to be independent
of the CPU on which its compiled instructions are executing. A compiler translates the
English-like instructions written into binary code for a specific CPU, but the actual C
source code is highly portable: as long as the program was written to conform to the
ANSI standard for C, and as long as a compiler exists for the target platform, the source
of a C application can be copied to that platform, compiled, and executed. C++ is a
language based around C that has object-oriented data structures, which, at the time
of its introduction, improved design processes and made implementation of complex
software easier.

However, this ideal was far from the reality: differences in C and C++ compilers across
vendors made it very difficult to maintain compatibility, particularly with the rise of
graphical user interfaces (GUIs). GUIs had to deal with creating binary code not only
for different CPU types, but also for the broad spectrum of display devices on the market,
which had little in common with each other. Particularly in the 1980s and early 1990s,
it became fashionable to ditch cross-platform products like C to focus specifically on
application development for a particular platform. For example, Microsoft developers
used Visual Basic to create applications that would run only on the Microsoft Windows
or MS-DOS platforms, and UNIX developers wrote applications for the X11 environment
that were not necessarily designed to be cross-platform. Although these applications
worked well for their target environments, it also meant that markets for software were
constrained by the development platform. Many excellent desktop products never
made it to UNIX, and several well-known data processing systems were unable to run
on Windows.

This situation seemed to reflect the frustration felt when development was performed
using assembly language: different codebases were required for the same product on
different platforms, and a separate development team was required for each platform. It
was often very difficult to synchronize these efforts in any realistic way—so, an application
with the same version number in Microsoft Windows might have completely different
functionality than an equivalent product for the MacOS. One solution to this problem
was to begin looking at what went wrong with C and other third-generation languages
that promised cross-platform run-time abilities. A solution was required that ensured that
source distributions could be copied to a target platform and executed with little or no
modification. One possibility was the Perl programming environment. Here, developers
created Perl source, which could then be copied to any machine with a Perl interpreter,
and it would be parsed and compiled just prior to execution. However, Perl (at that stage)
was not object-oriented, and it did not have support for graphical environments.

On the other hand, the Java programming language (which grew out of the Oak
project) promised a full cross-platform graphical environment, which was based around
the idea of a “virtual machine.” If programmers focused on writing applications based
around an API (Application Programming Interface) for the virtual machine, the

648 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

application would execute on any platform for which there was a Java Virtual Machine
(JVM) that met the specifications developed by Sun Microsystems, the creator of Java.
Java also featured single-process multithreading, which is very important in applications
like Web servers, because traditional Web servers create a new process for each client
connection, while a Java Web server runs in a single process and creates internal threads
for each client to execute in. This is much more memory- and CPU-efficient than creating
and destroying processes for each client in high-transaction-volume environments.

Unlike Perl, Java applications were compiled on the development platform into an
intermediate bytecode format, which could then be executed on any target platform.
This reduced the run-time compilation overhead associated with Perl. Unfortunately,
some vendors decided to innovate and create their own extensions to the JVM, which
has created some uncertainty about the future of the Java language. In addition, Sun
Microsystems has refused to hand the control of Java over to an independent body, so
that an ANSI standard could be created, for example. Even with these caveats, however,
Java is being rapidly adopted worldwide as the platform in which to deploy networked
applications.

C Programming
Most Solaris developers use the GNU C (gcc) or C++ (g++) compiler for their
development work, because, unlike some vendor-supplied compilers in the UNIX world,
gcc is 100-percent ANSI-compliant with the C language specification. It is available for
Solaris, Linux, and Microsoft Windows, meaning that applications can be relatively easily
ported between different platforms, with some modifications. In addition, g++ brings
object-oriented data structures and methods to the world of Solaris. The GNU C compiler
development project now falls under the broader banner of the GNU Compiler Collection,
which aims to integrate the existing GNU development environments (including Fortran,
Pascal, and so on) into a single development suite. C is the language in which the Solaris
kernel and many other applications are written, including many of the applications in
the GNU suite, such as flex and bison. You can find more information about the GNU
Compiler Collection project at http://www.gnu.org/software/gcc/.

As mentioned earlier, C is a language that requires a compiler to convert a source
file, containing legal C language statements, into binary code that is suitable for execution.
Because C applications require no run-time interpretation at all (like Java or Perl), C is
often the language of choice where fast performance is required. However, it is also true
that writing C programs reduces the level of abstraction between the developer and the
system, thereby making it easier to make mistakes with programming constructs such as
pointers to locations of data elements in memory, for example. A common problem that
was examined in Chapter 9 involves “buffer overflow,” which results from a C program
overwriting the bounds of a fixed-size array. C will not prevent you from making these
kinds of mistakes, because the compiler assumes that you know what you are doing.
Java is much better suited to catching run-time exceptions such as these. Indeed, you
can define customized exception handling in Java, which can be modified to suit the
application at hand. For example, if your application is mission critical, it may not be

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 649

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

appropriate to terminate a service just because unexpected input is encountered. The
application might instead shift into a failsafe mode and e-mail the system administrator
for attention.

A C application can consist of up to five different components:

• Source files Usually have .c extensions and contain the C language
instructions necessary to execute the application.

• Any local “include” files Define application-wide constants and declarations
that are related to user library functions.

• System-wide header files Define all of the declarations related to system
library functions.

• Local libraries Contain precompiled functions and components that can be
called from a user application.

• System libraries Precompiled functions and components that are required
to operate the Solaris kernel and that form the basis for system functions.

When compiling a C program, you may need to define particular paths and directories
where system or user-supplied libraries can be located by the linker, which is responsible
for combining local object files to form an executable. An application can either be
statically linked, in which case all components are combined to form a single executable,
or dynamically linked, in which case libraries are loaded from their own separate files at
run time. For example, the shell environment variable LD_LIBRARY_PATH is usually set
to /lib, which is the directory that contains the majority of system libraries under Solaris.
Many C developers use a local library directory to store user-developed application
libraries, so it’s often useful to replace the default LD_LIBRARY_PATH with a replacement
like this:

$ USER_LIBRARY_PATH=/staff/pwatters/lib; export USER_LIBRARY_PATH
$ SYS_LIBRARY_PATH=/lib; export SYS_LIBRARY_PATH
$ LD_LIBRARY_PATH=$USER_LIBRARY_PATH:$ SYS_LIBRARY_PATH;
export LD_LIBRARY_PATH

Using gcc
Creating and compiling a simple C program is straightforward: simply call the compiler
with the command gcc, supply the source filename and, optionally, an executable
filename (the default is a.out), and press RETURN. For example, let’s create a file called
helloworld.c with the following contents:

#include <stdio.h>
main()
{

printf("Hello World!\n");
}

650 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

This is about the simplest program possible in C. The standard input/output (I/O)
header file stdio.h is “included” in the compilation process to ensure that the correct
libraries that support functions like printf are dynamically linked. To compile this program,
simply type

$ gcc helloworld.c -o helloworld

This produces an executable called helloworld. If all goes well, no error messages
will be printed. To execute the program, you simply need to type this command:

$./helloworld
Hello World!

Let’s take a slightly more complicated example that implements the C arithmetic
operators to print out the result of a set of simple operations:

#include <stdio.h>
main()
{

int val1=10;
int val2=20;

printf("%i + %i = %i\n", val1, val2, (val1+val2));
printf("%i - %i = %i\n", val1, val2, (val1-val2));
printf("%i * %i = %i\n", val1, val2, (val1*val2));
printf("%i / %i = %i\n", val1, val2, (val1/val2));
}

If you save this program in a file called operators.c, you can compile it with the
command

$ gcc operators.c -o operators

You can now execute the program with the following command:

$./operators
10 + 20 = 30
10 - 20 = -10
10 * 20 = 200
10 / 20 = 0

Oops! 10 divided by 20 is not 0: let’s revisit the program. Although Perl allows all
variables to be simply defined by the $ operator, C requires that explicit types be declared
for all variables and for the results of all operations performed on variables (even simple
arithmetic operations!). Thus, it would be more appropriate (and correct) to continue to
define integer variables as integers, but floating-point variables, or operations that return

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 651

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

652 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

floating-point values, should be explicitly cast as floating-point types. So, the preceding
application could be rewritten as follows:

#include <stdio.h>
main()
{

int val1=10;
int val2=20;

printf("%i + %i = %i\n", val1, val2, (val1+val2));
printf("%i - %i = %i\n", val1, val2, (val1-val2));
printf("%i * %i = %i\n", val1, val2, (val1*val2));
printf("%i / %i = %2.2f\n", val1, val2, (float)(val1/val2));
}

You can now execute the modified program and obtain the correct results:

$./operators
10 + 20 = 30
10 - 20 = -10
10 * 20 = 200
10 / 20 = 0.5

When you create programs that have a lot of iterative operations, or that are intended
for a production environment, you can enable an optimization mode in gcc by using the
–O or –O2 option. Because code is generated by default to contain debugging information,
you can remove it by specifying the optimization option. In addition, you can specify
many other tweaks and tricks individually or in combination. You can utilize spare CPU
registers for arithmetic operations, for example. However, keep in mind for large programs
that turning on optimization can slow down compilation time considerably, thus, you
should only enable optimization just prior to production.

System Calls, Libraries, and Include Files
The example presented in the previous section used only one function (printf) contained
within a single system library, whose functions are all prefaced in the file stdio.h. It is a
typical C convention to include constants and interface definitions for precompiled libraries
in header files. As you’ve probably guessed, there are many more system libraries than
the single one you have examined so far. In addition, it is possible (and often desirable)
to create and distribute your own libraries, which can also make use of header files.

Although you can write your own functions and libraries, you can speed up application
development time considerably by reusing many of the components that are supplied
with Solaris. In particular, you must use system calls in order to access system and kernel
functions. These can be important when building server-side software, although they
are less important for GUI-based applications. However, note that system calls, when
directly accessing data within the kernel, can cause buffer overflows if you don’t correctly

preprocess arguments. For example, if a string passed to a system call has a maximum
length of 1,024 bytes, but a 1,025-byte string is passed, a kernel panic is possible if the
executing user has privileges (real or effective).

Solaris provides manual pages for all system calls and functions in the third group of
man pages. These provide invaluable information about function and library interfaces,
including the number of required parameters, return types, and other dependencies.
This section walks you through the development of a simple application (a horserace
winner predictor) that makes use of two system calls (rand() and srand()). The aim of the
program is to randomly select a winning horse from a variable-sized field of horses—
although this may seem like a trivial example, it is a simple application whose
development touches on the basic elements of constructing a C program.

The first step in developing the application is to investigate the system calls and
functions that will be used to generate the random numbers. You can start by reading the
Solaris documentation, where you’ll find that the rand() function is an ANSI-compliant,
suitable method to use. Through the man pages, you can check the required parameters
to pass to rand(), the name of the include file that defines the interface, and any information
that is relevant to calling the function. For example, you can display the man page for
rand() by typing this command:

$ man 3 rand

The man page for rand() identifies the system header file as <stdlib.h>, so all programs
that use the rand() function must “include” the relevant include file, by specifying this
header file in the C source:

#include <stdlib.h>

The man page for rand() specifies that the return type of the rand() function is an integer
(int), and it doesn’t require any parameters to be passed in order to return a randomly
generated number (void). The man page also states that the rand() function returns a
pseudo-random integer, lying on the interval between 0 and RAND_MAX. By convention,
nonchanging numerical values such as RAND_MAX are defined as constants and cannot
be modified by a program.

A second important requirement for generating random numbers is also displayed
on the man page: a seeding function must be called by any program before calling the
rand() function. This is because random-number generation by digital computers is only
pseudo-random—it generates a series of potentially predictable numbers, using a linear
congruential algorithm. Although it is possible to guess a random sequence if you know
the seed value, the trick is to use a seed number that changes constantly—retrieving the
second or millisecond value from a time-of-day system call is a popular choice. The man
page for rand() states that the srand function takes an unsigned integer argument,
representing the seed, and does not return a value. However, if a seed is not supplied,
the default value of 1 is used.

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 653

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

654 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

Let’s have a look at how to put all of these requirements together to form a program
that uses random numbers. This example is a program that guesses a winning horse
number from a field of horses in a race:

#include <stdio.h>
#include <stdlib.h>
main(int argc, char *argv[])
{
int numberOfHorses, horsePicked, seed;
printf("Horses 1.0\n");
printf("This program picks a winning horse \n");
if (argc != 3)
{
printf("usage: horses number_of_horses seed\n");
exit(1);

}
numberOfHorses=atoi(argv[1]);
seed=atoi(argv[2]);
if (numberOfHorses>24)
{
printf("Sorry - the maximum number of horses is 24\n");
exit(1);

}
else
{
printf("Number of horses: %i\n", numberOfHorses);

}
srand(seed);
horsePicked=1+(int)((float)numberOfHorses*rand()/(RAND_MAX+1.0));
printf("Horse number %i shall win the race\n",horsePicked);

}

The program begins by including the header files for the standard I/O and standard
C libraries. Next, we declare the main() function, which is the exclusive entry point into
the program. We pass two parameters to the main() function: an integer called argc and
a pointer to an array of characters called argv. These two functions are used to enumerate
and pass in command-line parameters, respectively. Because we want to pass in two
variables (the number_of_horses in a race and the random-number seed, seed), argc should
equal 3 (the extra parameter is the name of the program, in this case horses).

Next, we declare internal variables representing the number of horses (numberOfHorses),
the horse selected (horsePicked), and the random-number seed (seed). After a banner is
printed, the number of command-line arguments is checked. If it is not equal to 3, the
application terminates. Checking the bounds of arguments prevents any nasty problems

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 655

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

arising later on (including overwriting the boundary of an array—a situation that is
examined later with respect to the GNU debugger, gdb). Next, we check that the number
of horses is not greater than a typical field—say, 24 horses. If the parameter passed on
the command line is greater than 24, the program exits with a value of 1—the exit value
of a program can be checked by a shell script, for example, to determine whether an
application has failed.

If all the parameters have been passed to the application as expected, the main body
of the program can be executed. The random-number generator is seeded with the
variable called seed, and the winning horse number is then randomly selected by using
the formula supplied—the numberOfHorses multiplied by the number returned by the
rand() function, scaled appropriately by the RAND_MAX constant. Finally, the number
of the winning horse is printed on standard output.

This line-by-line explanation may seem long-winded, and it certainly won’t teach you
to be a C programmer. However, it does introduce the essential elements of a C program
and highlights the evaluation of logical expressions at all points in an application, in
order to carry out some specified task. Although the number and type of system calls on
a Solaris system is very large (several hundred, in fact), they can all be accessed using
the general approach used in developing this small application.

To compile the program using gcc, use the following command:

$ gcc horses.c -o horses -lm

This command string compiles the source file horses.c, to produce the executable file horses,
and forces the math library to be linked, so that any mathematical functions can be
accessed at run time. If an application uses system calls, and the appropriate libraries
are not linked in, the application will fail when executed. Let’s see what happens when
we execute the horses program, with a field of 12 horses and a seed value of 769:

$./horses 12 769
Horses 1.0
This program picks a winning horse from a dynamic field size
Number of horses: 12
Horse number 7 shall win the race

This program suggests that horse number 7 shall win the horse race. However, if we
supply a new random-number seed, we may receive a completely different prediction:

bash-2.03# ./horses 12 768
Horses 1.0
This program picks a winning horse from a dynamic field size
Number of horses: 12
Horse number 3 shall win the race

656 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

We really shouldn’t be basing our bets using the results computed by the program.
In any case, we definitely don’t want to take a bet on a field with many horses running,
otherwise the odds of guessing the correct horse are way too high:

bash-2.03# ./horses 1000
Horses 1.0
This program picks a winning horse from a dynamic field size
Sorry - the maximum number of horses allowed in a race is 24

The random-number generator used in this demonstration is not really suitable
for production use; you should consult the “bible” of numerical computing, which is
Numerical Recipes. The source code, and many book chapters, are now freely available
online at http://nr.harvard.edu/nr/nronline.html.

High-Level Input/Output
Solaris applications make extensive use of standard input and standard output streams,
so that they can be executed on the command line. For example, the cat program displays
the contents of files, which can then be piped through a filter (like more or grep) on the
command line. Many Solaris scripts combine a number of small utilities to create complex
applications. Understanding input and output streams is critical to developing utilities
that can interoperate with existing Solaris applications.

The specific functions for operating on standard input and standard output are
defined in the <stdio.h> header file. The most commonly used input and output routines
are these:

• fgetc Reads a single character from a file

• fgets Reads a string from a file

• getchar Reads in a single character from standard input

Other supported I/O functions, such as getc, are less commonly used, because
they may be equivalent to another function, or may simply not be applicable to a wide
range of situations.

Let’s look at a simple example of a program that uses the fgetc routine to read all
characters from a file, character by character, using the fgetc command:

#include <stdio.h>
main(int argc, char *argv[])
{

FILE *fp;
int character;

if ((fp=fopen(argv[1],"r"))==NULL)
{

fprintf(stderr, "Cannot open file %s for input\n",
argv[1]);

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 657

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

exit(1);
}
do
{

character=fgetc(fp);
if (character!=EOF)
{

printf("%c",character);
}

} while (character!=EOF);
fclose(fp);

}

This program acts very much like the cat utility, because it requires the name of a file
to be passed on the command line. The program begins by reading in the <stdio.h> header
file, which determines the scope for resolving all I/O routines contained in the program
(in this case, fgetc). After the main() function is declared with the number of arguments
to be passed from the command line (argc), and the arguments themselves (*argv[]), a
file-opening function is called (fopen). In contrast to the low-level file handling discussed
later, fopen can open an input stream for reading, writing, and appending, by using
the FILE type. In this example, a file handle (fp) is declared, and it is opened for reading
by the fopen command, using the r (read-only) attribute. If the file cannot be opened
for reading, an appropriate error message is printed to standard error. Finally, a do...while
loop is constructed, so that every character in the named file is printed to standard output,
until the condition has been violated that the read character is not the end-of-file (EOF)
character. After the file is closed using the fclose() function, the program ends, having
successfully printed the entire contents of the named file to the screen.

A related example comes from the fgets function, which reads in strings of a
predetermined buffer size from a named file. In the following example, we read all
data from the named file by using fgets rather than fgetc because fgets reduces the overall
number of input operations by a factor proportional to the size of the buffer. Thus, a
buffer size of eight characters requires eight times fewer read operations for fgets than
the equivalent fgetc operation:

#include <stdio.h>
main(int argc, char *argv[])
{

FILE *fp;
char *buf;
int size=8;
if ((fp=fopen(argv[1],"r"))==NULL)
{

fprintf(stderr, "Cannot open file %s for input\n",
argv[1]);

exit(1);
}
do

{
buf=fgets(buf, size, fp);
if (buf!=NULL)
{

printf("%s",buf);
}

} while (buf!=NULL);
fclose(fp);

}

In this example, a pointer to a file handle (fp) is declared, as well as a pointer to a
string of characters (buf). In addition, a buffer size of eight is allocated. After a file-open
operation is performed by fopen and the appropriate error handling is implemented
through stderr, a do...while loop is implemented, which contains the decision logic of the
program. This reads a buffer of size eight from the file fp and stores the contents in the
character array buf. The printf function is then used to display the contents of the buffer
as a string. The loop continues until a NULL is returned from the fgets read. After the
file is closed using the fclose() function, the program ends, having successfully printed
the entire contents of the named file to the screen.

One of the most common problems associated with standard I/O libraries is boundary
violations. These typically occur when the size of an input stream exceeds what has been
declared in the application. If no appropriate boundary checking is performed on the
size of the input before it is processed, unexpected behavior can occur, usually in the form
of a segmentation violation. Let’s examine how this can occur:

#include <stdio.h>
#define MAX_SIZE 16

main()
{

int character=0, i=0, j=0;
char buf1[MAX_SIZE];
do
{

character=getchar();
if (character!=EOF)
{

buf1[i]=character;
i++;

}
} while (character!=EOF);
do
{

printf("%c", buf1[j]);
j++;

} while (j<i);
}

658 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

This program reads in a set of characters from standard input, stores them in a character
array of static size (defined by MAX_SIZE), and then prints out the characters individually
to standard output. If the application was executed, and the characters 1234567 were
typed in, they would be dutifully printed to standard output. However, if the characters
12345678901234567890 were typed in, the message “Segmentation fault (core dumped)”
would appear (along with a very large core file!). If this application was running as root,
or any other privileged user, the unpredictable behavior of the program may have serious
security implications, as well as potentially violating the integrity of kernel and user
memory.

To remove the problem, we simply need to add an appropriate boundary-checking
condition to the input routine. In this case, we simply check that the number of characters
being read does not exceed the number specified by MAX_SIZE. We don’t need to do
the same check when printing the characters to standard output, because we know that
there will never be an inappropriate number of characters stored in the character buffer
in the first place:

#include <stdio.h>
#define MAX_SIZE 16

main()
{

int character=0, i=0, j=0;
char buf1[MAX_SIZE];
do
{

character=getchar();
if (character!=EOF)
{

buf1[i]=character;
i++;

}
} while ((character!=EOF)&&(i<MAX_SIZE));
do
{

printf("%c", buf1[j]);
j++;

} while (j<i);
}

If the application was executed now, and the characters 1234567 were typed in, they
would be dutifully printed to standard output. If the characters 12345678901234567890
were typed in, however, only 1234567890123456 would be displayed, and no core file
would be dumped. A core file is an image of memory dumped when a process terminates
abnormally. Because some applications can consume many megabytes of RAM, core files
can become very large and waste valuable disk space. If you don’t intend to use core
files for debugging, you can safely remove them.

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 659

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

Regardless of whether standard input or another stream is used (such as a file), it is
critical to check that boundaries have not been overwritten, especially where arrays and
pointers are concerned.

We’ve so far looked at some simple cases involving text files. However, more complex
applications that use structs to create database-like records usually require faster read/
write access provided by binary data streams. Using a binary stream makes it impossible
to use cat or grep to examine the contents of a file, but it does allow a valuable
abstraction from files on a character-by-character basis. Complex data structures can
be easily serialized and written to a binary file.

In the following example program, we define a struct called dbRecord, which contains
some of the user data typically stored in the password file (/etc/passwd). Many applications
use this data for authentication purposes. Imagine that we were going to write a new,
improved version of /etc/passwd that uses a binary data format rather than the existing
cumbersome (and slow) text format. We’d need an administrative interface to allow new
records to be easily added, because they could no longer be added by manually editing
the /etc/passwd file. Let’s have a look at how this could be achieved:

#include <stdio.h>

void printMenu();
char getInput();
void enterData(FILE *fp);

struct dbRecord
{

int uid;
int gid;
char username[8];
char homeDirectory[64];
char shell[64];
char comment[64];

};

main(int argc, char *argv[])
{

FILE *dbFile;
char menuChoice;
if ((dbFile=fopen(argv[1],"a+"))==NULL)
{

fprintf(stderr, "Cannot open database file %s\n",
argv[1]);

exit(1);
}
do
{

printMenu();
menuChoice=getInput();

660 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 661

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

switch (menuChoice)
{

case 'e':
enterData(dbFile);
break;

case 'q':
printf("Session terminated\n");

fclose(dbFile);
exit(1);

break;
}

} while (menuChoice!='q');
}

void printMenu()
{

printf("Database Main Menu\n");
printf("------------------\n");
printf("(e)nter new dbRecord\n");
printf("(q)uit\n");

}

char getInput()
{

char answer;
printf("\nYour Choice: ");
answer=getchar();
return answer;

}

void enterData(FILE *fp)
{

struct dbRecord user;
printf("Data Entry\n");
printf("----------\n\n");
printf("Enter UID: ");
scanf("%i",&user.uid);
printf("Enter GID: ");
scanf("%i",&user.gid);
printf("Enter username: ");
scanf("%s",user.username);
printf("Enter full name: ");
scanf("%s",user.comment);
printf("Enter shell: ");
scanf("%s",user.shell);
printf("Enter home directory: ");
scanf("%s",user.homeDirectory);
fwrite((char *)&user, sizeof(struct dbRecord), 1, fp);

}

662 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

Let’s walk through the code and see how we’ve implemented the data structures
and decision procedures required to implement the password database administration
interface. We start by declaring three functions: printMenu(), getInput()I, and
enterData(FILE *fp). These will be used to print the application menu to standard
output, process user menu selections, and solicit user data, respectively. Next, we
define a struct called dbRecord, which resembles the user record type employed by the
/etc/passwd file. This struct contains the following variables:

int uid Stores the user’s ID

int gid Stores the user’s primary group ID

char username[8] Defines the login for the user

char homeDirectory[64] Stores the full path to the user’s home directory

char shell[64] Contains the full path to the user’s default shell

char comment[64] Stores the user’s full name and optionally a description of some kind

Next, we introduce the main body of the program, beginning with the declaration of
a file handle dbFile. This is a file in which user data will be stored using a binary format,
and its name is retrieved from argv[1] (i.e., passed on the command line). After the file is
opened for appending and reading, as signified by the permission string a+, a do...while
loop is constructed. The loop iterates until menuChoice, as entered by the user after the
menu is printed, is q. In practice, this condition is never reached, because the q is caught
by the switch statement, and the case q immediately exits from the program. If the case e
is encountered, the function enterData(FILE *fp) is called. This function proceeds by asking
the user to enter all data elements that are defined for dbRecord. Each entry is read in
by using the scanf function. Once the data has been collected, a record is written to the
specified file by using the fwrite() function.

Let’s see how a data operation performs in practice:

$./database database.txt
Database Main Menu

(e)nter new record
(q)uit

Your Choice:

After selecting e, the Data Entry menu is displayed, and a new record can be inserted:

Data Entry----------
Enter UID: 1001
Enter GID: 100
Enter username: pwatters
Enter full name: Paul
Enter shell: /bin/sh
Enter home directory: /home/paul

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 663

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

After the record has been inserted, the main menu is displayed once again. Further
records can be inserted, or you can simply quit the application:

Database Main Menu

(e)nter new record
(q)uit

Your Choice:q
Session terminated

Here, we started the database application by passing the filename database.txt, which
is to contain the user data entered through the application. After the welcome banner is
printed, we enter e to go to the data entry screen. Here, we enter data for the user pwatters,
including UID 1001, GID 100, full name Paul, shell /bin/sh, and home directory /home/paul.
After all of the data has been accepted and the entry has been written to the database
file, we are returned to the main menu.

Low-Level Input/Output
The open() system call is used to open a file using a low-level call. The file remains open
until it is closed with a close() system call. When the open() system call is called, a file
descriptor is returned, which is a unique integer that distinguishes the current open
file from other opened files. A pool of available file descriptor integers is maintained,
and the next integer in the queue is selected. Recall that there are three file descriptors
that are defined by the low-level interface: standard input (0), standard output (1), and
standard error (2).

The named file is always opened at its beginning, so subsequent operations are
operating sequentially on the data contained in the file. The open() function opens the
file named in the string pathname, with the permissions specified by primary flags. These
flags include the following:

• O_RDONLY Opens the file read-only.

• O_WRONLY Opens the file write-only.

• O_RDWR Opens the file read/write.

In addition, the following secondary flags may be bitwise-OR’ed with the secondary
flags to extend the functionality of the open() call:

• O_CREAT Creates the file on the file system if it does not already exist.

• O_EXCL The reverse of O_CREAT: if a file already exists, the call will fail.

• O_NOCTTY Prevents the process from being overtaken by a terminal (tty)
device that is specified by pathname.

• O_TRUNC Allows a file to be truncated.

• O_APPEND Allows data to be appended to the end of a file.

• O_NONBLOCK Prevents waiting.

• O_SYNC Enforces synchronous I/O.

• O_NOFOLLOW Prevents the opening of a file if it is a symbolic link.

• O_DIRECTORY Fails if the named file is not a directory.

• O_LARGEFILE Allows large files whose sizes cannot be addressed (in 32-bit
systems) to be opened.

The open() function always returns an integer, which is the file descriptor (if positive),
or an error (if negative). The errors associated with open(), which are set by errno, include
EEXIST, EISDIR, EACCESS, ENAMETOOLONG, ENOENT, ENOTDIR, ENODEV, EROFS,
ETXTBSY, EFAULT, ELOOP, ENOSPC, ENOMEM, EMFILE, and ENFILE.

Two operations are supported by low-level I/O: reading (with the read() function)
and writing (with the write() function). The main difference between high- and low-level
reading and writing functions is that the latter require you to specify your own buffer
size, and the type of data being read and written is not assumed.

The read() call has the form

ssize_t read(int fd, void *buf, size_t count)

where fd is a file descriptor, buf is a pointer to a (variable-sized) buffer, and count is the
number of bytes to be read from the file. If the call is successful, the number of bytes
read successfully is returned. If the call fails, one of the following codes is returned by
errno: EINTR, EAGAIN, EIO, EISDIR, EBADF, EINVAL, or EFAULT. These are defined
and described at the end of this chapter.

The write() call has the form

ssize_t write(int fd, void *buf, size_t count)

where fd is a file descriptor, buf is a pointer to a (variable-sized) buffer, and count is the
number of bytes to be written to the file. If the call is successful, the number of bytes
written successfully is returned. If the call fails, one of the following codes is returned
by errno: EINTR, EAGAIN, EIO, EISDIR, EBADF, EINVAL, EPIPE, or EFAULT. These
are defined and described at the end of this chapter.

A file opened with open() can be closed with close(int fd), where fd is the file descriptor.
Let’s examine how these low-level calls can be used in practice. We revisit the user

database application and modify the file operations to use low-level rather than high-
level routines.

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>

664 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

void printMenu();
char getInput();
void enterData(int fd);

struct dbRecord
{

int uid;
int gid;
char username[8];
char homeDirectory[64];
char shell[64];
char comment[64];

};

main(int argc, char *argv[])
{

int fd;
char menuChoice;
if ((fd=open(argv[1],O_RDWR|O_CREAT|O_APPEND))<0)
{

fprintf(stderr, "Cannot open database file %s\n",
argv[1]);

exit(1);
}
do
{

printMenu();
menuChoice=getInput();
switch (menuChoice)
{

case 'e':
enterData(fd);
break;

case 'q':
printf("Session terminated\n");
exit(1);
break;

}
} while (menuChoice!='q');
close(fd);

}

void printMenu()
{

printf("Database Main Menu\n");
printf("------------------\n");
printf("(e)nter new dbRecord\n");

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 665

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

printf("(q)uit\n");
}

char getInput()
{

char answer;
printf("\nYour Choice: ");
answer=getchar();
return answer;

}

void enterData(int fd)
{

struct dbRecord user;
printf("Data Entry\n");
printf("----------\n\n");
printf("Enter UID: ");
scanf("%i",&user.uid);
printf("Enter GID: ");
scanf("%i",&user.gid);
printf("Enter username: ");
scanf("%s",user.username);
printf("Enter full name: ");
scanf("%s",user.comment);
printf("Enter shell: ");
scanf("%s",user.shell);
printf("Enter home directory: ");
scanf("%s",user.homeDirectory);
write(fd, (char *)&user, sizeof(struct dbRecord));

}

The first thing to notice is that we’ve added in several different header files, including
sys/types.h, sys/stat.h, unistd.h, and fcntl.h. These are all necessary to support low-level I/O.
Next, we’ve changed the declaration of the enterData() function from a pointer to type
FILE, to a single integer. This is the integer that contains the file descriptor. This means
we must also change the fopen() request to an open() call. This specifies the name of the
file to be opened, along with three OR’ed flags: O_RDWR, O_CREAT, and O_APPEND. This
ensures that the database file will be opened read/write, will be created if it doesn’t
already exist, and will be opened for appending. In addition, note that the error-checking
condition has now changed: instead of checking to see whether the return value of fopen()
is NULL, we now simply check to see whether the returned integer value from open() is
positive (success) or negative (failure).

Finally, the write() call is similar to the original: a file descriptor is passed, using the
instantiation of dbRecord (user), where each record is written individually (i.e., the size
of the buffer being written is defined by the record size).

666 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

Performance Optimization and Debugging
If you write your own programs, or if you compile those written by others, speed of
execution and size of executables are often major considerations. For example, if you are
writing a program that attempts to solve differential equations or perform highly complex
numerical operations, you will obviously want to optimize for speed of execution. If you’re
a Java applet developer, your codebase must be downloaded to remote Web browser
clients before it can be executed, so you’d definitely be more interested in optimizing
for executable size rather than speed. Any kind of optimization performed on source
code during compilation will almost certainly increase compilation time, so this needs
to be factored into plans for code optimization during early phases of development.

The Solaris development environment and the GNU compilers provide several ways
in which you can monitor and enhance performance. The best way to evaluate application
performance is to time the application. You can use the time command to measure the
actual time taken to execute the application; it breaks this down into user and system
components. Let’s run the time command on the compiler command string used earlier
to build the horses program from source:

$ time gcc horses.c -o horses -lm
real 0m0.547s
user 0m0.450s
sys 0m0.100s

The total time taken to compile the command was 0.547 seconds (“real time”), made up
of approximately 0.45 second of user time, and 0.1 second of system time. In this context,
user time is the number of seconds that the CPU spent processing instructions in user
mode, while system time is the number of seconds the kernel was running on the CPU.
It is also possible to measure the execution time of the application itself:

$ time ./horses
real 0m0.031s
user 0m0.020s
sys 0m0.000s

Here, you can see that the execution time of the application is many times faster
than the compilation process: the real time used was 0.031 second, of which the user
component was 0.02 second, and the system component was negligible. However, let’s
examine how long it actually took to compile the program:

$ time gcc -O2 horses.c -o horses -lm
real 0m0.895s
user 0m0.740s
sys 0m0.150s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 667

668 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

The compilation time of 0.895 second was around 50 percent longer than an
unoptimized compile. However, the execution time of the optimized program was less
than half that required by the unoptimized program:

$ time ./horses
real 0m0.014s
user 0m0.010s
sys 0m0.010s

Using optimization can also have an effect on the size of a binary—a faster application
is usually larger in executable size, as loops are unrolled and external functions are moved
inline. In addition, producing debugging and profiling data for later examination using
the GNU debugger (gdb) also increases the application binary size. For example, if we
compile the horses program using the standard options, we can examine the size of the
executable by using the ls command:

$ gcc horses.c -o horses -lm
$ ls -l horses
-rwxr-xr-x 1 root root 11533 Jul 18 19:37 horses

However, when we specify debugging information to be included in the binary, we
can use the –pg option with gcc—this also produces a much larger binary, as we can see
using ls:

$ gcc -pg horses.c -o horses -lm
$ ls -l horses
-rwxr-xr-x 1 root root 21215 Jul 18 19:37 horses

In this case, the object file contains the executable code as well as the types associated
with all functions and variables in the program. In addition, the mapping between line
numbers in the source and memory addresses in the object code is retained, making the
executable almost twice as large as a binary with no debugging information.

When we write C programs, we’re often faced with the difficult task of debugging an
application that produces unexpected behavior. Integrated development environments
(IDEs) are generally quite good at picking up syntax errors, but they cannot always
diagnose what will occur at run time, because of differences in environment, system load,
virtual memory and system library availability, and so on. That’s where gdb really comes
into its own.

Let’s examine a simple program that declares an array of integers, assigns a value
to the first and last elements of the array, and then prints it out:

#include <stdio.h>

main()

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 669

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

{
int i[10];
i[0]=1;

printf("%i \n",i[0]);
i[9]=1;
printf("%i \n",i[9]);

}

If we compile and run the program, we would expect to see the output

$./array_test
1
1

However, a common problem with C programming is overwriting the boundaries of an
array. You would think that, having declared the array to have ten elements, only ten
elements would be addressable—accessing elements outside this range should cause a
compile error. However, in our ten-element array declared in the preceding code example,
most compilers will allow us to address the eleventh, twelfth, or thirteenth element, even
though they don’t “exist.” In fact, if we modify our program to write to the twelfth
element of the array, we will get a run-time error:

#include <stdio.h>
main()
{

int i[10];
i[0]=1;
printf("%i \n",i[0]);
i[11]=1;
printf("%i \n",i[11]);

}

Let’s see what happens when we run the program:

$./array_test
1
Segmentation fault

Although we can write off such errors easily by going back to the source and checking
for programming errors, this can be a long and tedious process in large applications. In
addition, it may not always be clear why a segmentation fault (or any other memory
access violation error) is occurring at all. In these cases, it can be useful to get a snapshot
of memory contents associated with a specific program, by using the GNU debugger
(gdb). This can help determine the circumstances under which a program crashed and

pinpoint any offending commands or variable values that were invalid at the time of
execution. In addition, the specific values of variables in your programs can be “watched”
while stepping through line-by-line execution of the program. This also gives developers
an indication of where an error occurs in the source. It’s even possible to pass new values
of variables to the application while it is running, to “fix” any problems in real time. You
can find the gdbmanual online at http://www.cis.ohio-state.edu/htbin/info/info/gdb.info.

The main commands used in a gdb session are shown in Table 32-1.
We can use the gdb to trace the error in our application:

$ gdb array_test
GNU gdb 4.17.0.11 with Solaris/x86 hardware watchpoint and FPU support
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the
GNU General Public License, and you are
welcome to change it and/or distribute copies
of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-Solaris"...
(gdb)

670 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

Command Action

break Sets a breakpoint at a specific point in a program prior to stepping. Breakpoints
can be set on functions and source line numbers.

clear Clears breakpoints specified for functions and line numbers in source files.

continue Continues execution of a program after a breakpoint has been met, until the next
breakpoint.

delete Deletes breakpoints by breakpoint number.

display Displays the value of an expression every time program execution is halted.

finish Continues execution of a program after a breakpoint, until the program has
completed.

info Prints details of breakpoints and watchpoints set during a gdb session.

lisxt Displays specific lines of source code.

next Continues execution of a program to the next source line, if step mode has been set.

print Displays the value of an expression.

run Begins execution of a program under gdb.

step Steps through code line-by-line, so that the effect of individual statements and
expressions in the source can be evaluated.

watch Halts execution if the value of a variable is modified.

TABLE 32-1 Basic GNU Debugger (gdb) Commands

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 671

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

First, we read in the content’s executable file:

(gdb) file array_test
Reading symbols from array_test...done.

Next, we attempt to re-create the error, by executing the program within gdb:

(gdb) run
Starting program: /tmp/array_test
1

Program received signal SIGSEGV, Segmentation fault.
0x1 in ?? ()

This is the same point at which the application failed when executed within the shell.
Because we have received a segmentation violation, we need to determine the circumstances
under which it arose. When the main() function is called, details about the function call
are generated, including the location of the call in the source file, its arguments (if any),
and details of any local variables. This set of information is known as the stack frame, and
all stack frames are stored in memory in a call stack. We can use the bt command to
display the trace of the current call stack, with one line displayed for each stack frame.
In our application, we had only a single function (the main() function), so only a single
line is displayed:

(gdb) bt
#0 0x1 in ?? ()

At any point of execution, you can generate a list all of the variables used in an
application by using the list command:

(gdb) list 'array_test.c'
There are 365 possibilities. Do you really
wish to see them all? (y or n)

__DTOR_LIST__
Letext __EH_FRAME_BEGIN__
_CS_LFS64_CFLAGS __FRAME_END__
_CS_LFS64_LDFLAGS __bb
_CS_LFS64_LIBS __blkcnt64_t
_CS_LFS64_LINTFLAGS __blkcnt_t
_CS_LFS_CFLAGS __bss_start
_CS_LFS_LDFLAGS __caddr_t
_CS_LFS_LIBS __clock_t
_CS_LFS_LINTFLAGS __compar_fn_t
_CS_PATH __daddr_t

_CS_XBS5_ILP32_OFF32_CFLAGS __data_start
_CS_XBS5_ILP32_OFF32_LDFLAGS __deregister_frame_info
_CS_XBS5_ILP32_OFF32_LIBS __dev_t
_CS_XBS5_ILP32_OFF32_LINTFLAGS __do_global_ctors_aux
_CS_XBS5_ILP32_OFFBIG_CFLAGS __do_global_dtors_aux
_CS_XBS5_ILP32_OFFBIG_LDFLAGS __fd_mask
_CS_XBS5_ILP32_OFFBIG_LIBS __fd_set
_CS_XBS5_ILP32_OFFBIG_LINTFLAGS __fsblkcnt64_t
_CS_XBS5_LP64_OFF64_CFLAGS __fsblkcnt_t
_CS_XBS5_LP64_OFF64_LDFLAGS __fsfilcnt64_t

You can also retrieve and set the values of these variables. More usefully, you can
extract the values of the CPU registers by using the info all-registers command:

(gdb) info all-registers
eax: 0x3 3
ecx: 0x0 0
edx: 0x2 2
ebx: 0x400f6618 1074751000
esp: 0xbffff874 -1073743756
ebp: 0xbffff8a8 -1073743704
esi: 0x4000aa20 1073785376
edi: 0xbffff8d4 -1073743660
eip: 0x1 1

eflags: 0x10282 IOPL: 0; flags: SF IF RF
orig_eax: 0xffffffff -1

cs: 0x23 35
ss: 0x2b 43
ds: 0x2b 43
es: 0x2b 43
fs: 0x0 0
gs: 0x0 0

st0: 0x3fff8000000000000000 Empty Normal 1
st1: 0x00000000000000000000 Empty Zero 0
st2: 0x3fff8000000000000000 Empty Normal 1
st3: 0x00000000000000000000 Empty Zero 0
st4: 0x00000000000000000000 Empty Zero 0

Setting a breakpoint for a function is easy when using the break command. In the
case of our test program, we have only a single function (main()), so this will be reached
almost as soon as the program is executed. Better symbolic information, including the
code and line numbers concerned, can be obtained by compiling the application with
the –g option. We can set a breakpoint on main() by using the following command:

(gdb) break main
Breakpoint 1 at 0x8048536

672 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

Next, we need to run the program again, and it will be halted once the declared
breakpoint has been reached:

(gdb) run
Starting program: /tmp/array_test

Breakpoint 1, 0x8048536 in main ()
(gdb)

At this point, we can examine the values of all declared variables, and set watches
appropriately. One issue when stepping through applications using gdb is referring to
source files that are not in your path:

(gdb) s
Single stepping until exit from function main,
which has no line number information.
printf (format=0x80485d0 "%i \n") at printf.c:30
printf.c:30: No such file or directory.

Fortunately, you can obtain the source for many Solaris libraries, so it is often
feasible to debug to the level of the standard I/O libraries and similar.

Summary
In this chapter, you have examined how to compile and build C applications on Solaris.
Since the Solaris kernel originally was built using C, it makes sense for system
administrators to understand how system calls and libraries work, even if they do not
develop software themselves.

C h a p t e r 3 2 : A p p l i c a t i o n D e v e l o p m e n t a n d D e b u g g i n g 673

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 32

This page intentionally left blank.

33
Web Applications

and Services

Alarge area of growth for Solaris implementations has been supporting Web
operations based on Java 2 Enterprise Edition (J2EE) architectures. This chapter
reviews several key J2EE technologies bundled with Solaris, with a focus on the

Sun Java System Application Server and the widely used open-source Apache HTTP
Server (http://httpd.apache.org/).

Apache Web Server
Apache is a multiprocess Web server that is supplied with the Solaris 10 distribution. It
is used by the majority of Web servers in the world to serve HTTP (insecure) and HTTPS
(secure) content. Apache also performs a number of different tasks, including

• Provides a Common Gateway Interface (CGI) to provide client access to server-
side processes and applications. CGI applications can be written in C, C++, Perl,
Bourne shell, or the language of your choice.

• Supports the hosting of multiple sites on a single server, where each site is
associated with a unique Fully Qualified Domain Name (FQDN). Thus, a single
Solaris system, in an ISP environment, can host multiple Web sites, such as
http://www.learnteach.com, http://www.paulwatters.com, and so forth, using a single
instance of Apache.

• Secures the transmission of credit card details and other sensitive data by
supporting Secure Sockets Layer (SSL). This allows for key-based encryption
of the HTTP protocol (called HTTPS), with key sizes of up to 128 bits.

• Provides a fully featured proxy/cache server, which provides an extra level
of protection for clients behind a firewall, and also keeps a copy of the most
commonly retrieved documents from the Web.

6 7 5

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33
Blind Folio 675

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

676 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

• Provides customized access, agent, and error logs that can be used for marketing
and reporting purposes.

The main Apache configuration file is httpd.conf, which contains three sections:

• Global environment configuration Sets key server information, such as the
root directory for the Apache installation, and several process-management
settings, such as the number of concurrent requests permitted per server process.

• Main server configuration Sets run-time parameters for the server, including
the port on which the server listens, the server name, the root directory for the
HTML documents and images that comprise the site, and the server authorization
configuration, if required.

• Virtual hosts configuration Configures the Apache HTTP Server to run servers
for multiple domains. Many of the configuration options that are set for the main
server can also be customized for each of the virtual servers.

The following sections examine the configuration options in each of these sections
in detail, after which you are shown how to start Apache.

Global Environment Configuration
The following options are commonly set in the global environment configuration section:

ServerType standalone
ServerRoot "/opt/apache1.3.9"
PidFile /opt/apache1.3.9/logs/httpd.pid
ScoreBoardFile /opt/apache1.3.9/logs/apache_status
Timeout 300
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 15
MaxRequestsPerChild 0
LoadModule auth_module modules/mod_auth.so

The server configuration shown here does not run as a service of the Internet super
daemon (inetd), rather, Apache runs as a standalone daemon. This gives Apache
more flexibility in its configuration, as well as better performance than running through
inetd. Since Apache is able to service more than one client through a single process
(using the KeepAlive facility), no production system should ever use the inetd mode.

The ServerRoot for the Apache installation is set to /opt/apache1.3.9 in this installation.
All of the key files required by Apache are located below this directory root, such as the
lock file, the scoreboard file, and the file that records the PID of the current Apache process.

Each of the clients that connect to the server has an expiry date, in the form of a
timeout. In this configuration, the timeout is set to 300 seconds (5 minutes). This is the
period of inactivity after which a client is deemed to have timed out. Requests are kept
alive, with up to 100 requests. There is no limit to the number of requests per child process.

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 677

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Main Server Configuration
The following options are commonly set in the main server configuration section:

Port 80
ServerAdmin paul@paulwatters.com
ServerName www.paulwatters.com
DocumentRoot "/opt/apache1.3.9/htdocs"
<Directory/>

Options FollowSymLinks
AllowOverride None

</Directory>
<Directory "/opt/apache1.3.9/htdocs">

Options Indexes FollowSymLinks MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>
UserDir "/opt/apache1.3.9/users/"
DirectoryIndex index.html
AccessFileName .htaccess
<Files .htaccess>

Order allow,deny
Deny from all

</Files>

The parameters in this section determine the main run-time characteristics of the
Apache HTTP Server. The first parameter is the port on which the Apache HTTP Server
will run. If the server is being executed by an unprivileged user, then this port must be
set to port 1024 or higher. However, if a privileged user like root is executing the process,
then any unreserved port may be used (you can check the services database, /etc/services,
for ports allocated to specific services). By default, port 80 is used.

Next, some details about the server are entered, including the hostname of the system,
which is to be displayed in all URLs, and a contact e-mail address for the server. This
address is usually displayed on all error and CGI misconfiguration pages. The root
directory for all HTML and other content for the Web site much also be supplied. This
allows for both absolute and relative URLs to be constructed and interpreted by the
server. In this case, the htdocs subdirectory underneath the main Apache directory is
used. Thus, the file index.html in this directory will be the default page displayed when
no specific page is specified in the URL. There are several options that can be specified
for the htdocs directory, including whether or not to ignore symbolic links to directories
that do not reside underneath the htdocs subdirectory. This is useful when you have
available on CD-ROMs and other file systems files that do not need to be copied onto
a hard drive, simply to be served through the Web.

678 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Apache has a simple user authentication system available, which is similar to the
Solaris password database (/etc/passwd) in that it uses encrypted passwords, but it does
not use the Solaris password database. This means that a separate list of users and
passwords must be maintained. Thus, when a password-protected page is requested
by a user, the user must enter a username and matching password into a dialog box.
By using the appropriate modules, a connection to LDAP or some other directory can
be made. Any directory that appears underneath the main htdocs directory can be password
protected using this mechanism.

Next, the various MIME types that can be processed by the server are defined, in
a separate file called mime.types. The following are some examples of the MIME types
defined for the server:

application/mac-binhex40 hqx
application/msword doc
application/x-csh csh

You can see the file types defined here for many popular applications, including
compression utilities (Macintosh BinHex, application/mac-binhex40, with the extension .hqx),
word processing documents (Microsoft Word, application/msword, with the extension .doc),
and C shell scripts (application/x-csh, with the extension .csh).

The next section deals with logfile formats, as shown here:

HostnameLookups Off
ErrorLog /opt/apache1.3.9/logs/error.log
LogLevel warn
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent
CustomLog /opt/apache1.3.9/logs/access.log common
CustomLog /opt/apache1.3.9/logs/access.log combined

The first directive switches off hostname lookups on clients before logging their
activity. Since performing a reverse DNS lookup on every client making a connection
is a CPU- and bandwidth-intensive task, many sites prefer to switch it off. However, if
you need to gather marketing statistics on where your clients are connecting from (e.g.,
by geographical region or by second-level domain type), then you may need to switch
hostname lookups on. In addition, an error log is specified as a separate entity to the
access log. A typical set of access log entries looks like this:

192.64.32.12 - - [06/Jan/2002:20:55:36 +1000]
"GET /cgi-bin/printenv HTTP/1.1" 200 1024

192.64.32.12 - - [06/Jan/2002:20:56:07 +1000]
"GET /cgi-bin/Search.cgi?term=solaris&type=simple HTTP/1.1" 200 85527

192.64.32.12 - - [06/Jan/2002:20:58:44 +1000]

"GET /index.html HTTP/1.1" 200 94151
192.64.32.12 - - [06/Jan/2002:20:59:58 +1000]
"GET /pdf/secret.pdf HTTP/1.1" 403 29

The first example shows that the client 192.64.32.12 accessed the CGI application
printenv on January 6, 2002, at 8:55 P.M. The result code for the transaction is 200,
which indicates a successful transfer. The printenv script comes standard with Apache,
and displays the current environment variables being passed from the client. The output
is very useful for debugging, and looks like this:

DOCUMENT_ROOT="/usr/local/apache-1.3.9.12/htdocs"
GATEWAY_INTERFACE="CGI/1.1"
HTTP_ACCEPT="image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-excel, application/msword,
application/vnd.ms-powerpoint, */*" HTTP_ACCEPT_ENCODING="gzip, deflate"
HTTP_ACCEPT_LANGUAGE="en-au"
HTTP_CONNECTION="Keep-Alive"
HTTP_HOST="www"
HTTP_USER_AGENT="Mozilla/4.75 (X11; I; SunOS 5.10 i86pc; Nav)"
PATH="/usr/sbin:/usr/bin:/bin:/usr/ucb:/usr/local/bin:
/usr/openwin/bin:/usr/dt/bin:/usr/ccs/bin"
QUERY_STRING=""
REMOTE_ADDR="209.67.50.55"
REMOTE_PORT="3399"
REQUEST_METHOD="GET"
REQUEST_URI="/cgi-bin/printenv"
SCRIPT_FILENAME="/usr/local/apache/cgi-bin/printenv"
SCRIPT_NAME="/cgi-bin/printenv"
SERVER_ADDR="209.67.50.203"
SERVER_ADMIN="paul@paulwatters.com"
SERVER_NAME="www.paulwatters.com"
SERVER_PORT="80"
SERVER_PROTOCOL="HTTP/1.1"
SERVER_SIGNATURE="Apache/1.3.9.12 Server at www.paulwatters.com Port 80\n"
SERVER_SOFTWARE="Apache/1.3.9.12 (Unix)" TZ="Australia/NSW"

The second example from the log shows that a client running from the same system
successfully executed the CGI program search.cgi, passing two GET parameters:
a search term of solaris and a search type of simple. The size of the generated response
page was 85,527 bytes. The third example shows a plain HTML page being successfully
retrieved, with a response code of 200 and a file size of 94,151 bytes.

The fourth example demonstrates one of the many HTTP error codes being returned,
instead of the 200 success code. In this case, a request to retrieve the file /pdf/secret.pdf is
denied with a 403 code being returned to the browser. This code would be returned if
the file permissions set on the /pdf/secret.pdf file did not grant read access to the user
executing Apache (e.g., nobody).

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 679

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Virtual Hosts Configuration
The following options are commonly set in the virtual hosts configuration section:

<VirtualHost www.cassowary.net>
ServerAdmin webmaster@paulwatters.com
DocumentRoot /opt/apache1.3.9/htdocs/www.cassowary.net
ServerName www.cassowary.net
ErrorLog /opt/apache1.3.9/logs/www.cassowary.net-error_log
CustomLog /opt/apache1.3.9/logs/www.cassowary.net-access_log common

</VirtualHost>

This example defines a single virtual host (called www.cassowary.net), in addition to
the default host for the Apache HTTP Server. Virtual host support allows you to keep
separate logs for errors and access, as well as a completely separate document root to the
default server. This makes it very easy to maintain multiple virtual servers on a single
physical machine.

Starting Apache
Apache is bundled with a control script (apachectl) that can be used to start, stop, and
report on the status of the server. To obtain help on the apachectl script, use the following
command:

$ /opt/apache1.3.9/apachectl help
usage: /opt/apache1.3.9/apachectl
(start|stop|restart|fullstatus|status|graceful|configtest|help)

start - start httpd
stop - stop httpd
restart - restart httpd if running by sending a SIGHUP or start if

not running
fullstatus - dump a full status screen; requires lynx and mod_status enabled
status - dump a short status screen; requires lynx and mod_status enabled
graceful - do a graceful restart by sending a SIGUSR1 or start if not running
configtest - do a configuration syntax test
help - this screen

To start Apache, you simply need to issue the following command from the same
directory:

$ /opt/apache1.3.9/apachectl start

To stop the service, you may use the following command from the same directory:

$ /opt/apache1.3.9/apachectl stop

680 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 681

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

If you change the Apache configuration file and need to restart the service so that
the server is updated, simply use the following command from the same directory:

$ /opt/apache1.3.9/apachectl restart

Once Apache is running on port 80, clients will be able to begin requesting HTML
pages and other content.

Sun Java System Application Server
The Sun Java System Application Server is a J2EE-compliant platform for deploying
enterprise Java applications, in conjunction with existing CGI and Netscape Server API
(NSAPI) applications. By integrating all server-side application support under a single
service regime, it is possible to minimize administration overhead, achieve better scaling
through tight integration, and provide combined monitoring and event notification
support. Historically, server-side applications providing back-end and middleware
services have used front-end presentation layers, in the form of HTML pages, JSP pages,
applets, and applications to give users combined access to numerous data sources. By
implementing business logic using the J2EE model, you can avoid the pitfalls associated
with multiprocess applications, such as those written for use with Web servers that support
CGI, by using Java’s multithreading capabilities.

Enterprise JavaBeans (EJBs) are one of the key technologies supported by J2EE.
These distributed components are of three varieties:

• Stateless session beans Store data and perform operations that are not stateful

• Stateful session beans Store data and perform operations that are stateful

• Entity beans Allow object operations to be easily mapped onto relational
database tables

By using stateful session beans to support user sessions, entity beans to persist data,
and stateless session beans to provide a low-overhead interface to entity beans, you can
build entire applications on the EJB infrastructure. While the myriad layers and parameters
associated with an EJB deployment can be mind-boggling, fortunately the Sun Java
System Application Server provides advanced deployment tools to ease and automate
many aspects of this process. By implementing a distributed object platform, server-side
applications can be expanded to span across multiple servers and clusters, improving
scalability and reducing bottlenecks. The relationships between the various layers of
EJB technology are shown in Figure 33-1.

Although most Java application servers support the J2EE specification, given the
wide variety in licensing costs, it’s important to understand what features set the Sun
Java System Application Server apart from the competition.

Performance is the number one goal of the Sun Java System Application Server: in
addition to featuring multithreading within Java applications that it’s hosting, the Sun
Java System Application Server uses multithreading internally. In addition, some tasks
can be executed in parallel by using multiple threads. Alternatively, multiprocessing is
supported by virtue of data and process sharing across multiple systems: as an application
grows, various tasks can be assigned to specific servers. For example, one server might
handle authentication, while another might process all JDBC requests to a database
server. One reason for implementing applications in this way is that not all servers
required to run an application may be located in the same subnet: indeed, it is likely
that an authentication server would sit outside a firewall, while a database server
would be the most difficult system to access externally.

Since Java, CGI, NSAPI, and other server-side technologies can be handled by the
same application server, rather than by several independent servers, it follows that
performance improvements can be obtained by integration, since only one server needs
to be running.

The Sun Java System Application Server provides high availability by supporting
failover of stateful session beans. This means that if a system that is storing data for an

682 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

FIGURE 33-1
EJB layers

interactive user session crashes for some reason, another server can recover the beans
and continue. This is particularly useful when running applications that persist data in
stateful session beans for long periods—since entity beans and stateless session beans
do not store user state in the same way as stateful session beans, this reduces a key risk
in supporting EJB technology. A similar facility is provided for Common Object Request
Broker Architecture (CORBA) clients that connect through to EJBs.

Object caching is performed by the Sun Java System Application Server at several
levels, to ensure efficient resource usage. This includes caching of JDBC connections
to all databases, caching of JSP and HTML output, and various other tasks. While this
approach has the inherent risks of object mismatching and incorrect retrieval, the caching
features of the Sun Java System Application Server are generally robust, and can be
switched on or off if desired. In addition, the Sun Java System Application Server features
some preemptive strategies for streamlining data processing operations, including being
able to view result sets before they have been completely retrieved from a database table.

The Sun Java System Application Server is a highly scalable system: it works on single-
CPU systems running Windows, as well as on high-end E10000 systems running Solaris,
with 64 CPUs. In addition to making optimal use of a single system’s resources, the
Sun Java System Application Server is able to scale across multiple systems, making the
potential pool of CPU resources virtually unlimited. Since the Sun Java System Application
Server uses its own Distributed Data Synchronization (DSync) system to share data
among its configured servers, any overhead involved in swapping tasks across different
systems is minimized. No additional installation or reconfiguration is required—new
servers are added using the Sun Java System Application Server Administration Tool
as required. Once you have added new servers to the pool of available systems, load
balancing across all systems is performed automatically, without your intervention,
by using round-robin and other algorithms for computing load sharing. This does not
require external load balancing, as the load-balancing function is integrated within the
application server.

Security is a key concern for application services, and the Sun Java System Application
Server provides the best set of security offered in the J2EE market, since it is integrated
with the Sun Java System Directory Server. By using LDAP for authentication and
authorization, and single sign-on across all supported applications, you can reduce
security risks significantly.

The Sun Java System Application Server supports JDBC and database access by using
the standard Java SQL API, as well as a Unified Integration Framework API, that further
abstracts vendor-specific operations from individual JDBC drivers. The Sun Java System
Application Server supports DB2, Informix, Oracle, Sybase, and SQL Server, by supplying
highly optimized, multithreaded drivers that work with a single transaction manager,
which coordinates many low-level activities required to process transactions. In addition,
the Sun Java System Application Server now features an integrated version of the
PointBase database, which has support for relational and object storage. PointBase has
its own JDBC driver, and can be used during development and testing without a third-
party database being present.

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 683

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Another key advantage of the Sun Java System Application Server over its competitors
is the Sun Java System Application Server Administration Tool, which provides real-time
management capabilities over all aspects of server operations. By using the Administration
Tool, it’s possible to manage services, monitor system activity, administer databases,
review transaction progress, check system logs, handle events using SNMP, configure
load balancing and clustering, and configure individual applications. Its intuitive,
Swing-based interface makes the Administration Tool easy to use, which is particularly
important for system administrators who are not J2EE developers, but who are responsible
for managing an organization’s J2EE environment. In addition, the Administration Tool
can be used to manage security, authorization, and access, and perform application
performance tuning and partitioning across multiple servers.

Architecture
Each Sun Java System Application Server instance has a number of services associated
with it, typically including an Executive Server (KXS), a Java Server (KJS), a C++ Server
(KCS), and a CORBA Executive Server (CXS). These are responsible for managing system
services, Java applications, C++ applications, and CORBA services, respectively. The
performance of KXS depends on a number of parameters, including the following:

• CPU activity

• Disk I/O activity

• Mean response time

• Number of requests ready

• Number of requests waiting

• Number of requests waiting to be serviced

• Number of results cached

• Number of threads available for processing requests

• Number of unserviced thread requests

• Number of user sessions currently supported

• Peak number of requests

• Total data throughput

• Total number of requests

• Virtual memory swapping in/out

Similarly, the performance of KJS, KCS, and CXS in providing application services
is dependent on several factors, including

• Current requests waiting to be processed

• Mean response time

684 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

• Number of active database connections

• Number of available database connections

• Number of database commits

• Number of database rollbacks

• Number of requests ready

• Number of requests received

• Number of requests waiting

• Number of threads available for processing requests

• Number of unserviced thread requests

• Total data throughput

• Total number of database queries

• Total number of threads created

Server Configuration
To administer the server, you need to start up the Sun Java System Application Server
Administration Tool. The interface consists of three main areas. The first area is a row
of buttons that determines the type of actions to be performed. These actions include
setting general options, monitoring services, managing databases, reviewing transactions,
configuring logging, monitoring events, setting up load balancing, applying security
measures, and configuring individual applications for deployment (in conjunction
with the deployment tool).

Below the row of buttons are two panes: the left pane gives a tree view of the object
hierarchy associated with each action, while the right pane contains a number of tabs
that perform specific actions. In the General section, the object hierarchy in the left pane
displays a list of all configured instances of the Sun Java System Application Server,
since there can be several instances managed by the Administration Tool at one time.
Each server instance has a number of servers associated with it, including KXS, KJS,
KCS, and CXS. In the right pane, there are several tabs displayed, including Server,
Request Manager, SNMP, LDAP, EJB, and Cluster.

The Server tab, shown in Figure 33-2, contains fields that display the name of the
server instance, the hostname, the server’s IP address, the port on which the server
listens, and the current server version. In addition, you may enter the maximum number
of server engine restarts and a specific cache size for JSP pages. You must explicitly
enable internalization support for the server instance and enter the maximum server
and engine shutdown times. In addition, the set of buttons at the bottom of the screen
enables you to start, disable, or stop the server instance. If you make any configuration
changes on the screen, you must either explicitly apply them by clicking the Apply
Changes button or explicitly undo them by clicking the Undo Changes button. If you
want to use the default values, click the Default Values button.

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 685

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

686 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

The Request Manager tab, shown in Figure 33-3, allows you to enable or disable
request flow control and enter values to set default request queue high- and low-water
marks if appropriate. In addition, you must enter the minimum and maximum number
of threads for the server. For low-volume servers, you can use the default values of 8
(minimum) and 64 (maximum) threads. However, high-volume sites will require some
tuning of these parameters. For example, setting the minimum number of threads too
low will reduce response time for new clients, since new threads must be spawned rather
than drawn from the pool. In addition, if the maximum number of threads is set too low,
then clients will be locked out! In general, you should perform load testing to determine an
optimal threading configuration for the peak conditions experienced by your applications.
A set of buttons at the bottom of the screen allows you to start, disable, or stop the server
instance. If you make any configuration changes on the screen, you must either explicitly
apply them by clicking the Apply Changes button or explicitly undo them by clicking
the Undo Changes button. If you want to use the default values, click the Default Values
button.

FIGURE 33-2 Server tab

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 687

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

The Sun Java System Application Server supports the Simple Network Management
Protocol (SNMP), which enables you to have specific services monitored and, if an error
is detected, to be notified through e-mail, phone, fax, pager, or cell phone—that is, if
you provide the appropriate SNMP monitoring software (note that the Sun Java System
Application Server does not provide SNMP server functionality). The SNMP tab, shown
in Figure 33-4, allows you to enable SNMP administration and monitoring, along with
SNMP debugging features. In addition, you can set the connection attempt interval to a
reasonably high figure, allowing reconnections to occur after a connection fault has been
detected. In addition, a set of buttons at the bottom of the screen enables you to start,
disable, or stop the server instance. If you make any configuration changes on the screen,
you must either explicitly apply them by clicking the Apply Changes button or explicitly
undo them by clicking the Undo Changes button. If you want to use the default values,
click the Default Values button.

FIGURE 33-3 Request Manager tab

688 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

A key feature of the Sun Java System Application Server is its integration with the
LDAP directory service. This allows users to be authenticated against a centralized service,
and enables you to base access to resources on access control lists (ACLs) based on LDAP
groups stored in the LDAP server. Since the Sun Java System Directory Server is bundled
with the Sun Java System Application Server, it makes sense to use the integrated package
for user management. The LDAP tab, shown in Figure 33-5, contains a list of all valid
directory services that have been configured on the tab. The hostname, port number,
user DN, and user path are all displayed, along with an optional group path. In addition,
a set of buttons at the bottom of the screen allows you to add, modify, or remove LDAP
services from the list. If you make any configuration changes on the screen, you must
either explicitly apply them by clicking the Apply Changes button or explicitly undo
them by clicking the Undo Changes button. If you want to use the default values, click
the Default Values button.

FIGURE 33-4 SNMP configuration

EJBs are the core programmable component technology used by the Sun Java System
Application Server, as per the J2EE specification. A number of low-level parameters for
EJB performance can be set from the EJB tab, as shown in Figure 33-6. These parameters
include the default session timeout, the default object passivation timeout, the metadata
cache size, the implementation cache size, the timer interval, and the failover save
interval. Tuning these parameters will ensure that your application performs in line
with its requirements. For example, if failover of persistent stateful session bean data
is a high priority for an application, then you should set the failover safe interval to only a
few seconds. This places a heavy toll on the server but improves data reliability. In contrast,
if data loss is not critical to an application, then set the failover safe interval to a matter
of minutes. This reduces the load on the server considerably but exposes your users to
data-loss scenarios. In addition, a set of buttons at the bottom of the screen allows you
to start, disable, or stop the server instance. If you make any configuration changes on
the screen, you must either explicitly apply them by clicking the Apply Changes button
or explicitly undo them by clicking the Undo Changes button. If you want to use the
default values, click the Default Values button.

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 689

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

FIGURE 33-5 LDAP configuration

690 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

The Cluster tab, shown in Figure 33-7, allows you to set a number of distributed
computing parameters and provide a priority list of servers to be used in production.
You can also set the maximum number of sync backups and an abnormal cluster restart
flag. In addition, you can set the priority of different servers that are already in the pool.
Thus, if your pool is composed of four Sun 220R systems and four Sun 420R systems,
then the higher-end 420R systems should be given priority over the lower-end 220R
systems. A set of buttons at the bottom of the screen allows you to start, disable, or stop
the server instance. If you make any configuration changes on the screen, you must
either explicitly apply them by clicking the Apply Changes button or explicitly undo
them by clicking the Undo Changes button. If you want to use the default values, click
the Default Values button.

FIGURE 33-6 EJB configuration

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 691

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

In the General section, you can use the Engine Information tab for CXS, KCS, KJS,
and KXS, shown in Figure 33-8, to display the engine name, hostname on which the
engine runs, the IP address of the server, the port number on which the engine listens,
the IIOP port number, and the engine status. IIOP is the Inter-ORB protocol, which
underlies all CORBA operations. In addition, a set of buttons at the bottom of the
screen allows you to start, disable, or stop the process. If you make any configuration
changes on the screen, you must either explicitly apply them by clicking the Apply
Changes button or explicitly undo them by clicking the Undo Changes button. If you
want to use the default values, click the Default Values button.

FIGURE 33-7 Cluster configuration

692 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

You can use the Request Manager tab for CXS, KCS, KJS, and KXS, shown in
Figure 33-9, to enable or disable request flow control and enter values to set default
request queue high-and low-water marks, if appropriate. In addition, you must enter
the minimum and maximum number of threads for the server. A set of buttons at the
bottom of the screen allows you to start, disable, or stop the process. If you make any
configuration changes on the screen, you must either explicitly apply them by clicking
the Apply Changes button or explicitly undo them by clicking the Undo Changes button.
If you want to use the default values, click the Default Values button.

FIGURE 33-8 Application server engine configuration

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 693

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Monitoring
In the Monitoring section, the object hierarchy in the left pane displays a list of all
configured instances of the Sun Java System Application Server and their associated
KXS, KJS, KCS, and CXS servers. In the right pane is a display of all processes to monitor
for each server type. Attributes that can be monitored include average execution time,
requests per interval, queries per interval, transactions committed per interval, transactions
rolled back per interval, total number of threads, total number of requests, current number
of requests, number of requests waiting, number of requests ready, number of current
request threads, current number of request threads waiting, number of active data
connections, and number of cached data connections. A set of buttons at the bottom of
the screen allows you to add new plots, modify existing plots, and set various options,
including the logfile name. Figure 33-10 shows the Monitoring screen for the CXS server.

FIGURE 33-9 Request Manager configuration

694 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Once you have selected a set of processes to monitor, you can set the operational
monitoring parameters. These include the sampling interval (default is five seconds),
the color of the attribute when plotted, and the scale of the plot. A sample is shown in
Figure 33-11, where several iiopbridge attributes are plotted alongside each other.

FIGURE 33-10 Process monitoring

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 695

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

After you select the attributes to be plotted, simply click the icon in the left pane
that matches the server whose activity is to be monitored. This opens a new external
window that contains the attribute plots, appropriately scaled and colored, as shown
in Figure 33-12. By default, every tick mark represents 25 seconds of elapsed time.

FIGURE 33-11 Attribute monitoring

696 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Databases
In the Database section, the object hierarchy in the left pane displays a list of all configured
instances of the Sun Java System Application Server, as shown in Figure 33-13. In addition,
under the Server Instance icon lies a list of all external JDBC data sources configured,
external JDBC drivers installed, Sun Java System Application Server Type 2 data sources
configured, and Sun Java System Application Server Type 2 JDBC drivers installed and
activated.

FIGURE 33-12 Graphing process activity

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 697

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

In order to make use of JDBC technology, especially when using entity beans, you
must specify a JDBC driver that not only contains all the classes required to operate on
a specific vendor’s database but also supports a common API, which enables applications
to be easily ported to a different vendor platform. In conjunction with entering a database
URL, username, and password, it’s easy to configure a data source to which an application
can connect. New data sources can be easily registered, as shown in Figure 33-14.

FIGURE 33-13 JDBC configuration

698 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

In the right pane, there are several tabs displayed, including Add/Modify Data Sources
and Drivers, and Apply or Undo Changes. For example, as shown in Figure 33-15, you can
enter the details for a new JDBC driver, including the driver type, class name, class path,
and native driver directory.

You can also enter specific parameters for each JDBC driver, as shown in Figure 33-16.
These attributes include loading a data access driver and client library, along with a
defined access priority. In addition, you can enable SQL parsing and have all debug
messages logged to a file. You can set the connection timeout to the server (default is
60 seconds) and specify the maximum and minimum number of threads. In terms of
the cache, you can set the maximum number of connections, minimum number of free
slots, and connection timeout and interval. If you make any configuration changes on
the screen, you must either explicitly apply them by clicking the Apply Changes button
or explicitly undo them by clicking the Undo Changes button. If you want to use the
default values, click the Default Values button.

Transactions
In the Transaction section, the object hierarchy in the left pane displays a list of all
configured instances of the Sun Java System Application Server, under which lies a KJS
instance where appropriate. By selecting either the Instance icon or the KJS icon, you
can set parameters for each version. In the right pane, there are several tabs displayed,
including Configuration, Resource Manager, and Transaction Manager. The Configuration
tab, shown in Figure 33-17, allows you set server transaction properties appropriately,
including options such as whether global transactions are enabled or whether the root
and mirrored root directories are used. If you make any configuration changes on the
screen, you must either explicitly apply them by clicking the Apply Changes button or
explicitly undo them by clicking the Undo Changes button. If you want to use the default
values, click the Default Values button.

FIGURE 33-14 Data source configuration

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 699

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

FIGURE 33-15 JDBC driver selection

FIGURE 33-16 Selecting an existing JDBC configuration

A list of existing resource managers is displayed when you click the Resource Manager
tab. The list shows the resource manager’s name, the open string, the manager type,
thread mode, and whether or not the manager is enabled. If you make any configuration
changes on the screen, you must either explicitly apply them by clicking the Apply
Changes button or explicitly undo them by clicking the Undo Changes button. If you
want to use the default values, click the Default Values button.

You can create new resource managers by clicking the Add button, modify existing
resource managers by clicking the Modify button, and delete existing resource managers
by clicking the Remove button. As shown in Figure 33-18, adding a new resource
manager is easy: fields, check boxes, and drop-down lists are provided for you to enter
values for the name, open string, manager type, thread mode, and whether or not the
manager is enabled.

The Transaction Manager tab shows the process, transaction ID, and state of all
transactions that have been created on the local system. As shown in Figure 33-19, it
is possible to select a transaction and retrieve its details by clicking the Details button,
or to update the list of transactions displayed by clicking the Update button.

700 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

FIGURE 33-17 Transaction configuration

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 701

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

FIGURE 33-18 Adding a resource manager

FIGURE 33-19 Reviewing transactions

By clicking the KJS icon, you can set configuration parameters for the KJS server, as
shown in Figure 33-20. These parameters include the logical volume directory, the amount
of free space, and the minimum and maximum number of threads. If you make any
configuration changes on the screen, you must either explicitly apply them by clicking
the Apply Changes button or explicitly undo them by clicking the Undo Changes button.
If you want to use the default values, click the Default Values button. The Transaction
Manager tab shows the process, transaction ID, and state of all transactions that have
been created on the KJS server. It is possible to select a transaction and retrieve its details
by clicking the Details button, or to update the list of transactions displayed by clicking
the Update button.

Logging
In the Logging section, the object hierarchy in the left pane displays a list of all configured
instances of the Sun Java System Application Server. In the right pane, there are several
tabs displayed, including Server Event, HTTP, and DSync, as shown in Figure 33-21.

702 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

FIGURE 33-20 KJS configuration

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 703

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

The Server Event tab allows server events to be logged to one of three targets: a database
table, the console, or a file. If you select a database, then you must enter the data source,
database name, table name, username, and password for the database. If you select file
logging, then you must enter the filename, and you may schedule log file rotation to
occur on a regular basis. If you make any configuration changes on the screen, you
must either explicitly apply them by clicking the Apply Changes button or explicitly
undo them by clicking the Undo Changes button. If you want to use the default values,
click the Default Values button.

The HTTP tab allows HTTP logging to occur, with the only target available being
a database table. To configure database HTTP logging, you must enter the data source,
database, table name, username, and password, as shown in Figure 33-22. In addition,
you must enter the maximum number of entries in the log, as well as the write interval.
If you make any configuration changes on the screen, you must either explicitly apply
them by clicking the Apply Changes button or explicitly undo them by clicking the Undo
Changes button. If you want to use the default values, click the Default Values button.

FIGURE 33-21 Server event configuration

704 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

The DSync tab allows you to set a number of logging options for the DSync feature,
as shown in Figure 33-23. You can enable logging on any or all of the following levels:
module, failover, token, timeout, and messenger. If you want to save clusters, click the
Dump Cluster Info button, or if you want to save node information, click the Dump Node
Info button. If you make any configuration changes on the screen, you must either
explicitly apply them by clicking the Apply Changes button or explicitly undo them
by clicking the Undo Changes button. If you want to use the default values, click the
Default Values button.

FIGURE 33-22 HTTP configuration

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 705

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Events
In the Events section, the object hierarchy in the left pane displays a list of all configured
instances of the Sun Java System Application Server. In the right pane, there is a single
screen displayed, which defines actions to be performed on the basis of specified
events. The events that are notifiable are shown in Figure 33-24, and include the KXS,
KJS, and KCS servers being down, the number of process restarts exceeding the set
maximum, and the detection of an abnormal cluster. Variables that can be specified
include a list of e-mail addresses to whom alerts should be sent, and a mail server
through which all messages are transferred. Optionally, a script file can be included.
If you make any configuration changes on the screen, you must either explicitly apply
them by clicking the Apply Changes button or explicitly undo them by clicking the
Undo Changes button. If you want to use the default values, click the Default Values
button.

FIGURE 33-23 DSync configuration

706 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Load Balancing
In the Load Balance section, the object hierarchy in the left pane displays a list of all
configured instances of the Sun Java System Application Server. In the right pane,
there is a single screen displayed, which shows the various load-balancing methods
implemented by the Sun Java System Application Server, as shown in Figure 33-25,
even though only one server is configured. These include Sun Java System Application
Server–driven methods, such as user-defined criteria, and Web container methods,
comprising round robin, per component response time, and per server response time
methods. If you make any configuration changes on the screen, you must either explicitly
apply them by clicking the Apply Changes button or explicitly undo them by clicking
the Undo Changes button. If you want to use the default values, click the Default
Values button.

FIGURE 33-24 Event configuration

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 707

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Security
In the Security section, the object hierarchy in the left pane displays a list of all configured
instances of the Sun Java System Application Server. In the right pane, there is a single
screen displayed, which displays all configured ACLs, as shown in Figure 33-26. You
can create new ACLs by clicking the New button, modify existing ACLs by clicking the
Modify button, and delete existing ACLs by clicking the Remove button.

FIGURE 33-25 Load-balancing configuration

708 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

When you click the Modify button, a list of users and groups is displayed, as shown
in Figure 33-27. It is then possible to add a new user or group, set a new permission, or
remove an existing user or group from the list displayed.

Applications
In the Application section, the object hierarchy in the left pane displays a list of all
configured instances of the Sun Java System Application Server, and all installed
applications. Each installed application has its own icon, under which lie several nodes
that represent different installed modules (such as system, Default, or a user-defined

FIGURE 33-26 Security configuration

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 709

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

module, such as fortune). In the right pane, there is a single screen displayed, which
allows the file root directories for each type of file to be set. As shown in Figure 33-28,
supported file types include Java components, queries, HTML pages, HTML templates,
and application JAR files. If you make any configuration changes on the screen, you
must either explicitly apply them by clicking the Apply Changes button or explicitly
undo them by clicking the Undo Changes button. If you want to use the default values,
click the Default Values button. You can easily deploy applications by clicking the Launch
iASDT button.

FIGURE 33-27 Access control list modification

710 P a r t V I : S e r v i c e s , D i r e c t o r i e s , a n d A p p l i c a t i o n s

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

If you click an application group icon, a list of application group components is
listed. As shown in Figure 33-29, this could include C++ type components or Java
components. In addition, you can set access control to the application group by clicking
the Set Application Group Access Control button. By clicking the appropriate check
box, located next to each component, you can enable the component. If you make any
configuration changes on the screen, you must either explicitly apply them by clicking
the Apply Changes button or explicitly undo them by clicking the Undo Changes button.
If you want to use the default values, click the Default Values button.

FIGURE 33-28 File root configuration

C h a p t e r 3 3 : W e b A p p l i c a t i o n s a n d S e r v i c e s 711

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Chapter 33

Summary
This chapter examined how to configure simple Web applications through the open-source
Apache HTTP Server and how to configure basic J2EE services within the Sun Java
System Application Server that is shipped with the Solaris 10 distribution. These two
services represent two extremes in the Web application market—the Apache HTTP
Server is lightweight, providing access to Web pages, CGI scripts, and Java servlets
(with the appropriate connector), while the Sun Java System Application Server can
support the most complex Web applications, making use of distributed transactions,
directory services, asynchronous message queues, and the emerging XML Web Services.

FIGURE 33-29 Application group configuration

This page intentionally left blank.

Index

Symbols
/dev directory, 46, 303–305
/dev/rmt directory, 307
/devices directory, 303–305
/etc directory disk space usage, 330
/etc/group, 263
/etc/hostname, 40
/etc/hosts file, 444, 570, 594
/etc/inet/ntp.conf file, 465–466
/etc/inet/ntp.server file, 464
/etc/inetd.conf, 446–450
/etc/inittab file, 82, 96–98
/etc/lp directory, 379–380
/etc/lp/classes directory, 381
/etc/named.conf file, keywords in,

578–581
/etc/netmasks, 40
/etc/nsswitch.conf file, 381–382, 594
/etc/passwd file, 86, 124, 264
/etc/path_to_inst file, 330–331
/etc/printers.conf file, 382
/etc/saf/_sactab file, 503
/etc/saf/zsmon/_pmtab file, 504
/etc/services file, 448, 451
/etc/shadow, 264–265
/etc/syslog.conf, 401
/etc/vfstab file, 308, 314, 339–340,

348, 399
/export file system, 45–46, 306
/export/home file system, 306
/home directory, 46
/opt file system, 46

/proc file system, 173, 391, 393
/sbin/init command, 71–73, 81–83, 96
/sbin/rc1, 80–81
/sbin/rcS, 81
/sbin/rc3, 81
/sbin/rc2, 81
/sbin/rc0, 80
/usr directory, 46
/var file system, 45
/var/spool, 379

AA
access control, defined, 243
accounting data, collecting, 406
accounting reports, generating, 413–417
accounting runs, stages of, 413
accurate data, 196
ACK (acknowledgement), 480
ACLs (access control lists), 237–238

defining on a local network, 579
modifications to, 709

Administration Tool
adding a resource manager, 701
Application section, 708–711
attribute monitoring, 695
Cluster tab, 690–691
data source configuration, 697–698
Database section, 696–699
DSync configuration, 705
EJB tab, 689–690
Engine Information tab, 691–692

7 1 3

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Events section, 705–706
HTTP configuration, 703–704
JDBC configuration, 696–699
JDBC driver selection, 699
KJS configuration, 702
LDAP tab, 688–689
Load Balance section, 706–707
Logging section, 702–705
Monitor section, 693–696
process activity graph, 696
process monitoring, 694
Request Manager tab, 686–687,

692–693
reviewing transactions, 701
Security section, 707–708
server event configuration, 703
Server tab, 685–686
SNMP tab, 687–688
Transaction section, 698–702

admintool, SMC replaces, 266
AH (Authentication Header), 520–521
algorithms, encryption and

decryption, 199
alias command, 567–568
aliases for devices, 79, 581
allocated inode, explained, 342
alternative slice, 46
AMANDA (Advanced Maryland

Automatic Network Disk
Archiver), 362

ampersand (&), 147
anycast addressing, IPv6, 517
Apache Web Server (HTTP Server),

675–681
httpd.conf file, 676–680
starting, 680–681
tasks performed by, 675

applets, Java, 31
application configuration, 708–711
application development, 647–673
application group configuration, 711
application protocols, 448–450

Application Server (Sun Java System),
681–711

architecture, 684–685
configuration, 685–693
high availability, 682–683
object caching, 683
performance, 682
performance factors, 684–685
performance parameters, 684
scalability, 683
security, 683

applications
debugging, 668–673
executing concurrently, 28–29
executing (spawning) other

applications, 167
performance optimization of,

667–673
size of, 668

arch –k command, 321
archives

creating, 111–112
extracting files from, 114
replacing files in, 112
table of contents of, 113

archiving and compression, 111–115
arithmetic operations, in C

programming, 651–652
arithmetic operators in PERL, 139
ARP (Address Resolution Protocol), 436
arp command, 452
ARPANET, 431
aset (Automated Security Enhancement

Tool), 226–227
operational levels for, 226
tasks performed by, 226–227

asetenv file, 226
assembly language, 647–648
asymmetric algorithms, 199
asymmetric encryption, 200–201
asymmetric key cryptography, 200–201
at command, 155–156

714 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

ATM (Asynchronous Transfer Mode), 432
attribute monitoring, 695
auditing security, 219
auth_attr (RBAC authorization

database), 250–251
auth_data file, data format of, 271
authenticating an SSH connection, 217
authentication, 197–198, 216–217,

287–290
authentication services, 289–290
authentication system, 287–289
authenticity, in distributed systems, 197
authority

delegating using sudo, 248–249
roles and, 244–245

authorizations, 244–247
for Basic Solaris User, 250
roles and profiles and, 247

automount command, 533
automounter, 527

enabling, 533–536
and NIS+, 536
starting and stopping, 537–538

automounter maps, 527, 533–536
awk (text-processing programming

language), 132
field-extraction using, 135–136
POSIX options for, 143

BB
background job, 168
backup devices, configurations of,

360–361
Backup Exec (VERITAS), 361, 364–365
backup media

capacity and reliability, 366
selecting, 365–368

backup and recovery, 357–378
backup requirements, analyzing,

358–359

backup and restore software tools,
368–377

backup server
centralized, 361
holding disk on, 362

backup services
data integrity from, 358–359
distributed storage of, 361
rapid restoration from, 358–359
requirements of, 358

backup strategies, 359–362
backup tools, 362–365
backups, explained, 358–359
banner command, 48
basename command, 131, 159
batch functions, 254–255
bg command, 147, 168
BIND (Berkeley Internet Daemon), 569
BIND server configuration, 578–581
boot clients, JumpStart installation,

66–67
boot command, 70–71, 76, 94

boot –a, 71
boot –r, 70

boot command options, 70–71, 94
boot device, changing the default, 75–77
boot manager, 53–54
boot sequence, 74–75
boot servers, JumpStart installation,

65–66
boot slice, 46
BOOTP (Bootstrap Protocol), 458
breakpoint, setting in gdb, 672–673
broadcast storm, 433
BSD UNIX

features of, 10
vs. System V Release 4, 11

buffer overflow problems, 362, 482
in C programming, 649
gaining root access via, 224
of system daemons, 221

bus type, getting information about, 332

I n d e x 715

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

CC
C and C++ programming languages, 648
C program

creating and compiling, 650–652
fork() system call, 168
open() call, 663, 666
read() call, 664
signal() function, 168
system() call, 168
write() call, 664, 666

C program components, 650
C programming, 649–666

arithmetic operations, 651–652
buffer overflow in, 649, 652–653
core files, 659
functions and libraries, 652–653
high-level I/O, 656–663
included header files, 664, 666
I/O boundary checking, 658–659
low-level I/O, 663–666
random number generator, 653–656
Solaris man pages for, 653
structs (structures) in, 660–663
system calls, 652–653

cabling distances, 432
CacheFS (cache file system), 531–533
cancel command (print jobs), 388
capacity problems, 343–344
cat command, 127–128, 130, 159
CD (Collision Detection), 434
cd command, 160
CDE (common desktop environment), 25
CD-R (CD-recordable), 308–309, 367–368
cdrecord application, 309
CD-ROM (compact disc-read-only

memory), 306, 308–309
CD-RW (CD-rewritable), 308–309,

367–368
centralized authentication system, 288
centralized backup server, 361
CERT (Computer Emergency Response

Team), 219

CGI (Common Gateway Interface)
programs, 32

CHAP (Challenge Handshake
Authentication Protocol), 501

chgrp command, 160
chmod command, 229
Class C network configuration, 476
Class C networks, connecting two, 477
classes directory (/etc/lp/classes), 381
client/server networks, 29
clock device, setting, 78
clustering, 15
CMS (command summary statement),

415–417
CN (Common Name), 605
college example

DNS configuration, 584
NIS+ domains, 585

command line operators, 129
command line (shell), 27–28
command prompts, 145–148
commands

listing, 168
suspending, 147

compilation time for an application, 668
compress command, 114
compressing files, 114–115
confidentiality, 198–204
Configuration Assistant, Solaris Intel, 48
consistency, in distributed systems, 197
control scripts, 74

examples, 90–91
writing, 87–88

core file, 169
cpio command, 372–373
CPU statistics, 407
crack (password-guessing program), 197
cron command, 156–157, 410
cron job, 413, 417, 421
crontab entry, 410–411, 421
crontab files, 156

adding or deleting entries in, 157
fields in, 156–157

716 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

cross-platform interoperability, 14
crypt command, 199–200, 265
cryptography, 198
cryptology, 198
CS (Carrier Sense) mode, 433
CSMA/CD, 433–435
CUIs (character user interfaces), 27, 145
current working directory, obtaining,

163, 397

DD
daemons, types of, 448
DAP (Directory Access Protocol), 31, 603
DARPA (Defense Advanced Research

Projects Agency), 431
DAT (digital audio tape), 305
DAT drives, 307
data collecting

for accounting, 406
for performance measuring,

406–410
data encapsulation, explained, 480
data integrity, 196
data integrity requirements of backup

service, 358–359
data source configuration, 697–698
database records using timestamps,

460–461
date command, 160–161
date and time, current system, 160–161
dd program, 373
debugging an application, 668–673
define command (m4), 553–554
DES (Data Encryption Standard), 200
desktop workstations, 37
device aliases, creating and removing, 79
device filenames, 304–305
device files, 303–304, 326
device management, 301–422
device names, 46–47, 325–326
devices

adding to the system, 309–316
checking for, 316–322

checking for at boot time, 319–321
checking for while the system is

up, 321–322
listing attached, 316–319
supported under Solaris Intel,

36–37
df command, 184, 326–330
df command options, 327–328
df –l command, 329
df report, 410
dfmounts command, 529
dfshares command, 530
DHCP client for Solaris, configuring, 472
DHCP clients, 459, 462
DHCP codes and their meanings,

462–463
DHCP configuration table, 467
DHCP Configuration Wizard, 471
DHCP (Dynamic Host Configuration

Protocol), 457–459, 515
DHCP leasing, 463
DHCP operations, 462–463
DHCP servers, 459, 462

configuring, 57, 466–471
manual configuration of, 471–472

dhcpagent, starting, 472
dhcpagent client for Solaris, 466
dhcpconfig program, 467–470
dhcpmgr GUI, 471
dhtadmc command, 472
diff command, 131
dig (domain information groper) tool,

577–578
direct maps (automounter), 535
directories, 26

as mount points, 339
changing, 160
checked for integrity, 343
deleting, 164
listing the files in, 162
obtaining the current working,

163, 397
directory entries, 162–163
directory permissions, listing, 238–239

I n d e x 717

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

directory services. See iDS; LDAP
directory size, recording, 411
disable command, 389
disk devices, 325

busy time of, 410
physical disks associated with, 47

disk drives, 305–309
disk formatting, 52–53
disk labels, 312–313
disk partitions, 50–52, 310, 326

alternative slice, 46
boot slice, 46
sizing, 51
using fdisk to create, 50–52

disk quotas, 402, 404–406
setting up, 405
verifying, 405

disk selection and layout, configuring, 60
disk space, 404

checking usage, 329–330
planning, 45–46

disk thrashing, 398
disk usage

logging, 410–413
monitoring, 326–330

disk usage statistics, 407
DiskSuite packages, 345, 348
display resolutions supported by Solaris

Intel, 36
DIT (Directory Information Tree), 605
dmesg command, 319–321, 331–333
dmesg output, 319–321
DN (Distinguished Name), 605
DNS (Domain Name Service), 30, 40,

457–458, 569–581
client tools, 572–578
configuration example, 584
hostnames, 570
IP address resolution, 571–576
overview of, 569–572
replica server, 585
securing, 220
server configuration, 58, 578–581

top-level domains, 570
zones, 580–581

domain-to-IP mapping (DNS), 581
DoS (denial-of-service) attack, 480
drives, 305–309

adding hard drives, 309–314
installing zip and jaz, 314–316

drvconfig command, 83, 305
DSN (Delivery Status Notification), 548
DSync configuration, 705
du command, 330

du –o, 412
du –s, 413

dump cycle, explained, 363
dump level of a backup, 374
dump level numbers, 374
duplicate inodes problem, 354–355
DVD-ROMs, 308–309
DVD-Rs, as backup media, 367–368
DVD-RWs, as backup media, 367–368
dynamic routing, 478–479, 483, 488

EE
ECC (error-correction coding), 196
echo command, 130, 154
eeprom command, 94–95, 218–219
effective GID, 167
EJB layers diagram, 682
EJBs (Enterprise JavaBeans), types of, 681
elm (mail user agent), 564–565
e-mail, 545–568
e-mail aliases, 567–568
e-mail clients, 563–567

local (elm), 564–565
remote (Netscape Mail), 565–567

e-mail header example, 561–562
e-mail headers, 550–551, 561–562
e-mail messages

deferred, 403–404
delivered, 403

e-mail protocols, 546–550
encryption, asymmetric, 199–201

718 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

encryption algorithms, 199
encryption key, 199
entity beans (EJBs), 681
environment variable settings (bash), 147
environment variables

listing all set, 157
setting, 157–158

error and status messages, recording,
331–332

escape characters in PERL, 139
ESMTP (extensions to SMTP), 548
ESP (Encapsulated Security Payload),

520–521
Ethernet, 431–436

quality of service, 435
transmission media, 432

Ethernet addresses, 435–436
Ethernet cards, 432
Ethernet elements, 433
Ethernet frames, 435
Ethernet speeds, 431
Ethernet standard (IEEE 802.3), 433
Ethernet stations, 433
Ethernet 10Base family media types, 432
Eudora client for Windows,

POP-based, 550
event configuration (Administration

Tool), 705–706
exec_attr (RBAC command database),

251–254
execution time of an application, 667
execve() function, 176–177
.exrc file, 125–127

FF
fat centralized server, 29
FDDI (Fiber Distributed Data Interface),

333, 432
fdisk, to create new partitions, 50–52
fdisk menu, 51
fees, charging using accounting, 417–419

fg command, 148, 168
fgetc command (in C), 656–657
fgets function (in C), 657
file contents

displaying, 159
examining, 105
viewing, 163

file operators used in PERL, 140
file permissions

listing, 238–239
octal, 232–234
symbolic, 229–231
testing, 151

file properties, testing, 150–151
file root configuration, 710
file system access control, 229–239
file system sharing, 633–645
file system types supported, 28
file systems, 28

categories of ownership, 231
checking with fsck, 340–343
constructing, 313
corrupted, 341
creating, 326, 333–334
currently mounted, 184
lost+found directory, 343
mounting local, 339–340, 346–347
sharing, 528–530
types of, 325
unmounting local, 340, 350–351

files
compressing, 114–115
converting, 131
creating, 333
displaying the first page of, 161
displaying the last page of, 164–165
displaying on the screen, 161–162
searching for strings within, 135, 161

files in a directory, listing, 162
FILO (first-in last-out) stack, 134
finger service, 482
firewall mailing list, 490

I n d e x 719

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

firewalls, 478, 481–483
blocking incoming and outgoing

ports, 483
configuring, 488–496
drawbacks of, 490

firmware, 73–74
floppy disks, 307–308
FMA (Federated Management

Architecture), 361
for loop, 151–152
foreach command, 142
foreground job, 168
fork() system call, in a C program, 168
format command, 47, 311–312, 315,

322–323
format command options, 322–323
formatting, purpose of, 312
forms and form letters, 383–384
Forth programming language, 47
FQDN (Fully Qualified Domain Name),

30, 457, 483–484, 569
Free Solaris program, 3
fsck (file system check) program,

340–343, 351–355
checking disk volumes, 343
checking a superblock, 342

fssnap command, 373–374
FTP connection, 404
FTP (File Transfer Program), securing, 220
full dumps (backups), 359
fuser command, 351

GG
G++ (GNU C++ compiler), 649
gcc (GNU C compiler), 649, 650–652
gdb utility

basic commands, 670
break command, 672–673
info all-registers command, 672
list command, 671

GID (group ID), 29, 167, 206–207, 263
Gimp program, 105

gkadmin tool, 291
GNOME, 25
GNU Compiler Collection, 649
grant keyword, 246
grep command, 129, 135, 161
grids, 15
group database (/etc/group), 263
group file, verifying accuracy of, 285
group members, 231
group membership of a file, 160
group password, 264
groupadd command, 269
groups, 262, 263–264

adding, 269
listing, 264
managing, 270
typical set of, 263

groups command, 207, 264
grpck command, 285
guess strings, for cracking passwords, 265
GUIs (graphical user interfaces), 25,

145, 648
gzip command, 105, 111, 114–115

HH
halt command, 85
halting the system, 85
hard drives, 305–306

adding, 309–314
as backup media, 366–367
identifying, 332–333
steps for installing, 310–311

hard quotas, explained, 404
hardware, testing, 79
hardware devices, testing, 78
hardware errors, diagnosing before

booting, 319
hardware for IPv4 routers, 516
hardware support (SPARC and x86), 13
hash character (#), 205
hash function, for data integrity, 196
HCL (Hardware Compatibility List), 13, 35

720 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

head command, 105, 161
hexadecimal format stack trace, 396
high availability

of Application Server, 682–683
of Solaris servers, 83, 343

high-level services, support for, 428
holding disk, on backup server, 362
home directory, 263
hop, explained, 480
host routes, 482, 487
hostnames

configuring, 57
explained, 40
and interfaces, 442

hosts, on a Solaris network, 442,
451–452, 477

hosts file (/etc/hosts), 444
HOSTS.TXT file, 569–570
HTTP (Hypertext Transfer Protocol), 427

configuration with Administration
Tool, 704

a request/response protocol, 427
httpd.conf file (Apache Web Server),

676–680
global environment configuration

section, 676
main server configuration section,

677–679
sections of, 676–680
virtual hosts configuration

section, 680
hubs, 432
hung system, 86

II
id command, 206
IDE (Integrated Device Electronics), 325
identification and authentication,

197–198
for rlogin, 213
of Telnet session, 211

iDS (iPlanet Directory Server), 603
adding group members, 628
Administration Domain, 607
authentication methods, 608
configuration, 606–607
configuration summary, 609
creating a group, 627
creating a new OU, 628–629
credential levels, 608
group membership, 626–628
LDAP client support, 607
managing using iPlanet Console,

613–629
packages, 606
searching users and groups, 629
security settings, 608

iDS (iPlanet Directory Server) console
Configuration tab, 617–621
Create User Screen, 625
directory server configuration

window, 616–617
Encryption configuration

window, 619
Manager configuration

window, 622
Performance configuration

window, 618
Settings configuration window, 617
SNMP configuration window, 620
Tasks tab, 616–617

idsconfig command, 607–608
IEEE 802.3 Ethernet standard, 433
IETF (Internet Engineering Task Force),

442, 458
ifconfig –a command, 444–445
ifconfig command, 444–446, 472, 484–485
IKE (Internet key exchange), 18, 521
IMAP (Internet Message Access

Protocol), 221, 549–550
incoming traffic, restricting, 482
incremental dumps (backups), 359
indirect maps (automounter), 533–534

I n d e x 721

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

inetboot command, 75
inetd (Internet daemon), 204–206,

211–212, 443–444, 448
inetd.conf file, 446–450
information-gathering vulnerabilities, 224
init command (/sbin/init), 71, 81–83, 96
init process, 69
init states, 69, 71
inittab file (/etc/inittab), 96–98
init-wrapper scripts, 71
inode states, 342
inodes, 342

block numbers, 343
duplicate problem, 354–355
indirect blocks, 343
link count, 342
link count problem, 354

install command, 119
installation, 43–68

network installation, 62–63
using JumpStart, 64–68
using suninstall, 63
using Web Start Wizard, 54–63

installation methods, 43
installation planning, 43–54

device names, 46–47
disk space, 45–46
network context, 44–45
Solaris Intel, 48–53
SPARC, 47–48
tasks, 43–44

installing software and packages, 61–62
Intel hardware, 34–37
Intel preinstallation, 48–53
Intel system, monitoring with df, 327
interface parameters, modifying,

445–446
interfaces, 443, 475–478

bringing back up, 446
configuring, 444–445
shutting down, 445

Internet access, 501–502
Internet Layer. See IPv4; IPv6

Internet services, most commonly
used, 450

Internet standards, RFCs for, 442
iostat reports statistics, 406
IP address resolution, 571–576
IP addresses, 40, 436

configuring, 57
DHCP leasing, 463
dynamically managed, 457
maximum number of, 515

IP address-to-MAC address mappings
table, 452

IP datagram, 437–438
IP datagram structure, 438
IP filtering

and firewalls, 481–482
purposes of, 481

IP (Internet Protocol), 40, 425, 515
IP layer, functions of, 437
IP packets, 440
IP ports, disabling access to, 204–206
IP routing, static and dynamic, 478–479
IP spoofing, explained, 482
IP version, 437
IPFilter firewall

configuring, 488–490
rule processing, 489–490

iPlanet Administration Server, 607, 621
iPlanet Console, 613–629

directory entry, 624
directory search, 623
main directory server window, 615
main window, 614
search for a user, 626
Servers and Applications tab, 615

IPSec, 17–18, 520–521
IP-to-domain mapping (DNS), 581
IPv4, 436–440

router hardware, 516
20 years of, 515

IPv6, 17–18, 458, 515–521
address allocation formula, 517
addresses, 518

722 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

addressing, 516–518
header extensions, 520
headers, 519–520
interface types, 517
motivation for, 515–516
QoS (quality of service), 520
routing, 518–519
routing algorithms, 518
security, 520–521
special addresses, 517

IPv6 support, configuring, 58
ISC (Internet Systems Consortium), 459
ISP (Internet Service Provider)

connecting to, 513
use of caches to store files, 531

JJ
Java applets, 31
Java programming language, 31, 648–649
Java servlets, 31–32
jaz drives, 305, 307, 314–316
JDBC configuration, 696–699
JDBC driver selection, 699
JIT (just-in-time) compilers, 32
jobs

listing all running, 148
scheduling, 154–157

J2EE (Java 2 Enterprise Edition),
31–32, 675

JumpStart, 43
JumpStart installation, 64–68

boot clients, 66–67
boot servers, 65–66
install server, 65–66
rules file, 65–66
sysidcfg file, 64, 67–68

JVM (Java Virtual Machine), 14, 31, 649

KK
kadmin command options, 298–299
kdb5_util program options, 299

KDC (Key Distribution Center), 288–289
kdmconfig, 54
Kerberized services, configuring PAM

for, 297–298
Kerberized versions of applications,

288–289
Kerberos, 287–289

applications, 291–294
principals, 289
realms, 288

Kerberos authentication server, 288
Kerberos management tool (gkadmin), 291
Kerberos Server, configuring, 58
Kerberos tickets, 17, 288
Kerberos version 5, 17, 289
kernel, 24–27
kernel routing table, 482–483
Kernighan, Brian, 20
key size, 202
keypair, 203
keys (encryption), 199

public and private, 203
validity in days, 203

kill commands/scripts, 89, 169, 450
signals used with, 186
single-user, 90–91
writing, 88–90

killall command, 187
killprocid() shell function, 89
KJS configuration, 702

LL
LANs (local area networks), 30, 475
last command, 209
late collisions, 433
LDAP (Lightweight Directory Access

Protocol), 31, 459, 583, 603
databases that can be added to,

609–610
querying, 630

LDAP cache, 610
LDAP cache manager, 610

I n d e x 723

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

LDAP client services, starting, 610–612
LDAP directory services, 31, 603–631
LDAP entries, 604

creating, 609–610
modifying, 630–631

LDAP replicas, 604
LDAP Server, configuring, 59
ldapaddent command, 609–610
ldapclient command, 610–612
ldapclient manual command, 611
ldapclient mod command, 611
ldapmodify command, 630–631
LDAP-NIS+ interface, 612–613
ldapsearch command, 630
LDIF (LDAP Data Interchange Format)

files, 605–606
less command, 161–162
LIFO (last-in first-out) stack, 134
lightweight processes, 29
line numbers, generating, 133
listen (network port monitor), 504, 509
Live Upgrade, 16, 43, 102–103
Live Upgrade menu, 103
load balancing, 706–707
local file systems

checking, 329
mounting, 339–340, 346–347
unmounting, 340, 350–351

local hosts file (/etc/hosts), 444
local mail clients, 564–565
local printer, adding, 382–383
local users, last login dates for, 414
locked account, 269
lofiadm command, 334–335
logfiles, 403–404, 421–422
logging disk usage, 410–413
logical device names, 325–326
logical file system, 306
logical operators, 130, 141
login logging, 414–415
login shell, 263
loopback file device driver, 334–335
looping, 151–153

lost+found directory (file system), 343
low-density drives, 307
lp directory (/etc/lp), 379–380
lp (line printer) commands, 386–388
lpadmin utility, 388–389
lpstat command, 389
ls command, 162, 238–239, 668
lsof (list open files) command, 182–185
LWP (lightweight process), 181
lxrun application, 105

MM
MA (Multiple Access), 433
MAC addresses, 435–436
macros for use with sendmail.mc, 552
mailing lists, 20
man intro command, 127
man pages for C programming, 653
man pages and user manuals online

(Sun), 4
Management Console Tools Suite tools, 16
manual boot, 71
masks, 443
master maps (automounter), 535–536
medium-density drives, 307
memory corruption, 196
message header options, 439
message priority values, 438
metadb command, 348–349
metainit command, 349–350
m4 macro language

to create sendmail.cf file, 552–554
define command, 553–554

MIME Content-Type header, 562–563
MIME (Multipurpose Internet Mail

Extensions), 545, 562–563
MIME-format message, example, 562–563
minus (–) operator, 229
mirrored disk configuration (RAID), 345
mirroring, enabling, 349–350
mkdir command, 162–163, 306, 313, 315,

339, 346–347

724 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

mkfile command, 333
mkfs command, 333–334
mkfs command aliases, 334
modems, 501

adding, 510–511
testing, 511

monacct (monthly account summary),
417–419

more command, 129, 163
mount command, 313, 315, 346–347, 530
mount command options, 355–356, 542
mount daemon (mountd), 528
mount points, explained, 339
mountall command, 340
mounting a local file system, 346–347
mounting remote file systems, 539–540
mpstat command, 408–409
mt command, 307
MTAs (mail-transport agents), 221, 545
MTBF (mean time between failures), 344
MUAs (mail user agents), 545, 564–565
multihomed hosts, 23
multitasking, 28–29
multiuser, 28–29
multiuser startup scripts, 90

NN
Name Services, configuring, 58
named.conf file (/etc/named.conf)

keywords, 578–581
naming conventions, 325
naming services, 30–31
NAT (network address translation),

515–516
nbstat command, 636
ndd command, 454–456
NetBackup (VERITAS), 363–365
NetBIOS naming, 636–638
netmasks, 57, 442, 445
Netscape Mail, 565–567

POP settings, 566
sending mail, 567
user preferences, 566

netstat command, 441
netstat –i command, 496–497
netstat –r command, 486
netstat –s command, 497
network

explained, 425
Solaris installation from, 62–63

network adapters supported by Solaris
Intel, 37

network classes, 436
network configuration files, 444
network context, defining, 44–45
network interfaces, 443, 475–478

configuring, 444–445
shutting down, 445

Network Neighborhood (Windows),
634, 636

network port monitor (listen), 504, 509
network protocols, setting parameters

for, 454–456
network routing, 475, 482, 487–488
network routing daemon (in.routed), 488
network support, configuring, 57
network topologies, 426–429
NetWorker client, 364
NetWorker (Legato), 363–364
networking, 423–521
networking terminology, 40
newfs command, 313, 315, 334, 349–350
newgrp command, 270
NFS architectures, 526
NFS clients, 526

installing, 530–531
options, 542

NFS 4, 525
NFS (Network File System), 3, 525, 635

enhancing security, 540
lock daemon (lockd), 530

NFS performance, 531, 541
NFS server, 526

configuring, 528
nfsd daemon, 528
options, 542

NFS shares, 635

I n d e x 725

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

NFS stat daemon (statd), 530
NFS service, securing, 221
NIS examples, 593–597
NIS maps, 584, 587–588
NIS maps vs. NIS+ tables, 584, 588
NIS (Network Information Service), 30,

221, 569, 583–602
NIS resource management, 584–587
NIS server, configuring, 58
NIS+, 30, 583–602

and automounter, 536
security, 586
server creation process, 593
setting up clients, 592
setting up a root domain, 591
setting up servers, 592–593

NIS+ clients, 586
NIS+ domains, 585
NIS+ examples, 593–597
NIS+ interface, LDAP-NIS+, 612–613
NIS+ namespace components, 586
NIS+ namespaces, 583, 586
NIS+ object details, listing, 600–601
NIS+ object lookups and queries,

599–600
NIS+ objects, setting access rights on,

598–599
NIS+ resource management, 584–587
NIS+ server, configuring, 58
NIS+ settings, displaying for local client,

597–598
NIS+ tables, 586

described, 588–590
vs. NIS maps, 584, 588
populating, 591–592

niscat command, 587, 600–601
nischmod command, 598–599
nisclient command, 592
nisdefaults command, 597–598
nisgrpadmin command, 592
nisldapmaptest command, 612–613
nisls command, 599–600
nisping command, 592

nispopulate command, 591
nisserver command/script, 591, 595–597
nlsadmin command, 510
nmbd service, 636
nmblookup command (Samba), 637
NSAPI (Netscape Server API), 681
nslookup command, 573–576
nsswitch.conf file (/etc/nsswitch.conf),

381–382, 594
NT authentication for Samba, 644
NTP client, configuring, 472–474
NTP message data format, fields in,

473–474
NTP (Network Time Protocol), 457,

459–462
NTP security, 466
NTP server, configuring, 463–466
NTP timestamp, 464
ntp.conf file, 465–466
ntp.server file, 464
NTPv3, 461
nvalias command, 79
NVRAM (nonvolatile RAM), 79
nvunalias command, 79

OO
object caching, Application Server, 683
octal file permissions, 232–234
ok prompt, 70
one-time password, 198
OpenBoot PROM monitor, 69–71, 74,

319–321
security levels, 218
viewing release information, 75

OpenSSH (Open Secure Shell),
215–217, 509

operational responsibility, 244
operator role, 243
operators, 129, 138–139
Orange Book, protection level classes,

193–194
OSI networking, 429–430

726 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

OSI networking layers, 430
OSI networking model, 425, 430
OSI (Open Systems Interconnection), 425
outgoing traffic, restricting, 482

PP
PA (Primary Administrator) role,

243–244
package commands, 118–122
package file, decompressing, 105
package information, viewing, 104–105
packages, 101

building, 110–111
creating, 108–111
explained, 101
getting information about, 102
installing, 61–62
installing using the CLI, 105–107
managing, 101
managing with Solstice Launcher

GUI, 117–118
uninstalling using the CLI, 107–108

packet delivery, 479–481
packet exchanges, 478
packet filtering, 478, 481
packet header, 480
packet interception, 453–454
packet message and header, 479
packets

explained, 479
sending across a network, 480
TCP, 447

PAM (Pluggable Authentication
Module), 287, 289–290

applications requiring
authentication, 295

authentication modules
supported, 296

configuring for Kerberized
services, 297–298

configuring for non-Kerberized
services, 296–297

flags supported, 295
module types supported, 294–295
pam.conf file entries, 294

PAM stack structure for flexible
authentication, 290

pam.conf file, 294
parity, to ensure data integrity, 196
partially allocated inode, explained, 342
partition table, 313–314
Partitions (slices), 50–52, 310, 326

alternative slice, 46
boot slice, 46
sizing, 51
using fdisk to create, 50–52

pass command, 489
passwd command, 268
password database (/etc/passwd), 264
password database fields, 264–265
password file, verifying accuracy of, 285
password with a private key, 203
password shadowing, converting

systems to use, 285
password-guessing program (Crack), 197
passwords, 262, 264–265, 268
patch clusters, recommended, 104
patch installation, reviewing, 117–118
patch properties, viewing, 118
patchadd command, 120–121
patches, 103–104

explained, 101
finding, 115–117
for fixing identified bugs, 104
installing, 101
latest released, 115–116
for security currently available,

116–117
security-related, 104
for upgrading the kernel, 104

patchrm command, 121–122
PATH variable, 153
path_to_inst file (/etc/path_to_inst),

330–331
pcred command, 179, 394

I n d e x 727

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

performance
Application Server, 682
measuring, 402–403

performance data, collecting, 406–410
performance factors, Application Server,

684–685
performance optimization of

applications, 667–673
performance tuning, 336–337, 420–421
Perl programming language, 648

arithmetic operators, 139
escape characters, 139
file operators, 140
logical operators, 141
operators, 138–139
variables, 138

Perl programs, 136–143, 411
converting to use CGI, 142–143
steps to creating, 137

permissions
directory and file, 238–239
listing, 238–239
octal file, 232–234
read and write, 229–231
setting default, 234–235
setUID and setGID, 235–236
sticky bit, 236
system-wide, 231
using symbolic vs. octal codes, 233

permissions string, 238
persistence across sessions, of Java

servlets, 32
pfiles command, 181, 396
pflags command, 179, 393
pgp command, 204
PGP (Pretty Good Privacy) application,

201–202
pgrep command, 186
physical device files, 304
physical device names, 304, 325–326
physical devices to instance names,

mapping of, 330–331

physical disk associated with a disk
device, 47

physical disks, 306
physical security, ensuring, 217–219
PID (process ID), 5, 29, 167, 184, 391
ping command, 451
pipe operator (|), 129
pkgadd command, 106
pkgchk command, 102
pkginfo command, 104–105, 110
pkginfo files, creating, 108–109
pkgrm command, 107
pkgtrans command, 110
pkill command, 186
platforms supported, 33–34
pldd command, 180, 394
plus (+) operator, 229
pmadm command, 512–513
pmap command, 179, 394
PointBase database, 683
policies, 231
POP (Post Office Protocol), 548–550
POP server (Qpopper), 549
POP settings, in Netscape Mail

client, 566
POP-based Eudora client for

Windows, 550
port forwarding, 478
port listeners, setting up, 509–510
port monitors, 503–504, 509, 512–513
port numbers, for commonly used

services, 451
port table, viewing with netstat, 441
portmapper, 527
portmapper status, checking, 538–539
ports

commonly allowed, 481–482
firewall blocking, 483

POSTs (Power-On Self-Tests), 75
PostScript commands, 386
PostScript print jobs, spooling, 379
power management, configuring, 59
powering down, 85

728 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

poweroff command, 85
PPP (Point-to-Point Protocol), 501, 504

options, 511–512
setting up, 511–512

PPP service, 297
pppd daemon, 501
prebooting tasks, 73
preinstallation planning, 43–54

device names, 46–47
disk space, 45–46
network context, 44–45
Solaris Intel, 48–53
SPARC, 47–48
tasks, 43–44

primary network interface, 443
print filters, 384
print jobs

canceling, 388
spooling, 379

print manager, 384–387
print services, configuring, 381–382
printenv boot-device command, 76–77
printer classes, setting up, 381
printer management, 379–390
printer name and port, setting, 388
printer Properties window, 385–386
printer protocol and timeout, setting, 388
printer sharing, 633–645
printer software type, specifying, 388
printer support, checking for, 380–381
printers

accessing remote, 383
adding local, 382–383
removing, 388
viewing, 385

printers.conf file (/etc/printers.conf), 382
printing

configuration files for, 379–380
POSIX style of, 387

priocntl –l command, 172
private key, 217
privileged users, 28
privileges, 241

privileges granted to roles, 244–247
probe-scsi command, 48, 78–79
probe-scsi-slot command, 79
proc tools, 178–182, 393–397
process activity graph, 696
process flag definitions, 393
process list display, 392
process management, 167–187
process monitoring, 694
process spawning, 82
process state, 393
process statistics, 173
process termination, 89
process tree, examining, 397
processes, 29–30

bringing to the foreground, 148
explained, 167
listing, 169–173
listing all open files for, 396
monitoring, 173
sending to the background, 147
that are opening files, 183
that are using files, 183
that are writing to unlinked

files, 183
PROCFS (process file system),

177–178, 391
prof_attr (RBAC profile database),

251, 257
profiles, 244–245, 247
programming languages, 647–649
protecting the superuser account,

207–208
protection level classes (Orange Book),

193–194
protocols

application, 448–450
setting parameters for, 454–456
Solaris-supported, 439

prototype file, 108
proxy server, configuring, 59
prtconf command, 38–40
prtvtoc command, 312

I n d e x 729

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

ps command, 168–169, 184
ps command options, 185

ps –A or –e, 171
ps –Af, 171
ps –c, 172
ps –cf, 172
ps –f, 170
ps –g O, 172
ps –j, 173
ps –l, 170, 173

pseudo file systems, 391–393
psig command, 180, 395
pstack command, 181, 396
ptree command, 182, 397
public key, generating a copy of, 203
public key cryptography, 201–204
public key-based authentication, 216
pwck command, 285
pwconv command, 285
pwd command, 163
pwdx command, 182

QQ
QoS (quality of service)

Ethernet, 435
IPv6, 520

Qpopper (POP server), 549
quota command, 405
quotas (disk), 402, 404–406

setting up, 405
verifying, 405

RR
RAID (Redundant Array of Independent

Disks), 15, 343–346
configurations, 305
levels, 344–346
setting up, 348–350
striping and mirroring, 344–345

random number generator, written in C,
653–656

RARP (Reverse ARP), 436, 458
RBAC (Role-Based Access Control),

241–259
databases used with, 250–251
with no hierarchies of roles, 243
operations, 249–250
origin of, 242–243

rc (run control) scripts, 80
r-commands, 506
RDISC daemon (in.rdisc), 486, 488
RDISC (Router Discovery Protocol), 485
RDN (Relative Distinguished Name), 605
read permissions

removing, 230
setting, 229

real GID, 167
reboot command, 71, 73, 84–85
rebooting the system, 71, 73, 84–85
reconfiguration boot, 79–80, 85
recovering the system, 86–87
recovery boot, 80
redundancy features, 83
redundancy problems, 344
reject command, 388
remote access, 501–514

securing, 209–217
tools for, 508–509

remote file systems, mounting, 539–540
remote logins, 506–507
remote mail clients, 565–567
remote printers, accessing, 383
remote-access topology (client/

server), 210
remote-shell (rsh), 507
repeaters, 432
repquota command, 405
reset command, 76, 319
resource management, 15, 402

NIS/NIS+, 584–587
in Server Administration Tool, 701

Resource Manager, 15
resource usage, 404

730 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

restoration requirements of backup
service, 358–359

restoration time, vs. user satisfaction, 358
RFC (Request For Comments), 442
.rhosts file, 212, 214–215
ring network topology, 426
RIP (Routing Information Protocol), 485
Ritchie, Dennis, 20
rlogin application, 212
rlogin server command, 506–507
rlogin service, 214, 297

identification and authentication
for, 213

vs. Telnet, 212
rmdir command, 164
roles, 241, 243–244

and authority, 244–245
default under Trusted Solaris, 194
overlapping, 243–244
planning table for creating, 252
privileges granted to, 244–247
and profiles and authorizations, 247
system-management, 243

root access
explained, 243
gaining via buffer overflow, 224
protecting against gaining, 207

root directory (/), 305
root domain setup, NIS+, 591
root password, 60–61, 207
root user, 207–208, 231
route command, 486
router configuration, viewing, 484–485
router hardware for IPv4 routers, 516
router status, viewing, 496–499
router table, 480–481
routers, 475, 477–478

basic function of, 477
configuring, 59, 483–484

routes
adding, 487
default, 483

kinds of, 482–483
static, 485

routing, 475, 488
routing extensions, 519
routing protocols, 485–486
routing table

manipulating, 486–487
viewing, 486

rpcbind, 527
RPCs (Remote Procedure Calls), 429,

525–527
rsh server command, 507
rsh service, 297
rules file (JumpStart), 65–66
run levels, 69, 71–72, 80
run levels and their functions, 72
runacct command, 406, 414–415
runacct report columns, 415
run-level S (single-user), 80
run-level script directory, 74
run-level scripts, Solaris, 73
run-level 6, 73

SS
SA (System Administrator) role, 243–244
sacadm command, 512–513
SAF port monitors, 504
SAF (service access facility), 501, 503–504
SAINT, 219–226

Data Analysis page, 225
Data Management page, 222
recommendations, 225
services secured by, 220–221
Target Selection page, 223
vulnerability’s danger level, 224

Samba, 633–645
net view command, 637
nmblookup command, 637
NT authentication, 644
troubleshooting, 643

Samba clients, 638–640

I n d e x 731

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

Samba daemon (smbd)
configuring, 640–642
status of, 642–643

Samba GUIs, 644–645
Samba Server, 633–636
SANs (storage area networks), 361, 517
sar command, 409
scalability, Application Server, 683
scheduling jobs, 154–157
scheduling a system event, 155
script load order, 90
scripts, execution order of, 74
SCSI (Small Computer System

Interface), 325
SEAM (Sun Enterprise Authentication

Mechanism), 287
secondary network interface, 443
secure shell (SSH), 215–217, 509

client connection sequence, 216
client session, 215
public key-based authentication, 216

securing remote access, 209–217
security, 189–299

Application Server, 683
IPv6, 520–521

Security Administrator’s Integrated
Network Tool, 219

security architecture, 192–194
security auditing, 219
security configuration (Administration

Tool), 707–708
security innovations, Solaris, 16–18
security levels, 192–194, 439–440
security levels of OpenBoot monitor, 218
security patches currently available,

116–117
security requirements, 191–192
security-related patches, 104
sed program, 134–135

command options, 143
G option, 133
with pipe operators, 133
for search-and-replace, 132

self-test of the system, forcing, 319
sendmail, 545–568

FEATURE macro, 552–553
running, 558
troubleshooting, 558–560
webmin GUI for configuring, 557

sendmail.cf file, 550
creating using m4, 552–554
kinds of commands in, 554–555
kinds of rule sets in, 555
left-hand side specifiers, 556
right-hand side specifiers, 556
user-defined rule sets in, 556

sendmail.cf parameters, setting, 553–554
sendmail.mc file

macros for use with, 552
sample, 554

serial port, adding, 510
Server Administration Tool, 684–711
server event configuration

(Administration Tool), 703
server tools, recent innovations for, 14–16
server (UltraSPARC E-450), 38
service access controller, 503
service connectivity, testing, 508
service definitions, 442
services

configuring, 447–448
disabled or commented out, 449
disabling and enabling, 204–206
in inetd.conf, 450
port numbers for, 451
secured by SAINT, 220–221

services database, 448
services file, 451
servlet runners, 31
servlets, Java, 31–32
session beans (EJBs), 681
setenv boot-device command, 76–77
SetGID permissions, 235–236
SetUID permissions, 235–236
shadow database (/etc/shadow), 264
shadow password facility, 265

732 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

share command, 528–530, 540
share command options, 542
shared memory, explained, 420
shared memory parameters, 420–421
shared volumes, accessing, 530
shell arguments, processing, 148–150
shell scripts, writing, 148–154
shell variables, 153–154, 158
shells, 27–28, 145–148

available, 28
listing all running jobs in, 148

showrev reports, 118
shutdown command, 83–85, 91–92
shutting down the system, 83–85, 91–94
SIGHUP signal, 169, 447, 450
SIGKILL signal, 169
signal() function, C program, 168
signal.h header file, 169
signals

between processes, 395
commonly used, 169
sending to other processes, 168–169
used with kill, 186

single-user init state (run-level S), 80
single-user kill scripts, 90–91
single-user mode, 86, 91
Single-user run-level messages, 81
64-bit support, configuring, 60
slices (partitions), 52, 310, 326

alternative slice, 46
boot slice, 46
sizing, 51
using fdisk to create, 50–52

SMB (Server Message Block) protocol,
361, 633

smbclient command, 638–639
smbclient command options, 639
smb.conf file, 640–642
smbd Samba daemon, 636
smbmount command, 638
smbstatus command, 642–643
smbumount command, 638

smc command options when
starting up, 271

SMC (Solaris Management Console),
261–286

Add Application dialog box, 283
Add Server dialog box, 284
application configuration, 281
Applications View, 274
Console menu, 282
Documentation applications, 275
Infrastructure applications, 276
initializing, 285–286
introduction to, 266
Java initialization options (–J),

285–286
Jobs applications, 277
login screen, 272
main screen, 273
Modify Application dialog box, 284
Remove Application dialog box, 283
Security applications, 278
Software applications, 279
starting, 270–271
User and Group applications, 280
working with, 272–284

SMC tools, administrative tasks of, 266
smexec command, 252–254
smmultiuser command, 254–255
smprofile command, 257
smrole command, 258–259
SMTP (Simple Mail Transfer Protocol),

440, 546–548
extensions to (ESMTP), 548
mail exchange transaction process,

546–547
standard commands, 547
transaction example, 560–561

smuser command, 255–256
snapshots of the system, 360, 373–374, 409
snoop command, 453–454
SNTP (Simple NTP), 461
SOA (Start of Authority) record, 575

I n d e x 733

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

SOAP request, 429
SOAP (Simple Object Access Protocol), 429
SOE (standard operating environment), 43
soft quotas, explained, 404
software and packages, installing, 61–62
Solaris, 3

advantages of, 11–14
recent innovations, 14–18

Solaris for Intel
benefits to using, 35
devices supported, 36–37
limitations of using, 35

Solaris Management Console Tools Suite
tools, 16

Solaris Management Tools 2.1, 16
Solaris 10, 4

FAQs, 20
what’s new in, 18

Solaris 10 installation. See Installation
Solaris 10-supported systems, 33–34
Solaris.admin authorizations currently

defined, 246
Solstice Launcher GUI, for managing

packages, 117–118
sort command, 131
source (.) command, 158–159
SPARC hardware, 32–34
SPARC preinstallation, 47–48
SPARC (Scalable Processor

Architecture), 32
SPARC system firmware, managing, 69
SPARC system monitoring, with df, 327
SPARC systems, 38
SPARC Ultra system

dmesg output for, 319–320
system boot messages, 319–320

SPARC workstation components, 37
spooling print jobs, 379
SSH connection, authenticating, 217
SSH (secure shell), 215–217, 509

client connection sequence, 216
client session, 215
public key-based authentication, 216

SSL (Secure Sockets Layer), 196

stack trace, 396
standalone daemons, 448
standard password database fields,

264–265
star network topology, 426–427
starting up and shutting down, 69–98
startup, 79–83
startup scripts, multiuser, 90
stateful session beans (EJBs), 681
stateless session beans (EJBs), 681
static IP routing, 478–479
static routes, 485
stationery, customized, 384
stations, Ethernet, 433
status file, 392–393
status messages, recording, 331–332
sticky bit permissions, 236
STOP commands, 94
storage devices, 305–308
striped disk configuration (RAID), 344
striping, enabling, 349
strong authentication, 197–198
strong identification, 197
su command, 206
subnet mask, 40, 484
subnets, 437, 443, 484
sudo facility, 242–243, 247–249
Sun, 3
Sun documentation, 19
Sun Help site, 20
Sun Java System Application Server.

See Application Server
Sun Java System Application Server

Administration Tool.
See Administration Tool

Sun Manager’s List (mailing list), 20
Sun4u systems, 33–34
Suninstall installation, 63
Suninstall program, 43
SunOS 5.10, 3–4
SunOS 5.x, major innovations of, 12–13
SunOS 4.x, major innovations of, 12
Sun’s web sites, 19–20

734 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

SunScreen firewall
Administrative interface, 492
ALLOW rules, 492–493
configuring, 490–496
DENY action, 495
DENY rules, 493–494
Information interface, 493
Policy Rules interface, 495
rules definition, 494

superblock
damaged beyond repair, 353
fsck check of, 342
replacing, 353

superblock backups, creating, 353
superuser access, granting, 247–248
superuser account, 145, 207–208
superuser password, selecting, 60–61
superuser privileges, 28
suspending a command, 147
swap command, 335–336, 397–399
Swap files, 45, 398–399
swap partitions, 399
swap pool, 336
swap slice/partition, 52
swap space, 398
SWAT (Samba Web Administration

Tool), 644–645
switches, 475
SymbEL tools, 403
symbolic file permissions, 229–231
symbolic links, 74
symmetric key cryptography, 199–200
symmetric multiprocessing, 29
symmetric trust relationship, 195
sync command, 336
sysdef output for an x86 server, 321–322
sysidcfg file

configurable properties, 67–68
JumpStart installation, 64, 67–68

syslog (system log), 401, 421–422
syslog.conf (/etc/syslog.conf), 401, 421
syslogd (system log daemon), 401–402,

421–422
system access, monitoring, 208–209

system accounting, 402
system accounts, 262
system architecture, getting details

about, 332
system boot messages

for SPARC Ultra system, 319–320
for x86 system, 320–321

system calls, displaying as they are
executed, 176

system components, 37
system concepts, 23–37
system configuration, 38–40, 317–319
system date and time, current, 160–161
system device management, 301–422
system event, scheduling, 155
System V Release 4

vs. BSD UNIX, 11
contributions to the UNIX

platform, 11
features of, 10–11

system hardware, testing, 78–79
system information, displaying, 38–40
system load, 408–409
system logging, 401–403
system performance, measuring, 406–410
system performance data, collecting,

409–410
system security, 191–228
system start up and shut down, 69–98
system time consumed, 409
system() call, in a C program, 168
system-management roles, 243
system-wide permissions, 231
sys-unconfig command, 472

TT
tail command, 128, 164–165, 208
talk command, 94
tape archive (tar file), creating, 111–113
tape drives, 307
tapes, as backup media, 366
tar (tape archive) command, 111–112,

369–371

I n d e x 735

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

task overlap, 243
tasks, 241, 243
TCP packets, 447
TCP statistics, 498
TCP (Transmission Control Protocol), 40,

425, 440–441, 479, 525
TCP wrappers, 227–228, 403
TCP/IP, 209, 425
TCP/IP networking, 431
TCP/IP protocol suite, 515
Telnet, 210–213, 502–503

display command, 505
vs. rlogin, 212
status command, 506
using, 505–506
vulnerabilities, 213–215

Telnet client commands, 505
Telnet clients, testing service

connectivity, 508
Telnet connection, 404
Telnet port, 441–442
Telnet session

events, 502
identification and authentication

of, 211
sequence of events, 210

temporary mailbox, checking the size
of, 329

terminal port monitor (ttymon), 504,
512–513

test command, 78, 151
text processing and editing, 123–143
text-processing utilities, 127–132
thin clients, 29
Thompson, Ken, 20
ticket-granting server, 288
time, millisecond accuracy for, 460
time command, 420, 667
time zone and locale, configuring, 59
timestamps

database records using, 460–461
NTP, 464

tip command, 511, 513–514

tokens, in service definitions, 442
top listing, 174
top program, 173–176
touch command, 70
traceroute command, 214, 451–452
transmission media, Ethernet, 432
Transport layer (OSI), 440–442
transport protocols, 440
truss program, 176–177
trust, 195
trust level, 195
trust relationship, symmetric, 195
Trusted Computing Platform, 195
Trusted Solaris, 194–195
ttymon (terminal port monitor), 504,

512–513
tunefs command, 336–337

UU
UDP statistics, 497
UDP (User Datagram Protocol), 40, 425,

440–441, 479, 525
UFS partition, 52
UFS (UNIX File System)

creating, 326, 334
elements of, 325
parameters, 334

ufsboot application, 75
ufsdump program, 307, 374–376
ufsrestore program, 374, 376–377
UID (user ID), 29, 167, 206–207, 262
UltraSPARC E-450 server, 38
UltraSPARC systems (Sun4u systems), 33
UltraSPARC workstations, 33
UltraSPARC5 workstation, 38, 317–318
UltraSPARC-IIi CPUs, 38
umask, 229, 231, 234–235
umount command, 350–351
umountall command, 351
uncompress command, 115
UNIX, 5–11, 24–27

history of, 6–11
origins of, 7–9

736 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

System V contributions to, 11
what it is, 5–6

UNIX authentication, 197
UNIX development, guiding principles

of, 6
UNIX passwords, 265
UNIX System V Release 4

vs. BSD UNIX, 11
contributions to the UNIX

platform, 11
features of, 10–11

UNIX systems
common characteristics of all, 25
components of, 26

unprivileged users, 28
unshare command, 529
unshareall command, 529
usage patterns, historical for the

system, 209
USENET, 20
user activity, monitoring, 208–209
user attributes, modifying, 268
user characteristics, 262–263
user ID, 202
user manuals and man pages online

(Sun), 4
user satisfaction vs. restoration time, 358
useradd command, 267
userdel command, 269
usermod command, 268
username and password combination,

198, 262
users and groups, managing, 261–286
users (user accounts), 231, 261–263

adding, 267
adding or deleting batches of,

254–255
concept of, 261
deleting, 268–269
last login dates for all local, 414
locking and unlocking, 269
modifying, 255–256
uses for, 262

user_attr (RBAC user database), 250
USL (UNIX System Laboratories), 10

VV
variables, in PERL, 138
vfstab file (/etc/vfstab file), 314,

339–340, 348, 399
vi (visual editor) program, 123–125

command mode commands,
124–125

command mode and edit mode, 124
ex commands, 125–126
running, 123
text substitutions, 126

virtual memory, 52–53, 397–399
adding, 335–336
capacity and performance, 407–408
for spooling, 379

VM (Volume Manager), 15
vmstat command, 407–408
VoIP (Voice over IP), 440
volcheck command, 307–308
volume labeling, 312
volume management, 15

WW
w command, 208–209
wall (write all) command, 93
WANs (wide area networks), 475
watch-clock command, 78
watch-net command, 47, 78
Web applications and services, 675–711
Web server. See Apache Web Server;

Application Server
Web server startup script, 87–88
Web sites for Solaris information, 19–20
Web Start Wizard, 43, 54–63
Web Start Wizard configuration options,

57–61
DHCP Server, 57
Disk Selection and Layout, 60

I n d e x 737

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

DNS Server, 58
Hostname, 57
IP Address, 57
IPv6 Support, 58
Kerberos Server, 58
LDAP Server, 59
Name Services, 58
Netmask, 57
Network Support, 57
NIS/NIS+ Server, 58
Power Management, 59
Proxy Server, 59
Root Password, 60–61
Router, 59
64-Bit Support, 60
Time Zone and Locale, 59

Web Start Wizard installation, 54–63
Webmin GUI for configuring

sendmail, 557
Webmin (system admin interface), 557
WebNFS, 525
who command, 93, 208–209
whois tool, 577
Windows DHCP client, configuring,

472–473
Windows Network Neighborhood,

634, 636
Windows server, Samba Server as, 635–636

WINS (Windows Internet Name
Server), 636

working directory, obtaining current, 397
workstation components, 37
workstation system configuration, 317–319
workstation (UltraSPARC5), 38
write command, 93
write permissions, removing, 230

XX
x86 system

boot messages, 320–321
configuration, 318–319
dmesg output for, 320–321
sysdef output for, 321–322

XFree-86 X server, 36
xntpd NTP daemon, 463, 465
XTypes available through xntpd, 465

ZZ
zip drives, 305, 307, 314–316
ziptool command, 315–316
ziptool command options, 316
zone transfers, disabling, 581
zones, 15, 29, 580–581

738 S o l a r i s 1 0 : T h e C o m p l e t e R e f e r e n c e

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5 / Index

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio 739

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company
Australia Pty. Ltd.
TEL +61-2-9900-1800
FAX +61-2-9878-8881
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)
McGraw-Hill Hellas
TEL +30-210-6560-990
TEL +30-210-6560-993
TEL +30-210-6560-994
FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores
S.A. de C.V.
TEL +525-1500-5108
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
carlos_ruiz@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-6863-1580
FAX +65-6862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN
McGraw-Hill/
Interamericana de España, S.A.U.
TEL +34-91-180-3000
FAX +34-91-372-8513
http://www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
emea_queries@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
McGraw-Hill/Osborne
TEL +1-510-420-7700
FAX +1-510-420-7703
http://www.osborne.com
omg_international@mcgraw-hill.com

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Complete Reference Fluff / Solaris 10: TCR / Watters / 222998-5
Blind Folio 740

P:\010Comp\CompRef8\998-5\index.vp
Monday, December 20, 2004 2:30:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	Solaris 10: The Complete Reference
	Contents at a Glance
	Contents
	Introduction
	Part I. Installation
	1. Introduction to Solaris 10
	2. System Concepts and Choosing Hardware
	3. Solaris 10 Installation
	4. Initialization, OpenBoot PROM, and Run Levels

	Part II. System Essentials
	5. Installing Software, Live Upgrade, and Patching
	6. Text Processing and Editing
	7. Shells, Scripts, and Scheduling

	Part III. Security
	9. System Security
	10. File System Access Control
	11. Role-Based Access Control
	12. Users, Groups, and the Sun Management Console
	13. Kerberos and Pluggable Authentication

	Part IV. Managing Devices
	14. Device and Resource Management
	15. Installing Disks and File Systems
	16. File System and Volume Management
	17. Backup and Recovery
	18. Printer Management
	19. Pseudo File Systems and Virtual Memory
	20. System Logging, Accounting, and Tuning

	Part V. Networking
	21. Basic Networking
	23. Routing and Firewalls
	24. Remote Access
	25. Internet Layer (IPv6)

	Part VI. Services, Directories, and Applications
	26. Network File System and Caching File System
	27. Sendmail
	28. Domain Name Service
	29. Network Information Service (NIS/NIS+)
	30. Lightweight Directory Access Protocol (LDAP)
	31. Samba
	32. Application Development and Debugging
	33. Web Applications and Services

	Index

